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Summary of Related Readings on PartSummary of Related Readings on Part--IIII

2.1 Stochastic Processes and modeling
Haykin (4th Ed) 1.1-1.8, 1.12-1.14 
Hayes  3.3 – 3.7  (3.5);  4.7

2.2  Wiener filtering
Haykin (4th Ed) Chapter 2
Hayes  7.1, 7.2,  7.3.1

2 3 2 4 Li di ti d L i D bi i2.3-2.4  Linear prediction and Levinson-Durbin recursion
Haykin (4th Ed)   3.1 – 3.3
Hayes  7.2.2;   5.1;   5.2.1 – 5.2.2,  5.2.4– 5.2.5

2.5  Lattice predictor
Haykin (4th Ed)   3.8 – 3.10
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Hayes  6.2;   7.2.4;   6.4.1



Summary of Related Readings on PartSummary of Related Readings on Part--IIIIII

Overview    Haykins  1.16, 1.10

3 1 Non-parametric method3.1  Non-parametric method
Hayes  8.1;    8.2  (8.2.3, 8.2.5);    8.3

3 2 P t i th d3.2  Parametric method
Hayes  8.5,  4.7;    8.4

3.3  Frequency estimation
Hayes 8.6

Review 
– On DSP and Linear algebra:  Hayes 2.2, 2.3
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– On probability and parameter estimation:  Hayes 3.1 – 3.2



Spectrum Estimation: BackgroundSpectrum Estimation: Background

 Spectral estimation: determine the power distribution in 
frequency of a random process©
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frequency of a random process
– E.g “Does most of the power of a signal reside at low or high 

frequencies?” “Are there resonances in the spectrum?”
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– Needs of spectral knowledge in spectrum domain non-causal 
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– Wide use in diverse fields: radar, sonar, speech, biomedicine, 
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Spectral Estimation: ChallengesSpectral Estimation: Challenges

 When a limited amount of observation data are available
– Can’t get r(k) for all k and/or may have inaccurate estimate of r(k)©
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Can t get r(k) for all k and/or may have inaccurate estimate of r(k)
– Scenario-1: transient measurement (earthquake, volcano, …) 
– Scenario-2: constrained to short period to ensure (approx.) 
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Spectral Estimation:  Major ApproachesSpectral Estimation:  Major Approaches

 Nonparametric methods
– No assumptions on the underlying model for the data
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– ARMA, AR, MA models
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Example of Speech SpectrogramExample of Speech Spectrogram
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Figure 3 of SPM May’98 Speech Survey
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Section 3.1  Classical Nonparametric MethodsSection 3.1  Classical Nonparametric Methods
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What is the relation between the DTFT of a specific signal and the 
p.s.d. of the random process?
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What is the relation between the DTFT of a specific signal and the 
p.s.d. of the random process?



Ensemble Average of Squared Fourier MagnitudeEnsemble Average of Squared Fourier Magnitude

 p.s.d. can be related to the ensemble average of 
the squared Fourier magnitude |X()|2
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Ensemble Average of Squared Fourier MagnitudeEnsemble Average of Squared Fourier Magnitude

 p.s.d. can be related to the ensemble average of 
the squared Fourier magnitude |X()|2
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Ensemble Average of PEnsemble Average of PMM(f)(f)
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 Now, what if M goes to infinity?



Ensemble Average of PEnsemble Average of PMM(f)(f)
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 Now, what if M goes to infinity?



P.S.D. and Ensemble Fourier MagnitudeP.S.D. and Ensemble Fourier Magnitude
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P.S.D. and Ensemble Fourier MagnitudeP.S.D. and Ensemble Fourier Magnitude
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3.1.1  Periodogram Spectral Estimator3.1.1  Periodogram Spectral Estimator
©

 2
00

3) (1) This estimator is based on (**)

at
ed

 b
y 

M
.W

u 
©

Given an observed data set {x[0], x[1], …, x[N-1]},
the periodogram is defined as

30
 S

lid
es

 (c
re

a p g
21

2
PER ][1)( 







N

fnjenx
N

fP 

C
P 

E
N

E
E

62
4/

63

0
)( 

nN
f

U
M

C

UMD ENEE630 Advanced Signal Processing (ver.1111) Nonparametric spectral estimation [19]



3.1.1  Periodogram Spectral Estimator3.1.1  Periodogram Spectral Estimator
©

 2
00

3) (1) This estimator is based on (**)

at
ed

 b
y 

M
.W

u 
©

Given an observed data set {x[0], x[1], …, x[N-1]},
the periodogram is defined as

30
 S

lid
es

 (c
re

a 21

0

2
PER ][1)( 







N

fnjenx
N

fP 

C
P 

E
N

E
E

62
4/

63 0nN

U
M

C

UMD ENEE630 Advanced Signal Processing (ver.1111) Nonparametric spectral estimation [20]



An Equivalent Expression of PeriodogramAn Equivalent Expression of Periodogram
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Exercise:  to show this from the periodogram definition in last page
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(2) Filter Bank Interpretation of Periodogram(2) Filter Bank Interpretation of Periodogram
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Frequency Response of h[n]Frequency Response of h[n]
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Frequency Response of h[n]Frequency Response of h[n]
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Periodogram: Filter Bank PerspectivePeriodogram: Filter Bank Perspective

 Can view the periodogram as an estimator of power 
spetrum that has a built-in filterbank©
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E.g. White Gaussian ProcessE.g. White Gaussian Process
[Lim/Oppenheim  Fig.2.4]  
Periodogram of zero-mean white Gaussian noise 
using N-point data record: N=128, 256, 512, 1024

©
 2

00
3)

at
ed

 b
y 

M
.W

u 
©

30
 S

lid
es

 (c
re

a
C

P 
E

N
E

E
62

4/
63

 The random fluctuation (measured by variance) of the 
i d d t d ith i i N

U
M

C

UMD ENEE630 Advanced Signal Processing (ver.1111) Nonparametric spectral estimation [29]

periodogram does not decrease with increasing N
 periodogram is not a consistent estimator



(3) How Good is Periodogram for Spectral Estimation?(3) How Good is Periodogram for Spectral Estimation?
00

3/
20

04
)

?)( p.s.d.  will, If PER fPPN 


 Estimation: Tradeoff between bias and varianced 
by

 M
.W

u 
©

 2
0

S
lid

es
 (c

re
at

ed

 For white Gaussian process, we can show that at fk = k/N

EN
E

E
62

4/
63

0 
U

M
C

P 
E

UMD ENEE630 Advanced Signal Processing (ver.1111) Nonparametric spectral estimation [30]



Performance of Periodogram: SummaryPerformance of Periodogram: Summary

 The periodogram for white Gaussian process is an 
unbiased estimator but not consistent
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3.1.2  Averaged Periodogram3.1.2  Averaged Periodogram

 As one solution to the variance problem of periodogram
– Average K periodograms computed from K sets of data records
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Performance of Averaged PeriodogramPerformance of Averaged Periodogram

– If K sets of data records are uncorrelated with each other,
we have:                                ( fi = i/L )
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Practical Averaged PeriodogramPractical Averaged Periodogram

 Usually we partition an available data sequence of length N
into K non overlapping blocks each block has length L (i e N=KL)©
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Averaged Periodogram for Fixed Data SizeAveraged Periodogram for Fixed Data Size

 Given a data record of fixed size N, will the result be better 
if we segment the data into more and more subrecords?
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Mean of Averaged Periodogram (cont’d)Mean of Averaged Periodogram (cont’d)
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– To avoid the smearing, the window length L must be large enough so 
that the narrowest peak in P(f) can be resolved

 This gives a tradeoff between bias and variance
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g
Small K => better resolution (smaller smearing/bias) but larger variance



Mean of Averaged Periodogram (cont’d)Mean of Averaged Periodogram (cont’d)
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the averaged periodogram being smeared from the true p.s.d
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– To avoid the smearing, the window length L must be large enough so 
that the narrowest peak in P(f) can be resolved

 This gives a tradeoff between bias and variance
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g
Small K => better resolution (smaller smearing/bias) but larger variance



NonNon--parametric Spectrum Estimation:  Recapparametric Spectrum Estimation:  Recap

 Periodogram 
– Motivated by relation between p.s.d. and squared magnitude of DTFT 

of a finite-size data record
– Variance: won’t vanish as data length N goes infinity ~  “inconsistent”
– Mean: asymptotically unbiased w r t data length N in generalMean:  asymptotically unbiased w.r.t. data length N in general

 equivalent to apply triangular window to autocorrelation function
(windowing in time gives smearing/smoothing in freq domain)

unbiased for white Gaussian unbiased for white Gaussian

 Averaged periodogram
– Reduce variance by averaging K sets of data record of length L eachReduce variance by averaging K sets of data record of length L each
– Small L increases smearing/smoothing in p.s.d. estimate thus higher 

bias     equiv. to triangular windowing 

UMD ENEE630 Advanced Signal Processing (ver.1111) Nonparametric spectral estimation [41]

 Windowed periodogram:  generalize to other symmetric windows



Case Study on NonCase Study on Non--parametric Methodsparametric Methods
 Test case: a process consists of narrowband components 

(sinusoids) and a broadband component (AR)
– x[n] = 2 cos(1 n) + 2 cos(2 n) + 2 cos(3 n) + z[n]

where z[n] = a1 z[n-1] + v[n],  a1 =  0.85, 2 = 0.1
 /2 = 0 05  /2 = 0 40  /2 = 0 421/2 = 0.05, 2/2 = 0.40, 3/2 = 0.42

– N=32 data points are available  
 periodogram resolution f = 1/32

 Examine typical characteristics 
of various non-parametric p
spectral estimators

(Fig.2.17 from Lim/Oppenheim book)
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3.1.3  Periodogram with Windowing3.1.3  Periodogram with Windowing

 Review and Motivation
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– Trade variance with bias



WindowingWindowing
 Use a window function to weigh the higher lags less
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 Effect:  periodogram smoothing 
– Windowing in time  Convolution/filtering the periodogram
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g g p g
– Also known as the Blackman-Tukey method



Common Lag WindowsCommon Lag Windows
 Much of the art in non-parametric spectral estimation is in 

choosing an appropriate window (both in type and length)
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Table 2.1 common lag window  
(from Lim-Oppenheim book)



Discussion:  Estimate r(k) via Time AverageDiscussion:  Estimate r(k) via Time Average
 Normalizing the sum of (N-k) pairs 

by a factor of 1/N ?   v.s.  by a factor of 1/(N-k) ?
Biased (low variance) Unbiased (may not non-neg. definite)

• Hints on showing 
the non-negative 
definiteness: using )(kr



definiteness: using       
to construct 
correlation matrix

)(1 kr
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to construct 
correlation matrix
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3.1.43.1.4 Minimum Variance Spectral Estimation Minimum Variance Spectral Estimation (MVSE)(MVSE)

 Recall:  filter bank perspective of periodogram
– The periodogram can be viewed as estimating the p s d byThe periodogram can be viewed as estimating the p.s.d. by 

forming a bank of narrowband filters with sinc-like response
– The high sidelobe can lead to “leakage” problem: 

 large output power due to p.s.d outside the band of interest

 MVSE designs filters to minimize the leakage from out-of-MVSE designs filters to minimize the leakage from out of
band spectral components
– Thus the shape of filter is dependent on the frequency of interest

d d t d tiand data adaptive
(unlike the identical filter shape for periodogram)

UMD ENEE630 Advanced Signal Processing (ver.1111) Nonparametric spectral estimation [49]

– MVSE is also referred to as the Capon spectral estimator



Main Steps of MVSE MethodMain Steps of MVSE Method

 Design a bank of bandpass filters Hi(f) with center 
frequency fi so thati  

– Each filter rejects the maximum amount of out-of-band power
– And passes the component at frequency fi without distortion

 Filter the input process { x[n] } with each filter in the filter 
bank and estimate the power of each output processbank and estimate the power of each output process

 Set the power spectrum estimate at frequency fi to be the 
power estimated above divided by the filter bandwidth

UMD ENEE630 Advanced Signal Processing (ver.1111) Nonparametric spectral estimation [50]



Formulation of MVSEFormulation of MVSE

The MVSE designs a filter H(f) for each 
f f i t t ffrequency of interest f0

minimize the output power

dffPfH )()( 22
1 

1




minimize the output power

dffPfH )()(
2
1 

subject to 1)( 0 fH

(i.e., to pass the components at f0 w/o distortion)
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Deriving MVSE SolutionsDeriving MVSE Solutions
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Output Power From H(f) filterOutput Power From H(f) filter

From the filter bank perspective of periodogram:
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and evaluate at 
output time k=0
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and evaluate at 
output time k=0
and evaluate at 
output time k=0
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MatrixMatrix--Vector Form of MVSE FormulationVector Form of MVSE Formulation

Define

 The constraint can be written in 
vector form as  1ehH

)( 0fH

Thus the problem becomes

hRh THmin subject to 1ehH

h
j
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Define

 The constraint can be written in 
vector form as  1ehH

)( 0fH

Thus the problem becomes

hRh THmin subject to 1ehH
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Solution of MVSESolution of MVSE  )1(2Re ehhRhJ HTH
def

 

 Use Lagrange multiplier approach 
for solving the constrained optimization problem

 

– Define real-valued objective function s.t. the stationary condition 
can be derived in a simple and elegant way based on the theorem 
for complex derivative/gradient operatorsp g p
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Solution of MVSE (cont’d)Solution of MVSE (cont’d)

The optimal filter:   eRh
T 1

The optimal filter: 

f

  eRe
h

TH 1

 TTHTH 1It follows that   eRRhhRh TTHTH 1
 

ehH 1
    eRe

eh
TH 1 
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MVSE: SummaryMVSE: Summary

If choosing the bandpass filters to be FIR of 
length p, its 3dB-b.w. is approximately 1/pg p, pp y p

Thus the MVSE is
matrixncorrelatio

 is ˆ ppR 
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TH 1MV
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)( 
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(i.e. normalize by filter b.w.)
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 MVSE is a data adaptive estimator and provides improved 
resolution over periodogram
– Also referred to as “High-Resolution Spectral Estimator”
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Also referred to as High Resolution Spectral Estimator
– Does not assume a particular underlying model for the data



Recall:  Case Recall:  Case Study on NonStudy on Non--parametric parametric Methods Methods 
 Test case: a process consists of narrowband components 

(sinusoids) and a broadband component (AR)
– x[n] = 2 cos(1 n) + 2 cos(2 n) + 2 cos(3 n) + z[n]

where z[n] = a1 z[n-1] + v[n],  a1 =  0.85, 2 = 0.1
 /2 = 0 05  /2 = 0 40  /2 = 0 421/2 = 0.05, 2/2 = 0.40, 3/2 = 0.42

– N=32 data points are available  
 periodogram resolution f = 1/32

 Examine typical characteristics 
of various non-parametric p
spectral estimators

(Fig.2.17 from Lim/Oppenheim book)
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Recall:  Filtering a Random ProcessRecall:  Filtering a Random Process
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ChiChi--Squared DistributionSquared Distribution
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ChiChi--Squared Distribution (cont’d)Squared Distribution (cont’d)
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Periodogram of White Gaussian ProcessPeriodogram of White Gaussian Process

See proof in Appendix 2 1 in Lim Oppenheim Book:
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See proof in Appendix 2.1 in Lim-Oppenheim Book:
- Basic idea is to examine the distribution of real and 
imaginary part of the DFT, and take the magnitude



Stamp image 
from USPS web

©
 2

00
2)

te
d 

by
 M

.W
u 

©
8G

 S
lid

es
 (c

re
a

M
C

P 
EN

EE
40

8

Happy Thanksgivings!

U
M

UMD ENEE630 Advanced Signal Processing (ver.1111) Nonparametric spectral estimation [68]


