ENEE630 Part-1 Supplement

 Tree-based Filter Banks and

 Tree-based Filter Banks and Multiresolution Analysis

 Multiresolution Analysis}

ECE Department
Univ. of Maryland, College Park

Us. Updated 10/2012 by Prof. Min Wu.
bb.eng.umd.edu (select ENEE630); minwu@eng.umd.edu

Dynamic Range of Original and Subband Signals

b $\begin{aligned} & \text { a } \\ & \text { d }\end{aligned}$
FIGURE 7.10
(a) A discrete wavelet transform using Haar \mathbf{H}_{2} basis functions. Its local histogram variations are also shown. (b)-(d) Several different approximations $(64 \times 64$,
128×128, and 256×256) that can be obtained from (a)

- Can assign more bits to represent coarse info
- Allocate remaining bits, if available, to finer details (via proper quantization)

Figures from Gonzalez/ Woods DIP 3/e book website.

Brief Note on Subband and Wavelet Coding

- The octave ("dyadic") frequency partition can reflect the logarithmatic characteristics in human perception
- Wavelet coding and subband coding have many similarities (e.g. from filter bank perspectives)
- Traditionally subband coding uses filters that have little overlap to isolate different bands
- Wavelet transform imposes smoothness conditions on the filters that usually represent a set of basis generated by shifting and scaling ("dilation") of a "mother wavelet" function
- Wavelet can be motivated from overcoming the poor timedomain localization of short-time FT

Explore more in Proj\#1. See PPV Book Chapter 11

Review and Examples of Basis

- Standard basis vectors

$$
\left[\begin{array}{l}
6 \\
3 \\
1
\end{array}\right]=6 \cdot\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+3 \cdot\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+1 \cdot\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

- Standard basis images

$$
\left[\begin{array}{ll}
2 & 2 \\
3 & 0
\end{array}\right]=2 \cdot\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+2 \cdot\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+3 \cdot\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]+0 \cdot\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

- Example: representing a vector with different basis

$$
\left[\begin{array}{l}
3 \\
5
\end{array}\right]=3 \cdot\left[\begin{array}{l}
1 \\
0
\end{array}\right]+5 \cdot\left[\begin{array}{l}
0 \\
1
\end{array}\right]=4 \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]+1 \cdot\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=4 \sqrt{2}\left[\begin{array}{c}
\sqrt{2} / 2 \\
\sqrt{2} / 2
\end{array}\right]+\sqrt{2}\left[\begin{array}{l}
-\sqrt{2} / 2 \\
\sqrt{2} / 2
\end{array}\right]
$$

Time-Freq (or Space-Freq) Interpretations

- Inverse transf. represents a signal as a linear combination of basis vectors
- Forward transf. determines combination coeff. by projecting signal onto basis
E.g. Standard Basis (for data samples); Fourier Basis; Wavelet Basis

a b c

FIGURE 7.21 Time-frequency tilings for (a) sampled data, (b) FFT, and (c) FWT basis functions.

Recall: Matrix/Vector Form of DFT
 - $\{\mathrm{z}(\mathrm{n})\} \Leftrightarrow\{\mathrm{Z}(\mathrm{k})\}$
 $$
\left\{\begin{array}{l} Z(k)=\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} Z(n) \cdot W_{N}^{n k} \\ Z(n)=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} Z(k) \cdot W_{N}^{-n k} \end{array}\right.
$$

$$
n, k=0,1, \ldots, N-1, \quad W_{N}=\exp \{-j 2 \pi / N\}
$$

\sim complex conjugate of primitive $\mathrm{N}^{\text {th }}$ root of unity
$\left[\begin{array}{l}Z(0) \\ Z(1) \\ Z(2) \\ \vdots \\ Z(N-1)\end{array}\right]=\frac{1}{\sqrt{N}}\left[\begin{array}{ccccc}1 & 1 & 1 & & \cdots \\ 1 & e^{-j 2 \pi / N} & e^{-j 2 \pi \cdot 2 / N} & \cdots & \\ 1 & e^{-j 2 \pi \cdot 2 / N} & e^{-j 2 \pi \cdot 4 / N} & \cdots & \\ \vdots & \vdots & & & e^{-j 2 \pi \cdot(N-1) / N} \\ 1 & e^{-j 2 \pi \cdot(N-1) / N} & e^{-j 2 \pi \cdot 2(N-1) / N} & \cdots & e^{-j 2 \pi \cdot(N-1)^{2} / N}\end{array}\right] \cdot\left[\begin{array}{l}z(0) \\ z(1) \\ z(2) \\ \vdots \\ z(N-1)\end{array}\right]=\left[\begin{array}{l}\underline{a}_{0}^{{ }^{*} T} \\ \underline{a}_{1}^{{ }^{*} T} \\ \vdots \\ \underline{a}_{N-1}^{{ }^{*} T}\end{array}\right] \cdot \underline{Z}$

Example of 1-D DCT: $\quad N=8$

Haar Transform

- Haar basis functions: index by (p, q)
- Scaling captures info. at different freq.
- Translation captures info. at different locations
- Transition at each scale p is localized according to q
- Haar transform H ~ orthogonal
- Sample Haar function to obtain transform matrix
- Filter bank representation
- filtering and downsampling
- Relatively poor energy compaction
- Equiv. filter response doesn't have good cutoff \& stopband attenuation
=> Basis images of 2-D Haar transform

Compare Basis Images of DCT and Haar

UMCP ENEE631 Slides (created by M.Wu © 2001)
See also: Jain’s Fig.5.2 pp136
M. Wu: ENEE630 Advanced Signal Processing (Fall'09)

Compressive Sensing

- Downsampling as a data compression tool
- For bandlimited signals. Considered uniform sampling so far
- More general case of "sparsity" in some domain
E.g. non-zero coeff. at a small \# of frequencies but over a broad support of frequency?
- How to leverage such sparsity to get reduced average sampling rate?
- Can we sample at non-equally spaced intervals?
- How to deal with real-world issues e.g. approx. but not exactly sparse?

[^0]
L1 vs. L2 Optimization for Sparse Signal

[FIG2] (a) A sparse real valued signal and (b) its reconstruction from 60 (complex valued) Fourier coefficients by ℓ_{1} minimization. The reconstruction is exact. (c) The minimum energy reconstruction obtained by substituting the ℓ_{1} norm with the ℓ_{2} norm; ℓ_{1} and ℓ_{2} give wildly different answers. The ℓ_{2} solution does not provide a reasonable approximation to the original signal.
(Fig. from Candes-Wakins SPM'08 article)

(a)
I_{1} recovery

Example: Tomography problem

Logan-Shepp phantom test image

Sampling in the frequency plane
Along 22 radial lines with 512 samples on each

Reconstruction by minimizing total variation

Minimum energy
reconstruction

A Close Look at Wavelet Transform

Haar Transform - unitary
Orthonormal Wavelet Filters

Biorthogonal Wavelet Filters

Construction of Haar Functions

- Unique decomposition of integer $k \Leftrightarrow(p, q)$
$-\mathrm{k}=0, \ldots, \mathrm{~N}-1$ with $\mathrm{N}=2^{\mathrm{n}}, 0<=\mathrm{p}<=\mathrm{n}-1$
$-\mathrm{q}=0,1($ for $\mathrm{p}=0) ; 1<=\mathrm{q}<=2^{\mathrm{p}}$ (for $\left.\mathrm{p}>0\right)$
e.g., $\begin{array}{ccc}\mathrm{k}=0 & \mathrm{k}=1 & \mathrm{k}=2 \\ (0,0) & (0,1) & (1,1)\end{array}$
- $h_{k}(x)=h_{p, q}(x)$ for $x \in[0,1]$
e.g., $\begin{array}{cccccc}k=0 & k=1 & k=2 & k=3 & k=4 & \ldots \\ & (0,0) & (0,1) & (1,1) & (1,2) & (2,1) \\ & \ldots\end{array}$
power of 2
$k=2^{p}+\underbrace{q-1}$
"remainder"

$$
\begin{aligned}
& h_{0}(x)=h_{0,0}(x)=\frac{1}{\sqrt{N}} \text { for } x \in[0,1] \\
& h_{k}(x)=h_{p, q}(x)= \begin{cases}\frac{1}{\sqrt{N}} 2^{p / 2} \quad \text { for } \frac{q-1}{2^{p}} \leq x<\frac{q-\frac{1}{2}}{2^{p}} \\
-\frac{1}{\sqrt{N}} 2^{p / 2} & \text { for } \frac{q-\frac{1}{2}}{2^{p}} \leq x<\frac{q}{2^{p}} \\
0 & \text { for other } x \in[0,1]\end{cases}
\end{aligned}
$$

More on Wavelets (1)

- Linear expansion of a function via an expansion set
- Form basis functions if the expansion is unique
- Orthogonal basis
- Non-orthogonal basis
- Coefficients are computed with a set of dual-basis
- Discrete Wavelet Transform
- Wavelet expansion gives a set of 2-parameter basis functions and expansion coefficients: scale and translation

$$
f(t)=\sum_{l} a_{l} \psi_{l}(t)
$$

orthogonal basis:

$$
\begin{aligned}
& \left\langle\psi_{k}(t), \psi_{l}(t)\right\rangle=0 \text { for } k_{\neq l} \\
& a_{k}=\left\langle f(t), \psi_{k}(t)\right\rangle=\int f(t) \psi_{k}(t) d t
\end{aligned}
$$

Dual basis set:

$$
\begin{aligned}
& \text { wal basis set: } \left.\tilde{\psi}_{k}(t)\right\rangle \\
& a_{k}=\langle f(t),
\end{aligned}
$$

Wavelet expansion

$$
f(t)=\sum_{k} \sum_{j} a_{j, k} \psi_{j, k}(t)
$$

More on Wavelets (2)

- $1^{\text {st }}$ generation wavelet systems:
- Scaling and translation of a generating wavelet ("mother wavelet")
- Multiresolution conditions:
- Use a set of basic expansion signals with half width and translated in half step size to represent a larger class of signals than the original expansion set (the "scaling function")
- Represent a signal by combining scaling functions and wavelets

$$
\begin{aligned}
& \psi_{j, k}(t)=2^{j / 2} \psi\left(2^{j} t-k\right) ;\{\varphi(t-k)\} \rightarrow\{\varphi(2 t-k)\} \\
& f(t)=\sum_{k=-\infty}^{+\infty} \omega_{k} \varphi(t-k)+\sum_{k=-\infty}^{+\infty} \sum_{j=0}^{+\infty} d j \cdot k \psi\left(2^{j} t-k\right)
\end{aligned}
$$

Orthonormal Filters

- Equiv. to projecting input signal to orthonormal basis
- Energy preservation property
- Convenient for quantizer design
- MSE by transform domain quantizer is same as reconstruction MSE in image domain
- Shortcomings: "coefficient expansion"
- Linear filtering with N -element input \& M-element filter \rightarrow ($\mathrm{N}+\mathrm{M}-1$)-element output $\rightarrow(\mathrm{N}+\mathrm{M}) / 2$ after downsample
- Length of output per stage grows \sim undesirable for compression
- Solutions to coefficient expansion
- Symmetrically extended input (circular convolution) \& Symmetric filter

Solutions to Coefficient Expansion

- Circular convolution in place of linear convolution
- Periodic extension of input signal
- Problem: artifacts by large discontinuity at borders
- Symmetric extension of input
- Reduce border artifacts (note the signal length doubled with symmetry)
- Problem: output at each stage may not be symmetric

9. The periodic extension of the input in Fig. 7.

A 11. Symmetric periodic extension of the original input shown in Fig. 7.

Solutions to Coefficient Expansion (cont'd)

- Symmetric extension + symmetric filters
- No coefficient expansion and little artifacts
- Symmetric filter (or asymmetric filter) => "linear phase filters" (no phase distortion except by delays)
- Problem
- Only one set of linear phase filters for real FIR orthogonal wavelets
\rightarrow Haar filters: $(1,1) \&(1,-1)$
do not give good energy compaction

Ref: review ENEE630 discussions on FIR perfect reconstruction
Qudrature Mirror Filters (QMF) for 2-channel filter banks.

Biorthogonal Wavelets

- "Biorthogonal"
- Basis in forward and inverse transf. are not the same but give overall perfect reconstruction (PR)
- recall EE630 PR filterbank
- No strict orthogonality for transf. filters so energy is not preserved
- But could be close to orthogonal filters' performance
- Advantage
- Covers a much broader class of filters
- including symmetric filters that eliminate coefficient expansion
- Commonly used filters for compression
- 9/7 biorthogonal symmetric filter
- Efficient implementation: Lifting approach (ref: Swelden's tutorial)

Smoothness Conditions on Wavelet Filter

- Ensure the low band coefficients obtained by recursive filtering can provide a smooth approximation of the original signal
$H_{0}(z)=G(z) \times G\left(z^{2}\right), G\left(z^{4}\right)$ in terms of frog. response $z=e^{j \omega} ; G(\omega) G(2 \omega) G\left(2^{2} \omega\right)$

From M. Vetterli's wavelet/filter-bank paper

b)

Figure 13: Iteration (28) for two simple filters. (a) $[1,3,3,1]$ which converges to a continuous function. (b) $[-1,3,3,-1]$ which converges to a diacos:tinepus function.

[^0]: Ref: IEEE Signal Processing Magazine: Lecture Notes on Compressive Sensing (2007); Special Issue on Compressive Sensing (2008);

 ENEE698A Fall 2008 Graduate Seminar: http://terpconnect.umd.edu/~dikpal/enee698a.html

