Multi-rate Signal Processing 3. The Polyphase Representation

Electrical \& Computer Engineering
University of Maryland, College Park

Acknowledgment: ENEE630 slides were based on class notes developed by Profs. K.J. Ray Liu and Min Wu. The LaTeX slides were made by Prof. Min Wu and Mr. Wei-Hong Chuang.
Contact: minwu@umd.edu. Updated: September 16, 2012.

Polyphase Representation: Basic Idea

Example: FIR filter $H(z)=1+2 z^{-1}+3 z^{-2}+4 z^{-3}$
Group even and odd indexed coefficients, respectively:
$\Rightarrow H(z)=\left(1+3 z^{-2}\right)+z^{-1}\left(2+4 z^{-2}\right)$,

More generally: Given a filter $H(z)=\sum_{n=-\infty}^{\infty} h[n] z^{-n}$, by grouping the odd and even numbered coefficients, we can write

$$
H(z)=\sum_{n=-\infty}^{\infty} h[2 n] z^{-2 n}+z^{-1} \sum_{n=-\infty}^{\infty} h[2 n+1] z^{-2 n}
$$

Polyphase Representation: Definition

$H(z)=\sum_{n=-\infty}^{\infty} h[2 n] z^{-2 n}+z^{-1} \sum_{n=-\infty}^{\infty} h[2 n+1] z^{-2 n}$
Define $E_{0}(z)$ and $E_{1}(z)$ as two polyphase components of $H(z)$:

$$
\begin{gathered}
E_{0}(z)=\sum_{n=-\infty}^{\infty} h[2 n] z^{-n} \\
E_{1}(z)=\sum_{n=-\infty}^{\infty} h[2 n+1] z^{-n}
\end{gathered}
$$

We have

$$
H(z)=E_{0}\left(z^{2}\right)+z^{-1} E_{1}\left(z^{2}\right)
$$

- These representations hold whether $H(z)$ is FIR or IIR, causal or non-causal.
- The polyphase decomposition can be applied to any sequence, not just impulse response.

FIR and IIR Example

(1) FIR filter: $H(z)=1+2 z^{-1}+3 z^{-2}+4 z^{-3}$

$$
\begin{aligned}
& \because H(z)=\left(1+3 z^{-2}\right)+z^{-1}\left(2+4 z^{-2}\right) \\
& \therefore E_{0}(z)=1+3 z^{-1} ; \quad E_{1}(z)=2+4 z^{-1}
\end{aligned}
$$

(2) IIR filter: $H(z)=\frac{1}{1-\alpha z^{-1}}$.

Write into the form of $H(z)=E_{0}\left(z^{2}\right)+z^{-1} E_{1}\left(z^{2}\right)$:

$$
\begin{aligned}
\because H(z) & =\frac{1}{1-\alpha z^{-1}} \times \frac{1+\alpha z^{-1}}{1+\alpha z^{-1}}=\frac{1+\alpha z^{-1}}{1-\alpha^{2} z^{-2}} \\
& =\frac{1}{1-\alpha^{2} z^{-2}}+z^{-1} \frac{\alpha}{1-\alpha^{-2} z^{-2}}
\end{aligned}
$$

$$
\therefore E_{0}(z)=\frac{1}{1-\alpha^{2} z^{-1}} ; \quad E_{1}(z)=\frac{\alpha}{1-\alpha^{-2} z^{-1}}
$$

(For higher order filters: first write in the sum of 1st order terms)

Extension to M Polyphase Components

For a given integer M and $H(z)=\sum_{n=-\infty}^{\infty} h[n] z^{-n}$, we have:

$$
\begin{aligned}
H(z)= & \sum_{n=-\infty}^{\infty} h[n M] z^{-n M}+z^{-1} \sum_{n=-\infty}^{\infty} h[n M+1] z^{-n M} \\
& +\cdots+z^{-(M-1)} \sum_{n=-\infty}^{\infty} h[n M+M-1] z^{-n M}
\end{aligned}
$$

Type-1 Polyphase Representation

$$
H(z)=\sum_{\ell=0}^{M-1} z^{-\ell} E_{\ell}\left(z^{M}\right)
$$

where the ℓ-th polyphase components of $H(z)$ given M is

$$
E_{\ell}(z) \triangleq \sum_{n=-\infty}^{\infty} e_{\ell}[n] z^{-n}=\sum_{n=-\infty}^{\infty} h[n M+\ell] z^{-n}
$$

Note: $0 \leq \ell \leq(M-1)$; strictly we may denote as $E_{\ell}^{(M)}(z)$.

Example: $M=3$
eg.

z^{ℓ} : time advance
(there is a delay term when putting together the polyphase components)

Alternative Polyphase Representation

If we define $R_{\ell}(z)=E_{M-1-\ell}(z), 0 \leq \ell \leq M-1$, we arrive at the

Type-2 polyphase representation

$$
H(z)=\sum_{\ell=0}^{M-1} z^{-(M-1-\ell)} R_{\ell}\left(z^{M}\right)
$$

Type-1: $E_{k}(z)$ is ordered consistently with the number of delays in the input

Type-2: reversely order the filter $R_{k}(z)$ with respect to the delays

Issues with Direct Implementation of Decimation Filters

Decimation Filters:

Question: Any wasteful effort in the direct implementation?

- The filtering is applied to all original signal samples, even though only every M filtering output is retained finally.
- Even if we let $H(z)$ operates only for time instants multiple of M and idle otherwise, all multipliers/adders have to produce results within one step of time.
- Can $\downarrow M$ be moved before $H(z)$?

Only when $H(z)$ is a function of z^{M}, we can apply the noble identities to switch the order.

Efficient Structure for Decimation Filter

Apply Type-1 polyphase representation:

Computational Cost

For FIR filter $H(z)$ of length N :

- Total cost of N multipliers and $(N-1)$ adders is unchanged.
- Considering multiplications per input unit time (MPU) and additions per input unit time (APU),
$E_{k}(z)$ now operates at a lower rate:
only N / M MPU and $(N-1) / M$ APU are required.
- This is as opposed to N MPU and $(N-1)$ APU at every M instant of time and system idling at other instants, which leads to inefficient resource utilization.
(i.e., requires use fast additions and multiplications but use them only $1 / M$ of time)

Polyphase for Interpolation Filters

Observe: the filter is applied to a signal at a high rate, even though many samples are zero when coming out of the expander.

Using the Type-2 polyphase decomposition:

$$
H(z)=z^{-1} R_{0}\left(z^{2}\right)+R_{1}\left(z^{2}\right):
$$

- 2 polyphase components
- $R_{k}(z)$ is half length of $H(z)$

The complexity of the system is N MPU and $(N-2)$ APU.

General Cases

In general, for FIR filters with length N :
M-fold decimation:

$$
\mathrm{MPU}=\frac{N}{M}, \mathrm{APU}=\frac{N-1}{M}
$$

filtering is performed at a lower data rate

L-fold interpolation:

$\mathrm{MPU}=N, \mathrm{APU}=N-L$

$$
\operatorname{APU}=\left(\frac{N}{L}-1\right) \times L
$$

Fractional Rate Conversion

- Typically L and M should be chosen to have no common factors greater than 1 (o.w. it is wasteful as we make the rate higher than necessary only to reduce it down later)
- $H(z)$ filter needs to be fast as it operates in high data rate.
- The direct implementation of $H(z)$ is inefficient:
$\left\{\begin{array}{l}\text { there are } L-1 \text { zeros in between its input samples } \\ \text { only one out of } M \text { samples is retained }\end{array}\right.$

3 The Polyphase Representation Appendix: Detailed Derivations
3.1 Basic Ideas
3.2 Efficient Structures
3.3 Commutator Model
3.4 Discussions: Multirate Building Blocks \& Polyphase Concept

Example: $L=2$ and $M=3$

(1) Use Type-1 polyphase decomposition (PD) for decimator:

(2) Use Type-2 PD for interpolator:

Example: $L=2$ and $M=3$

(3) Try to take advantage of both:

Question: What's the lowest possible data rate to process? f / M

Challenge: Can't move $\uparrow 2$ further to the right and $\downarrow 3$ to the left across the delay terms.

Trick to enable interchange of $\uparrow L$ and $\downarrow M$

$$
z^{-1}=z^{-3} \cdot z^{2}
$$

- z^{-3} and z^{2} can be considered as filters in z^{-M} and z^{+L}
- Noble identities can be applied:

can be interchanged as they are relatively prime

3 The Polyphase Representation Appendix: Detailed Derivations

Overall Efficient Structure

Now it becomes

can move decimation earlier by Type-1 PD of $R_{k}(z)$
Finally,

$$
f \longleftrightarrow \longmapsto \frac{1}{3} f \longleftrightarrow \longmapsto \frac{2}{3} f
$$

$$
\begin{aligned}
& R_{0}(z)= \\
& R_{00}\left(z^{3}\right)+z^{-1} R_{01}\left(z^{3}\right)+z^{-2} R_{02}\left(z^{3}\right)
\end{aligned}
$$

$$
R_{1}(z)=
$$

$$
R_{10}\left(z^{3}\right)+z^{-1} R_{11}\left(z^{3}\right)+z^{-2} R_{12}\left(z^{3}\right)
$$

Observations

- For N-th order $H(z):$ MPU $=(N+1) / M \Rightarrow$ independent of L
- The final structure is the most efficient:
$\{$ Decimators are moved to the left of all computational units
Expanders are moved to the right of all computational units
Thus the computation is operated at the lowest possible rate.
- The above scheme works for arbitrary integers L and M as long as they are relatively prime.
Under this condition, we have:
(1) $\exists n_{0}, n_{1} \in \mathbb{Z}$ s.t. $n_{1} M-n_{0} L=1$ (Euclid's theorem)

We can then decompose $z^{-1}=z^{n_{0} L} z^{-n_{1} M}$
(2) $\uparrow L$ and $\downarrow M$ are interchangeable

Commutator Model: A Delay Chain followed by Decimators

Polyphase implementation is often characterized by
(1) A delay chain followed by a set of decimators,
counterclock wise commutator

Commutator Model: Expanders followed by A Delay Chain
(2) A set of expanders followed by a delay chain

Commutator/switch model is an appealing conceptual tool to visualize these operations

Discussions: Linear Periodically Time Varying Systems

Some multirate systems that we have seen are linear periodically time varying (LPTV) systems.

$$
\begin{aligned}
y[n] & = \begin{cases}x[n] & \text { if } n \text { is multiple of } M \\
0 & \text { otherwise }\end{cases} \\
& =x[n] \cdot c[n]
\end{aligned}
$$

$c[n]$ is a comb function: takes 1 for n is multiple of M and 0 o.w.
\Rightarrow This is a linear system with periodically time varying response coefficients, and the period is M.

Time-invariant System with Decimator / Expander

Even though $\uparrow L$ and $\downarrow M$ are time-varying, a cascaded system having them as building blocks may become time-invariant.

This structure is the same as a fractional decimation system with $L=M$.

3 The Polyphase Representation Appendix: Detailed Derivations
3.1 Basic Ideas
3.2 Efficient Structures
3.3 Commutator Model
3.4 Discussions: Multirate Building Blocks \& Polyphase Concept

Time-invariant System with $\uparrow M \& \downarrow M$


```
details
```

Recall: $[\mathbb{X}(z)]_{\downarrow M}=$ $\frac{1}{M} \sum_{k=0}^{M-1} \mathbb{X}\left(W_{M}^{k} z^{1 / M}\right)$

Perfect Reconstruction (PR) Systems

- The above system is said to be a perfect reconstruction system if $\hat{x}[n]=c x\left[n-n_{0}\right]$ for some $c \neq 0$ and integer n_{0}, i.e., the output is identical to the input, except a constant multiplicative factor and some fixed delay.
- Look ahead: we'll see the quadrature mirror filter bank (QMF) is generally a LPTV system, reduces to an LTI system when aliasing is completely cancelled, and achieves PR for certain analysis/synthesis filters.

Special Time-invariant System with $\uparrow M \& \downarrow M$

(back)

Recall: $[\mathbb{X}(z)]_{\downarrow M}=$ $\frac{1}{M} \sum_{k=0}^{M-1} \mathbb{X}\left(W_{M}^{k} z^{1 / M}\right)$

$$
\begin{aligned}
\mathbb{Y}(z) & =\left[\mathbb{X}\left(z^{M}\right) H(z)\right]_{\downarrow_{M}} \\
& =\frac{1}{M} \sum_{k=0}^{M-1} \mathbb{X}\left(W_{M}^{M k} z\right) H\left(W_{M}^{k} z^{1 / M}\right)=\mathbb{X}(z)[H(z)]_{\downarrow M}
\end{aligned}
$$

$[H(z)]_{\downarrow M}$ implies decimating the impulse response $h[n]$ by M-fold, corresponding to the 0 -th polyphase component of $H(z)$.

$$
\Rightarrow \mathbb{Y}(z)=\mathbb{X}(z) E_{0}(z) \text {, i.e., } \xrightarrow{x[n]} E_{0}(z) \xrightarrow{y[n]} \text {, an LTI system. }
$$

