
Introduction to Cryptology 

Lecture 3 



Announcements 

• Homework 1 due on Thursday 2/5 

– Hand in code for Problem 1 and decrypted 
ciphertext along with other solutions 

• Readings up on course webpage on 
Computational Complexity 

– We will start computational approach to 
cryptography next week.  



Agenda 

• Last time: 
– Cryptanalysis of the Vigenere Cipher (1.3) 
– Terminology and Definitions 

 

• This time: 
– Terminology and Definitions 
– Formal definition of a symmetric encryption scheme 

(2.1) 
– Shannon’s definition of perfect secrecy (2.1) 
– Equivalent definitions (2.1) 
– Construction of a perfectly secret scheme (2.2) 



Terminology 

• Discrete Random Variable:  A discrete random 
variable is a variable that can take on a value 
from a finite set of possible different values 
each with an associated probability. 

• Example:  Bag with red, blue, yellow marbles.  
Random variable X describes the outcome of a 
random draw from the bag.  The value of X 
can be either red, blue or yellow, each with 
some probability. 



More Terminology 
• A discrete probability distribution assigns 

a probability to each possible outcomes of a discrete 
random variable. 
– Ex:  Bag with red, blue, yellow marbles. 

• An experiment or trial (see below) is any procedure 
that can be infinitely repeated and has a well-defined 
set of possible outcomes, known as the sample space. 
– Ex: Drawing a marble at random from the bag. 

• An event is a set of outcomes of an experiment (a 
subset of the sample space) to which a probability is 
assigned 
– Ex: A red marble is drawn. 
– Ex:  A red or yellow marble is drawn. 



Conditional Probability 

• A conditional probability measures the 
probability of an event given that (by 
assumption, presumption, assertion or 
evidence) another event has occurred. 

• Probability of event 𝑋, conditioned on event 
𝑌:  Pr⁡[𝑋⁡|⁡𝑌] 

• Example:  Probability the second marble 
drawn will be red, conditioned on the first 
marble being yellow. 



Basic Facts from Probability 

• If two events are independent if and only if 
Pr⁡[𝑋⁡|⁡𝑌] ⁡= ⁡Pr⁡[𝑋]. 

• AND of two events:  Pr 𝑋 ∧ ⁡𝑌 = Pr 𝑋 ⋅
⁡Pr⁡[𝑌⁡|⁡𝑋] 

• AND of two independent events: Pr 𝑋 ∧ ⁡𝑌 =
Pr 𝑋 ⋅ ⁡Pr⁡[𝑌] 

• OR of two events: Pr 𝑋 ∨ ⁡𝑌 ≤ Pr⁡[𝑋] ⁡+
⁡Pr⁡[𝑌] 
– This is called a “union bound.” 



Formally Defining a Symmetric Key 
Encryption Scheme 

 



Syntax 
• An encryption scheme is defined by three algorithms 

– 𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐 

• Specification of message space 𝑴 with 𝑴 > 1. 
• Key-generation algorithm 𝐺𝑒𝑛: 

– Probabilistic algorithm 
– Outputs a key 𝑘 according to some distribution. 
– Keyspace 𝑲 is the set of all possible keys 

• Encryption algorithm 𝐸𝑛𝑐: 
– Takes as input key 𝑘 ∈ 𝑲, message 𝑚 ∈ 𝑴 
– Encryption algorithm may be probabilistic 
– Outputs ciphertext 𝑐 ← 𝐸𝑛𝑐𝑘(𝑚) 
– Ciphertext space 𝑪 is the set of all possible ciphertexts 

• Decryption algorithm 𝐷𝑒𝑐: 
– Takes as input key 𝑘 ∈ 𝑲, ciphertext 𝑐 ∈ 𝑪 
– Decryption is  deterministic 
– Outputs message 𝑚 ≔ 𝐷𝑒𝑐_𝑘(𝑐) 



Distributions over 𝐾,𝑀, 𝐶 

• Distribution over 𝑲 is defined by running 𝐺𝑒𝑛 and taking 
the output. 
– For 𝑘 ∈ 𝑲, Pr 𝐾 = 𝑘  denotes the prob that the key output by 
𝐺𝑒𝑛 is equal to 𝑘. 

• For 𝑚 ∈ 𝑴, Pr[𝑀 = 𝑚] denotes the prob. That the 
message is equal to 𝑚. 
– Models a priori knowledge of adversary about the message. 
– E.g. Message is English text. 

• Distributions over 𝑲 and 𝑴 are independent. 
• For 𝑐 ∈ 𝑪, Pr[𝐶 = 𝑐] denotes the probability that the 

ciphertext is 𝑐.   
– Given 𝐸𝑛𝑐, distribution over 𝑪 is fully determined by the 

distributions over 𝑲 and 𝑴. 



Definition of Perfect Secrecy 

• An encryption scheme (𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐) over a 
message space 𝑴 is perfectly secret if for 
every probability distribution over 𝑴, every 
message 𝑚 ∈ 𝑴, and every ciphertext 𝑐 ∈ 𝑪 
for which Pr 𝐶 = 𝑐 >0: 

Pr 𝑀 = 𝑚⁡ 𝐶 = 𝑐] = Pr[𝑀 = 𝑚] . 



An Equivalent Formulation 

• Lemma: An encryption scheme 
(𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐) over a message space 𝑴 is 
perfectly secret if and only if for every 
probability distribution over 𝑴, every message 
𝑚 ∈ 𝑴, and every ciphertext 𝑐 ∈ 𝑪: 

Pr 𝐶 = 𝑐⁡ 𝑀 = 𝑚] = Pr[𝐶 = 𝑐] . 



Basic Logic 

• Usually want to prove statements like 𝑃 →
⁡𝑄⁡(“if 𝑃 then 𝑄”)  

• To prove a statement 𝑃 → ⁡𝑄⁡we may: 

–  Assume 𝑃 is true and show that 𝑄 is true. 

– Prove the contrapositive:  Assume that 𝑄 is false 
and show that 𝑃 is false. 

 



Basic Logic 

• Consider a statement 𝑃⁡ ↔ ⁡𝑄⁡(𝑃 if and only if 𝑄) 

– Ex: Two events 𝑋, 𝑌⁡are independent if and only if 
Pr 𝑋 ∧ 𝑌 = Pr 𝑋 ⋅ Pr 𝑌 . 

• To prove a statement 𝑃⁡ ↔ ⁡𝑄⁡it is sufficient to 
prove: 

– 𝑃 → ⁡𝑄 

– 𝑄 → ⁡𝑃 



Proof (Preliminaries) 

• Recall Bayes’ Theorem: 

– Pr 𝐴⁡ 𝐵] =
Pr 𝐵|𝐴 ⋅Pr[𝐴]

Pr[𝐵]
 

 

• We will use it in the following way: 

– Pr 𝑀 = 𝑚⁡ 𝐶 = 𝑐] =⁡
Pr 𝐶=𝑐⁡ 𝑀=𝑚]⋅Pr[𝑀=𝑚]

Pr[𝐶=𝑐]
 



Proof 

Proof:  → 

• To prove:  If an encryption scheme is perfectly 
secret then  

“for every probability distribution over 𝑴, every 
message 𝑚 ∈ 𝑴, and every ciphertext 𝑐 ∈ 𝑪: 

Pr 𝐶 = 𝑐⁡ 𝑀 = 𝑚] = Pr[𝐶 = 𝑐] . " 



Proof (cont’d) 

• Fix some probability distribution over 𝑴, some 
message 𝑚 ∈ 𝑴, and some ciphertext 𝑐 ∈ 𝑪. 

• By perfect secrecy we have that 

 Pr 𝑀 = 𝑚⁡ 𝐶 = 𝑐] = Pr[𝑀 = 𝑚] . 

• By Bayes’ Theorem we have that: 

Pr 𝑀 = 𝑚⁡ 𝐶 = 𝑐] =
Pr 𝐶 = 𝑐⁡ 𝑀 = 𝑚] ⋅ Pr[𝑀 = 𝑚]

Pr[𝐶 = 𝑐]
= Pr[𝑀 = 𝑚] . 

• Rearranging terms we have: 
Pr 𝐶 = 𝑐⁡ 𝑀 = 𝑚] = Pr[𝐶 = 𝑐] . 


