Part 3. Spectrum Estimation

3.3 Subspace Approaches to Frequency Estimation

Electrical \& Computer Engineering
University of Maryland, College Park

[^0]UMD ENEE630 Advanced Signal Processing (ver.1211)

Recall: Limitations of Periodogram and ARMA

(k) Least-squares modified Yule-waker equations

(d) Minimum variance spectral estimator

Logistics

- Final Exam: cover Part-II and III
- Primary reference in your review: Lecture notes
- Related readings (see a list of summary given)
- Office hours will be posted
- Previous Sec.3.2: Parametric approaches for spectral estimation
- AR modeling and MESE
- MA and ARMA modeling
- Today: (readings: Hayes 8.6)
- Frequency estimation for complex exponential/sinusoid models
* Note: Hayes book uses sig vector $\underline{x}=[\mathrm{x}(\mathrm{n}), \mathrm{x}(\mathrm{n}+1), \ldots]^{\mathrm{T}}$ to define a correlation matrix, which is Hermitian w.r.t. the one per our convention with $\underline{x}=[x(n), x(n-1), x(n-2) \ldots]^{T}$

[^1]Frequency estimation

Motivation

- Random process studied in the previous section:
- w.s.s. process modeled as the output of a LTI filter driven by a white noise process ~ smooth p.s.d. over broad freq. range
- Parametric spectral estimation: AR, MA, ARMA
- Another important class of random processes: A sum of several complex exponentials in white noise

$$
x[n]=\sum_{i=1}^{p} A_{i} \exp \left[j\left(2 \pi f_{i} n+\phi_{i}\right)\right]+w[n]
$$

- The amplitudes and p different frequencies of the complex exponentials are constant but unknown
- Frequencies contain desired info: velocity (sonar), formants (speech) ...
- Estimate the frequencies taking into account of the properties of such process

The Signal Model

$$
\begin{aligned}
x[n] & =\sum_{i=1}^{p} A_{i} e^{j \phi_{i}} e^{j 2 \pi f_{i} n}+w[n] \\
n & =0,1, \ldots, N-1 \quad \text { (observe } N \text { samples) }
\end{aligned}
$$

$w[n] \quad$ white noise, zero mean, variance σ_{w}^{2}
A_{i}, f_{i} real, constant, unknown
\rightarrow to be estimated
$\phi_{i} \quad$ uniform distribution over $[0,2 \pi)$; uncorrelated with $\mathrm{w}[\mathrm{n}]$ and between different i

Deriving Autocorrelation Function
$x[n]=\sum_{i=1}^{p} A_{i} e^{j \phi_{i}} e^{j 2 \pi f_{n} n}+w[n]=\sum_{i=1}^{p} s_{i}[n]+w[n]$ $r_{x}(k)=E\left[x[n] x^{*}[n-k]\right]=E\left[\left[\sum_{l=1}^{p} s_{l}[n]+w[n]\right] \cdot\left[\sum_{m=1}^{p} s_{m}^{*}[n-k]+w^{*}[n-k]\right]\right]$

- $E\left[s_{l}[n] s_{m} *[n-k]\right]=\left\{\begin{array}{l}\left.E\left[s_{l}[n]\right] E\left[s_{m}[n-k]\right]^{*}=0 \quad \text { (for } l \neq m\right) \\ \left.\mathrm{r}_{s_{m}}(\mathrm{k})=A_{m}^{2} e^{i 22 f_{m} k} \quad \text { (for } l=m\right)\end{array}\right.$
- $E\left[s_{l}[n] w^{*}[n-k]\right]=E\left[s_{l}[n]\right] E[w[n-k]]^{*}=0$
- $E\left[w[n] w^{*}[n-k]\right]=\sigma_{w}^{2} \cdot \delta[k]$
${ }_{-}=r_{x}(k)=E\left[x[n] x^{*}[n-k]\right]=\sum_{i=1}^{p} A_{i}^{2} e^{j 2 \pi f_{i} k}+\sigma_{w}^{2} \delta(k)$

Recall: Single Complex Exponential Case

```
x[n]=A exp [j(2\pifon+\phi)]
E[x[n]]=0 \foralln
E[x[n] x[n-k]]
```



```
\(=E\left[A \exp \left[j\left(2 \pi f_{0} n+\phi\right) \cdot A \exp \left[F\left(2 \pi f_{0} n-2 \pi f_{j o k}+\phi\right)\right]\right]\right.\)
\(=A^{2} \times \exp [j(2 \pi f \circ K)]\)
\(\therefore x[n]\) is zero-mean wis.s. With \(r_{x}(k)=A^{2} \exp (j 2 \pi f \circ k)\)
```

$y[n]=x[n]+w[n] \quad$ whitenoise $: E\left[\omega[n] \omega^{*}[n-K]\right]= \begin{cases}\sigma^{2} & k=0 \\ 0 & 0 . w\end{cases}$
$r_{y}(k)=E\left[y[n] y^{*}[n-k]\right]=E\left[(x[n]+\omega[n])\left(x^{*}[n-k]+\omega^{*}[n-k]\right)\right]$
$=\Gamma_{x}[K]+r_{W}[K](\because E[X[\cdot] \omega[\cdot]]=0$ uncor-elated $)$
$=A^{2} \exp \left[j 2 \pi f_{0} k\right]+\sigma^{2} \delta[k]$
$E[x() w()]=E[x()] E[w()]=0$ this crosscorr term vanish

UMD ENEE630 Advanced Signal Processing (ver.1211) because of uncorrelated *and*

Deriving Correlation Matrix

- May bring rx(k) into the correlation matrix
- Or from the expectation of vector's outer product and use the correlation analysis from last page

$$
\begin{gathered}
\underline{x}[n]=\sum_{i=1}^{p} \underline{s}_{i}[n]+\underline{w}[n] \\
R_{x}=E\left[\underline{x}[n] \underline{x}^{H}[n]\right]=E\left[\left[\sum_{l=1}^{p} \underline{s}_{l}[n]+\underline{w}[n]\right] \cdot\left[\sum_{m=1}^{p} \underline{s}_{m}^{H}[n]+\underline{w}^{H}[n]\right]\right] \\
=> \\
R_{x}=\sum_{i=1}^{p} P_{i} \underline{e}_{i} \underline{e}_{i}^{H}+\sigma_{w}^{2} I
\end{gathered}
$$

Summary: Correlation Matrix for the Process

$$
r_{x}(k)=E\left[x[n] x^{*}[n-k]\right]=
$$

An $M x M$ correlation matrix for $\{x[n]\}(M>p)$:

$$
R_{x}=R_{s}+R_{w}
$$

where $\underline{e}_{i}=\left[1, e^{-j 2 \pi f i}, e^{-j 4 \pi f i}, \ldots e^{-j 2 \pi f_{i}(M-1)}\right]^{\top}$

Correlation Matrix for the Process (cont'd)

$$
R_{S}=\sum_{i=1}^{P} P_{i} \underline{e}_{i} \underline{e}_{i}^{H}
$$

$\underline{e}_{i} \underline{e}_{i}^{H}$ has rank
The MxM matrix R_{s} has rank

Summary: Correlation Matrix for the Process

$$
\begin{aligned}
r_{x}(k)=E\left[x[n] x^{*}[n-k]\right]= & \sum_{i=1}^{p} A_{i}^{2} e^{j 2 \pi f_{i} k}+\sigma_{w}^{2} \delta(k) \\
& \triangleq P_{i}
\end{aligned}
$$

An MxM correlation matrix for $\{x[n]\}$ ($M>p$):
$R_{x}=R_{s}+R_{w}$
$R_{W}=\sigma_{W}{ }^{2} I \quad \rightarrow$ full rank
$R_{s}=\sum_{i=1}^{p} P_{i} \underline{e}_{i} \underline{e}_{i}^{H}$
where $\underline{e}_{i}=\left[1, e^{-j 2 \pi f i}, e^{-j 4 \pi f i}, \ldots e^{-j 2 \pi f i(M-1)}\right]^{\top}$

Correlation Matrix for the Process (cont'd)

$$
\begin{aligned}
& R_{s}=\sum_{i=1}^{p} P_{i} \underline{e}_{i} \underline{e}_{i}^{H}
\end{aligned}
$$

$$
\begin{aligned}
& \underline{e}_{i} \underline{e}_{i}^{H} \text { has rank } 1 \text { (all columns are related by a factor) } \\
& \text { The } \mathrm{MxM} \text { matrix } \mathrm{R}_{\mathrm{s}} \text { has rank } \mathrm{p} \text {, and has only } \\
& p \text { nonzero eigenvalues. }
\end{aligned}
$$

Review: Rank and Eigen Properties

- Multiplying a full rank matrix won't change the rank of a matrix
i.e. $r(A)=r(P A)=r(A Q)$
where A is mxn, P is mxm full rank, and Q is nxn full rank.
- The rank of A is equal to the rank of $\mathrm{A} \mathrm{A}^{\mathrm{H}}$ and $\mathrm{A}^{\mathrm{H}} \mathrm{A}$.
- Elementary operations (which can be characterized as multiplying by a full rank matrix) doesn't change matrix rank:
- including interchange 2 rows/ cols; multiply a row/ col by a nonzero factor; add a scaled version of one row/ col to another.
- Correlation matrix Rx in our model has full rank.
- Non-zero eigenvectors corresponding to distinct eigenvalues are linearly independent
- $\operatorname{det}(A)=$ product of all eigenvalues; so a matrix is invertible iff all eigenvalues are nonzero.
(see Hayes Sec.2.3 review of linear algebra)

Eigenvalues/vectors for Hermitian Matrix

- Multiplying A with a full rank matrix won't change rank(A)
- Eigenvalue decomposition
- For an nxn matrix A having a set of n linearly independent eigenvectors, we can put together its eigenvectors as V s.t.

$$
\mathrm{A}=\mathrm{V} \operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots \lambda_{\mathrm{n}}\right) \mathrm{V}^{-1} \quad A \underline{V}_{i}=\lambda_{i} \underline{V}_{i}
$$

- For any nxn Hermitian matrix
- There exists a set of n orthonormal eigenvectors

$$
\left.\begin{array}{rl}
A\left[\underline{v}_{1}, V_{2} \ldots\right. & \ldots
\end{array}\right] \quad \underbrace{\left[V_{1}, \ldots\right.}_{V} .
$$

- Thus V is unitary for Hermitian matrix A, i.e. $\mathrm{V}^{-1}=\mathrm{V}^{\mathrm{H}}$

$$
\mathrm{A}=\mathrm{V} \operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots \lambda_{\mathrm{n}}\right) \mathrm{V}^{\mathrm{H}}=\lambda_{1} \underline{\mathrm{~V}}_{1} \underline{\mathrm{v}}_{1}^{\mathrm{H}}+\ldots+\lambda_{\mathrm{n}} \underline{\mathrm{~V}}_{\mathrm{n}} \underline{\mathrm{~V}}_{\mathrm{n}}^{\mathrm{H}}
$$

(see Hayes Sec.2.3.9 review of linear algebra)

Eigenvalues/vectors for Hermitian Matrix

- Multiplying A with a full rank matrix won't change $\operatorname{rank}(A)$
- Eigenvalue decomposition
- For an nxn matrix A having a set of n linearly independent eigenvectors, we can put together its eigenvectors as V s.t.

$$
A \underline{v}_{i}=\lambda_{i} \underline{v}_{i}
$$

- For any nxn Hermitian matrix
- There exists a set of n orthonormal eigenvectors
- Thus V is unitary for Hermitian

$$
\begin{aligned}
& A\left[\underline{v}_{1}, v_{2} \ldots\right] \\
&=\underbrace{\left[v_{1}, \ldots v_{n}\right.}_{V}]
\end{aligned}\left[\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right]
$$ matrix A , and

(see Hayes Sec.2.3.9 review of linear algebra)

[^2]
Eigen Analysis of the Correlation Matrix

Let \underline{v}_{i} be an eigenvector of R_{x} with the corresponding eigenvalue λ_{i}, i.e., $R_{x} \underline{v}_{i}=\lambda_{i} \underline{v}_{i}$
$\because R_{x} \underline{v}_{i}=R_{s} \underline{v}_{i}+\sigma_{w}^{2} \underline{v}_{i}=\lambda i \underline{v}_{i}$
$\therefore \operatorname{Rs} \underline{V}_{i}=$
$\therefore \lambda_{i}=\{$
(R_{s} has p nonzero eigenvalues

Eigen Analysis of the Correlation Matrix
Let \underline{v}_{i} be an eigenvector of R_{x} with the
corresponding eigenvalue λ_{i}, i.e., $R_{x} \underline{v}_{i}=\lambda_{i} \underline{v}_{i}$
$\because R_{x} \underline{v}_{i}=R_{s} \underline{v}_{i}+\sigma_{w}^{2} \underline{v}_{i}=\lambda_{i} \underline{v}_{i}$
$\therefore \operatorname{Rs} \underline{v}_{i}=\left(\lambda_{i}-\sigma_{w}^{2}\right) \underline{v}_{i}$
i.e., \underline{v}_{i} is also an eigenvector for R_{s}, and the corresponding eigenvalue is

$$
\lambda_{i}^{(s)}=\lambda_{i}-\sigma_{w}^{2}
$$

$$
\therefore \lambda_{i}=\left\{\begin{array}{l}
\lambda_{i}^{(s)}+\sigma_{w}{ }^{2}>\sigma_{w}^{2}, i=1,2, \ldots P\left(\begin{array}{l}
R_{s} \text { has } p \\
\text { nonzero } \\
\sigma_{w}{ }^{2},
\end{array} \quad i=p+1, \ldots M\right.
\end{array}\right)
$$

Signal Subspace and Noise Subspace

$$
\text { For } i=P+1, \ldots M=R_{S} \times \underline{V}_{i}=0 \times \underline{V}_{i}
$$

$$
\Rightarrow S^{H} \underline{v}_{i}=
$$

$$
\text { Also, } R_{S}=S D S^{H} \text {; }
$$

Also, $R_{S}=S D S^{H}$;

$$
\therefore \underbrace{S D} \underbrace{S^{H} V_{i}}_{P_{P \times 1}}=
$$

Since $S=\left[\underline{e}_{1}, \ldots \underline{e}_{p}\right] \Rightarrow$

Signal Subspace and Noise Subspace

$$
\begin{aligned}
& \text { For } i=P+1, \ldots M=R_{S} \times \underline{V}_{i}=0 \times \underline{V}_{i} \\
& \text { Also, } R_{S}=S D S^{H} \text {; } \\
& \therefore \underbrace{S D} \underbrace{H}_{p \times 1} V_{i}=0 \text { for } i=p+1, \ldots, M \\
& \mathrm{M} \times \mathrm{p} \text {, full rank=p } \\
& \text { i.e., the } p \text { column vectors are linearly independent } \\
& \Rightarrow S^{H} \underline{v}_{i}=0 \\
& \text { Since } S=\left[\underline{e}_{1}, \ldots \underline{e}_{p}\right] \Rightarrow \underline{e}_{l}^{H} \underline{v}_{i}=0, \begin{array}{l}
l=1,2, \ldots, p \\
i=p+1, \ldots, M
\end{array} \\
& \therefore \operatorname{span}\left\{\underline{e}_{\ldots}, \ldots e_{p}\right\} \perp \operatorname{span}\left\{\underline{v}_{p+1}, \ldots v_{M}\right\} \\
& \text { SIGNAL SUBSPACE } \\
& \text { NOISE SUBSPACE correspond to } \\
& \text { eigenvalue }=
\end{aligned}
$$

Relations Between Signal and Noise Subspaces

Since R_{x} and R_{s} are Hermitian matrices,
the eigenvectors are orthogonal to each other:

$$
\underline{v}_{i} \perp \underline{v}_{j} \quad \forall i \neq j
$$

\Rightarrow
Recall $\operatorname{span}\left\{\underline{e}_{1}, \ldots e_{p}\right\} \perp \operatorname{span}\left\{\underline{v}_{p+1}, \ldots \underline{v}_{M}\right\}$,
So it follows that

Relations Between Signal and Noise Subspaces

Since R_{x} and R_{s} are Hermitian matrices,
the eigenvectors are orthogonal to each other:

$$
\begin{gathered}
\underline{v}_{i} \perp \underline{v}_{j} \quad \forall i \neq j \\
\Rightarrow \operatorname{span}\left\{\underline{v}_{1}, \cdots \underline{v}_{p}\right\} \perp \operatorname{span}\left\{\underline{v}_{p+1}, \cdots v_{M}\right\}
\end{gathered}
$$

Recall

$$
\operatorname{span}\left\{e_{1}, \ldots e_{p}\right\}+
$$

span

So it follows that

$$
\begin{gathered}
\operatorname{span}\left\{\underline{e}_{1}, \ldots \underline{e}_{p}\right\}= \\
\operatorname{span}\left\{\underline{v}_{1}, \ldots \underline{v}_{p}\right\}
\end{gathered}
$$

Frequency Estimation Function: General Form

Recall $\underline{e}_{l}^{H} \underline{v}_{i}=0 \quad$ for $l=1, \ldots p ; i=p+1, \ldots M$
Knowing eigenvectors of correlation matrix R_{x}, we can use these orthogonal conditions to find the frequencies $\left\{f_{l}\right\}$:

$$
\underline{e}^{H}(f) \underline{v}_{i}=0 ?
$$

We form a frequency estimation function
Here α_{i} are properly chosen constants (weights) for producing weighted average for projection power with all noise eigenvectors

Discussion: Complex Exponential Vectors

$$
\begin{gathered}
\underline{e}(f)=\left[1, e^{-j 2 \pi f}, e^{-j 4 \pi f} \cdots, e^{-j 2 \pi(M-1) f}\right]^{T} \\
\underline{e}^{H}\left(f_{1}\right) \cdot \underline{e}\left(f_{2}\right)=\sum_{k=0}^{M-1} e^{j 2 \pi\left(f_{1}-f_{2}\right) k}=\frac{1-e^{j 2 \pi\left(f_{1}-f_{2}\right) M}}{1-e^{j 2 \pi\left(f_{1}-f_{2}\right)}} \text { if } f_{1} \neq f_{2}
\end{gathered}
$$

$$
\text { If } f_{1}-f_{2}=a / M \text { for some integer } a \Rightarrow \underline{e}^{H}\left(f_{1}\right) \cdot \underline{e}\left(f_{2}\right)=0
$$

$$
\begin{aligned}
& \operatorname{span}\left\{e_{1}, \ldots e_{p}\right\} \perp \operatorname{span}\left\{\underline{v}_{p+1}, \ldots \underline{v}_{m}\right\}, \\
& \operatorname{span}\left\{\underline{e}_{1}, \ldots \underline{e}_{p}\right\}= \\
& \operatorname{span}\left\{\underline{V}_{1}, \ldots \underline{V}_{P}\right\}
\end{aligned}
$$

Frequency Estimation Function: General Form

$$
\text { Recall } \underline{e}_{l}^{H} \underline{v}_{i}=0 \quad \text { for } l=1, \ldots p ; i=p+1, \ldots M
$$

Knowing eigenvectors of correlation matrix R_{x}, we can use these orthogonal conditions to find the frequencies $\left\{f_{l}\right\}$:

$$
\underline{e}^{H}(f) \underline{v}_{i}=0 ?
$$

We form a frequency estimation function

$$
\begin{aligned}
& \hat{P}(f)=\frac{1}{\sum_{i=p+1}^{M} \alpha_{i}\left|\underline{e}(f)^{H} \underline{v}_{i}\right|^{2}} \quad \begin{array}{l}
\text { Here } \alpha_{i} \text { are properly } \\
\text { chosen constants } \\
\text { (weights) for producing } \\
\text { weighted average for } \\
\text { projection power with all } \\
\text { noise eigenvectors }
\end{array} \\
& \Rightarrow \hat{P}(f) \text { is LARGE at } f_{1}, \ldots, f_{p}
\end{aligned}
$$

- This assumes the number of complex exponentials (p) and the first $(p+1)$ lags of the autocorrelation function are known or have been estimated
- The eigenvector corresponding to the smallest eigenvalue(s) of $\mathrm{R}_{(\mathrm{p}+1) \times(\mathrm{p}+1)}$ is in the noise subspace and can be used in the Pisarenko method.
- The equivalent frequency estimation function is:

Estimating the Amplitudes

Once the frequencies of the complex exponentials are determined, the amplitudes can be found from the eigenvalues of R_{x} :

$$
\begin{array}{ll}
R_{x} \underline{v}_{i}=\lambda_{i} \underline{v}_{i} \quad(i=1,2, \ldots, p) \quad & \text { normalize } \underline{v}_{i} \text { s.t. } \\
& \underline{v}_{i}^{H} \underline{v}_{i}=1
\end{array}
$$

Recall $R_{x}=\sum_{k=1}^{p} P_{k} \underline{e}_{k} \underline{e}_{k}^{H}+\sigma_{w}^{2} I$

- This assumes the number of complex exponentials (p) and the first $(p+1)$ lags of the autocorrelation function are known or have been estimated

$$
r(0), \ldots, r(p)
$$

- The eigenvector corresponding to the smallest eigenvalue(s) of $R_{(p+1) \times(p+1)}$ is in the noise subspace and can be used in the Pisarenko method.
- The equivalent frequency estimation function is:

$$
\hat{P}(f)=\frac{1}{\left|\underline{e}(f)^{H} \underline{v}_{\min }\right|^{2}}
$$

Estimating the Amplitudes

Once the frequencies of the complex exponentials are determined, the amplitudes can be found from the eigenvalues of R_{x} :

$$
\begin{array}{ll}
R_{x} \underline{v}_{i}=\lambda_{i} \underline{v}_{i} \quad(i=1,2, \ldots, p) & \text { normalize } \underline{v}_{i} \text { s.t. } \\
\Rightarrow \underline{v}_{i}^{H} R_{x} \underline{v}_{i}=\lambda_{i} \underline{v}_{i}^{H} \underline{v}_{i}=\lambda_{i} & \underline{v}_{i}^{H} \underline{v}_{i}=1 \\
\text { Recall } \quad R_{x}=\sum_{k=1}^{p} P_{k} \underline{e}_{k} \underline{e}_{k}^{H}+\sigma_{w}^{2} I & \\
\Rightarrow \sum_{k=1}^{p} P_{k} \underbrace{\left|\underline{e}_{k}^{H} \underline{v}_{i}\right|^{2}=\lambda_{i}-\sigma_{w}^{2}, \quad i=1, \ldots, p}
\end{array}
$$

DTFT of sig eigvector $v_{i}(\cdot)$ at $-f_{k} \quad \rightarrow$ Solve p equations for $\left\{P_{k}\right\}$

Interpretation of Pisarenko Method
Since $\underline{e}_{l}^{H} \underline{v}_{i}=0, \quad \begin{gathered}l=1,2, \ldots, p \\ i=p+1, \ldots, M\end{gathered}, \underset{\substack{\underline{v}_{i} \\ \text { noise } \\ \text { eigrector }}}{ }\left[\begin{array}{c}v_{i}(0) \\ v_{i}(1) \\ \vdots \\ v_{i}(M-1)\end{array}\right]$
$\Rightarrow \sum_{\mathrm{k}=0}^{\mathrm{M}-1} \mathrm{~V}_{\mathrm{i}}(k) e^{j 2 \pi f_{l} k}=0 \quad$ for $\quad l=1,2, \ldots, p$

Thus given any $\underline{v}_{\mathrm{i}}, \mathrm{i}=\mathrm{p}+1, \ldots, \mathrm{M}$, we can estimate the sinusoidal frequencies by finding the zeros on unit circle from

$$
\begin{gathered}
\text { Since } \underline{e}_{l}^{H} \underline{v}_{i}=0, \begin{array}{c}
l=1,2, \ldots, p \\
i=p+1, \ldots, M
\end{array} \begin{array}{c}
\text { noise } \\
\text { eigvector }
\end{array} \\
\Rightarrow \sum_{\mathrm{k}=0}^{\mathrm{M}-1} \mathrm{~V}_{\mathrm{i}}(k) e^{j 2 \pi f_{l} k}=0 \quad \text { for } \quad l=1,2, \ldots, p
\end{gathered}
$$

i.e. $\left.\operatorname{DTFT}\left\{v_{i}(\cdot)\right\}\right|_{f=-f_{l}}=0$

Thus given any $\underline{v}_{i}, i=p+1, \ldots, M$, we can estimate the sinusoidal frequencies by finding the zeros on unit circle from
 $Z\left[V_{i}(\cdot)\right]=\sum_{\mathrm{k}=0}^{\mathrm{M}-1} \mathrm{~V}_{\mathrm{i}}(k) \mathrm{Z}^{-k} \quad$ the angle of zeros reflects the freq.

Improvement over Pisarenko Method

- Need to know or accurately estimate the \# of sinusoids (p)
- Inaccurate estimation of autocorrelation values
=> Inaccurate eigen results of the (estimated) correlation matrix
=> p zeros on unit circle in frequency estimation function may not be on the right places
- What if we use larger MxM correlation matrix?
- More than one eigen vectors to form the noise subspace: which of (M-p) eigen vectors shall we use to check orthogonality with $\underline{e}(f)$?
$\mathrm{ZT}\left[\left\{\mathrm{v}_{\mathrm{i}}(0), \ldots \mathrm{v}_{\mathrm{i}}(\mathrm{M}-1)\right\}\right] \sim(\mathrm{M}-1)^{\text {th }}$ order polynomial $=>(\mathrm{M}-1)$ zeros
- p zeros are on unit circle (corresponding to the freq. of sinusoids)
- Other (M-1-p) zeros may lie anywhere and could be close to unit circle => may give false peaks

MUSIC Algorithm

The frequency estimation function

$$
\begin{aligned}
& \text { The frequency estimation function } \\
& \begin{aligned}
\hat{P}_{\text {music }}(f) & =\frac{1}{\sum_{i=P+1}^{M}\left|\underline{e}(f) \underline{v}_{i}\right|^{2}} \\
& =\frac{1}{e^{H}(f) V V^{H} \underline{e}(f)} \quad \begin{array}{l}
\text { Locate } \\
\text { the peaks }
\end{array}
\end{aligned}
\end{aligned}
$$

where $\underline{e}(f)=\left[\begin{array}{c}1 \\ e^{-j 2 \pi f f} \\ \vdots \\ e^{-j 2 \pi f(M-1)}\end{array}\right], V=\left[\underline{v}_{p+1}, \ldots v_{M}\right]$

Example-2

(a)

c) (d)
quency estimation functions for a process consisting of four complex exponen
sing (a) the Pisarenko harmonic decomposition, (b) the MUSIC algorithm, (a) sing (a) the Pisarenko harmonic decomposition, (b) the MUSIC algorithm, (c)
nd and (d) the minimum norm algorithm.
(Fig.8.37 \& Table 8.10 from M. Hayes Book; overlaying results of 10 realizations with 64 observed signal points each.)

Example-1

(a)
 observations)

UMD ENEE630 Advanced Signal Pr

[^0]: Acknowledgment: ENEE630 slides were based on class notes developed by Profs. K.J. Ray Liu and Min Wu. The slides were made by Prof. Min Wu, with updates from Mr. Wei-Hong Chuang. Contact: minwu@umd.edu

[^1]: UMD ENEE630 Advanced Signal Processing (ver. 1211)

[^2]: UMD ENEE630 Advanced Signal Processing (ver.1211)

