ENEE630 Part-1 Supplement

Tree-based Filter Banks and Multiresolution Analysis

ECE Department

Univ. of Maryland, College Park

- Updated 10/2012 by Prof. Min Wu.
- bb.eng.umd.edu (select ENEE630); minwu@eng.umd.edu

- а bcd FIGURE 7.10 (a) A discrete wavelet transform using Haar H₂ basis functions. Its local histogram variations are also shown. (b)-(d)Several different approximations $(64 \times 64,$ 128×128 , and 256×256) that can be obtained from (a).
- FIGURE 7.1 An image and its local histogram variations.
 - Can assign more bits to
 represent coarse info
 - Allocate remaining bits,
 if available, to finer details
 (via proper quantization)

Figures from Gonzalez/ Woods DIP 3/e book website.

Brief Note on Subband and Wavelet Coding

- The octave ("dyadic") frequency partition can reflect the logarithmatic characteristics in human perception
- Wavelet coding and subband coding have many similarities (e.g. from filter bank perspectives)
 - Traditionally subband coding uses filters that have little overlap to isolate different bands
 - Wavelet transform imposes smoothness conditions on the filters that usually represent a set of basis generated by shifting and scaling ("dilation") of a "mother wavelet" function
 - Wavelet can be motivated from overcoming the poor timedomain localization of short-time FT

A A A Y L N

Explore more in Proj#1. See PPV Book Chapter 11

Review and Examples of Basis

• Standard basis vectors

$$\begin{bmatrix} 6\\3\\1 \end{bmatrix} = 6 \cdot \begin{bmatrix} 1\\0\\0 \end{bmatrix} + 3 \cdot \begin{bmatrix} 0\\1\\0 \end{bmatrix} + 1 \cdot \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$

• Standard basis images

$$\begin{bmatrix} 2 & 2 \\ 3 & 0 \end{bmatrix} = 2 \cdot \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + 2 \cdot \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + 3 \cdot \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + 0 \cdot \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

• Example: representing a vector with different basis

$$\begin{bmatrix} 3\\5 \end{bmatrix} = 3 \cdot \begin{bmatrix} 1\\0 \end{bmatrix} + 5 \cdot \begin{bmatrix} 0\\1 \end{bmatrix} = 4 \cdot \begin{bmatrix} 1\\1 \end{bmatrix} + 1 \cdot \begin{bmatrix} -1\\1 \end{bmatrix} = 4\sqrt{2} \begin{bmatrix} \sqrt{2}/2\\\sqrt{2}/2\\\sqrt{2}/2 \end{bmatrix} + \sqrt{2} \begin{bmatrix} -\sqrt{2}/2\\\sqrt{2}/2\\\sqrt{2}/2 \end{bmatrix}$$

Time-Freq (or Space-Freq) Interpretations

- Inverse transf. represents a signal as a linear combination of basis vectors
- Forward transf. determines combination coeff. by projecting signal onto basis
- E.g. Standard Basis (for data samples); Fourier Basis; Wavelet Basis

a b c

FIGURE 7.21 Time-frequency tilings for (a) sampled data, (b) FFT, and (c) FWT basis functions.

Figures from Gonzalez/ Woods DIP 2/e book website.

Recall: Matrix/Vector Form of DFT

$$\begin{cases} Z(k) = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} z(n) \cdot W_N^{nk} \\ z(n) = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} Z(k) \cdot W_N^{-nk} \end{cases}$$

M. Wu: ENEE630 Advanced Signal Processing (Fall'09)

Example of 1-D DCT: N = 8

<u>Haar Transform</u>

- Haar basis functions: index by (p, q)
 - Scaling captures info. at different freq.
 - Translation captures info. at different locations
 - Transition at each scale *p* is localized according to *q*
 - Haar transform H ~ orthogonal
 - Sample Haar function to obtain transform matrix
 - Filter bank representation
 - filtering and downsampling
 - Relatively poor energy compaction
 - Equiv. filter response doesn't have good cutoff & stopband attenuation
 - => Basis images of 2-D Haar transform

Compare Basis Images of DCT and Haar

UMCP ENEE631 Slides (created by M.Wu © 2001)

See also: Jain's Fig.5.2 pp136

Compressive Sensing

- Downsampling as a data compression tool
 - For bandlimited signals. Considered uniform sampling so far
- More general case of "sparsity" in some domain
 - E.g. non-zero coeff. at a small # of frequencies but over a broad support of frequency?
 - How to leverage such sparsity to get reduced average sampling rate?
 - Can we sample at non-equally spaced intervals?
 - How to deal with real-world issues e.g. approx. but not exactly sparse?

Ref: IEEE Signal Processing Magazine: Lecture Notes on Compressive Sensing (2007); Special Issue on Compressive Sensing (2008); ENEE698A Fall 2008 Graduate Seminar: http://terpconnect.umd.edu/~dikpal/enee698a.html

<u>L1 vs. L2 Optimization</u> for Sparse Signal

[FIG2] (a) A sparse real valued signal and (b) its reconstruction from 60 (complex valued) Fourier coefficients by ℓ_1 minimization. The reconstruction is exact. (c) The minimum energy reconstruction obtained by substituting the ℓ_1 norm with the ℓ_2 norm; ℓ_1 and ℓ_2 give wildly different answers. The ℓ_2 solution does not provide a reasonable approximation to the original signal.

(Fig. from Candes-Wakins SPM'08 article)

Example: Tomography problem

Logan-Shepp phantom test image

Sampling in the frequency plane Along 22 radial lines with 512 samples on each

Minimum energy reconstruction

Reconstruction by minimizing total variation

Slide source: by Dikpal Reddy, ENEE698A, http://terpconnect.umd.edu/~dikpal/enee698a.html

UMD ENEE630 Advanced Signal Processing (F'10)

A Close Look at Wavelet Transform

Haar Transform – unitary

Orthonormal Wavelet Filters

Biorthogonal Wavelet Filters

10/14/2009 [33]

Construction of Haar Functions

• Unique decomposition of integer $k \Leftrightarrow (p, q)$

$$- k = 0, ..., N-1 \text{ with } N = 2^{n}, 0 \le p \le n-1$$

$$- q = 0, 1 \text{ (for p=0); } 1 \le q \le 2^{p} \text{ (for p>0)}$$
e.g., $k=0$ $k=1$ $k=2$ $k=3$ $k=4$...
 $(0,0)$ $(0,1)$ $(1,1)$ $(1,2)$ $(2,1)$...

$$h_{k}(x) = h_{p,q}(x) \text{ for } x \in [0,1]$$
 $h_{0}(x) = h_{0,0}(x) = \frac{1}{\sqrt{N}} \text{ for } x \in [0,1]$
 $h_{k}(x) = h_{p,q}(x) = \begin{cases} \frac{1}{\sqrt{N}} 2^{p/2} & \text{for } \frac{q-1}{2^{p}} \le x < \frac{q-1}{2} \\ -\frac{1}{\sqrt{N}} 2^{p/2} & \text{for } \frac{q-1}{2^{p}} \le x < \frac{q}{2^{p}} \end{cases}$
 $(1,1)$
 $h_{k}(x) = h_{p,q}(x) = \begin{cases} \frac{1}{\sqrt{N}} 2^{p/2} & \text{for } \frac{q-1}{2^{p}} \le x < \frac{q}{2^{p}} \\ 0 & \text{for other } x \in [0,1] \end{cases}$

10/14/2009 [34]

More on Wavelets (1)

- Linear expansion of a function via an expansion set
 - Form basis functions if the expansion is unique
- Orthogonal basis
- Non-orthogonal basis
 - Coefficients are computed with a set of dual-basis
- Discrete Wavelet Transform
 - Wavelet expansion gives a set of 2-parameter basis functions and expansion coefficients: scale and translation

 $f(t) = \int a_{j} \psi_{\ell}(t)$ orthogonal basis: $\langle \psi_{k}(t), \psi_{\ell}(t) \rangle = \circ for K \neq l$ $a_{k} = \langle f(t), \psi_{k}(t) \rangle = \int f(t) \psi_{k}(t) dt$ Dual basis set: $a_{k} = \langle f(t), \psi_{k}(t) \rangle$ Nowelet expansion $f(t) = \sum_{k} \sum_{j} A_{j}, k \psi_{j}, k(t)$

10/14/2009 [17]

More on Wavelets (2)

- 1st generation wavelet systems:
 - Scaling and translation of a generating wavelet ("mother wavelet")
- Multiresolution conditions:
 - Use a set of basic expansion signals with half width and translated in half step size to represent a larger class of signals than the original expansion set (the "scaling function")
- Represent a signal by combining scaling functions and wavelets

Orthonormal Filters

- Equiv. to projecting input signal to orthonormal basis
- Energy preservation property
 - Convenient for quantizer design
 - *MSE by transform domain quantizer is same as reconstruction MSE in image domain*
- Shortcomings: "coefficient expansion"
 - Linear filtering with N-element input & M-element filter
 - → (N+M-1)-element output → (N+M)/2 after downsample
 - Length of output per stage grows ~ undesirable for compression
- Solutions to coefficient expansion
 - Symmetrically extended input (circular convolution) & Symmetric filter

Solutions to Coefficient Expansion

- Circular convolution in place of linear convolution
 - Periodic extension of input signal
 - Problem: artifacts by large discontinuity at borders
- Symmetric extension of input
 - Reduce border artifacts (note the signal length doubled with symmetry)
 - Problem: output at each stage may not be symmetric

From Usevitch (IEEE Sig.Proc. Mag. 9/01)

▲ 11. Symmetric periodic extension of the original input shown in Fig. 7.

Solutions to Coefficient Expansion (cont'd)

- Symmetric extension + symmetric filters
 - No coefficient expansion and little artifacts
 - Symmetric filter (or asymmetric filter) => "linear phase filters" (no phase distortion except by delays)
- Problem
 - Only one set of linear phase filters for real FIR orthogonal wavelets
 - → Haar filters: (1, 1) & (1, -1)

do not give good energy compaction

Ref: review ENEE630 discussions on FIR perfect reconstruction Qudrature Mirror Filters (QMF) for 2-channel filter banks.

Biorthogonal Wavelets

• "Biorthogonal"

- Basis in forward and inverse transf. are not the same but give overall perfect reconstruction (PR)
 - ♦ recall EE630 PR filterbank
- No strict orthogonality for transf.
 filters so energy is not preserved
 - But could be close to orthogonal filters' performance

Advantage

Table 1. Two Sets of Linear Phase, **Biorthogonal Wavelet Filter Coefficients.** 9/7 Filter 5/3 Filter Coefficients Coefficients Filter Index h b_0 g. \mathcal{J}_0 0.852699 0.788486 1.060660 0.707107 0 0.418092 0.353553 0.377402 0.353553 -1, 1-0.110624-0.040689-0.176777-2, 2-0.023849-0.064539-3,3 0.037828 -4, 4The 9/7 coefficients have the nice property that, although

they are biorthogonal, they are very close to being orthogonal as shown in Table 2.

(ref: Swelden's tutorial)

- Covers a much broader class of filters
 - including symmetric filters that eliminate coefficient expansion
- Commonly used filters for compression
 - 9/7 biorthogonal symmetric filter
 - Efficient implementation: Lifting approach

Smoothness Conditions on Wavelet Filter

 Ensure the low band coefficients obtained by recursive filtering can provide a smooth approximation of the original signal

 $H_{0}(8) = G(8) \cdot G(8^{4}) \cdot G(8^{4}) \text{ in terms of frog. response } 3 = e^{ijn} \cdot G(n) \cdot G(2n) \cdot G$

