Introduction to Cryptology

Lecture 24

Announcements

- Optional HW12 up on course webpage. Due on 5/14.
- Please fill out survey for final review session.
- Review problems for final exam will be up by end of the week.

Agenda

- Last time:
 - RSA Encryption and Weaknesses (11.5)

- This time:
 - Digital Signatures Definitions (12.2-12.3)
 - RSA Signatures (12.4)
 - Dlog-based signatures (12.5)

Digital Signatures Definition

A digital signature scheme consists of three ppt algorithms (Gen, Sign, Vrfy) such that:

- 1. The key-generation algorithm Gen takes as input a security parameter 1^n and outputs a pair of keys (pk, sk). We assume that pk, sk each have length at least n, and that n can be determined from pk or sk.
- 2. The signing algorithm Sign takes as input a private key sk and a message m from some message space (that may depend on pk). It outputs a signature σ , and we write this as $\sigma \leftarrow Sign_{sk}(m)$.
- 3. The deterministic verification algorithm Vrfy takes as input a public key pk, a message m, and a signature σ . It outputs a bit b, with b=1 meaning valid and b=0 meaning invalid. We write this as $b\coloneqq Vrfy_{pk}(m,\sigma)$.

Correctness: It is required that except with negligible probability over (pk, sk) output by $Gen(1^n)$, it holds that $Vrfy_{pk}(m, Sign_{sk}(m)) = 1$ for every message m.

Digital Signatures Definition: Security

Experiment $SigForge_{A,\Pi}(n)$:

- 1. $Gen(1^n)$ is run to obtain keys (pk, sk).
- 2. Adversary A is given pk and access to an oracle $Sign_{sk}(\cdot)$. The adversary then outputs (m, σ) . Let Q denote the set of all queries that A asked to its oracle.
- 3. A succeeds if and only if
 - 1. $Vrfy_{pk}(m, \sigma) = 1$
 - 2. $m \notin Q$.

In this case the output of the experiment is defined to be 1.

Definition: A signature scheme $\Pi = (Gen, Sign, Vrfy)$ is existentially unforgeable under an adaptive chosen-message attack, if for all ppt adversaries A, there is a negligible function neg such that:

$$\Pr[SigForge_{A,Pi}(n) = 1] \le neg(n)$$
.

RSA Signatures

CONSTRUCTION 12.5

Let GenRSA be as in the text. Define a signature scheme as follows:

- Gen: on input 1ⁿ run GenRSA(1ⁿ) to obtain (N, e, d). The public key is ⟨N, e⟩ and the private key is ⟨N, d⟩.
- Sign: on input a private key sk = ⟨N, d⟩ and a message m ∈ Z_N*, compute the signature

$$\sigma := [m^d \bmod N].$$

 Vrfy: on input a public key pk = ⟨N, e⟩, a message m ∈ Z_N*, and a signature σ ∈ Z_N*, output 1 if and only if

$$m \stackrel{?}{=} [\sigma^e \mod N].$$

The plain RSA signature scheme.

Attacks

No message attack:

Choose $s \in Z_N^*$, compute s^e .

Ouput $(m = s^e, \sigma = s)$ as the forgery.

Attacks

Forging a signature on an arbitrary message:

To forge a signature on message m, choose arbitrary $m_1, m_2 \neq 1$ such that $m = m_1 \cdot m_2$. Query oracle for $(m_1, \sigma_1), (m_2, \sigma_2)$. Output (m, σ) , where $\sigma = \sigma_1 \cdot \sigma_2$.

RSA-FDH

CONSTRUCTION 12.6

Let GenRSA be as in the previous sections, and construct a signature scheme as follows:

- Gen: on input 1ⁿ, run GenRSA(1ⁿ) to compute (N, e, d). The public key is ⟨N, e⟩ and the private key is ⟨N, d⟩.
 As part of key generation, a function H: {0, 1}* → Z_N* is specified, but we leave this implicit.
- Sign: on input a private key ⟨N, d⟩ and a message m ∈ {0, 1}*, compute

$$\sigma := [H(m)^d \mod N].$$

Vrfy: on input a public key (N, e), a message m, and a signature
 σ, output 1 if and only if σ^e ? H(m) mod N.

The RSA-FDH signature scheme.

Random Oracles

- Assume certain hash functions behave exactly like a random oracle.
- The "oracle" is a box that takes a binary string as input and returns a binary string as output.
- The internal workings of the box are unknown.
- All parties (honest parties and adversary) have access to the box.
- The box is consistent.
- Oracle implements a random function by choosing values of H(x) "on the fly."

Principles of RO Model

- 1. If x has not been queried to H, then the value of H(x) is uniform.
- 2. If A queries x to H, the reduction can see this query and learn x.
- 3. The reduction can set the value of H(x) to a value of its choice, as long as this value is correctly distributed, i.e., uniform.

Security of RSA-FDH

Theorem: If the RSA problem is hard relative to GenRSA and H is modeled as a random oracle, then the construction above is secure.

PKCS #1 v2.1

- Uses an instantiation of RSA-FDH for signing.
- SHA-1 should not be used "off-the-shelf" as an instantiation of H because output length is too small and so practical short-message attacks apply.
- In PKCS #1 v2.1, H is constructed via repeated application of an underlying cryptographic hash function.

Signatures from the DL problem

Identification Schemes

FIGURE 12.1: A 3-round identification scheme.

Identification Schemes

The identification experiment $\mathsf{Ident}_{\mathcal{A},\Pi}(n)$:

- Gen(1ⁿ) is run to obtain keys (pk, sk).
- Adversary A is given pk and access to an oracle Trans_{sk}(·) that it can query as often as it likes.
- At any point during the experiment, A outputs a message I. A uniform challenge r ∈ Ω_{pk} is chosen and given to A, who responds with s. (We allow A to continue querying Trans_{sk}(·) even after receiving c.)
- 4. The experiment evaluates to 1 if and only if $V(pk, r, s) \stackrel{?}{=} I$.

DEFINITION 12.8 Identification scheme $\Pi = (Gen, P_1, P_2, V)$ is secure against a passive attack, or just secure, if for all probabilistic polynomial-time adversaries A, there is a negligible function negl such that:

$$\Pr[\mathsf{Ident}_{\mathcal{A},\Pi}(n) = 1] \leq \mathsf{negl}(n).$$

The Schnorr Identification Scheme

$$\frac{\operatorname{Prover}(x)}{k \leftarrow \mathbb{Z}_q} \qquad \qquad \underbrace{I := g^k} \qquad \qquad I \\ s := [rx + k \bmod q] \qquad \qquad r \leftarrow \mathbb{Z}_q$$

$$s := [rx + k \bmod q] \qquad \qquad s \qquad \text{check whether } g^s \cdot y^{-r} \stackrel{?}{=} I$$

FIGURE 12.2: An execution of the Schnorr identification scheme.

Security Analysis

Theorem: If the Dlog problem is hard relative to *G* then the Schnorr identification scheme is secure.

Security Analysis

Idea of proof:

- Oracle can generate correctly distributed transcripts without knowing x.
 - How?

Security Analysis

Idea of proof:

• Given an attacker A who successfully responds to challenges with non-negligible probability, can construct an attacker A' who extracts the discrete $\log x$ of y by **rewinding**.