
Introduction to Cryptology 

Lecture 20 



Announcements 

• HW9 due today 

• HW10 posted, due on Thursday 4/30 

• HW7, HW8 grades are now up on Canvas. 



Agenda 

• More Number Theory! 

– Our focus today will be on computational 
complexity:  Which problems in multiplicative 
groups are “easy” and which are “hard”? 



Loose Ends from Last Time 
Recall that we saw last time that  

 𝑎𝑚 ≡ 𝑎𝑚 𝑚𝑜𝑑 𝜙 𝑁  𝑚𝑜𝑑 𝑁. 
 

For 𝑒 ∈ 𝑍∗𝑁, let 𝑓𝑒: 𝑍𝑁
∗ → 𝑍𝑁

∗  be defined as 𝑓𝑒 𝑥 ≔ 𝑥
𝑒 𝑚𝑜𝑑 𝑁. 

 
Theorem:  𝑓𝑒(𝑥) is a permutation. 
Proof:  To prove the theorem, we show that 𝑓𝑒(𝑥) is invertible. 
Let 𝑑 be the multiplicative inverse of 𝑒 𝑚𝑜𝑑 𝜙(𝑁). 
Then for 𝑦 ∈ 𝑍𝑁

∗ , 𝑓𝑑 𝑦 ≔ 𝑦
𝑑 𝑚𝑜𝑑 𝑁 is the inverse of 𝑓𝑒. 

 
To see this, we show that 𝑓𝑑 𝑓𝑒 𝑥 = 𝑥. 

𝑓𝑑 𝑓𝑒 𝑥 = 𝑥
𝑒 𝑑 𝑚𝑜𝑑 𝑁 = 𝑥𝑒⋅𝑑 𝑚𝑜𝑑 𝑁 = 𝑥𝑒⋅𝑑 𝑚𝑜𝑑 𝜙(𝑁) 𝑚𝑜𝑑 𝑁 = 𝑥1 𝑚𝑜𝑑 𝑁 =

𝑥 𝑚𝑜𝑑 𝑁.  
 
Note:  Given 𝑑, it is easy to compute the inverse of 𝑓𝑒 
However, we saw in the homework that given only 𝑒, 𝑁, it is hard to find 𝑑, since 
finding 𝑑 implies that we can factor 𝑁 = 𝑝 ⋅ 𝑞. 
This will be important for cryptographic applications.  



Modular Exponentiation 

Is the following algorithm efficient (i.e. poly-time)? 
 
ModExp(𝑎,𝑚,𝑁) //computes 𝑎𝑚 𝑚𝑜𝑑 𝑁 
 Set 𝑡𝑒𝑚𝑝 ≔ 1 
 For 𝑖 = 1 to 𝑚 
  Set 𝑡𝑒𝑚𝑝 ≔ 𝑡𝑒𝑚𝑝 ⋅ 𝑎 𝑚𝑜𝑑 𝑁 
 return 𝑡𝑒𝑚𝑝; 
 
No—the run time is 𝑂(𝑚).  𝑚 can be on the order of 𝑁.  
This means that the runtime is on the order of 𝑂(𝑁), 
while to be efficient it must be on the order of 𝑂(log𝑁) . 
 



Modular Exponentiation 

We can obtain an efficient algorithm via “repeated squaring.” 
 
ModExp(𝑎,𝑚,𝑁) //computes 𝑎𝑚 𝑚𝑜𝑑 𝑁, where 
𝑚 = 𝑚𝑛−1𝑚𝑛−2⋯𝑚1𝑚0 are the bits of 𝑚. 
 Set 𝑠 ≔ 𝑎  
 Set 𝑡𝑒𝑚𝑝 ≔ 1 
 For 𝑖 = 0 to 𝑛 − 1 
  If 𝑚𝑖 = 1 
   Set 𝑡𝑒𝑚𝑝 ≔ 𝑡𝑒𝑚𝑝 ⋅ 𝑠 𝑚𝑜𝑑 𝑁 
  Set 𝑠 ≔ 𝑠2 𝑚𝑜𝑑 𝑁   
 return 𝑡𝑒𝑚𝑝; 
 
This is clearly efficient since the loop runs for 𝑛 iterations, where 
𝑛 = log2𝑚. 
 



Modular Exponentiation 

Why does it work? 

𝑚 =  𝑚𝑖 ⋅ 2
𝑖

𝑛−1

𝑖=0

 

 

Consider 𝑎𝑚 = 𝑎 𝑚𝑖⋅2
𝑖𝑛−1

𝑖=0 =  𝑎𝑚𝑖⋅2
𝑖𝑛−1

𝑖=0 . 
 
In the efficient algorithm: 

𝑠 values are precomputations of 𝑎2
𝑖
, for 𝑖 = 0 𝑡𝑜 𝑛 − 1 (this is the 

“repeated squaring” part since 𝑎2
𝑖
= (𝑎2

𝑖−1
)2 ). 

If 𝑚𝑖 = 1, we multiply in the corresponding 𝑠-value. 

If 𝑚𝑖 = 0, then 𝑎𝑚𝑖⋅2
𝑖
= 𝑎0 = 1 and so we skip the multiplication step. 

 



Toolbox for Cryptographic 
Multiplicative Groups 

Can be done efficiently No efficient algorithm believed to exist 

Modular multiplication Factoring  

Finding multiplicative inverses (extended 
Euclidean algorithm) 

RSA problem 

Modular exponentiation (via repeated 
squaring) 

Discrete logarithm problem 

Diffie Hellman problems 

We have seen the efficient algorithms in the left column. 
We will now start talking about the “hard problems” in the right 
column. 



The Factoring Assumption 

The factoring experiment 𝐹𝑎𝑐𝑡𝑜𝑟𝐴,𝐺𝑒𝑛 𝑛 : 
1. Run 𝐺𝑒𝑛 1𝑛  to obtain (𝑁, 𝑝, 𝑞), where 𝑝, 𝑞 are 

random primes of length 𝑛 bits and 𝑁 = 𝑝 ⋅ 𝑞. 
2. 𝐴 is given 𝑁, and outputs 𝑝′, 𝑞′ > 1. 
3. The output of the experiment is defined to be 1 if 
𝑝′ ⋅ 𝑞′ = 𝑁, and 0 otherwise. 

 
Definition: Factoring is hard relative to 𝐺𝑒𝑛 if for all ppt 
algorithms 𝐴 there exists a negligible function 𝑛𝑒𝑔 such 
that  

Pr 𝐹𝑎𝑐𝑡𝑜𝑟𝐴,𝐺𝑒𝑛 𝑛 = 1 ≤ 𝑛𝑒𝑔 𝑛 . 



How does 𝐺𝑒𝑛 work? 
1. Pick random 𝑛-bit numbers 𝑝, 𝑞 
2. Check if they are prime 
3. If yes, return 𝑁, 𝑝, 𝑞 .  If not, go back to step 1. 
 
Why does this work? 
• Prime number theorem:  Primes are dense!   

– A random n-bit number is a prime with non-negligible probability. 
– Bertrand’s postulate: For any 𝑛 > 1, the fraction of 𝑛-bit integers 

that are prime is at least 1/3𝑛. 

• Can efficiently test whether a number is prime or composite: 
– If 𝑝 is prime, then the Miller-Rabin test always outputs “prime.”  If 
𝑝 is composite, the algorithm outputs “composite” except with 
negligible probability.   



The RSA Assumption 

The RSA experiment 𝑅𝑆𝐴 − 𝑖𝑛𝑣𝐴,𝐺𝑒𝑛 𝑛 : 

1. Run 𝐺𝑒𝑛 1𝑛  to obtain (𝑁, 𝑒, 𝑑), where gcd 𝑒, 𝜙 𝑁 =
1 and 𝑒 ⋅ 𝑑 ≡ 1 𝑚𝑜𝑑 𝜙(𝑁). 

2. Choose a uniform 𝑦 ∈ 𝑍∗𝑁. 

3. 𝐴 is given (𝑁, 𝑒, 𝑦), and outputs 𝑥 ∈ 𝑍∗𝑁. 

4. The output of the experiment is defined to be 1 if 
𝑥𝑒 = 𝑦 𝑚𝑜𝑑 𝑁, and 0 otherwise. 

 
Definition: The RSA problem is hard relative to 𝐺𝑒𝑛 if for all 
ppt algorithms 𝐴 there exists a negligible function 𝑛𝑒𝑔 such 
that  

Pr 𝑅𝑆𝐴 − 𝑖𝑛𝑣𝐴,𝐺𝑒𝑛 𝑛 = 1 ≤ 𝑛𝑒𝑔 𝑛 . 



Relationship between RSA and 
Factoring 

Known: 
• If an attacker can break factoring, then an attacker can break RSA. 

– Given 𝑝, 𝑞 such that 𝑝 ⋅ 𝑞 = 𝑁, can find 𝜙(𝑁) and 𝑑, the multiplicative 
inverse of 𝑒 𝑚𝑜𝑑 𝜙(𝑁). 

• If an attacker can find 𝜙(𝑁), can break factoring. 
• If an attacker can find 𝑑 such that 𝑒 ⋅ 𝑑 ≡ 1 𝑚𝑜𝑑 𝜙 𝑁 , can break 

factoring. 
 
Not Known: 
• Can every efficient attacker who breaks RSA also break factoring? 
 
Due to the above, we have that the RSA assumption is a stronger 
assumption than the factoring assumption.  



Cyclic Groups 

For a finite group 𝐺 of order 𝑚 and 𝑔 ∈ 𝐺, 
consider: 

𝑔 = {𝑔0, 𝑔1, … , 𝑔𝑚−1} 
𝑔  always forms a cyclic subgroup of 𝐺. 

However, it is possible that there are repeats in the 
above list. 
Thus 𝑔  may be a subgroup of order smaller than 
𝑚. 
If 𝑔 = 𝐺, then we say that 𝐺 is a cyclic group and 
that 𝑔 is a generator of 𝐺. 



Examples 
Consider 𝑍∗13: 

 

 
20 1 

21 2 

22 4 

23 8 

24 16 → 3 

25 6 

26 12 

27 24 → 11 

28 22 → 9 

29 18 → 5 

210 10 

211 20 → 7 

212 14 → 1 

2 is a generator of 𝑍∗13: 3 is not a generator of 𝑍∗13: 

30 1 

31 3 

32 9 

33 27 → 1 

34 3 

35 9 

36 27 → 1 

37 3 

38 9 

39 27 → 1 

310 3 

311 9 

312 27 → 1 



Definitions and Theorems 

Definition:  Let 𝐺 be a finite group and 𝑔 ∈ 𝐺.  The order 
of 𝑔 is the smallest positive integer 𝑖 such that 𝑔𝑖 = 1. 
 Ex:  Consider 𝑍13

∗ .  The order of 2 is 12.  The order 
 of 3 is 3. 
 
Proposition 1: Let 𝐺 be a finite group and 𝑔 ∈ 𝐺 an 
element of order 𝑖.  Then for any integer 𝑥, we have 
𝑔𝑥 = 𝑔𝑥 𝑚𝑜𝑑 𝑖. 
 
Proposition 2: Let 𝐺 be a finite group and 𝑔 ∈ 𝐺 an 
element of order 𝑖. Then 𝑔𝑥 = 𝑔𝑦 iff 𝑥 ≡ 𝑦 𝑚𝑜𝑑 𝑖. 



More Theorems 

Proposition 3:  Let 𝐺 be a finite group of order 𝑚 and 𝑔 ∈ 𝐺 an element of 
order 𝑖.  Then 𝑖 |𝑚. 
 
Proof:   
• We know by the generalized theorem of last class that 𝑔𝑚 = 1 = 𝑔0. 
• By Proposition 1, we have that 𝑔𝑚 = 𝑔𝑚 𝑚𝑜𝑑 𝑖 = 𝑔0. 
• By the ← direction of Proposition 2, we have that 0 ≡ 𝑚 𝑚𝑜𝑑 𝑖. 
• By definition of modulus, this means that 𝑖|𝑚. 
 
Corollary:  if 𝐺 is a group of prime order 𝑝, then 𝐺 is cyclic and all elements of 
𝐺 except the identity are generators of 𝐺. 
 
Why does this follow from Proposition 3? 
 

Theorem:  If 𝑝 is prime then 𝑍∗𝑝 is a cyclic group of order 𝑝 − 1.  



Prime-Order Cyclic Groups 

Consider 𝑍∗𝑝, where 𝑝 is a strong prime. 

• Strong prime:  𝑝 = 2𝑞 + 1, where 𝑞 is also 
prime. 

• Recall that 𝑍∗𝑝 is a cyclic group of order 

𝑝 − 1 = 2𝑞. 

 

The subgroup of quadratic residues in 𝑍∗𝑝 is a 

cyclic group of prime order 𝑞. 



Example of Prime-Order Cyclic Group 
Consider 𝑍∗11. 

Note that 11 is a strong prime, since 11 = 2 ⋅ 5 + 1. 

𝑔 = 2 is a generator of 𝑍∗11: 

 20 1 

21 2 

22 4 

23 8 

24 16 → 5 

25 10 

26 20 → 9 

27 18 → 7 

28 14 → 3 

29 6 

The even powers of 𝑔 are the “quadratic residues” (i.e. the perfect 
squares).  Exactly half the elements of 𝑍∗𝑝 are quadratic residues. 

 
Note that the even powers of 𝑔 form a cyclic subgroup of order 
𝑝−1

2
= 𝑞. 

 
Verify:   
• closure (Multiplication translates into addition in the exponent.  

Addition of two even numbers mod 𝑝 − 2 gives an even number 
mod 𝑝 − 1, since for prime 𝑝 > 3, 𝑝 − 1 is even.) 

• Cyclic –any element is a generator.  E.g. it is easy to see that all 
even powers of 𝑔 can be generated by 𝑔2. 

  


