Part 3. Spectrum Estimation3.1 Classic Methods for Spectrum Estimation

Electrical & Computer Engineering University of Maryland, College Park

Acknowledgment: ENEE630 slides were based on class notes developed by Profs. K.J. Ray Liu and Min Wu. The slides were made by Prof. Min Wu, with updates from Mr. Wei-Hong Chuang. *Contact: minwu@eng.umd.edu*

UMD ENEE630 Advanced Signal Processing (ver.1111)

<u>Logistics</u>

- Last Lecture: lattice predictor
 - correlation properties of error processes
 - joint process estimator in lattice
 - inverse lattice filter structure
- Today:
 - Spectrum estimation: background and classical methods

Homework set

Summary of Related Readings on Part-II

2.1 Stochastic Processes and modeling

Haykin (4th Ed) 1.1-1.8, 1.12-1.14 Hayes 3.3 – 3.7 (3.5); 4.7

2.2 Wiener filtering

Haykin (4th Ed) Chapter 2 Hayes 7.1, 7.2, 7.3.1

2.3-2.4 Linear prediction and Levinson-Durbin recursion

Haykin (4th Ed) 3.1 – 3.3 Hayes 7.2.2; 5.1; 5.2.1 – 5.2.2, 5.2.4 – 5.2.5

2.5 Lattice predictor

Haykin (4th Ed) 3.8 – 3.10 Hayes 6.2; 7.2.4; 6.4.1

Summary of Related Readings on Part-III

Overview Haykins 1.16, 1.10

3.1 Non-parametric method

Hayes 8.1; 8.2 (8.2.3, 8.2.5); 8.3

3.2 Parametric method

Hayes 8.5, 4.7; 8.4

3.3 Frequency estimation

Hayes 8.6

Review

- On DSP and Linear algebra: Hayes 2.2, 2.3
- On probability and parameter estimation: Hayes 3.1 3.2

Spectrum Estimation: Background

- Spectral estimation: determine the power distribution in frequency of a random process
 - E.g "Does most of the power of a signal reside at low or high frequencies?" "Are there resonances in the spectrum?"
- Applications:
 - Needs of spectral knowledge in spectrum domain non-causal
 Wiener filtering, signal detection and tracking, beamforming, etc.
 - Wide use in diverse fields: radar, sonar, speech, biomedicine, geophysics, economics, ...
- Estimating p.s.d. of a w.s.s. process is equivalent to estimate autocorrelation at all lags

Spectral Estimation: Challenges

- When a limited amount of observation data are available
 - Can't get r(k) for all k and/or may have inaccurate estimate of r(k)
 - Scenario-1: transient measurement (earthquake, volcano, ...)
 - Scenario-2: constrained to short period to ensure (approx.) stationarity in speech processing

$$\hat{r}(k) = \frac{1}{N-k} \sum_{n=k+1}^{N} u[n] u^*[n-k], \ k = 0, 1, \dots M$$

• Observed data may have been corrupted by noise

Spectral Estimation: Major Approaches

- No assumptions on the underlying model for the data
- Periodogram and its variations (averaging, smoothing, ...)
- Minimum variance method
- ARMA, AR, MA models
- Maximum entropy method
- For harmonic processes that consist of a sum of sinusoids or complex-exponentials in noise

Spectral Estimation: Major Approaches

Nonparametric methods

- No assumptions on the underlying model for the data
- Periodogram and its variations (averaging, smoothing, ...)
- Minimum variance method
- Parametric methods
 - ARMA, AR, MA models
 - Maximum entropy method
- Frequency estimation (noise subspace methods)
 - For harmonic processes that consist of a sum of sinusoids or complex-exponentials in noise
- High-order statistics

Example of Speech Spectrogram

Figure 3 of SPM May'98 Speech Survey

Section 3.1 Classical Nonparametric Methods

Recall: given a w.s.s. process {x[n]} with

$$\begin{cases} E[x[n]] = m_x \\ E[x^*[n]x[n+k]] = r(k) \end{cases}$$

The power spectral density (p.s.d.) is defined as

As we can take DTFT on a specific realization of a random process, What is the relation between the DTFT of a specific signal and the p.s.d. of the random process?

 $-\frac{1}{2} \le f \le \frac{1}{2}$

(or $\omega = 2\pi f : -\pi \le \omega \le \pi$)

Section 3.1 Classical Nonparametric Methods

Recall: given a w.s.s. process {x[n]} with

$$\begin{cases} E[x[n]] = m_x \\ E[x^*[n]x[n+k]] = r(k) \end{cases}$$

The power spectral density (p.s.d.) is defined as

$$P(f) = \sum_{k=-\infty}^{\infty} r(k)e^{-j2\pi fk} \qquad -\frac{1}{2} \le f \le \frac{1}{2}$$

(or $\omega = 2\pi f : -\pi \le \omega \le \pi$)

As we can take DTFT on a specific realization of a random process, What is the relation between the DTFT of a specific signal and the p.s.d. of the random process?

\bigwedge

Ensemble Average of Squared Fourier Magnitude

 p.s.d. can be related to the ensemble average of the squared Fourier magnitude |X(ω)|²

Consider
$$P_M(f) \stackrel{\Delta}{=} \frac{1}{2M+1} \left| \sum_{n=-M}^{M} x[n] e^{-j2\pi f n} \right|^2$$

= $\frac{1}{2M+1} \sum_{n=-M}^{M} \sum_{m=-M}^{M} x[n] x^*[m] e^{-j2\pi f (n-m)}$

Ensemble Average of Squared Fourier Magnitude

 p.s.d. can be related to the ensemble average of the squared Fourier magnitude |X(ω)|²

Consider
$$P_M(f) \stackrel{\Delta}{=} \frac{1}{2M+1} \left| \sum_{n=-M}^{M} x[n] e^{-j2\pi f n} \right|^2$$

= $\frac{1}{2M+1} \sum_{n=-M}^{M} \sum_{m=-M}^{M} x[n] x^*[m] e^{-j2\pi f (n-m)}$

i.e., take DTFT on (2M+1) samples and examine normalized magnitude

Note: for each frequency f, $P_M(f)$ is a random variable

Ensemble Average of P_M(f)

$$E[P_{M}(f)] = \frac{1}{2M+1} \sum_{n=-M}^{M} \sum_{m=-M}^{M} r(n-m)e^{-j2\pi f(n-m)}$$
$$= \frac{1}{2M+1} \sum_{k=-2M}^{2M} (2M+1-|k|)r(k)e^{-j2\pi fk}$$

• Now, what if M goes to infinity?

Ensemble Average of P_M(f)

$$\begin{split} E[P_{M}(f)] &= \frac{1}{2M+1} \sum_{n=-M}^{M} \sum_{m=-M}^{M} r(n-m) e^{-j2\pi f(n-m)} \\ &= \frac{1}{2M+1} \sum_{k=-2M}^{2M} (2M+1-|k|) r(k) e^{-j2\pi fk} \\ &= \sum_{k=-2M}^{2M} \left(1 - \frac{|k|}{2M+1} \right) r(k) e^{-j2\pi fk} \\ &= \sum_{k=-2M}^{2M} r(k) e^{-j2\pi fk} - \frac{1}{2M+1} \sum_{k=-2M}^{2M} |k| r(k) e^{-j2\pi fk} \end{split}$$

Now, what if M goes to infinity?

P.S.D. and Ensemble Fourier Magnitude

If the autocorrelation function decays fast enough s.t.

P.S.D. and Ensemble Fourier Magnitude

If the autocorrelation function decays fast enough s.t.

$$\sum_{k=-\infty}^{\infty} |k| r(k) < \infty \quad (i.e., r(k) \to 0 \text{ rapidly for } k \uparrow)$$

then
$$\lim_{M \to \infty} E[P_M(f)] = \sum_{k=-\infty}^{\infty} r(k) e^{-j2\pi f k} = P(f)$$

p.s.d.
Thus
$$P(f) = \lim_{M \to \infty} E\left[\frac{1}{2M+1} \left|\sum_{n=-M}^{M} x[n] e^{-j2\pi f n}\right|^2\right] \quad (**)$$

3.1.1 Periodogram Spectral Estimator

(1) This estimator is based on (**)

Given an observed data set {x[0], x[1], ..., x[N-1]}, the periodogram is defined as

$$\hat{P}_{\text{PER}}(f) = \frac{1}{N} \left| \sum_{n=0}^{N-1} x[n] e^{-j2\pi f n} \right|^2$$

3.1.1 Periodogram Spectral Estimator

(1) This estimator is based on (**)

Given an observed data set {x[0], x[1], ..., x[N-1]}, the periodogram is defined as

$$\hat{P}_{\text{PER}}(f) = \frac{1}{N} \left| \sum_{n=0}^{N-1} x[n] e^{-j2\pi f n} \right|^2$$

$$X[n] \xrightarrow{} X_N[n] \xrightarrow{} X_N[n] \xrightarrow{} X_N(K) \xrightarrow{}$$

An Equivalent Expression of Periodogram

The periodogram estimator can be given in terms of r(k)

$$\hat{P}_{\text{PER}}(f) = \sum_{k=-(N-1)}^{N-1} \hat{r}(k) e^{-j2\pi fk}$$

where
$$r(k)$$

 \wedge

 The quality of the estimates for the higher lags of r(k) may be poorer since they involve fewer terms of lag products in the averaging operation

Exercise: to show this from the periodogram definition in last page

An Equivalent Expression of Periodogram

The periodogram estimator can be given in terms of r(k)

$$\hat{P}_{\text{PER}}(f) = \sum_{k=-(N-1)}^{N-1} \hat{r}(k) e^{-j2\pi fk}$$

where
$$\hat{r}(k) = \frac{1}{N} \sum_{n=0}^{N-1-k} x^*[n] x[n+k]; \hat{r}(-k) = \hat{r}^*(k) \text{ for } k \ge 0$$

 The quality of the estimates for the higher lags of r(k) may be poorer since they involve fewer terms of lag products in the averaging operation

Exercise: to show this from the periodogram definition in last page

Nonparametric spectral estimation [22]

(2) Filter Bank Interpretation of Periodogram

For a particular frequency of f_{0} .

$$\hat{P}_{\text{PER}}(f_{0}) = \frac{1}{N} \left| \sum_{k=0}^{N-1} e^{-j2\pi f_{0}k} x[k] \right|^{2}$$
$$= \left[N \cdot \left| \sum_{k=0}^{N-1} h[n-k] x[k] \right|^{2} \right]_{n=0}$$
where
$$h[n] =$$

Impulse response of the filter h[n]: a windowed version of a complex exponential

(2) Filter Bank Interpretation of Periodogram

For a particular frequency of f_{0} .

$$\hat{P}_{\text{PER}}(f_0) = \frac{1}{N} \left| \sum_{k=0}^{N-1} e^{-j2\pi f_0 k} x[k] \right|^2$$
$$= \left[N \cdot \left| \sum_{k=0}^{N-1} h[n-k] x[k] \right|^2 \right]_{n=0}$$

, $h[n] = \begin{cases} \frac{1}{N} \exp(j2\pi f_0 n) & \text{for } n = -(N-1), ..., -1, 0; \\ 0 & \text{otherwise} \end{cases}$

- Impulse response of the filter h[n]: a windowed version of a complex exponential

Frequency Response of h[n]

$$H(f) = \frac{\sin N\pi (f - f_0)}{N \sin \pi (f - f_0)} \exp[j(N - 1)\pi (f - f_0)]$$

sinc-like function centered at f_{0:}

Frequency Response of h[n]

$$H(f) = \frac{\sin N\pi (f - f_0)}{N\sin \pi (f - f_0)} \exp[j(N - 1)\pi (f - f_0)]$$

sinc-like function centered at $f_{0:}$

- H(f) is a bandpass filter
 - Center frequency is f_0
 - 3dB bandwidth $\approx 1/N$

Periodogram: Filter Bank Perspective

- Can view the periodogram as an estimator of power spetrum that has a built-in filterbank
 - The filter bank ~ a set of bandpass filters

$$\hat{P}_{\text{PER}}(f_0) = \left[N \cdot \left| \sum_{k=0}^{N-1} h[n-k] x[k] \right|^2 \right]_{n=0}$$

Periodogram: Filter Bank Perspective

- Can view the periodogram as an estimator of power spetrum that has a built-in filterbank
 - The filter bank ~ a set of bandpass filters
 - The estimated p.s.d. for each frequency f_0 is the power of one output sample of the bandpass filter centering at f_0

$$\hat{P}_{\text{PER}}(f_0) = \left[N \cdot \left| \sum_{k=0}^{N-1} h[n-k] x[k] \right|^2 \right]_{n=0}$$

E.g. White Gaussian Process

[Lim/Oppenheim Fig.2.4] Periodogram of zero-mean white Gaussian noise using N-point data record: N=128, 256, 512, 1024

The random fluctuation (measured by variance) of the periodogram does not decrease with increasing N
 periodogram is not a consistent estimator

UMD ENEE630 Advanced Signal Processing (ver.1111)

(3) How Good is Periodogram for Spectral Estimation?

If
$$N \to \infty$$
, will $\stackrel{\wedge}{P}_{\text{PER}} \to \text{p.s.d.} P(f)$?

Estimation: Tradeoff between bias and variance

$$E(\hat{\theta}) \neq \theta$$
$$E[|\hat{\theta} - E(\hat{\theta})|^{2}] = ?$$

• For white Gaussian process, we can show that at $f_k = k/N$

$$\Rightarrow E[\hat{P}_{PER}(f\kappa)] = P(f\kappa), \ \kappa = 0, 1, \dots, \frac{N}{2}$$

$$Var[\hat{P}_{PER}(f\kappa)] = \begin{cases} P^{2}(f\kappa), \ \kappa = 1, \dots, \frac{N}{2} - 1 \\ 2P^{2}(f\kappa), \ \kappa = 0, \frac{N}{2} \end{cases} \propto P^{2}(f\kappa)$$

UMD ENEE630 Advanced Signal Processing (ver.1111)

Performance of Periodogram: Summary

- The periodogram for white Gaussian process is an <u>unbiased</u> estimator but not <u>consistent</u>
 - The variance does not decrease with increasing data length
 - Its standard deviation is as large as the mean (equal to the quantity to be estimated)
- Reasons for the poor estimation performance
 - Given N real data points, the # of unknown parameters {P(f_0), ... P($f_{N/2}$)} we try to estimate is N/2, i.e. proportional to N
- Similar conclusions can be drawn for processes with arbitrary p.s.d. and arbitrary frequencies
 - Asymptotically unbiased (as N goes to infinity) but inconsistent

UMD ENEE630 Advanced Signal Processing (ver.1111)

3.1.2 Averaged Periodogram

- As one solution to the variance problem of periodogram
 - Average K periodograms computed from K sets of data records

$$\hat{P}_{AV PER}(f) = \frac{1}{K} \sum_{m=0}^{K-1} \hat{P}_{PER}^{(m)}(f)$$
where $\hat{P}_{PER}^{(m)}(f) = \frac{1}{L} \left| \sum_{n=0}^{L-1} x_m[n] e^{-j2\pi f n} \right|^2$

And the K sets of data records are $\{x_0[0], ..., x_0[L-1]; x_1[n], 0 \le n \le L-1; ... \ \{x_{K-1}[n-1], 0 \le n \le L-1\}$

Performance of Averaged Periodogram

- If K sets of data records are uncorrelated with each other, we have: $(f_i = i/L)$

 $P_{PER}^{(M)}(f)$ i.i.d. (m=0,1, ... L-1) for white Gaussian process

$$\propto \frac{1}{K} P^2(f_i)$$

Performance of Averaged Periodogram

- If K sets of data records are uncorrelated with each other, we have : $(f_i = i/L)$

 $\widehat{P}_{PER}^{(M)}(f) \text{ i.i.d. (m=0,1, ... L-1) for white Gaussian process}$ $\Longrightarrow \quad \forall \text{ar-} [\widehat{P}_{AVPER}^{}(f)] = \qquad \qquad \propto \frac{1}{K} P^{2}(f_{i})$ $\begin{cases} \frac{1}{K} P^{2}(f_{i}) & i = 1, 2, \dots, \frac{L}{2} - 1 \\ \frac{2}{K} P^{2}(f_{i}) & i = 0, \frac{L}{2} \end{cases}$ i.e., $K \uparrow \rightarrow \text{Var} \downarrow$, and $\text{Var} \rightarrow 0$ for $K \rightarrow \infty$

i.e., consistent estimate

Practical Averaged Periodogram

- Usually we partition an available data sequence of length N – into K non-overlapping blocks, each block has length L (i.e. N=KL) i.e. r [n] = r[n + mL]
 - $x_m[n] = x[n+mL], \qquad n = 0, 1, ..., L-1$ m = 0, 1, ..., K-1
- Since the blocks are contiguous, the K sets of data records may not be completely uncorrelated
 - Thus the variance reduction factor is in general less than K
- Periodogram averaging is also known as the Bartlett's method

Averaged Periodogram for Fixed Data Size

 Given a data record of fixed size N, will the result be better if we segment the data into more and more subrecords?

We examine for a <u>real-valued</u> stationary process:

 $\hat{P}_{\text{PER}}^{(0)}(f) = \sum_{l=1}^{L-1} \hat{r}^{(0)}(l) e^{-j2\pi f l}$

l = -(L - 1)

 $\hat{r}^{(0)}(l) = \frac{1}{L} \sum_{n=1}^{L-1-|l|} x[n]x[n+|l|]$

$$E\begin{bmatrix} \stackrel{\wedge}{P}_{\text{AV PER}}(f) \end{bmatrix} = E\begin{bmatrix} \frac{1}{K} \sum_{m=0}^{K-1} \stackrel{\wedge}{P}_{\text{PER}}(f) \end{bmatrix} = E\begin{bmatrix} \hat{P}_{\text{PER}}^{(0)}(f) \end{bmatrix}$$

identical distribution for all m

Note

where

an equivalent expression to definition in terms of x[n]

Mean of Averaged Periodogram

Mean of Averaged Periodogram

$$\Rightarrow E[\hat{\Gamma}^{(0)}(l)] = (I - \frac{|l|}{L}) M(l) \text{ for } |l| \leq L - I$$

$$\triangleq W(l)$$

$$\stackrel{\cdot}{=} E[\hat{P}_{AVPER}(f)] = \sum_{l=-(L-I)}^{L-1} W(l) \Gamma(l) e^{-j2\pi f l}$$

$$W[K] = \begin{cases} 1 - \frac{|K|}{L} \text{ for } |K| \leq L-1 & W(f) \\ 0 & 0 \cdot W. & \text{triangular} & \text{3dB b.W.} \\ (Barlett) & \rightarrow & K \approx \frac{|K|}{L} \\ \Rightarrow W(f) = \frac{1}{L} \left(\frac{Sin TI f L}{Sin TI f} \right)^{\frac{1}{2}} & \text{window}^{\frac{1}{2}} \\ & \text{window}^{\frac{1}{2}} & 0 & f \end{cases}$$

Mean of Averaged Periodogram (cont'd)

$$\begin{split} E[\hat{P}_{\text{AV PER}}(f)] &= \text{DTFT}[\{w[k]r(k)\}]_{f} & \text{multiplication in time} \\ &= \int_{-\frac{1}{2}}^{\frac{1}{2}} W(f - \eta) P(\eta) d\eta & \text{convolution in frequency} \\ &\neq P(f) \end{split}$$

- Biased estimate (both averaged and regular periodogram)
 - The convolution with the window function w[k] lead to the mean of the averaged periodogram being smeared from the true p.s.d

Mean of Averaged Periodogram (cont'd)

$$\begin{split} E[\hat{P}_{\text{AV PER}}(f)] &= \text{DTFT}[\{w[k]r(k)\}]_{f} & \text{multiplication in time} \\ &= \int_{-\frac{1}{2}}^{\frac{1}{2}} W(f - \eta) P(\eta) d\eta & \text{convolution in frequency} \\ &\neq P(f) \end{split}$$

- Biased estimate (both averaged and regular periodogram)
 - The convolution with the window function w[k] lead to the mean of the averaged periodogram being smeared from the true p.s.d
- Asymptotic unbiased as $L \rightarrow \infty$
 - To avoid the smearing, the window length L must be large enough so that the narrowest peak in P(f) can be resolved
- This gives a tradeoff between bias and variance Small K => better resolution (smaller smearing/bias) but larger variance

Non-parametric Spectrum Estimation: Recap

• Periodogram

- Motivated by relation between p.s.d. and squared magnitude of DTFT of a finite-size data record
- Variance: won't vanish as data length N goes infinity ~ "inconsistent"
- Mean: asymptotically unbiased w.r.t. data length N in general
 - equivalent to apply triangular window to autocorrelation function (windowing in time gives smearing/smoothing in freq domain)
 - unbiased for white Gaussian
- Averaged periodogram
 - Reduce variance by averaging K sets of data record of length L each
 - Small L increases smearing/smoothing in p.s.d. estimate thus higher bias → equiv. to triangular windowing
- Windowed periodogram: generalize to other symmetric windows

Case Study on Non-parametric Methods

• Test case: a process consists of narrowband components (sinusoids) and a broadband component (AR)

 $- x[n] = 2 \cos(\omega_1 n) + 2 \cos(\omega_2 n) + 2 \cos(\omega_3 n) + z[n]$ where $z[n] = -a_1 z[n-1] + v[n], a_1 = -0.85, \sigma^2 = 0.1$ $\omega_1/2\pi = 0.05, \omega_2/2\pi = 0.40, \omega_3/2\pi = 0.42$

- N=32 data points are available \rightarrow periodogram resolution f = 1/32
- Examine typical characteristics of various non-parametric spectral estimators

(Fig.2.17 from Lim/Oppenheim book)

UMD ENEE630 Advanced Signal Processing (ver.1111)

Nonparametric spectral estimation [43]

3.1.3 Periodogram with Windowing

Review and Motivation

The periodogram estimator can be given in terms of $\stackrel{\wedge}{r(k)}$ $\stackrel{\wedge}{P}_{\text{PER}}(f) = \sum_{k=-(N-1)}^{N-1} \stackrel{\wedge}{r(k)} e^{-j2\pi f k}$ where $\stackrel{\wedge}{r(k)} = \frac{1}{N} \sum_{n=0}^{N-1-k} x^*[n]x[n+k]; \stackrel{\wedge}{r(-k)} = \stackrel{\wedge}{r(k)} \stackrel{\wedge}{r(k)} for k \ge 0$

- The higher lags of r(k), the poorer estimates since the estimates involve fewer terms of lag products in the averaging operation
- Solution: weigh the higher lags less
 - Trade variance with bias

Windowing

• Use a window function to weigh the higher lags less

i.e.
$$\hat{P}_{Win}(f) = \sum_{K=-(N-1)}^{N-1} W(K) \hat{\Gamma}(K) e^{-j2\pi fK}$$

where $W(K)$ is a "lag window" with properties of:
 $\bigcirc 0 \le W(K) \le W(0] = 1$ $w(0)=1$ preserves variance $r(0)$
 $\bigcirc W(-K) = W(K)$ symmetric
 $\bigcirc W(K) = 0$ for $|K| > M$ where $M \le N-1$
 $\bigoplus W(f)$ must be chosen to ensure $\hat{P}_{Win}(f) \ge 0$

- Effect: periodogram smoothing
 - Windowing in time \(Convolution/filtering the periodogram)
 - Also known as the Blackman-Tukey method

Common Lag Windows

• Much of the art in non-parametric spectral estimation is in choosing an appropriate window (both in type and length)

Name	Definition	Fourier Transform
Rectangular	$w(k) = \begin{cases} 1, & k \le M \\ 0, & k > M \end{cases}$	$W(\omega) = W_{\mathcal{R}}(\omega)$ $= \frac{\sin \frac{\omega}{2}(2M + 1)}{\sin \omega/2}$
Bartlett	$w(k) = \begin{cases} 1 - \frac{ k }{M}, & k \le M \\ 0, & k > M \end{cases}$	$W(\omega) = W_{B}(\omega)$ $= \frac{1}{M} \left(\frac{\sin M\omega/2}{\sin \omega/2} \right)^{2}$
Hanning	$w(k) = \begin{cases} \frac{1}{2} + \frac{1}{2}\cos\frac{\pi k}{M}, & k \le M\\ 0, & k > M \end{cases}$	$W(\omega) = \frac{1}{4} W_R(\omega - \pi/M) + \frac{1}{2} W_R(\omega) + \frac{1}{4} W_R(\omega + \pi/M)$
Hamming	$w(k) = \begin{cases} 0.54 + 0.46 \cos \frac{\pi k}{M}, & k \le M\\ 0, & k > M \end{cases}$	$W(\omega) = 0.23 W_{R}(\omega - \pi/M) + 0.54 W_{R}(\omega) + 0.23 W_{R}(\omega + \pi/M)$
Parzen	$w(k) = \begin{cases} 2\left(1 - \frac{ k }{M}\right)^3 - \left(1 - 2\frac{ k }{M}\right)^3, & k \le M/2\\ 2\left(1 - \frac{ k }{M}\right)^3, & \frac{M}{2} \le k \le N \end{cases}$	2 $W(\omega) = \frac{8}{M^3} \left(\frac{3}{2} \frac{\sin^4 M \omega / 4}{\sin^4 \omega / 2} \right)$ Table $M = -\frac{\sin^4 M \omega / 4}{\sin^2 \omega / 2}$

Table 2.1 common lag window (from Lim-Oppenheim book)

Nonparametric spectral estimation [46]

Discussion: Estimate r(k) via Time Average

• Normalizing the sum of (N-k) pairs

by a factor of 1/N? v.s. by a factor of 1/(N-k)? <u>Biased</u> (low variance) <u>Unbiased</u> (may not non-neg. definite) $\hat{P}_{(k)} = \frac{1}{N} \sum_{n=0}^{N-1-k} X(n+K) X(n), \quad \hat{P}_{(k)} = \frac{1}{N-k} \sum_{n=0}^{N-1-k} X(n+K) X(n)$ $E(\hat{\Gamma}_{1}(k)) =$ $E(\Gamma(K)) =$ Hints on showing \bullet the non-negative definiteness: using $r_1(k)$ to construct correlation matrix • For $r_2(k)$ HW#8

Discussion: Estimate r(k) via Time Average

• Normalizing the sum of (N-k) pairs

by a factor of 1/N? v.s. by a factor of 1/(N-k)? Biased (low variance) <u>Unbiased</u> (may not non-neg. definite) $\hat{P}_{(k)} = \frac{1}{N} \sum_{n=0}^{N-1-k} X(n+K) X(n), \quad \hat{P}_{(k)} = \frac{1}{N-K} \sum_{n=0}^{N-1-k} X(n+K) X(n)$ $E(\hat{\Gamma}_{N}(K)) = \frac{N-K}{N}\Gamma(K) \qquad E(\hat{\Gamma}_{N}(K)) = \Gamma(K)$ Hints on showing $\hat{R}_{N} = X^{H}X$, where Hints on showing the non-negative definiteness: using $r_1(k)$ to construct correlation matrix $X = \sqrt{N} \begin{bmatrix} X(0) & 0 & 0 \\ X(1) & X(0) & 0 \\ X(1) & X(1) & 0 \\ X(1) & X(1) & X(1) \\ X(1) & X(1) & X$ \bullet • For $r_2(k)$ HW#8

3.1.4 Minimum Variance Spectral Estimation (MVSE)

- Recall: filter bank perspective of periodogram
 - The periodogram can be viewed as estimating the p.s.d. by forming a bank of narrowband filters with sinc-like response
 - The high sidelobe can lead to "leakage" problem:
 - large output power due to p.s.d outside the band of interest
- MVSE designs filters to minimize the leakage from out-ofband spectral components
 - Thus the shape of filter is dependent on the frequency of interest and data adaptive

(unlike the identical filter shape for periodogram)

– MVSE is also referred to as the Capon spectral estimator

Main Steps of MVSE Method

- Design a bank of bandpass filters H_i(f) with center frequency f_i so that
 - Each filter rejects the maximum amount of out-of-band power
 - And passes the component at frequency f_i without distortion
- Filter the input process { x[n] } with each filter in the filter bank and estimate the power of each output process
- Set the power spectrum estimate at frequency *f_i* to be the power estimated above divided by the filter bandwidth

Formulation of MVSE

The MVSE designs a filter H(f) for each frequency of interest f_0

minimize the output power

(i.e., to pass the components at f₀ w/o distortion)

Formulation of MVSE

The MVSE designs a filter H(f) for each frequency of interest f_0

minimize the output power

$$\rho = \int_{-\frac{1}{2}}^{+\frac{1}{2}} \left| H(f) \right|^2 P(f) df$$

subject to
$$H(f_0) = 1$$

(i.e., to pass the components at f₀ w/o distortion)

Deriving MVSE Solutions

Output Power From H(f) filter

From the filter bank perspective of periodogram:

$$H(f) = \sum_{n=-(N-1)}^{0} h[n] e^{-j2\pi fn}$$

$$\rho = \int_{-\frac{1}{2}}^{\frac{1}{2}} \sum_{k=-(N-1)}^{0} h[k] e^{-j2\pi fk} \sum_{l=-(N-1)}^{0} h^*[l] e^{j2\pi fl} P(f) df$$

Equiv. to filter r(k)with { $h(k) \otimes h^*(-k)$ } and evaluate at output time k=0

UMD ENEE630 Advanced Signal Processing (ver.1111)

Nonparametric spectral estimation [54]

Output Power From H(f) filter

From the filter bank perspective of periodogram:

$$H(f) = \sum_{n=-(N-1)}^{0} h[n] e^{-j2\pi fn}$$

UMD ENEE630 Advanced Signal Processing (ver.1111)

Matrix-Vector Form of MVSE Formulation

UMD ENEE630 Advanced Signal Processing (ver.1111)

Nonparametric spectral estimation [56]

Matrix-Vector Form of MVSE Formulation

Define
$$\begin{bmatrix} h(0) \\ h(-1) \\ \vdots \\ h(-(N-1)) \end{bmatrix} \Rightarrow f = h^{H} R^{T} h$$
$$[h(0), h(-1), \dots, h(1-N)] \begin{bmatrix} h(0) h(-1) & \cdots \\ h(1) h(0) \\ \vdots \\ \vdots \\ h(-(N-1)) \end{bmatrix}$$
$$[h(0), h(-1), \dots, h(1-N)] \begin{bmatrix} h(0) h(-1) & \cdots \\ h(0) h(-1) \\ \vdots \\ \vdots \\ h(-1) h(0) \end{bmatrix}$$
$$\Rightarrow The constraint can be written in vector form as $\underline{h}^{H} \underline{e} = 1$
$$\underbrace{e^{j2\pi f_{0}}}_{H(f_{0})}$$$$

Thus the problem becomes

$$\min_{\underline{h}} \underline{h}^{H} R^{T} \underline{h} \qquad \text{subject to} \quad \underline{h}^{H} \underline{e} = 1$$

UMD ENEE630 Advanced Signal Processing (ver.1111)

Nonparametric spectral estimation [57]

Solution of MVSE

$$J \stackrel{def}{=} \underline{h}^{H} R^{T} \underline{h} + \operatorname{Re} \left[2\lambda (1 - \underline{h}^{H} \underline{e}) \right]$$

- Use Lagrange multiplier approach for solving the constrained optimization problem
 - Define real-valued objective function s.t. the stationary condition can be derived in a simple and elegant way based on the theorem for complex derivative/gradient operators

$$\begin{split} \min_{\underline{h},\lambda} J &= \underline{h}^{H} R^{T} \underline{h} + \lambda (1 - \underline{h}^{H} \underline{e}) + \left[\lambda (1 - \underline{h}^{H} \underline{e}) \right]^{*} \implies \underline{h} = \lambda \left(R^{T} \right)^{-1} \underline{e} \text{ and } \underline{h}^{H} \underline{e} = 1 \\ &= \underline{h}^{H} R^{T} \underline{h} + \lambda (1 - \underline{h}^{H} \underline{e}) + \lambda^{*} (1 - \underline{e}^{H} \underline{h}) \\ \text{either } \nabla_{\underline{h}^{*}} J &= 0 \implies R^{T} \underline{h} - \lambda \underline{e} = 0 \\ \text{or } \nabla_{\underline{h}} J = 0 \implies \left(\underline{h}^{H} R^{T} \right)^{T} - \lambda^{*} \underline{e}^{*} = 0 \\ \implies \left(R^{T} \right)^{H} \underline{h} - \lambda \underline{e} = 0 \implies R^{T} \underline{h} - \lambda \underline{e} = 0 \end{split}$$

UMD ENEE630 Advanced Signal Processing (ver.1111)

Solution of MVSE (cont'd)

The optimal filter:

$$\underline{h} = \frac{\left(R^{T}\right)^{-1} \underline{e}}{\underline{e}^{H} \left(R^{T}\right)^{-1} \underline{e}}$$

It follows that

$$\rho = \underline{h}^{H} R^{T} \underline{h} = \underline{h}^{H} \lambda R^{T} (R^{T})^{-1} \underline{e}$$
$$= \lambda \underline{h}^{H} \underline{e} = \lambda = \frac{1}{\underline{e}^{H} (R^{T})^{-1} \underline{e}}$$

MVSE: Summary

If choosing the bandpass filters to be FIR of length p, its 3dB-b.w. is approximately 1/p

Thus the MVSE is

$$\hat{P}_{\rm MV}(f) = \frac{p}{\underline{e}^{H}(\hat{R}^{T})^{-1}\underline{e}}$$

(i.e. normalize by filter b.w.)

 $\hat{R} \text{ is } p \times p$ correlation matrix $e = \begin{bmatrix} 1 \\ exp(j2\pi f) \\ \vdots \\ exp(j2\pi f(p-1)) \end{bmatrix}$

- MVSE is a data adaptive estimator and provides improved resolution over periodogram
 - Also referred to as "High-Resolution Spectral Estimator"
 - Does not assume a particular underlying model for the data

Recall: Case Study on Non-parametric Methods

• Test case: a process consists of narrowband components (sinusoids) and a broadband component (AR)

 $- x[n] = 2 \cos(\omega_1 n) + 2 \cos(\omega_2 n) + 2 \cos(\omega_3 n) + z[n]$ where $z[n] = -a_1 z[n-1] + v[n], a_1 = -0.85, \sigma^2 = 0.1$ $\omega_1/2\pi = 0.05, \omega_2/2\pi = 0.40, \omega_3/2\pi = 0.42$

- N=32 data points are available \rightarrow periodogram resolution f = 1/32
- Examine typical characteristics of various non-parametric spectral estimators

(Fig.2.17 from Lim/Oppenheim book)

UMD ENEE630 Advanced Signal Processing (ver.1111)

Nonparametric spectral estimation [62]

<u>Reference</u>

Recall: Filtering a Random Process

UMD ENEE630 Advanced Signal Processing (ver.1111)

Nonparametric spectral estimation [64]

Chi-Squared Distribution

If
$$x cn] \sim iid N(o,1)$$
 for $n=0,1,...,N-1$, and
 $y = \sum_{n=0}^{N-1} x^{*} cn]$,
then y follows chi-squared distribution of
degree N, i.e. $y \sim Xn^{*}$
and $E[y] = N$, $Var(y) = 2N$

Chi-Squared Distribution (cont'd)

$$p.d.f. of \forall \sim \chi_{N}^{2}:$$

$$p(\forall) = \begin{cases} \frac{1}{2^{N/2} \prod (N/2)} & \forall 2^{N/2} - 1 - \frac{\forall}{2} \\ 0 & \text{if } \forall \geq 0 \end{cases}$$

$$p(\forall) = \begin{cases} \frac{1}{2^{N/2} \prod (N/2)} & \text{if } \forall \geq 0 \\ 0 & \text{if } \forall \leq 0 \end{cases}$$

$$\text{Where } \prod (\cdot) \text{ is the gamma integral}$$

$$\prod (\chi+1) = \int_{0}^{\infty} \forall^{\chi} e^{-\forall} d\forall \text{ for } \chi > -1.$$

$$Note \text{ if } \chi \text{ is an integer}, \prod (n+1) = n \prod (n) = n!$$

Periodogram of White Gaussian Process

For
$$f_{K} = K/N$$
, it can be shown that

$$\begin{cases} \frac{2\hat{P}_{PER}(f_{K})}{P(f_{N})} \sim \chi_{12}^{2} \quad \text{for } K=1,2,\dots,\frac{N-1}{2}, \\ P(f_{N}) \\ \frac{\hat{P}_{PER}(f_{K})}{P(f_{N})} \sim \chi_{11}^{2} \quad \text{for } K=0, \frac{N}{2} \end{cases}$$

$$\Rightarrow E[\hat{P}_{PER}(f\kappa)] = P(f\kappa), \kappa = 0, 1, \dots, N/2$$

$$Var[\hat{P}_{PER}(f\kappa)] = \begin{cases} P^2(f\kappa), \kappa = 1, \dots, \frac{N}{2} - 1\\ 2P^2(f\kappa), \kappa = 0, \frac{N}{2} \end{cases}$$

See proof in Appendix 2.1 in Lim-Oppenheim Book: - Basic idea is to examine the distribution of real and imaginary part of the DFT, and take the magnitude

UMD ENEE630 Advanced Signal Processing (ver.1111)

Stamp image from USPS web

Happy Thanksgivings!

Nonparametric spectral estimation [68]