Multi-rate Signal Processing
 7. M-channel Maximally Decmiated Filter Banks

Electrical \& Computer Engineering
University of Maryland, College Park

Acknowledgment: ENEE630 slides were based on class notes developed by Profs. K.J. Ray Liu and Min Wu. The LaTeX slides were made by Prof. Min Wu and Mr. Wei-Hong Chuang.
Contact: minwu@umd.edu. Updated: September 27, 2012.
7.2 The Alias Component (AC) Matrix
7.3 The Polyphase Representation
7.4 Perfect Reconstruction Filter Bank
7.5 Relation between Polyphase Matrix $\mathbb{E}(z)$ and $A C$ Matrix $\mathcal{H}(z)$

M-channel Maximally Decimated Filter Bank

Mech. filter bank: To study more general conditions of alias-free \& P.R.

As each filter has a passband of about $2 \pi / M$ wide, the subband signal output can be decimated up to M without substantial aliasing.
The filter bank is said to be "maximally decimated" if this maximal decimation factor is used.
[Readings: Vaidynathan Book 5.4-5.5; Tutorial Sec. VIII]

The Reconstructed Signal and Errors Created

Relations between $\hat{X}(z)$ and $X(z)$: (details)
$\hat{X}(z)=\sum_{l=0}^{M-1} A_{\ell}(z) X\left(W^{\ell} z\right)$

- $A_{\ell}(z) \triangleq \frac{1}{M} \sum_{k=0}^{M-1} H_{k}\left(W^{\ell} z\right) F_{k}(z), 0 \leq \ell \leq M-1$.
- $\left.X\left(W^{\ell} z\right)\right|_{z=e^{j} \omega}=X\left(\omega-\frac{2 \pi \ell}{M}\right)$, i.e., shifted version from $X(\omega)$.
- $X\left(W^{\ell} z\right)$: ℓ-th aliasing term, $A_{\ell}(z)$: gain for this aliasing term.
7.3 The Polyphase Representation
7.4 Perfect Reconstruction Filter Bank
7.5 Relation between Polyphase Matrix $\mathbb{E}(z)$ and AC Matrix $\mathcal{H}(z)$

Conditions for LPTV, LTI, and PR

- In general, the M-channel filter bank is a LPTV system with period M.
- The aliasing term can be eliminated for every possible input $x[n]$ iff $A_{\ell}(z)=0$ for $1 \leq \ell \leq M-1$. When aliasing is eliminated, the filter bank becomes an LTI system:

$$
\hat{X}(z)=T(z) X(z)
$$

where $T(z) \triangleq A_{0}(z)=\frac{1}{M} \sum_{\ell=0}^{M-1} H_{k}(z) F_{k}(z)$ is the overall transfer function, or distortion function.

- If $T(z)=c z^{-n_{0}}$, it is a perfect reconstruction system (i.e., free from aliasing, amplitude distortion, and phase distortion).

The Alias Component (AC) Matrix

From the definition of $A_{\ell}(z)$, we have in matrix-vector form:

$\mathcal{H}(z): M \times M$ matrix called the "Alias Component matrix"
The condition for alias cancellation is

$$
\mathcal{H}(z) \underline{\mathbb{t}}(z)=\mathbb{t}(z), \quad \text { where } \mathbb{t}(z)=\left[\begin{array}{c}
M A_{0}(z) \\
0 \\
\vdots \\
0
\end{array}\right]
$$

The Alias Component (AC) Matrix

Now express the reconstructed signal as

$$
\hat{X}(z)=\mathcal{A}^{T}(z) \mathcal{X}(z)=\frac{1}{M} \underline{\mathbb{I}}^{T}(z) \mathcal{H}^{T}(z) \mathcal{X}(z)
$$

where $\mathcal{X}(z)=\left[\begin{array}{c}X(z) \\ X(z W) \\ \vdots \\ X\left(z W^{M-1}\right)\end{array}\right]$.
Given a set of analysis filters $\left\{H_{k}(z)\right\}$, if $\operatorname{det} \mathcal{H}(z) \neq 0$, we can choose synthesis filters as $\underline{\mathbb{t}}(z)=\mathcal{H}^{-1}(z) \mathbb{t}(z)$ to cancel aliasing and obtain P.R. by requiring

$$
\underline{\mathbb{t}}(z)=\left[\begin{array}{c}
c z^{-n_{0}} \\
0 \\
: \\
0
\end{array}\right]
$$

Difficulty with the Matrix Inversion Approach

$\mathcal{H}^{-1}(z)=\frac{\operatorname{Adj}[\mathcal{H}(z)]}{\operatorname{det}[\mathcal{H}(z)]}$

- Synthesis filters $\left\{F_{k}(z)\right\}$ can be IIR even if $\left\{H_{k}(z)\right\}$ are all FIR.
- Difficult to ensure $\left\{F_{k}(z)\right\}$ stability (i.e. all poles inside the unit circle)
- $\left\{F_{k}(z)\right\}$ may have high order even if the order of $\left\{H_{k}(z)\right\}$ is moderate
-
\Rightarrow Take a different approach for P.R. design via polyphase representation.
7.1 The Reconstructed Signal and Errors Created
7.2 The Alias Component (AC) Matrix
7.3 The Polyphase Representation
7.5 Relation between Polyphase Matrix $\mathbb{E}(z)$ and AC Matrix $\mathcal{H}(z)$

Type-1 PD for $H_{k}(z)$
Using Type-1 PD for $H_{k}(z)$:

$$
H_{k}(z)=\sum_{\ell=0}^{M-1} z^{-\ell} E_{k \ell}\left(z^{M}\right)
$$

We have

$$
\underline{\ln }(z)=\mathbb{E}\left(z^{M}\right) \underline{e}(z)
$$

$\mathbb{E}\left(z^{M}\right): M \times M$ Type-1 polyphase component matrix for analysis bank
7.2 The Alias Component (AC) Matrix
7.3 The Polyphase Representation
7.4 Perfect Reconstruction Filter Bank
7.5 Relation between Polyphase Matrix $\mathbb{E}(z)$ and AC Matrix $\mathcal{H}(z)$

Type-2 PD for $F_{k}(z)$

Similarly, using Type-2 PD for $F_{k}(z)$:

$$
F_{k}(z)=\sum_{\ell=0}^{M-1} z^{-(M-1-\ell)} R_{\ell k}\left(z^{M}\right)
$$

We have in matrix form:
$\left[F_{0}(z) \cdots F_{M-1}(z)\right]=\underbrace{\left[z^{-(M-1)}, z^{-(M-2)}, \ldots 1\right.}]\left[\begin{array}{c}R_{00}\left(z^{M}\right) \cdots R_{0, M-1}\left(z^{M}\right) \\ R_{10}\left(z^{M}\right) \cdots R_{1, M-1}\left(z^{M}\right) \\ \vdots \\ \left.R_{M-1, \sigma^{(z)}} z^{M}\right) \cdots R_{M-1, M-1}\left(z^{M}\right)\end{array}\right]$
$\Leftrightarrow \underline{\mathbb{f}}^{\top}(z)=\mathbb{e}_{B}^{\top}(z) \mathbb{R}\left(z^{M}\right)$
$\underline{\mathbb{e}}_{B}^{T}(z)$: reversely ordered version of $\underline{\mathbb{e}}(z)$
$\mathbb{R}\left(z^{M}\right)$: Type-2 polyphase component matrix for synthesis bank
7.2 The Alias Component (AC) Matrix
7.3 The Polyphase Representation
7.4 Perfect Reconstruction Filter Bank
7.5 Relation between Polyphase Matrix $\mathbb{E}(z)$ and AC Matrix $\mathcal{H}(z)$

Overall Polyphase Presentation

Combine polyphase matrices into one matrix: $\mathbb{P}(z)=\underbrace{\mathbb{R}(z) \mathbb{E}(z)}$ note the order!
7.1 The Reconstructed Signal and Errors Created
7.2 The Alias Component (AC) Matrix
7.3 The Polyphase Representation
7.4 Perfect Reconstruction Filter Bank
7.5 Relation between Polyphase Matrix $\mathbb{E}(z)$ and AC Matrix $\mathcal{H}(z)$

Simple FIR P.R. Systems

$$
\hat{X}(z)=z^{-1} X(z)
$$

i.e., transfer function $T(z)=z^{-1}$

Extend to M channels:
$H_{k}(z)=z^{-k}$
$F_{k}(z)=z^{-M+k+1}, 0 \leq k \leq M-1$
$\Rightarrow \hat{\mathbb{X}}(z)=z^{-(M-1)} \mathbb{X}(z)$
i.e. demultiplex then multiplex again

General P.R. Systems

Recall the polyphase implementation of M-channel filter bank:

Combine polyphase matrices into one matrix: $\mathbb{P}(z)=\mathbb{R}(z) \mathbb{E}(z)$
If $\mathbb{P}(z)=\mathbb{R}(z) \mathbb{E}(z)=\mathbb{I}$, then the system is equivalent to the simple system $\Rightarrow H_{k}(z)=z^{-k}, F_{k}(z)=z^{-M+k+1}$

In practice, we can allow $\mathbb{P}(z)$ to have some constant delay, i.e., $\mathbb{P}(z)=c z^{-m_{0}} \mathbb{I}$, thus $T(z)=c z^{-\left(M m_{0}+M-1\right)}$.

Dealing with Matrix Inversion

To satisfy $\mathbb{P}(z)=\mathbb{R}(z) \mathbb{E}(z)=\mathbb{I}$, it seems we have to do matrix inversion for getting the synthesis filters $\mathbb{R}(z)=(\mathbb{E}(z))^{-1}$.

Question: Does this get back to the same inversion problem we have with the viewpoint of the AC matrix $\underline{f}(z)=\mathcal{H}^{-1}(z) \mathbb{t}(z)$?

Solution:

- $\mathbb{E}(z)$ is a physical matrix that each entry can be controlled. In contrast, for $\mathcal{H}(z)$, only 1st row can be controlled (thus hard to ensure desired $H_{k}(z)$ responses and $\mathbb{f}(z)$ stability
- We can choose $\operatorname{FIR} \mathbb{E}(z)$ s.t. $\operatorname{det} \mathbb{E}(z)=\alpha z^{-k}$ thus $\mathbb{R}(z)$ can be FIR (and has determinant of similar form).

Summary: With polyphase representation, we can choose $\mathbb{E}(z)$ to produce desired $H_{k}(z)$ and lead to simple $\mathbb{R}(z)$ s.t. $\mathbb{P}(z)=c z^{-k} \mathbb{I}$.

Paraunitary

A more general way to address the need of matrix inversion:
Constrain $\mathbb{E}(z)$ to be paraunitary: $\quad \tilde{\mathbb{E}}(z) \mathbb{E}(z)=d \mathbb{I}$
Here $\tilde{\mathbb{E}}(z)=\mathbb{E}_{*}^{T}\left(z^{-1}\right)$, i.e. taking conjugate of the transfer function coeff., replace z with z^{-1} that corresponds to time reversely order the filter coeff., and transpose.

For further exploration: PPV Book Chapter 6.

7 M-channel Maximally Decimated Filter Bank

Relation b/w Polyphase Matrix $\mathbb{E}(z)$ and $A C$ Matrix $\mathcal{H}(z)$

The relation between $\mathbb{E}(z)$ and $\mathcal{H}(z)$ can be shown as:

$$
\mathcal{H}(z)=\left[\mathbb{W}^{*}\right]^{T} \mathbb{D}(z) \quad \mathbb{E}^{T}\left(z^{M}\right)
$$

where \mathbb{W} is the $M \times M$ DFT matrix, and a diagonal delay matrix
$\mathbb{D}(z)=\left[\begin{array}{llll}1 & & & \\ & z^{-1} & & \\ & & \ddots & \\ & & & z^{-(M-1)}\end{array}\right]$
(details) See also the homework.

Detailed Derivations

The Reconstructed Signal and Errors Created
(1) $X_{k}(z)=H_{k}(z) X(\xi)$ \qquad $\Psi_{k}\left(\omega_{M}^{l} z^{1 / M}\right)$
(2)

$$
V_{K}(z)=\frac{1}{M} \sum_{l=0}^{M-1} H_{K}\left(W_{M}^{l} z^{1 / M}\right) \underset{\text { where } W_{M}=e^{j}\left(W_{M}^{l} z^{1 / M}\right)}{ }
$$

(3) $\quad U_{K}(z)=V_{k}\left(z^{M}\right)=\frac{1}{M} \sum_{l=0}^{M-1} H_{K}\left(W_{M}^{l} z\right) X\left(W_{M}^{\ell} z\right)$
(4)

$$
\begin{aligned}
& \hat{X}(z)=\sum_{k=0}^{M-1} F_{k}(z) U_{k}(z) \\
&=\sum_{l=0}^{M-1}[\underbrace{\left.\frac{1}{M} \sum_{k=0}^{M-1} H_{k}\left(w^{l} z\right) F_{k}(z)\right]} \begin{array}{l}
\\
\\
\end{array}=\sum_{l=0}^{M-1} A_{l}^{l}(z) X\left(w^{l} z\right) \\
&\left.W^{l} z\right)
\end{aligned}
$$

- $A_{\ell}(z) \triangleq \frac{1}{M} \sum_{k=0}^{M-1} H_{k}\left(W^{\ell} z\right) F_{k}(z), 0 \leq \ell \leq M-1$.
- $\left.\mathbb{X}\left(W^{\ell} z\right)\right|_{z=e^{j \omega}}=\mathbb{X}\left(\omega-\frac{2 \pi \ell}{M}\right)$, ie., shifted version from $\mathbb{X}(\omega)$.
- $\mathbb{X}\left(W^{\ell} z\right): \ell$-th aliasing term, $A_{\ell}(z)$: gain for this aliasing term.

Review: Matrix Inversion

$\mathcal{H}^{-1}(z)=\frac{\operatorname{Adj}[\mathcal{H}(z)]}{\operatorname{det}[\mathcal{H}(z)]}$
Adjugate or classical adjoint of a matrix:
$\{\operatorname{Adj}[\mathcal{H}(z)]\}_{i j}=(-1)^{i+j} M_{j i}$
where $M_{j i}$ is the (j, i) minor of $\mathcal{H}(z)$ defined as the determinant of the matrix by deleting the j-th row and i-th column.

An Example of P.R. Systems

$$
\begin{aligned}
& H_{0}(z)=2+z^{-1}, H_{1}(z)=3+2 z^{-1} \\
& \mathbb{E}(z)=\left[\begin{array}{ll}
2 & 1 \\
3 & 2
\end{array}\right], \mathbb{E}^{-1}(z)=\frac{\operatorname{Adj} \mathbb{E}(z)}{\operatorname{det} \mathbb{E}(z)}=1 \times\left[\begin{array}{cc}
2 & -1 \\
-3 & 2
\end{array}\right]
\end{aligned}
$$

Choose $\mathbb{R}(z)=\mathbb{E}^{-1}(z)$ s.t. $\mathbb{P}(z)=\mathbb{R}(z) \mathbb{E}(z)=\mathbb{I}$,
$\therefore \mathbb{R}(z)=\left[\begin{array}{cc}2 & -1 \\ -3 & 2\end{array}\right]$
$\left[\begin{array}{ll}F_{0}(z) & F_{1}(z)\end{array}\right]=\left[\begin{array}{ll}z^{-1} & 1\end{array}\right] \mathbb{R}\left(z^{2}\right)=\left[\begin{array}{ll}2 z^{-1}-3, & -z^{-1}+2\end{array}\right]$
$\Rightarrow\left\{\begin{array}{l}F_{0}(z)=-3+2 z^{-1} \\ F_{1}(z)=2-z^{-1}\end{array}\right.$

