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Summary of Related Readings on PartSummary of Related Readings on Part--IIIIII

Overview    Haykins  1.16, 1.10

3 1 Non-parametric method3.1  Non-parametric method
Hayes  8.1;    8.2  (8.2.3, 8.2.5);    8.3

3 2 P t i th d3.2  Parametric method
Hayes  8.5,  4.7;    8.4

3.3  Frequency estimation
Hayes 8.6

Review 
– On DSP and Linear algebra:  Hayes 2.2, 2.3
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– On probability and parameter estimation:  Hayes 3.1 – 3.2



MotivationMotivation
 Implicit assumption by classical methods 

– Classical methods use Fourier transform on either windowed data or 
i d d l i f i (AC )windowed autocorrelation function (ACF)

– Implicitly assume the unobserved data or ACF outside the window 
are zero => not true in reality

– Consequence of windowing:   smeared spectral estimate 
(leading to low resolution)

If prior knowledge about the process is available If prior knowledge about the process is available
– We can use prior knowledge and select a good model to 

approximate the process
– Usually need to estimate fewer model parameters (than non-

parametric approaches) using the limited data points we have
– The model may allow us to better describe the process outside the
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The model may allow us to better describe the process outside the 
window (instead of assuming zeros)



General Procedure of Parametric MethodsGeneral Procedure of Parametric Methods

 Select a model (based on prior knowledge)

 Estimate the parameters of the assumed model

 Obtain the spectral estimate implied by the model (with 
the estimated parameters)
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Spectral Estimation using AR, MA, ARMA ModelsSpectral Estimation using AR, MA, ARMA Models

 Physical insight:  the process is generated/approximated by 
filtering white noise with an LTI filter of rational transfer func H(z)

 Use observed data to estimate a few lags of r(k)
– Larger lags of r(k) can be implicitly extrapolated by the model

 Relation between r(k) and filter parameters {ak} and {bk}
PARAMETER EQUATIONS f S ti 2 1 2(6)– PARAMETER EQUATIONS from Section 2.1.2(6)

– Solve the parameter equations to obtain filter parameters
– Use the p.s.d. implied by the model as our spectral estimatep p y p

 Deal with nonlinear parameter equations
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– Try to convert/relate them to the AR models that have linear equations 



Review:  Parameter EquationsReview:  Parameter Equations

Yule-Walker equations (for AR process)

ARMA model MA model
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3.2.1  AR Spectral Estimation3.2.1  AR Spectral Estimation
(1) Review of AR process

– The time series {x[n], x[n-1], …, x[n-m]} is a realization of 
an AR process of order M if it satisfies the difference 
equation

[ ] + [ 1] + + [ M] [ ]x[n] + a1 x[n-1] + … + aM x[n-M] = v[n]
where {v[n]} is a white noise process with variance 2 .

– Generating an AR process with parameters {ai}:
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3.2.1  AR Spectral Estimation3.2.1  AR Spectral Estimation
(1) Review of AR process

– The time series {x[n], x[n-1], …, x[n-m]} is a realization of { [ ] [ ] [ ]}
an AR process of order M if it satisfies the difference equation

x[n] + a1 x[n-1] + … + aM x[n-M] = v[n]
where {v[n]} is a white noise process with variance 2 .
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P.S.D. of An AR ProcessP.S.D. of An AR Process

Recall: the p.s.d. of an AR process {x[n]} is given by 
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Procedure of AR Spectral EstimationProcedure of AR Spectral Estimation
 Observe the available data points x[0], …, x[N-1], and

Determine the AR process order p

 Estimate the autocorrelation functions (ACF) k=0,…p

Biased (low variance) Unbiased (may not non neg.definite)







kN

n

nxknx
N

kr
1

0

][][1)(ˆ 








kN

n

nxknx
kN

kr
1

0

][][1)(ˆ

Biased (low variance) Unbiased (may not non neg.definite)

 Solve { ai } from the Yule-Walker equations or 
the normal equation of forward linear prediction
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– Recall for an AR process, the normal equation of FLP is 
equivalent to the Yule-Walker equation
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 Obtain power spectrum PAR (f):



Procedure of AR Spectral EstimationProcedure of AR Spectral Estimation
 Observe the available data points x[0], …, x[N-1], and

Determine the AR process order p

 Estimate the autocorrelation functions (ACF) k=0,…p

Biased (low variance) Unbiased (may not non-neg.definite)Biased (low variance) Unbiased (may not non neg.definite)
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 Solve { ai } from the Yule-Walker equations or 
the normal equation of forward linear prediction
– Recall for an AR process, the normal equation of FLP is 

equivalent to the Yule-Walker equation
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 Obtain power spectrum PAR (f): 2
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3.2.2 Maximum Entropy Spectral Estimation 3.2.2 Maximum Entropy Spectral Estimation (MESE)(MESE)
 View point:  Extrapolations of ACF

– {r[0], r[1], …, r[p]} is known;  there are generally an infinite 
b f ibl l i f (k) l lnumber of possible extrapolations for r(k) at larger lags

– As long as { r[p+1], r[p+2], … } guarantee that the correlation 
matrix is non-negative definite, they all form valid ACFs for w.s.s.

 Maximum entropy principle
– Perform extrapolation s.t. the time series characterized by the 

extrapolated ACF has maximum entropy
– i.e. the time series will be the least constrained thus most random 

one among all series having the same first (p+1) ACF valuesg g (p )

 Maximizing entropy leads to estimated p.s.d. be the 
smoothest one
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– Recall white noise process has flat p.s.d.



3.2.2 Maximum Entropy Spectral Estimation 3.2.2 Maximum Entropy Spectral Estimation (MESE)(MESE)
 Extrapolations of ACF

– {r[0], r[1], …, r[p]} is known; there are generally an infinite 
b f ibl l i f (k) l lnumber of possible extrapolations for r(k) at larger lags

– As long as { r[p+1], r[p+2], … } guarantee that the correlation 
matrix is non-negative definite, they all form valid ACFs for w.s.s.

 Maximum entropy principle
– Perform extrapolation s.t. the time series characterized by the 

extrapolated ACF has maximum entropy
– i.e. the time series will be the least constrained thus most random 

one among all series having the same first (p+1) ACF valuesg g (p )

=> Maximizing entropy leads to estimated p.s.d. be the 
smoothest one
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– Recall white noise process has flat p.s.d.



MESE for Gaussian Process:  FormulationMESE for Gaussian Process:  Formulation

For a Gaussian random process, the entropy per sample 
is proportional to 
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MESE for Gaussian Process: SolutionMESE for Gaussian Process: Solution

Using the Lagrangian multiplier technique, the solution 
can be found ascan be found as
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where {ak} are found by solving the Yule-Walker 
equations given the ACF values r(0), …, r(p)

 For Gaussian processes, the MESE is equivalent to AR 
spectral estimator and the PME(f) is an all-pole spectrum

Diff i h G i AR
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– Different assumptions on the process:  Gaussian vs AR processes
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– Different assumptions on the process:  Gaussian vs AR processes



3.2.3  MA Spectral Estimation3.2.3  MA Spectral Estimation

An MA(q) model
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Recall important results on MA process:  
1

MA 1)( 



k

kebfP 

(1) The problem of solving for bk given {r(k)} is to solve a set of 
nonlinear equations;

(2) An MA process can be approximated by an AR process of
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(2) An MA process can be approximated by an AR process of 
sufficiently high order.



Basic Idea to Avoid Solving Nonlinear EquationsBasic Idea to Avoid Solving Nonlinear Equations

Consider two processes:  

 Process#1: we observed N samples and need to perform Process#1:  we observed N samples, and need to perform 
spectral estimate
– We first model it as a high-order AR process, generated by 1/A(z) filter

 Process#2:  an MA-process generated by A(z) filter
– Since we know A(z), we can know process#2’s autocorrelation function;
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– We model process#2 as an AR(q) process => the filter would be 1/B(z)



Use AR Model to Help Finding MA ParametersUse AR Model to Help Finding MA Parameters

)()()( 12 BBPNote

– For simplicity, we consider the real coefficients for the MA model.
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d Lorder L order q
 The RHS represents power spectrum of an AR(q) process
 The unverse ZT of LHS is the ACF of the AR(q) process The unverse ZT of LHS is the ACF of the AR(q) process
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 The unverse ZT of LHS is the ACF of the AR(q) process



Use AR Model to Find MA Parameters:  SolutionsUse AR Model to Find MA Parameters:  Solutions
– For simplicity, we consider the real coefficients for the MA model.
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Recall: ACF of Output Process After LTI FilteringRecall: ACF of Output Process After LTI Filtering

w.s.s. 
processprocess

stable LTI filter

filter filterfilter filter

deterministic autocorrelation 
of filter’s impulse response
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Recall: ACF of Output Process After LTI FilteringRecall: ACF of Output Process After LTI Filtering

w.s.s. 
processprocess

stable LTI filter

filter filterfilter filter

deterministic autocorrelation 
of filter’s impulse response
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Use AR to Help Finding MA Parameters Use AR to Help Finding MA Parameters (cont’d)(cont’d)

A random process with power spectrum A(z)A(z-1) can 
be viewed as filtering a white process by a filter A(z), 
and has autocorrelation

proportional to for lag k
kL

kaaproportional to for lag k

 Knowing such autocorrelation function,





n

knnaa
0

 Knowing such autocorrelation function, 
we can use Levinson-Durbin recursion to find the optimal 
linear prediction parameters for the process 
(or equivalently its AR approximation parameters)(or equivalently its AR approximation parameters)

Thus we get {bk} as
1)()( 1 zAzAThus we get {bk} as

)()(
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UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation  [28]



Use AR to Help Finding MA Parameters Use AR to Help Finding MA Parameters (cont’d)(cont’d)

A random process with power spectrum A(z)A(z-1) can 
be viewed as filtering a white process by a filter A(z), 
and has autocorrelation

proportional to for lag k
kL

aaproportional to for lag k

 Knowing such autocorrelation function,
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 Knowing such autocorrelation function, 
we can use Levinson-Durbin recursion to find the optimal 
linear prediction parameters for the process 
(or equivalently its AR approximation parameters)(or equivalently its AR approximation parameters)

Thus we get {bk} as
1)()( 1 zAzA
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Thus we get {bk} as
)()(

)()( 1
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Durbin’s MethodDurbin’s Method

1. Use Levinson-Durbin recursion and solve for 

here

– That is we first approximate the observed data sequence {x[0]

where

– That is, we first approximate the observed data sequence {x[0], …, 
x[N]} with an AR model of high order (often pick L > 4q)

– We use biased ACF estimate here to ensure nonnegative definiteness 
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and smaller variance than unbiased estimate (dividing by N-k)



Durbin’s MethodDurbin’s Method

1. Use Levinson-Durbin recursion and solve for 

where

We first approximate the observed data sequence {x[0] x[N]}– We first approximate the observed data sequence {x[0], …, x[N]} 
with an AR model of high order (often pick L > 4q)

– We use biased ACF estimate here to ensure nonnegative definiteness 
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and smaller variance than unbiased estimate (dividing by N-k)



Durbin Method (cont’d)Durbin Method (cont’d)

2. Fit the data sequence to an AR(q) model:}ˆ,...,ˆ,ˆ,1{ 21 Laaa

where

– The result {bi} is the estimated MA parameters for original{x[n]}
– Note we add 1/(L+1) factor to allow the interpretation of ra(k) as an 
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( ) p a( )
autocorrelation function estimator



Durbin Method (cont’d)Durbin Method (cont’d)

2. Fit the data sequence to an AR(q) model:}ˆ,...,ˆ,ˆ,1{ 21 Laaa (q)}, ,,,{ 21 L

where

– The result {bi} is the estimated MA parameters for original {x[n]}
– Note we add 1/(L+1) factor to allow the interpretation of ra(k) as an 
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( ) p a( )
autocorrelation function estimator



3.2.4 ARMA Spectral Estimation3.2.4 ARMA Spectral Estimation

qp

Recall the ARMA(p,q) model
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Modified YuleModified Yule--Walker EquationsWalker Equations

Recall the Yule-Walker Eq. for ARMA(p,q) process

We can use the equations for k≥q+1 to solve for {al} 

“Modified Yule Walker Equations”Modified Yule-Walker Equations
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Modified YuleModified Yule--Walker EquationsWalker Equations

Recall the Yule-Walker Eq. for ARMA(p,q) process

We can use the equations for k≥q+1 to solve for {al} 

“Modified Yule Walker Equations”
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Modified Yule-Walker Equations



Estimating ARMA ParametersEstimating ARMA Parameters

1. By solving the modified Yule-Walker eq., we get
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We first filter {x[n]} with         , and model the output )(ˆ zA
2. To estimate {bk},

with an MA(q) model using Durbin’s method.
)(
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Estimating ARMA ParametersEstimating ARMA Parameters

1. By solving the modified Yule-Walker eq., we get
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Extension: LSMYWE  EstimatorExtension: LSMYWE  Estimator

 Performance by solving p modified Yule-Walker equations 
followed by Durbin’s method
– May yield highly variable spectral estimates (esp. when the matrix 

involving ACF is nearly singular due to poor ACF estimates)

 Improvement: use more than p equations to solve {a1 .. ap} in 
a least square sense

U Y l W lk ti f k ( +1) M i || t S ||2– Use Yule-Walker equations for k = (q+1), … M:   min || t – S a ||2

– Least square solution:  a = (SH S) —1 SH t
Then obtain {b } by Durbin’s method– Then obtain {bi} by Durbin s method

 “Least-square modified Yule-Walker equation” (LSMYWE)
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Ref:  review in Hayes’ book Sec.2.3.6 on least square solution



Comparison of Different Methods:  RevisitComparison of Different Methods:  Revisit
 Test case: a process consists of narrowband components 

(sinusoids) and a broadband component (AR)
– x[n] = 2 cos(1 n) + 2 cos(2 n) + 2 cos(3 n) + z[n]

where z[n] = a1 z[n-1] + v[n],  a1 =  0.85, 2 = 0.1
1/2 = 0.05, 2/2 = 0.40, 3/2 = 0.421/2  0.05, 2/2  0.40, 3/2  0.42

– N=32 data points are available  
 periodogram resolution f = 1/32

 Examine typical characteristics 
f i t i dof various non-parametric and

parametric spectral estimators
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(Fig.2.17 from Lim/Oppenheim book)
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3.2.5 Model Order Selection3.2.5 Model Order Selection

 The best way to determine the model order is to base it on 
the physics of the data generation process

 Example:  speech processing
– Studies show the vocal tract can be modeled as an all-pole filter p

having 4 resonances in a 4kHz band, thus at least 4 pairs of 
complex conjugate poles are necessary
 Typically 10 12 poles are used in an AR modeling for speech Typically 10-12 poles are used in an AR modeling for speech

 When no such knowledge is available, we can use someg
statistical test to estimate the order

Ref for in-depth exploration: “Model-order selection ” by P Stoica and Y Selen
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Ref. for in-depth exploration:  Model-order selection,  by P. Stoica and Y. Selen, 
IEEE Signal Processing Magazine, July 2004.



Considerations for Order SelectionConsiderations for Order Selection

 Modeling error 
– Modeling error measures the (statistical) difference between the true g ( )

data value and the approximation by the model
 e.g. estimating linear prediction MSE in AR modeling 

U ll f i f d l ( AR ARMA) h d li– Usually for a given type of model (e.g. AR, ARMA), the modeling 
error decreases as we increase the model order

 Balance between the modeling error and the amount of Balance between the modeling error and the amount of 
model parameters to be estimated
– The number of parameters that need to be estimated and represented 

increases as we use higher model order   Cost of overmodeling
– Can balance modeling error and the cost of going to higher model by 

imposing a penalty term that increases with the model order
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imposing a penalty term that increases with the model order



A Few Commonly Used CriteriaA Few Commonly Used Criteria

 Akaike Information Criterion (AIC)
– A general estimate of the Kullback-Leibler divergence between g g

assumed and true p.d.f., with an order penalty term increasing linearly
– Choose the model order that minimize AIC

iNi p 2  ln)(AIC  
size of model order: 

i=p for AR(p)

 Minimum Description Length (MDL) Criterion

available data model error i=p for AR(p)
i=p+q for ARMA(p,q)

– Impose a bigger penalty term to overcome AIC’s overestimation
– Estimated order converges to the true order as N goes to infinity
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iNNi p )(log  ln)(MDL  
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iNNi p )(log  ln)(MDL  




