#### ENEE630 Part-3

## Part 3. Spectrum Estimation 3.3 Subspace Approaches to Frequency Estimation

Electrical & Computer Engineering University of Maryland, College Park

Acknowledgment: ENEE630 slides were based on class notes developed by Profs. K.J. Ray Liu and Min Wu. The slides were made by Prof. Min Wu, with updates from Mr. Wei-Hong Chuang. *Contact: minwu@umd.edu* 



UMD ENEE630 Advanced Signal Processing (ver.1211)

### **Logistics**

- Final Exam: cover Part-II and III
  - Primary reference in your review: Lecture notes
  - Related readings (see a list of summary given)
  - Office hours will be posted
- Previous Sec.3.2: Parametric approaches for spectral estimation
  - AR modeling and MESE
  - MA and ARMA modeling
- Today: (readings: Hayes 8.6)
  - Frequency estimation for complex exponential/sinusoid models
  - \* Note: Hayes book uses sig vector  $\underline{x} = [x(n), x(n+1), ...]^T$  to define a correlation matrix, which is Hermitian w.r.t. the one per our convention with  $\underline{x} = [x(n), x(n-1), x(n-2) ...]^T$

UMD ENEE630 Advanced Signal Processing (ver.1211)

Frequency estimation [2



## <u>Motivation</u>

- Random process studied in the previous section:
  - w.s.s. process modeled as the output of a LTI filter driven by a white noise process ~ smooth p.s.d. over broad freq. range
  - Parametric spectral estimation: AR, MA, ARMA
- Another important class of random processes: A sum of several complex exponentials in white noise

$$x[n] = \sum_{i=1}^{p} A_{i} \exp[j(2\pi f_{i}n + \phi_{i})] + w[n]$$

- The amplitudes and *p* different frequencies of the complex exponentials are constant but unknown
  - Frequencies contain desired info: velocity (sonar), formants (speech) ...
- Estimate the frequencies taking into account of the properties of such process

UMD ENEE630 Advanced Signal Processing (ver.1211)

### The Signal Model

UMD ENEE630 Advanced Signal Processing (ver.1211)

Frequency estimation [6]

### **Recall: Single Complex Exponential Case**

$$\begin{aligned} x[n] &= A \exp \left[ j \left[ 2\pi f_0 n + \phi \right] \right] &= \rho \\ E[x[n]] &= \rho \quad \forall n \\ E[x[n] x[n-K]] &= P[i(2\pi f_0 n + \phi)] \land A \exp \left[ j \left[ 2\pi f_0 n - 2\pi f_0 K + \phi \right] \right] \\ &= E[A \exp \left[ j \left[ 2\pi f_0 n + \phi \right] \right] \land A \exp \left[ j \left[ 2\pi f_0 n - 2\pi f_0 K + \phi \right] \right] \\ &= A^{\perp} \cdot \exp \left[ j \left[ 2\pi f_0 K \right] \right] \\ \vdots \quad x[n] is 2ero-mean [n:s.s. [n] the form is is kero-mean [n:s.s. [n] the form is kero-mean [n] the model is the model is the form is kero-mean [n] the model is the model is the model is the form is kero-mean [n] the model is the model is the form is kero-mean [n] the model is the form is kero-mean [n] the model is the form is kero-mean [n] the model is the model is the form is kero-mean [n] the model is the model i$$

UMD ENEE630 Advanced Signal Processing (ver.1211)

zero mean for either x() or w().

 $\overleftrightarrow$ 

## **Deriving Autocorrelation Function**

$$\begin{aligned} x[n] &= \sum_{i=1}^{p} A_{i} e^{j\phi_{i}} e^{j2\pi f_{i}n} + w[n] = \sum_{i=1}^{p} s_{i}[n] + w[n] \\ r_{x}(k) &= E[x[n]x^{*}[n-k]] = E\left[\left[\sum_{l=1}^{p} s_{l}[n] + w[n]\right] \cdot \left[\sum_{m=1}^{p} s_{m}^{*}[n-k] + w^{*}[n-k]\right]\right] \\ &\bullet E\left[s_{l}[n]s_{m}^{*}[n-k]\right] = \begin{cases} E[s_{l}[n]]E[s_{m}[n-k]]^{*} = 0 \quad (\text{for } l \neq m) \\ r_{s_{m}}(k) = A_{m}^{2}e^{j2\pi f_{m}k} \quad (\text{for } l=m) \end{cases} \\ &\bullet E\left[s_{l}[n]w^{*}[n-k]\right] = E\left[s_{l}[n]\right]E[w[n-k]]^{*} = 0 \\ &\bullet E\left[w[n]w^{*}[n-k]\right] = \sigma_{w}^{2} \cdot \delta[k] \end{aligned}$$

### **Deriving Correlation Matrix**

- May bring rx(k) into the correlation matrix
- Or from the expectation of vector's outer product and use the correlation analysis from last page

$$\underline{x}[n] = \sum_{i=1}^{p} \underline{s}_{i}[n] + \underline{w}[n]$$

$$R_{x} = E\left[\underline{x}[n]\underline{x}^{H}[n]\right] = E\left[\left[\sum_{l=1}^{p} \underline{s}_{l}[n] + \underline{w}[n]\right] \cdot \left[\sum_{m=1}^{p} \underline{s}_{m}^{H}[n] + \underline{w}^{H}[n]\right]\right]$$

$$\Longrightarrow R_x = \sum_{i=1}^p P_i \underline{e}_i \underline{e}_i^H + \sigma_w^2 I$$

UMD ENEE630 Advanced Signal Processing (ver.1211)



$$r_x(k) = E[x[n]x^*[n-k]] =$$

An MxM correlation matrix for {x[n]} (M>p):

0

$$R_{X} = R_{S} + R_{M}$$
where  $e_{i} = [1, \tilde{e}^{j2\pi}f^{i}, \tilde{e}^{j4\pi}f^{i}, \dots, \tilde{e}^{j2\pi}f^{i}(M^{-1})]^{T}$ 

UMD ENEE630 Advanced Signal Processing (ver.1211)

Frequency estimation [11]

### Summary: Correlation Matrix for the Process

$$r_{x}(k) = E\left[x[n]x^{*}[n-k]\right] = \sum_{i=1}^{p} A_{i}^{2} e^{j2\pi f_{i}k} + \sigma_{w}^{2} \delta(k)$$

$$\triangleq \mathsf{P}_{i}$$

An MxM correlation matrix for {x[n]} (M>p):

$$R_{x} = R_{s} + R_{W}$$

$$R_{W} = \sigma_{W} \downarrow \rightarrow \text{full rank}$$

$$R_{s} = \sum_{i=1}^{P} P_{i} e_{i} e_{i}^{\text{H}}$$
where  $e_{i} = [1, e^{j2\pi f_{i}}, e^{j4\pi f_{i}}, \dots e^{j2\pi f_{i}(M+i)}]^{\text{T}}$ 

UMD ENEE630 Advanced Signal Processing (ver.1211)

Frequency estimation [12]

 $\bigstar$ 

## Correlation Matrix for the Process (cont'd)

$$R_{s} = \sum_{i=1}^{P} P_{i} \underline{e}_{i} \underline{e}_{i}^{H}$$
  
$$\underline{e}_{i} \underline{e}_{i}^{H} \text{ has rank}$$
  
The MxM matrix R<sub>s</sub> has rank

### Correlation Matrix for the Process (cont'd)

$$R_{s} = \sum_{i=1}^{P} P_{i} \underline{e}_{i} \underline{e}_{i}^{H}$$

$$= \left[ \underbrace{e_{i}, e_{2}, \dots e_{p}}_{A \leq s} \right] \begin{bmatrix} P_{i} P_{2} \\ \vdots & P_{p} \end{bmatrix} \begin{bmatrix} \underline{e}_{i}^{H} \\ \underline{e}_{p}^{H} \end{bmatrix}$$

$$= S D S^{H} \qquad A \leq p \leq p \leq p$$

 $\underline{e}_{i} \underline{e}_{i}^{H}$  has rank 1 (all columns are related by a factor)

The MxM matrix  $R_s$  has rank p, and has only p nonzero eigenvalues.

Frequency estimation [13]

### Review: Rank and Eigen Properties

- Multiplying a full rank matrix won't change the rank of a matrix
  - i.e. r(A) = r(PA) = r(AQ)where A is mxn, P is mxm full rank, and Q is nxn full rank.
  - $-\,$  The rank of A is equal to the rank of A  $A^{\rm H}$  and  $A^{\rm H}$  A.
  - Elementary operations (which can be characterized as multiplying by a full rank matrix) doesn't change matrix rank:
    - including interchange 2 rows/cols; multiply a row/col by a nonzero factor; add a scaled version of one row/col to another.
- Correlation matrix Rx in our model has full rank.
- Non-zero eigenvectors corresponding to distinct eigenvalues are linearly independent
- det(A) = product of all eigenvalues; so a matrix is invertible iff all eigenvalues are nonzero.

(see Hayes Sec.2.3 review of linear algebra)

UMD ENEE630 Advanced Signal Processing (ver.1211)

Frequency estimation [15]

### **Eigenvalues/vectors for Hermitian Matrix**

- Multiplying A with a full rank matrix won't change rank(A)
- Eigenvalue decomposition
  - For an nxn matrix A having a set of n linearly independent eigenvectors, we can put together its eigenvectors as V s.t.
- For any nxn Hermitian matrix
  - There exists a set of n orthonormal eigenvectors
  - Thus V is unitary for Hermitian matrix A, and

#### (see Hayes Sec.2.3.9 review of linear algebra)

UMD ENEE630 Advanced Signal Processing (ver.1211)

Frequency estimation [16]

 $\frac{1}{2}$ 

 $A_{V_i} = \lambda_i V_i$ 

### Eigenvalues/vectors for Hermitian Matrix

- Multiplying A with a full rank matrix won't change rank(A)
- Eigenvalue decomposition
  - For an nxn matrix A having a set of n linearly independent eigenvectors, we can put together its eigenvectors as V s.t.

 $A = V \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n) V^{-1}$ 

$$A \underline{v}_i = \lambda_i \underline{v}_i$$

- For any nxn Hermitian matrix
  - There exists a set of n orthonormal eigenvectors



- Thus V is unitary for Hermitian matrix A, i.e.  $V^{-1} = V^{H}$ 

### $A = V \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n) V^{H} = \lambda_1 \underline{v}_1 \underline{v}_1^{H} + \dots + \lambda_n \underline{v}_n \underline{v}_n^{H}$

(see Hayes Sec.2.3.9 review of linear algebra)

UMD ENEE630 Advanced Signal Processing (ver.1211)

# Eigen Analysis of the Correlation Matrix

Let  $\underline{v}_i$  be an eigenvector of  $R_x$  with the corresponding eigenvalue  $\lambda_i$ , i.e.,  $R_x \underline{v}_i = \lambda_i \underline{v}_i$ 

$$\therefore R_{x} \underline{\forall} i = R_{s} \underline{\forall} i + \overline{\forall} \overline{\underline{\forall}} i = \lambda i \underline{\forall} i$$
  
$$\therefore R_{s} \underline{\forall} i =$$
  
$$\therefore \lambda_{i} = \begin{cases} \begin{pmatrix} R_{s} has p \\ nonzero \\ eigenvalues \end{pmatrix} \end{cases}$$

UMD ENEE630 Advanced Signal Processing (ver.1211)

Frequency estimation [19]

### **Eigen Analysis of the Correlation Matrix**

Let  $\underline{v}_i$  be an eigenvector of  $R_x$  with the corresponding eigenvalue  $\lambda_i$ , i.e.,  $R_x \underline{v}_i = \lambda_i \underline{v}_i$ 

$$\therefore R_{x} \underline{\forall} i = R_{s} \underline{\forall} i + \sigma \overline{\underline{\forall}} \underline{\forall} i = \lambda i \underline{\forall} i$$
  
$$\therefore R_{s} \underline{\forall} i = (\lambda_{i} - \sigma \overline{\underline{\forall}}) \underline{\forall} i$$

i.e.,  $\underline{v}_i$  is also an eigenvector for  $R_s$ , and the corresponding eigenvalue is

$$\lambda_{i}^{(s)} = \lambda_{i} - \sigma_{w}^{2}$$

$$\lambda_{i} = \begin{cases} \lambda_{i}^{(s)} + \sigma_{w}^{2} > \sigma_{w}^{2}, \quad i = 1, 2, \dots, P \\ \sigma_{w}^{2}, \quad i = P+1, \dots, M \end{cases} \begin{pmatrix} \mathsf{R}_{s} \text{ has } p \\ \text{nonzero} \\ \text{eigenvalues} \end{pmatrix}$$

UMD ENEE630 Advanced Signal Processing (ver.1211)

Frequency estimation

#### Signal Subspace and Noise Subspace

For 
$$i = P+1, \dots, M : \mathbb{R}_{S} \times \mathcal{Y}_{i} = \mathcal{O} \times \mathcal{Y}_{i}$$
  
Also,  $\mathbb{R}_{S} = SDS^{H}$ ;  
 $\therefore SDS^{H}\mathcal{Y}_{i} =$   
 $\Rightarrow S^{H}\mathcal{Y}_{i} =$   
Since  $S = Ce_{1}, \dots, e_{p}$ 

### Signal Subspace and Noise Subspace

For 
$$i = P+1, \dots, M : \mathbb{R}_{S^{\star}} \mathcal{V}_{i} = \mathcal{O} \star \mathcal{V}_{i}$$
  
Also,  $\mathbb{R}_{S} = S \mathcal{D} S^{H}$ ;  
 $(S \mathcal{D} S^{H} \mathcal{V}_{i} = \underline{o}$  for  $i = p+1, \dots, M$   
 $M \times p$ , full rank=p

$$\Rightarrow S^{H} \underline{y}_{i} = \underline{0}$$
Since  $S = C \underline{e}_{1} \cdots \underline{e}_{p} \Rightarrow \underline{e}_{l}^{H} \underline{y}_{i} = 0, \quad l = 1, 2, ..., p$ 

$$i = p + 1, ..., M$$

$$Span \underbrace{e}_{1} \cdots \underline{e}_{p} + \underbrace{span} \underbrace{y}_{p+1} \cdots \underbrace{y}_{m} \underbrace{k}_{p+1} \cdots \underbrace{y}_{m} \underbrace{span}_{p+1} \cdots \underbrace$$

 $\bigstar$ 

U

 $\overleftrightarrow$ 

### **Relations Between Signal and Noise Subspaces**



UMD ENEE630 Advanced Signal Processing (ver.1211)

Frequency estimation 22

 $\bigstar$ 

### **Relations Between Signal and Noise Subspaces**

Since  $R_x$  and  $R_s$  are Hermitian matrices, the eigenvectors are orthogonal to each other:



UMD ENEE630 Advanced Signal Processing (ver.1211)

Frequency estimation

### **Discussion: Complex Exponential Vectors**

$$\underline{e}(f) = \begin{bmatrix} 1, e^{-j2\pi f}, e^{-j4\pi f} \cdots, e^{-j2\pi (M-1)f} \end{bmatrix}^{T}$$

$$\underline{e}^{H}(f_{1}) \cdot \underline{e}(f_{2}) = \sum_{k=0}^{M-1} e^{j2\pi (f_{1}-f_{2})k} = \frac{1-e^{j2\pi (f_{1}-f_{2})M}}{1-e^{j2\pi (f_{1}-f_{2})}} \text{ if } f_{1} \neq f_{2}$$
If  $f_{1} - f_{2} = a_{M}^{\prime}$  for some integer  $a \Rightarrow \underline{e}^{H}(f_{1}) \cdot \underline{e}(f_{2}) = 0$ 

$$Span \{\underline{e}_{1}, \cdots, \underline{e}_{P}\} = Span \{\underline{\psi}_{1}, \cdots, \underline{\psi}_{P}\} = span \{\underline$$

### Frequency Estimation Function: General Form

**Recall**  $\underline{e}_{l}^{H} \underline{v}_{i} = 0$  for  $l=1, \dots p; i = p+1, \dots M$ 

Knowing eigenvectors of correlation matrix  $R_x$ , we can use these orthogonal conditions to find the frequencies  $\{f_i\}$ :

$$\underline{e}^{H}(f)\underline{v}_{i}=0?$$

We form a frequency estimation function

Here  $\alpha_i$  are properly chosen constants (weights) for producing weighted average for projection power with all noise eigenvectors

### Frequency Estimation Function: General Form

Recall 
$$\underline{e}_l^H \underline{v}_i = 0$$
 for  $l=1, \dots p; i = p+1, \dots M$ 

Knowing eigenvectors of correlation matrix  $R_x$ , we can use these orthogonal conditions to find the frequencies  $\{f_i\}$ :

$$\underline{\underline{P}}^{H}(f)\underline{\underline{v}}_{i}=0?$$

We form a frequency estimation function

$$\hat{P}(f) = \frac{1}{\sum_{i=p+1}^{M} \alpha_i |\underline{e}(f)^H \underline{v}_i|^2}$$
  
$$\Rightarrow \hat{P}(f) \text{ is LARGE at } f_1, \dots, f_p$$

Here  $\alpha_i$  are properly chosen constants (weights) for producing weighted average for projection power with all noise eigenvectors

UMD ENEE630 Advanced Signal Processing (ver.1211)

\_

UMD ENEE630 Advanced Signal Processing (ver.1211)

Frequency estimation [27]

Frequency estimation [28]

### Pisarenko Method for Frequency Estimation (1973)

 This assumes the number of complex exponentials (p) and the first (p+1) lags of the autocorrelation function are known or have been estimated

r(0),...,r(P)

Frequency estimation

- The eigenvector corresponding to the smallest eigenvalue(s) of  $R_{(p+1)x(p+1)}$  is in the noise subspace and can be used in the Pisarenko method.
- The equivalent frequency estimation function is:

#### Pisarenko Method for Frequency Estimation (1973)

 This assumes the number of complex exponentials (p) and the first (p+1) lags of the autocorrelation function are known or have been estimated

r(0),...,r(p)

- The eigenvector corresponding to the smallest eigenvalue(s) of  $R_{(p+1)x(p+1)}$  is in the noise subspace and can be used in the Pisarenko method.
- The equivalent frequency estimation function is:

 $\hat{P}(f) = \frac{1}{\left|\underline{e}(f)^{H}\underline{v}_{\min}\right|}$ 

UMD ENEE630 Advanced Signal Processing (ver.1211)

Frequency estimation

### Estimating the Amplitudes

UMD ENEE630 Advanced Signal Processing (ver.1211)

Once the frequencies of the complex exponentials are determined, the amplitudes can be found from the eigenvalues of R<sub>x</sub>:

$$R_{x}\underline{v}_{i} = \lambda_{i}\underline{v}_{i} \quad (i = 1, 2, ..., p)$$
normalize  $\underline{v}_{i}$  s.t.  
$$\underline{v}_{i}^{H}\underline{v}_{i} = 1$$
  
Recall  $R_{x} = \sum_{k=1}^{p} P_{k}\underline{e}_{k}\underline{e}_{k}^{H} + \sigma_{w}^{2}I$ 

### Estimating the Amplitudes

Once the frequencies of the complex exponentials are determined, the amplitudes can be found from the eigenvalues of R<sub>x</sub>:

$$R_{x}\underline{v}_{i} = \lambda_{i}\underline{v}_{i} \quad (i = 1, 2, ..., p) \qquad \text{normalize } \underline{v}_{i} \text{ s.t.}$$

$$\Rightarrow \underline{v}_{i}^{H}R_{x}\underline{v}_{i} = \lambda_{i}\underline{v}_{i}^{H}\underline{v}_{i} = \lambda_{i} \qquad \underline{v}_{i}^{H}\underline{v}_{i} = 1$$
Recall 
$$R_{x} = \sum_{k=1}^{p} P_{k}\underline{e}_{k}\underline{e}_{k}^{H} + \sigma_{w}^{2}I$$

$$\Rightarrow \sum_{k=1}^{p} P_{k} \left|\underline{e}_{k}^{H}\underline{v}_{i}\right|^{2} = \lambda_{i} - \sigma_{w}^{2}, \quad i = 1, ..., p$$
For significant equations for  $I P$ 

**DTFT** of sig eigector  $v_i(\cdot)$  at  $-f_k$   $\rightarrow$  Solve p equations for { F

Frequency estimation

UMD ENEE630 Advanced Signal Processing (ver.1211)

Frequency estimation [31]



 $\bigstar$ 



UMD ENEE630 Advanced Signal Processing (ver.1211)

Frequency estimation

#### Interpretation of Pisarenko Method

Since 
$$\underline{e}_{l}^{H} \underline{v}_{i} = 0$$
,  $\begin{array}{c} l = 1, 2, ..., p \\ i = p + 1, ..., M \end{array}$ ,  $\underbrace{\mathcal{V}}_{i} \triangleq \left[ \begin{array}{c} \mathcal{V}_{i}(\mathbf{0}) \\ \mathcal{V}_{i}(\mathbf{1}) \\ \vdots \\ \mathcal{V}_{i}(\mathbf{M} - \mathbf{1}) \end{array} \right]$   

$$\Rightarrow \sum_{k=0}^{M-1} v_{i}(k) e^{j2\pi f_{l}k} = 0 \quad \text{for} \quad l = 1, 2, ..., p$$
i.e.  $\text{DTFT}\{v_{i}(\cdot)\}|_{f=-f_{l}} = 0$ 

Thus given any  $\underline{v}_i$ , i=p+1,...,M, we can estimate the sinusoidal frequencies by finding the zeros on unit circle from

 $Z[v_i(\cdot)] = \sum_{k=0}^{M-1} v_i(k) z^{-k}$ 

UMD ENEE630 Advanced Signal Processing (ver.1211)

Frequency estimation [35

the angle of zeros reflects the freq.

### Improvement over Pisarenko Method

- Need to know or accurately estimate the # of sinusoids (p)
- Inaccurate estimation of autocorrelation values
  - => Inaccurate eigen results of the (estimated) correlation matrix
  - => p zeros on unit circle in frequency estimation function may not be on the right places
- What if we use larger MxM correlation matrix?
  - More than one eigen vectors to form the noise subspace: which of (M-p) eigen vectors shall we use to check orthogonality with <u>e(f)</u>?
  - ZT[ {  $v_i(0), \dots v_i(M-1)$  } ] ~ (M-1)<sup>th</sup> order polynomial => (M-1) zeros
  - p zeros are on unit circle (corresponding to the freq. of sinusoids)
  - Other (M-1-p) zeros may lie anywhere and could be close to unit circle => may give false peaks

#### UMD ENEE630 Advanced Signal Processing (ver.1211)

Frequency estimation [36]

### MUltiple Signal Classification (MUSIC) Algorithm

• Addressing issues with larger correlation matrix

ZT[ {  $v_i(0), \dots v_i(M-1)$ } ] ~ (M-1)<sup>th</sup> order polynomial => (M-1) zeros

- p zeros are on unit circle (corresponding to the freq. of sinusoids)
- Other (M-1-p) zeros may lie anywhere and could be close to unit circle => may give false peaks

#### Basic idea of MUSIC algorithm

- Reduce spurious peaks of freq. estimation function by averaging over the results from (M-p) smallest eigenvalues of the correlation matrix
- => i.e. to find those freq. that give signal vectors consistently orthogonal to all noise eigen vectors

