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 Last Lecture:  lattice predictor
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Summary of Related Readings on PartSummary of Related Readings on Part--IIII

2.1 Stochastic Processes and modeling
Haykin (4th Ed) 1.1-1.8, 1.12-1.14 
Hayes  3.3 – 3.7  (3.5);  4.7

2.2  Wiener filtering
Haykin (4th Ed) Chapter 2
Hayes  7.1, 7.2,  7.3.1

2 3 2 4 Li di ti d L i D bi i2.3-2.4  Linear prediction and Levinson-Durbin recursion
Haykin (4th Ed)   3.1 – 3.3
Hayes  7.2.2;   5.1;   5.2.1 – 5.2.2,  5.2.4– 5.2.5

2.5  Lattice predictor
Haykin (4th Ed)   3.8 – 3.10
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Hayes  6.2;   7.2.4;   6.4.1



Summary of Related Readings on PartSummary of Related Readings on Part--IIIIII

Overview    Haykins  1.16, 1.10

3 1 Non-parametric method3.1  Non-parametric method
Hayes  8.1;    8.2  (8.2.3, 8.2.5);    8.3

3 2 P t i th d3.2  Parametric method
Hayes  8.5,  4.7;    8.4

3.3  Frequency estimation
Hayes 8.6

Review 
– On DSP and Linear algebra:  Hayes 2.2, 2.3
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– On probability and parameter estimation:  Hayes 3.1 – 3.2



Spectrum Estimation: BackgroundSpectrum Estimation: Background

 Spectral estimation: determine the power distribution in 
frequency of a random process©
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frequency of a random process
– E.g “Does most of the power of a signal reside at low or high 

frequencies?” “Are there resonances in the spectrum?”
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 Applications:
– Needs of spectral knowledge in spectrum domain non-causal 
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– Wide use in diverse fields: radar, sonar, speech, biomedicine, 
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estimate autocorrelation at all lags

U
M

C

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [5]



Spectral Estimation: ChallengesSpectral Estimation: Challenges

 When a limited amount of observation data are available
– Can’t get r(k) for all k and/or may have inaccurate estimate of r(k)©
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Can t get r(k) for all k and/or may have inaccurate estimate of r(k)
– Scenario-1: transient measurement (earthquake, volcano, …) 
– Scenario-2: constrained to short period to ensure (approx.) 
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Spectral Estimation:  Major ApproachesSpectral Estimation:  Major Approaches

 Nonparametric methods
– No assumptions on the underlying model for the data
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– Periodogram and its variations (averaging, smoothing, …)
– Minimum variance method
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 Parametric methods
– ARMA, AR, MA models

M i t th d30
 S

lid
es

 (c
re

a

– Maximum entropy method

 Frequency estimation (noise subspace methods)
For harmonic processes that consist of a sum of sinusoids orC

P 
E

N
E

E
62

4/
63

– For harmonic processes that consist of a sum of sinusoids or 
complex-exponentials in noise
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Example of Speech SpectrogramExample of Speech Spectrogram
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Figure 3 of SPM May’98 Speech Survey
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Section 3.1  Classical Nonparametric MethodsSection 3.1  Classical Nonparametric Methods
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What is the relation between the DTFT of a specific signal and the 
p.s.d. of the random process?
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What is the relation between the DTFT of a specific signal and the 
p.s.d. of the random process?



Ensemble Average of Squared Fourier MagnitudeEnsemble Average of Squared Fourier Magnitude

 p.s.d. can be related to the ensemble average of 
the squared Fourier magnitude |X()|2
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 p.s.d. can be related to the ensemble average of 
the squared Fourier magnitude |X()|2
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Ensemble Average of PEnsemble Average of PMM(f)(f)
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 Now, what if M goes to infinity?
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 Now, what if M goes to infinity?



P.S.D. and Ensemble Fourier MagnitudeP.S.D. and Ensemble Fourier Magnitude
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3.1.1  Periodogram Spectral Estimator3.1.1  Periodogram Spectral Estimator
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An Equivalent Expression of PeriodogramAn Equivalent Expression of Periodogram
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Exercise:  to show this from the periodogram definition in last page
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(2) Filter Bank Interpretation of Periodogram(2) Filter Bank Interpretation of Periodogram
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Frequency Response of h[n]Frequency Response of h[n]
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Frequency Response of h[n]Frequency Response of h[n]
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Periodogram: Filter Bank PerspectivePeriodogram: Filter Bank Perspective

 Can view the periodogram as an estimator of power 
spetrum that has a built-in filterbank©

 2
00

3)

p
– The filter bank ~ a set of bandpass filters
– The estimated p.s.d. for each frequency f0 is the power of one 

at
ed

 b
y 

M
.W

u 
©

p q y 0 p
output sample of the bandpass filter centering at f0

30
 S

lid
es

 (c
re

a
C

P 
E

N
E

E
62

4/
63

21

0PER ][][)(













 

N

kxknhNfP

U
M

C

0
0


  n

k

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [27]



Periodogram: Filter Bank PerspectivePeriodogram: Filter Bank Perspective

 Can view the periodogram as an estimator of power 
spetrum that has a built-in filterbank©

 2
00

3)

p
– The filter bank ~ a set of bandpass filters
– The estimated p.s.d. for each frequency f0 is the power of one 

at
ed

 b
y 

M
.W

u 
©

p q y 0 p
output sample of the bandpass filter centering at f0

30
 S

lid
es

 (c
re

a
C

P 
E

N
E

E
62

4/
63

21

0PER ][][)(













 

N

kxknhNfP

U
M

C

0
0


  n

k

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [28]



E.g. White Gaussian ProcessE.g. White Gaussian Process
[Lim/Oppenheim  Fig.2.4]  
Periodogram of zero-mean white Gaussian noise 
using N-point data record: N=128, 256, 512, 1024
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periodogram does not decrease with increasing N
 periodogram is not a consistent estimator
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Performance of Periodogram: SummaryPerformance of Periodogram: Summary

 The periodogram for white Gaussian process is an 
unbiased estimator but not consistent
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3.1.2  Averaged Periodogram3.1.2  Averaged Periodogram

 As one solution to the variance problem of periodogram
– Average K periodograms computed from K sets of data records
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Performance of Averaged PeriodogramPerformance of Averaged Periodogram

– If K sets of data records are uncorrelated with each other,
we have:                                ( fi = i/L )
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Practical Averaged PeriodogramPractical Averaged Periodogram

 Usually we partition an available data sequence of length N
into K non overlapping blocks each block has length L (i e N=KL)©
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Averaged Periodogram for Fixed Data SizeAveraged Periodogram for Fixed Data Size

 Given a data record of fixed size N, will the result be better 
if we segment the data into more and more subrecords?
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Mean of Averaged PeriodogramMean of Averaged Periodogram
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Mean of Averaged Periodogram (cont’d)Mean of Averaged Periodogram (cont’d)
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g
Small K => better resolution (smaller smearing/bias) but larger variance



Mean of Averaged Periodogram (cont’d)Mean of Averaged Periodogram (cont’d)
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g
Small K => better resolution (smaller smearing/bias) but larger variance



NonNon--parametric Spectrum Estimation:  Recapparametric Spectrum Estimation:  Recap

 Periodogram
– Motivated by relation between p.s.d. and squared magnitude of DTFT 

of a finite-size data record
– Variance: won’t vanish as data length N goes infinity ~  “inconsistent”
– Mean: asymptotically unbiased w r t data length N in generalMean:  asymptotically unbiased w.r.t. data length N in general

 equivalent to apply triangular window to autocorrelation function
(windowing in time gives smearing/smoothing in freq. domain)

unbiased for white Gaussian  (flat spectrum) unbiased for white Gaussian  (flat spectrum)

 Averaged periodogram
– Reduce variance by averaging K sets of data record of length L eachReduce variance by averaging K sets of data record of length L each
– Small L increases smearing/smoothing in p.s.d. estimate thus higher 

bias     equiv. to triangular windowing 

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [41]

 Windowed periodogram:  generalize to other symmetric windows



Case Study on NonCase Study on Non--parametric Methodsparametric Methods
 Test case: a process consists of narrowband components 

(sinusoids) and a broadband component (AR)
– x[n] = 2 cos(1 n) + 2 cos(2 n) + 2 cos(3 n) + z[n]

where z[n] = a1 z[n-1] + v[n],  a1 =  0.85, 2 = 0.1
 /2 = 0 05  /2 = 0 40  /2 = 0 421/2 = 0.05, 2/2 = 0.40, 3/2 = 0.42

– N=32 data points are available  
 periodogram resolution f = 1/32

 Examine typical characteristics 
of various non-parametric p
spectral estimators

(Fig.2.17 from Lim/Oppenheim book)

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [42]
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3.1.3  Periodogram with Windowing3.1.3  Periodogram with Windowing

 Review and Motivation
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– Trade variance with bias



WindowingWindowing
 Use a window function to weigh the higher lags less
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 Effect:  periodogram smoothing 
– Windowing in time  Convolution/filtering the periodogram
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g g p g
– Also known as the Blackman-Tukey method



Common Lag WindowsCommon Lag Windows
 Much of the art in non-parametric spectral estimation is in 

choosing an appropriate window (both in type and length)
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Table 2.1 common lag window  
(from Lim-Oppenheim book)



Discussion:  Estimate r(k) via Time AverageDiscussion:  Estimate r(k) via Time Average
 Normalizing the sum of (N-k) pairs 

by a factor of 1/N ?   v.s.  by a factor of 1/(N-k) ?
Biased (low variance) Unbiased (may not non-neg. definite)

• Hints on showing 
the non-negative 
definiteness: using )(kr



definiteness: using       
to construct 
correlation matrix

)(1 kr


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3.1.43.1.4 Minimum Variance Spectral Estimation Minimum Variance Spectral Estimation (MVSE)(MVSE)

 Recall:  filter bank perspective of periodogram
– The periodogram can be viewed as estimating the p s d byThe periodogram can be viewed as estimating the p.s.d. by 

forming a bank of narrowband filters with sinc-like response
– The high sidelobe can lead to “leakage” problem: 

 large output power due to p.s.d outside the band of interest

 MVSE designs filters to minimize the leakage from out-of-MVSE designs filters to minimize the leakage from out of
band spectral components
– Thus the shape of filter is dependent on the frequency of interest

d d t d tiand data adaptive
(unlike the identical filter shape for periodogram)

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [49]

– MVSE is also referred to as the Capon spectral estimator



Main Steps of MVSE MethodMain Steps of MVSE Method

1. Design a bank of bandpass filters Hi(f) with center 
frequency fi so thati

– Each filter rejects the maximum amount of out-of-band power
– And passes the component at frequency fi without distortion

2. Filter the input process { x[n] } with each filter in the filter 
bank and estimate the power of each output processbank and estimate the power of each output process

3. Set the power spectrum estimate at frequency fi to be the 
power estimated above divided by the filter bandwidth

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [50]



Formulation of MVSEFormulation of MVSE

The MVSE designs a filter H(f) for each 
f f i t t ffrequency of interest f0

minimize the output power
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minimize the output power
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2
1 

subject to 1)( 0 fH

(i.e., to pass the components at f0 w/o distortion)
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Deriving MVSE SolutionsDeriving MVSE Solutions
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Output Power From H(f) filterOutput Power From H(f) filter

From the filter bank perspective of periodogram:
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and evaluate at 
output time k=0
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and evaluate at 
output time k=0
and evaluate at 
output time k=0
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MatrixMatrix--Vector Form of MVSE FormulationVector Form of MVSE Formulation

Define

 The constraint can be written in 
vector form as  1ehH

)( 0fH

Thus the problem becomes

hRh THmin subject to 1ehH

h
j
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vector form as  1ehH

)( 0fH

Thus the problem becomes

hRh THmin subject to 1ehH
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Solving MVSESolving MVSE  )1(2Re ehhRhJ HTH
def

 

 Use Lagrange multiplier approach 
for solving the constrained optimization problem

 

– Define real-valued objective function s.t. the stationary condition 
can be derived in a simple and elegant way based on the theorem 
for complex derivative/gradient operatorsp g p

 )1()1(min
*

,
ehehhRhJ HHTH

h
 



)1()1(          * heehhRh HHTH  

00either *  ehRJ T    1

    00or    

00either   

**

*





eRhJ

ehRJ
TTH

h

h



  
1and

      1






eh

eRh
H

T
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  00            ehRehR THT 
1 and eh



Solution to MVSESolution to MVSE  * 

,
)1()1(min ehehhRhJ HHTH

h
 



)(     1   0or  H
*


  ehJ  

)(   )(0  0or  1
*


  eRhehRJ TT

hh


The optimal filter and its 
output power: 

 T 1 RTH 1
1



Bring () into ():

 
  e

eRe
Rh

TH

T

MV 1

1

  
Filter’s output power:

  eRe T

  eRe TH 1
1

 








    
 1eRRhhRh TTHTH

UMD ENEE630 Advanced Signal Processing (ver.1111) Nonparametric spectral estimation [59]

 



MVSE: SummaryMVSE: Summary

If choosing the bandpass filters to be FIR of length q, 
its 3dB-b.w. is approximately 1/q

Thus the MVSE is
matrix ncorrelatio   is ˆ qqR 

  eRe
qfP

TH 1MV
ˆ

)( 
















)2exp(

1
fj

e




(i.e. normalize by filter b.w.)

 







  ))1(2exp( qfj 


 MVSE is a data adaptive estimator and provides improved 
resolution and reduced variance over periodogram
– Also referred to as “High-Resolution Spectral Estimator”
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Also referred to as High Resolution Spectral Estimator
– Doesn’t assume a particular underlying model for the data



MVSE  vsMVSE  vs. . PeriodogramPeriodogram

 MVSE is a data adaptive estimator and provides improved 
resolution and reduced variance over periodogramp g

Periodogram MVSE
Equivalent 
Bandpass Filter

h

e  
  e

eRe
R

TH

T

  1

1





h
Filter is “universal” 
data-independent

Filter adapts to 
observation data via R

E i l t

 

Equivalent 
spectrum estimate   eRe

q
TH 1ˆ 

)( fP
 eReq TH ˆ
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Recall:  Case Study on NonRecall:  Case Study on Non--parametric Methods parametric Methods 
 Test case: a process consists of narrowband components 

(sinusoids) and a broadband component (AR)
– x[n] = 2 cos(1 n) + 2 cos(2 n) + 2 cos(3 n) + z[n]

where z[n] = a1 z[n-1] + v[n],  a1 =  0.85, 2 = 0.1
 /2 = 0 05  /2 = 0 40  /2 = 0 421/2 = 0.05, 2/2 = 0.40, 3/2 = 0.42

– N=32 data points are available  
 periodogram resolution f = 1/32

 Examine typical characteristics 
of various non-parametric p
spectral estimators

(Fig.2.17 from Lim/Oppenheim book)
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Ref. on Derivative and Gradient Operators for Ref. on Derivative and Gradient Operators for 
C lC l V i bl F tiV i bl F tiComplexComplex--Variable FunctionsVariable Functions

Ref:  D.H. Brandwood, “A complex gradient operator and its application 
i d ti th ” i IEE P l 130 P t F d H 1in adaptive array theory,”  in IEE Proc., vol. 130, Parts F and H, no.1, 
Feb. 1983.  
(downloadable from IEEEXplorer)

– Solving constrained optimization 
ith l l d bj ti f ti f l i blwith real-valued objective function of complex variables, 

subject to constraint function of complex variables
 As seen in minimum variance spectral estimation and other  As seen in minimum variance spectral estimation and other 

array/statistical signal processing context.

UMD ENEE630 Advanced Signal Processing (ver.1211) Discussions   [64]
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Recall:  Filtering a Random ProcessRecall:  Filtering a Random Process

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [66]



ChiChi--Squared DistributionSquared Distribution
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ChiChi--Squared Distribution (cont’d)Squared Distribution (cont’d)
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Periodogram of White Gaussian ProcessPeriodogram of White Gaussian Process

See proof in Appendix 2 1 in Lim Oppenheim Book:

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [69]

See proof in Appendix 2.1 in Lim-Oppenheim Book:
- Basic idea is to examine the distribution of real and 
imaginary part of the DFT, and take the magnitude
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Model or Not?Model or Not?
 Implicit assumption by classical methods 

– Classical methods use Fourier transform on either windowed 
d t i d d t l ti f ti (ACF)data or windowed autocorrelation function (ACF)

– Implicitly assume the unobserved data or ACF outside the 
window are zero => not true in reality

– Consequence of windowing:   smeared spectral estimate
(leading to low resolution)

If prior knowledge about the process is available If prior knowledge about the process is available
– Can use prior knowledge and select a good model to 

approximate the process
– Usually need to estimate fewer model parameters (than non-

parametric approaches) using the limited data points we have
– The model may allow to better describe the process outside

UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation  [71]

The model may allow to better describe the process outside 
the window (instead of assuming zeros)



General Procedure of Parametric MethodsGeneral Procedure of Parametric Methods

 Select a model (based on prior knowledge)

 Estimate the parameters of the assumed model

 Obtain the spectral estimate implied by the model (with 
the estimated parameters)
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Spectral Estimation using AR, MA, ARMA ModelsSpectral Estimation using AR, MA, ARMA Models

 Physical insight:  the process is generated/approximated by 
filtering white noise with an LTI filter of rational transfer func H(z)

 Use observed data to estimate a few lags of r(k)
– Larger lags of r(k) can be implicitly extrapolated by the model

 Relation between r(k) and filter parameters {ak} and {bk}
PARAMETER EQUATIONS f S ti 2 1 2(6)  i thi– PARAMETER EQUATIONS from Section 2.1.2(6)    review this

– Solve the parameter equations to obtain filter parameters
– Use the p.s.d. implied by the model as our spectral estimatep p y p

 Deal with nonlinear parameter equations
Try to “convert” or relate them to AR models that has linear equations

UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation  [73]

– Try to convert  or relate them to AR models that has linear equations 



Review:  Parameter EquationsReview:  Parameter Equations

Yule-Walker equations (for AR process)

ARMA model MA model
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Spectrum Spectrum Estimation with Estimation with AR ModelingAR Modeling

• Use Levinson-Durbin recursion and solve for 

where

– Approximate the observed data sequence {x[0] x[N]} with an ARApproximate the observed data sequence {x[0], …, x[N]} with an AR 
model   (consider real-valued process here for simplicity)

– Use biased ACF estimate here to ensure nonnegative definiteness and 
ll i th bi d ti t (di idi b N k)
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smaller variance than unbiased estimate (dividing by N-k)



MA MA Spectral EstimationSpectral Estimation

An MA(q) model
qq









q

k

k
k

q

k
k zbzBknvbnx

00
)(        ][][

can be used to define an MA spectral estimator
2

22 1)(ˆ  
q

fkjbfP 

Recall:  
( ) f f { ( )} f

1

22
MA 1)( 




k

fkj
kebfP 

(1) The problem of solving for bk given {r(k)} is to solve a set of 
nonlinear equations;

(2) An MA process can be approximated by an AR process of 

UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation  [76]

( ) p pp y p
sufficiently high order.



Basic Idea to Avoid Solving Nonlinear EquationsBasic Idea to Avoid Solving Nonlinear Equations

Consider two processes:  

 Process#1: we observed N samples and need to perform Process#1:  we observed N samples, and need to perform 
spectral estimate
– We first model it as a high-order AR process, generated by 1/A(z) filter

 Process#2:  an MA-process generated by A(z) filter
– Since we know A(z), we can know process#2’s autocorrelation function;
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– We model process#2 as an AR(q) process => the filter would be 1/B(z)



Complex Exponentials in Additive NoiseComplex Exponentials in Additive Noise
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Correlation Matrix for the ProcessCorrelation Matrix for the Process

– Determine autocorrelation function

– Rs = ?  Rw = ? Rx = ? 

– Rank of correlation matrices?
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Correlation Matrix for the ProcessCorrelation Matrix for the Process
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Correlation Matrix for the ProcessCorrelation Matrix for the Process

E[ x( ) w( ) ] = E[x( )] E[w( )] = 0

UMD ENEE630 Advanced Signal Processing Frequency estimation  [81]

E[ x( ) w( ) ] = E[x( )] E[w( )] = 0
this crosscorr term vanish 
because of uncorrelated *and* 
zero mean for either x( ) or w( ).


