
Introduction to Cryptology 

Lecture 19 



Announcements 

• HW9 due on Thursday, 4/23 



Agenda 

• More Number Theory! 



Extended Euclidean Algorithm 
Example #1 

Find:  𝑋, 𝑌 such that 9𝑋 +  23𝑌 =  gcd (9,23)  =  1. 
23 = 2 ⋅ 9 + 5 
9 = 1 ⋅ 5 + 4 
5 = 1 ⋅ 4 + 1 
4 = 4 ⋅ 1 + 0 

 
1 = 5 − 1 ⋅ 4 

1 = 5 − 1 ⋅ 9 − 1 ⋅ 5  

1 = 23 − 2 ⋅ 9 − 9 − 23 − 2 ⋅ 9  

1 = 2 ⋅ 23 − 5 ⋅ 9 
−5 = 18 𝑚𝑜𝑑 23 is the multiplicative inverse of 9 𝑚𝑜𝑑 23. 



Extended Euclidean Algorithm 
Example #2 

Find:  𝑋, 𝑌 such that 5𝑋 + 33𝑌 =  gcd (5,33)  =  1. 
33 = 6 ⋅ 5 + 3 
5 = 1 ⋅ 3 + 2 
3 = 1 ⋅ 2 + 1 
2 = 2 ⋅ 1 + 0 

 
1 = 3 − 1 ⋅ 2 
1 = 3 − 5 − 3  

1 = 33 − 6 ⋅ 5 − 5 − 33 − 6 ⋅ 5  

1 = 2 ⋅ 33 − 13 ⋅ 5 
−13 = 20 𝑚𝑜𝑑 33 is the multiplicative inverse of 5 𝑚𝑜𝑑 33. 
 



Time Complexity of Euclidean 
Algorithm 

When finding gcd (𝑎, 𝑏), the “𝑏” value gets 
halved every two rounds. 

Why? 

 

Time complexity:  2log (𝑏). 

This is polynomial in the length of the input. 

Why? 



Getting Back to 𝑍∗𝑝 

Group 𝑍∗𝑝 = {1,… , 𝑝 − 1} operation:  

multiplication modulo 𝑝. 

Order of a finite group is the number of 
elements in the group. 

Order of 𝑍∗𝑝 is 𝑝 − 1. 



Fermat’s Little Theorem 

Theorem:  For prime 𝑝, integer 𝑎: 

   𝑎𝑝 ≡ 𝑎 𝑚𝑜𝑑 𝑝. 



Useful Fact 

Fact:  For prime 𝑝 and integers 𝑎, 𝑏, If 𝑝|𝑎 ⋅ 𝑏 
and 𝑝 ∤ 𝑎, then 𝑝 | 𝑏. 



Corollary of Fermat’s Little Theorem 

Corollary:  For prime 𝑝 and 𝑎 such that 𝑎, 𝑝 = 1: 
𝑎𝑝−1 ≡ 1 𝑚𝑜𝑑 𝑝 

 
Proof:   
• By Fermat’s Little Theorem we have that 𝑎𝑝 ≡ 𝑎 𝑚𝑜𝑑 𝑝.  By 

definition of modulo, this means that 𝑝 | (𝑎𝑝  − 𝑎).  Rearranging, 
this implies that 𝑝 | 𝑎 ⋅ (𝑎𝑝 − 1).   

• Now, since gcd 𝑎, 𝑝 = 1, we have that 𝑝 ∤ 𝑎.  Applying “useful 
fact” with 𝑎 = 𝑎 and 𝑏 = 𝑎𝑝 − 1 , we have that 𝑝 | 𝑎𝑝 − 1 . 

• Finally, by definition of modulo, we have that 𝑎𝑝−1 ≡ 1 𝑚𝑜𝑑 𝑝. 
 

Note:  For prime 𝑝, 𝑝 − 1 is the order of the group 𝑍∗𝑝. 

 



Generalized Theorem 

Theorem:  Let 𝐺 be a finite group with 𝑚 = |𝐺|, 
the order of the group.  Then for any element 
𝑔 ∈ 𝐺, 𝑔𝑚 = 1. 

 

Corollary of Fermat’s Little Theorem is a special 
case of the above when 𝐺 is the multiplicative 
group 𝑍∗𝑝 and 𝑝 is prime. 



Multiplicative Groups Mod N 

• What about multiplicative groups modulo 𝑁, where 𝑁 
is composite? 

• Which numbers 1,… ,𝑁 − 1  have multiplicative 
inverses 𝑚𝑜𝑑 𝑁? 
– 𝑎 such that gcd 𝑎,𝑁 = 1 has multiplicative inverse by 

Extended Euclidean Algorithm. 
– 𝑎 such that gcd 𝑎,𝑁 > 1  does not, since gcd 𝑎,𝑁  is the 

smallest positive integer that can be written in the form 
𝑋𝑎 + 𝑌𝑁 for integer 𝑋, 𝑌. 

• Define 𝑍∗𝑁 ≔ {𝑎 ∈ 1,… ,𝑁 − 1 | gcd 𝑎,𝑁 = 1}.   

• 𝑍∗𝑁 is an abelian, multiplicative group. 
– Why does closure hold? 



Order of Multiplicative Groups Mod N 

• What is the order of 𝑍∗𝑁? 

• This has a name.  The order of 𝑍∗𝑁 is the 
quantity 𝜙(𝑁), where 𝜙 is known as the Euler 
totient function or Euler phi function. 

• Assume 𝑁 = 𝑝 ⋅ 𝑞, where 𝑝, 𝑞 are distinct 
primes. 

– 𝜙 𝑁 = 𝑁 − 𝑝 − 𝑞 + 1 = 𝑝 ⋅ 𝑞 − 𝑝 − 1 + 1 =
𝑝 − 1 𝑞 − 1 . 

– Why? 

 



Order of Multiplicative Groups Mod N 

General Formula: 

Theorem:  Let 𝑁 =  𝑝𝑖
𝑒𝑖

𝑖  where the 𝑝𝑖  are 
distinct primes and 𝑒𝑖 ≥ 1.  Then 

𝜙 𝑁 =  𝑝𝑖
𝑒𝑖−1(𝑝𝑖 − 1)

𝑖

. 



Another Special Case of Generalized 
Theorem 

Corollary of generalized theorem: 

For 𝑎 such that gcd 𝑎, 𝑁 = 1: 

𝑎𝜙(𝑁) ≡ 1 𝑚𝑜𝑑 𝑁. 



Another Useful Theorem 

Theorem:  Let 𝐺 be a finite group with 𝑚 = 𝐺 >
1.  Then for any 𝑔 ∈ 𝐺 and any integer 𝑥, we have 

𝑔𝑥 = 𝑔𝑥 𝑚𝑜𝑑 𝑚. 

 

Proof:  We write 𝑥 = 𝑎 ⋅ 𝑚 + 𝑏, where 𝑎 is an 
integer and 𝑏 ≡ 𝑥 𝑚𝑜𝑑 𝑚. 

• 𝑔𝑥 = 𝑔𝑎⋅𝑚+𝑏 = 𝑔𝑚 𝑎 ⋅ 𝑔𝑏 

• By “generalized theorem” we have that  
𝑔𝑚 𝑎 ⋅ 𝑔𝑏 = 1𝑎 ⋅ 𝑔𝑏 = 𝑔𝑏 = 𝑔𝑥 𝑚𝑜𝑑 𝑚. 

 



An Example: 

Compute 325 𝑚𝑜𝑑 35 by hand. 

 
𝜙 35 = 𝜙 5 ⋅ 7 = 5 − 1 7 − 1 = 24 

325 ≡ 325 𝑚𝑜𝑑 24 𝑚𝑜𝑑 35 ≡ 31 𝑚𝑜𝑑 35
≡ 3 𝑚𝑜𝑑 35. 


