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Polyphase Representation: Basic Idea

Example: FIR filter H(z) = 1 + 2z−1 + 3z−2 + 4z−3

Group even and odd indexed coefficients, respectively:
⇒ H(z) = (1 + 3z−2) + z−1(2 + 4z−2),

More generally: Given a filter H(z) =
∑∞

n=−∞ h[n]z−n, by
grouping the odd and even numbered coefficients, we can write

H(z) =
∑∞

n=−∞ h[2n]z−2n + z−1
∑∞

n=−∞ h[2n + 1]z−2n
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Polyphase Representation: Definition

H(z) =
∑∞

n=−∞ h[2n]z−2n + z−1
∑∞

n=−∞ h[2n + 1]z−2n

Define E0(z) and E1(z) as two polyphase components of H(z):

E0(z) =
∑∞

n=−∞ h[2n]z−n,

E1(z) =
∑∞

n=−∞ h[2n + 1]z−n,

We have

H(z) = E0(z2) + z−1E1(z2)

These representations hold whether H(z) is FIR or IIR, causal
or non-causal.

The polyphase decomposition can be applied to any sequence,
not just impulse response.
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FIR and IIR Example

1 FIR filter: H(z) = 1 + 2z−1 + 3z−2 + 4z−3

∵ H(z) = (1 + 3z−2) + z−1(2 + 4z−2),

∴ E0(z) = 1 + 3z−1; E1(z) = 2 + 4z−1

2 IIR filter: H(z) = 1
1−αz−1 .

Write into the form of H(z) = E0(z2) + z−1E1(z2):

∵ H(z) = 1
1−αz−1 × 1+αz−1

1+αz−1 = 1+αz−1

1−α2z−2

= 1
1−α2z−2 + z−1 α

1−α−2z−2

∴ E0(z) = 1
1−α2z−1 ; E1(z) = α

1−α−2z−1

(For higher order filters: first write in the sum of 1st order terms)
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Extension to M Polyphase Components

For a given integer M and H(z) =
∑∞

n=−∞ h[n]z−n, we have:

H(z) =
∑∞

n=−∞ h[nM]z−nM + z−1
∑∞

n=−∞ h[nM + 1]z−nM

+ . . . + z−(M−1)
∑∞

n=−∞ h[nM + M − 1]z−nM

Type-1 Polyphase Representation

H(z) =
∑M−1

`=0 z−`E`(z
M)

where the `-th polyphase components of H(z) given M is

E`(z) ,
∑∞

n=−∞ e`[n]z−n =
∑∞

n=−∞ h[nM + `]z−n

Note: 0 ≤ ` ≤ (M − 1); strictly we may denote as E
(M)
` (z).
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Example: M = 3

z`: time advance

(there is a delay term when

putting together the polyphase

components)
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Alternative Polyphase Representation

If we define R`(z) = EM−1−`(z), 0 ≤ ` ≤ M − 1, we arrive at the

Type-2 polyphase representation

H(z) =
∑M−1

`=0 z−(M−1−`)R`(z
M)

Type-1: Ek(z) is ordered

consistently with the number of delays

in the input

Type-2: reversely order the filter

Rk(z) with respect to the delays
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Issues with Direct Implementation of Decimation Filters

Decimation Filters:

Question: Any wasteful effort in the direct implementation?

The filtering is applied to all original signal samples, even
though only every M filtering output is retained finally.

Even if we let H(z) operates only for time instants multiple of
M and idle otherwise, all multipliers/adders have to produce
results within one step of time.

Can ↓ M be moved before H(z)?

Only when H(z) is a function of zM , we can apply the noble

identities to switch the order.
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Efficient Structure for Decimation Filter

Apply Type-1 polyphase representation:
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Computational Cost

For FIR filter H(z) of length N:

Total cost of N multipliers and (N − 1) adders is unchanged.

Considering multiplications per input unit time (MPU) and
additions per input unit time (APU),
Ek(z) now operates at a lower rate:

only N/M MPU and (N − 1)/M APU are required.

This is as opposed to N MPU and (N − 1) APU at every M
instant of time and system idling at other instants, which
leads to inefficient resource utilization.

(i.e., requires use fast additions and multiplications but use them

only 1/M of time)
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Polyphase for Interpolation Filters

Observe: the filter is applied to a signal at a high rate, even
though many samples are zero when coming out of the expander.

Using the Type-2 polyphase decomposition:

H(z) = z−1R0(z2) + R1(z2): 2 polyphase components

Rk(z) is half length of H(z)

The complexity of the system is N MPU and (N − 2) APU.
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General Cases

In general, for FIR filters with length N:

M-fold decimation:

MPU = N
M , APU = N−1

M

L-fold interpolation:

MPU = N, APU = N − L

filtering is performed at a lower

data rate
APU = (NL − 1)× L
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Fractional Rate Conversion

Typically L and M should be chosen to have no common
factors greater than 1 (o.w. it is wasteful as we make the rate

higher than necessary only to reduce it down later)

H(z) filter needs to be fast as it operates in high data rate.

The direct implementation of H(z) is inefficient:{
there are L− 1 zeros in between its input samples

only one out of M samples is retained
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Example: L = 2 and M = 3

1 Use Type-1 polyphase decomposition (PD) for decimator:

2 Use Type-2 PD for interpolator:

ENEE630 Lecture Part-1 14 / 25



3 The Polyphase Representation
Appendix: Detailed Derivations

3.1 Basic Ideas
3.2 Efficient Structures
3.3 Commutator Model
3.4 Discussions: Multirate Building Blocks & Polyphase Concept

Example: L = 2 and M = 3

3 Try to take advantage of both:

Question: What’s the lowest possible data rate to process?
f /M

Challenge: Can’t move ↑ 2 further to the right and ↓ 3 to
the left across the delay terms.
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Trick to enable interchange of ↑ L and ↓ M

z−1 = z−3 · z2

z−3 and z2 can be considered as filters in z−M and z+L

Noble identities can be applied:

can be interchanged as they are relatively prime
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Overall Efficient Structure

Now it
becomes

can move decimation earlier by Type-1 PD of Rk(z)
Finally,

R0(z) =
R00(z3) + z−1R01(z3) + z−2R02(z3)

R1(z) =
R10(z3) + z−1R11(z3) + z−2R12(z3)
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Observations

For N-th order H(z): MPU = (N + 1)/M ⇒ independent of L

The final structure is the most efficient:{
Decimators are moved to the left of all computational units

Expanders are moved to the right of all computational units

Thus the computation is operated at the lowest possible rate.

The above scheme works for arbitrary integers L and M as
long as they are relatively prime.

Under this condition, we have:
1 ∃n0, n1 ∈ Z s.t. n1M − n0L = 1 (Euclid’s theorem)

We can then decompose z−1 = zn0Lz−n1M

2 ↑ L and ↓ M are interchangeable
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Commutator Model: A Delay Chain followed by Decimators

Polyphase implementation is often characterized by

1 A delay chain followed by a set of decimators,
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Commutator Model: Expanders followed by A Delay Chain

2 A set of expanders followed by a delay chain

Commutator/switch model is an appealing conceptual tool to
visualize these operations
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Discussions: Linear Periodically Time Varying Systems

Some multirate systems that we have seen are linear periodically
time varying (LPTV) systems.

e.g.,

y [n] =

{
x [n] if n is multiple of M

0 otherwise

= x [n] · c[n]

c[n] is a comb function: takes 1 for n is multiple of M and 0 o.w.

⇒ This is a linear system with periodically time varying response
coefficients, and the period is M.
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Time-invariant System with Decimator / Expander

Even though ↑ L and ↓ M are time-varying, a cascaded system
having them as building blocks may become time-invariant.

This structure is the same as a fractional decimation system with
L = M.
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Time-invariant System with ↑ M & ↓ M

details

Recall: [X(z)]↓M =
1
M

∑M−1
k=0 X

(
W k

Mz1/M
)
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Perfect Reconstruction (PR) Systems

• The above system is said to be a perfect reconstruction system

if x̂ [n] = cx [n − n0] for some c 6= 0 and integer n0,

i.e., the output is identical to the input, except a constant
multiplicative factor and some fixed delay.

• Look ahead: we’ll see the quadrature mirror filter bank (QMF) is

generally a LPTV system, reduces to an LTI system when aliasing is

completely cancelled, and achieves PR for certain analysis/synthesis

filters.
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Special Time-invariant System with ↑ M & ↓ M

(back)

Recall: [X(z)]↓M =
1
M

∑M−1
k=0 X

(
W k

Mz1/M
)

Y(z) =
[
X(zM)H(z)

]
↓M

= 1
M

∑M−1
k=0 X

(
WMk

M z
)
H
(
W k

Mz1/M
)

= X(z)[H(z)]↓M

[H(z)]↓M implies decimating the impulse response h[n] by M-fold,
corresponding to the 0-th polyphase component of H(z).

⇒ Y(z) = X(z)E0(z), i.e., , an LTI system.
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