Clark School Home UMD
ECE

ECE News Story

Ulukus is PI for NSF grant on energy harvesting wireless communication devices

Ulukus is PI for NSF grant on energy harvesting wireless communication devices

Professor Sennur Ulukus (ECE/ISR) is the principal investigator for a three-year, $250K, NSF Communication and Information Foundations grant, “Foundations of Energy Harvesting Wireless Communications.”

Continuing her work on devices that operate with energy harvested from the environment, Ulukus will establish fundamental performance limits and design principles for wireless communication networks containing them.

Ulukus identifies the randomness, intermittency, and causality of energy availability, and the uncertainty about the energy states of the transmitters at the receivers, as new ingredients to be incorporated in determining the fundamental performance limits of energy harvesting wireless communication systems. She will determine the information theoretic capacity of an energy harvesting link and the accompanying optimum coding and transmission scheme by incorporating energy harvesting constraints into the information theoretic capacity formulation.

In addition, Ulukus will identify the information capacity of multi-user, multi-hop, cooperative energy harvesting networks. She also will incorporate practical issues such as imperfections in storage and retrieval of energy to and from the battery, and leakage of energy over time, into rigorous information theoretic capacity formulations. Finally, Ulukus will make connections to estimation, privacy and security by investigating state amplification, state masking and secure data transmission problems.

Energy harvesting systems such as these are envisioned to enable energy self-sufficient, self-sustaining, perpetually operating wireless networks and untethered mobility. As such, they will enable new societal, medical, environmental, monitoring/surveillance and safety applications which are otherwise difficult or impossible with conventional battery-powered operation. These applications range from enabling perpetual remote environmental monitoring and surveillance, structural monitoring to on and in-body networking for health monitoring, medical diagnosis and treatment.

Related Articles:
Alumna Jing Yang begins tenure-track position at Penn State
Ulukus to investigate rechargable networks with energy cooperation
Ulukus is PI for new NSF information-theoretic physical layer security grant
Alumna Jing Yang wins NSF CAREER Award
Ulukus to exploit wireless network interference in new NSF grant
Ephremides receives NSF grant to bridge wireless network theories
Clark School names Hamid Jafarkhani 2017 IHOF Inductee
Alumnus Ravi Tandon receives NSF CAREER Award
Narayan, Zhou, Schlotfeldt, Strahan win ISR outstanding awards
Alexander Barg receives NSF grant to study theoretic aspects of local data recovery

September 2, 2014


Prev   Next

Current Headlines

University of Maryland School of Engineering Announces Unprecedented Investment from A. James & Alice B. Clark Foundation

Jose Torero Called as Expert Witness for Grenfell Tower Inquiry

UMD Cybersecurity Club Wins National Competition

UMD Solar Decathlon Team Takes 1st Place in the U.S., 2nd Place in the World

UMD Researchers Develop Stable, Robust Li-ion Battery Chemistry

ECE Students Dive Into Communications Design Course With a New Lab Sponsored by Hughes

Waks Named 2017 APS Fellow

Five Clark School faculty part of $8 million NIH grant to combat hearing loss in older people

News Resources

Return to Newsroom

Search News

Archived News

Events Resources

Events Calendar

Additional Resources

UM Newsdesk

Faculty Experts