Introduction to Cryptology Lecture 15 ### Announcements - HW6 due today - HW7 up, due on Thursday, 4/9 ## Agenda - Last Time: - Authenticated Encryption (4.5) - This Time: - Collision Resistant Hash Functions (5.1) - Domain extension for CRHF (5.2) - Message Authentication using Hash Functions - Hash-and-Mac (5.3.1) - HMAC (5.3.2) # Collision Resistant Hashing ## Collision Resistant Hashing Definition: A hash function (with output length ℓ) is a pair of ppt algorithms (Gen, H) satisfying the following: - Gen takes as input a security parameter 1^n and outputs a key s. We assume that 1^n is implicit in s. - H takes as input a key s and a string $x \in \{0,1\}^*$ and outputs a string $H^s(x) \in \{0,1\}^{\ell(n)}$. If H^s is defined only for inputs $x \in \{0,1\}^{\ell'(n)}$ and $\ell'(n) > \ell(n)$, then we say that (Gen, H) is a fixed-length hash function for inputs of length ℓ' . In this case, we also call H a compression function. ## The collision-finding experiment ### $Hashcoll_{A,\Pi}(n)$: - 1. A key s is generated by running $Gen(1^n)$. - 2. The adversary A is given s and outputs x, x'. (If Π is a fixed-length hash function for inputs of length $\ell'(n)$, then we require $x, x' \in \{0,1\}^{\ell'(n)}$.) - 3. The output of the experiment is defined to be 1 if and only if $x \neq x'$ and $H^s(x) = H^s(x')$. In such a case we say that A has found a collision. ## **Security Definition** Definition: A hash function $\Pi = (Gen, H)$ is collision resistant if for all ppt adversaries A there is a negligible function neg such that $\Pr[Hashcoll_{A,\Pi}(n) = 1] \leq neg(n)$. ## Weaker Notions of Security - Second preimage or target collision resistance: Given s and a uniform x it is infeasible for a ppt adversary to find $x' \neq x$ such that $H^s(x') = H^s(x)$. - Preimage resistance: Given s and uniform y it is infeasible for a ppt adversary to find a value x such that $H^s(x) = y$. ## **Domain Extension** # The Merkle-Damgard Transform FIGURE 5.1: The Merkle-Damgård transform. ## The Merkle-Damgard Transform Let (Gen, h) be a fixed-length hash function for inputs of length 2n and with output length n. Construct hash function (Gen, H) as follows: - Gen: remains unchanged - H: on input a key s and a string $x \in \{0,1\}^*$ of length $L < 2^n$, do the following: - 1. Set $B \coloneqq \left\lceil \frac{L}{n} \right\rceil$ (i.e., the number of blocks in x). Pad x with zeros so its length is a multiple of n. Parse the padded result as the sequence of n-bit blocks x_1, \dots, x_B . Set $x_{B+1} \coloneqq L$, where L is encoded as an n-bit string. - 2. Set $z_0 := 0^n$. (This is also called the IV.) - 3. For i = 1, ..., B + 1, compute $z_i := h^s(z_{i-1}||x_i)$. - 4. Output z_{B+1} . # Security of Merkle-Damgard Theorem: If (Gen, h) is collision resistant, then so is (Gen, H). # Message Authentication Using Hash Functions ## Hash-and-Mac Construction Let $\Pi = (Mac, Vrfy)$ be a MAC for messages of length $\ell(n)$, and let $\Pi_H = (Gen_H, H)$ be a hash function with output length $\ell(n)$. Construct a MAC $\Pi' = (Gen', Mac', Vrfy')$ for arbitrary-length messages as follows: - Gen': on input 1^n , choose uniform $k \in \{0,1\}^n$ and run $Gen_H(1^n)$ to obtain s. The key is $k' := \langle k, s \rangle$. - Mac': on input a key $\langle k, s \rangle$ and a message $m \in \{0,1\}^*$, output $t \leftarrow Mac_k(H^s(m))$. - Vrfy': on input a key $\langle k, s \rangle$, a message $m \in \{0,1\}^*$, and a MAC tag t, output 1 if and only if $Vrfy_k(H^s(m), t) = 1$. ## Security of Hash-and-MAC Theorem: If Π is a secure MAC for messages of length ℓ and Π_H is collision resistant, then the construction above is a secure MAC for arbitrary-length messages. ### **Proof Intuition** Let Q be the set of messages m queried by adversary A. Assume A manages to forge a tag for a message $m^* \notin Q$. There are two cases to consider: - 1. $H^s(m^*) = H^s(m)$ for some message $m \in Q$. Then A breaks collision resistance of H^s . - 2. $H^s(m^*) \neq H^s(m)$ for all messages $m \in Q$. Then A forges a valid tag with respect to MAC Π . # Can we construct a MAC from only CRHF? Attempt: $Mac_k(m) = H(k||m)$. Is this secure? NO. Why not? Instead, we will try 2 layers of hashing.