1. Determine if each of the following are valid autocorrelation matrices of WSS processes. (Correlation Matrix)

$$
\boldsymbol{R}_{a}=\left[\begin{array}{ccc}
4 & 1 & 1 \\
-1 & 4 & 1 \\
-1 & -1 & 4
\end{array}\right], \boldsymbol{R}_{b}=\left[\begin{array}{ccc}
2 & 1 & 1 \\
1 & 2 & 0 \\
1 & 0 & 2
\end{array}\right], \boldsymbol{R}_{c}=\left[\begin{array}{ccc}
2 j & 0 & j \\
0 & 2 j & 0 \\
-j & 0 & 2 j
\end{array}\right], \boldsymbol{R}_{d}=\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & 0 \\
2 & 0 & 1
\end{array}\right]
$$

2. Consider the random process $y(n)=x(n)+v(n)$, where $x(n)=A e^{j(\omega n+\phi)}$ and $v(n)$ is zero mean white Gaussian noise with a variance σ_{v}^{2}. We also assume the noise and the complex sinusoid are independent. Under the following conditions, determine if $y(n)$ is WSS. Justify your answers. (WSS Process)
(a) ω and A are constants, and ϕ is a uniformly distributed over the interval $[0,2 \pi]$.
(b) ω and ϕ are constants, and A is a Gaussian random variable $\sim \mathcal{N}\left(0, \sigma_{A}^{2}\right)$.
(c) ϕ and A are constants, and ω is a uniformly distributed over the interval $\left[\omega_{0}-\Delta, \omega_{0}+\Delta\right]$ for some fixed Δ.
3. [Rec.II P2(a) revisited] Determine the PSD of the WSS process $y(n)=A e^{j\left(\omega_{0} n+\phi\right)}+v(n)$, where $v(n)$ is zero mean white Gaussian noise with a variance σ_{v}^{2}, and ϕ is uniformly distributed over the interval $[0,2 \pi]$. (Power Spectral Density)
4. Assume $v(n)$ is a white Gaussian random process with zero mean and variance 1. The two filters in Fig. RII. 4 are $G(z)=\frac{1}{1-0.4 z^{-1}}$ and $H(z)=\frac{2}{1-0.5 z^{-1}}$. (Auto-Regressive Process)

Figure RII.4:
(a) Is $u(n)$ an AR process? If so, find the parameters.
(b) Find the autocorrelation coefficients $r_{u}(0), r_{u}(1)$, and $r_{u}(2)$ of the process $u(n)$.
5. Let a real-valued $\mathrm{AR}(2)$ process be described by

$$
u(n)=x(n)+a_{1} x(n-1)+a_{2} x(n-2)
$$

where $u(n)$ is a white noise of zero-mean and variance σ^{2}, and $u(n)$ and past values $x(n-1), x(n-2)$ are uncorrelated. (Yule-Walker Equation)
(a) Determine and solve the Yule-Walker Equations for the AR process.
(b) Find the variance of the process $x(n)$.
6. [Problem 5.3 continued] Assume $v(n)$ and $w(n)$ are white Gaussian random processes with zero mean and variance 1. The two filters in Fig. RII. 6 are $G(z)=\frac{1}{1-0.4 z^{-1}}$ and $H(z)=\frac{2}{1-0.5 z^{-1}}$. (Wiener Filter)

Figure RII.6:
(a) Design a 1-order Wiener filter such that the desired output is $u(n)$. What is the MSE?
(b) Design a 2-order Wiener filter. What is the MSE?
7. The autocorrelation sequence of a given zero-mean real-valued random process $u(n)$ is $r(0)=1.25, r(1)=r(-1)=0.5$, and $r(k)=0$ for any $|k| \geq 2$. (Wiener Filter)
(a) What model fits this process best: AR or MA? Find the corresponding parameters.
(b) Design the Wiener filter when using $u(n)$ to predict $u(n+1)$. Can we do better (in terms of MSE) if we use both $u(n)$ and $u(n-1)$ as the input to the Wiener filter? What if using $u(n)$ and $u(n-2)$?
8. Consider the MIMO (multi-input multi-output) wireless communications system shown in Fig. RII.8. There are two antennas at the transmitter and three antennas at the receiver. Assume the channel gain from the i-th transmit antenna to the j-th receive antenna is $h_{j i}$. Take a snapshot at time slot n, the received signal is $y_{j}(n)=h_{j 1} x_{1}(n)+h_{j 2} x_{2}(n)+v_{j}(n)$ where $v_{j}(n)$ are white Gaussian noise (zero mean, variance N_{0}) independent of signals. We further assume $x_{1}(n)$ and $x_{2}(n)$ are uncorrelated, and their power are P_{1} and P_{2}, respectively. Use $y_{1}(n), y_{2}(n)$ and $y_{3}(n)$ as input, find the optimal Wiener filter to estimate $x_{1}(n)$ and $x_{2}(n)$. (Wiener Filter)

Figure RII.8:
9. Given an real-valued $\operatorname{AR}(3)$ model with parameters $\Gamma_{1}=-4 / 5, \Gamma_{2}=1 / 9, \Gamma_{3}=1 / 8$, and $r(0)=1$. Find $r(1), r(2)$, and $r(3)$. (Levinson-Durbin Recursion)
10. Consider the MA(1) process $x(n)=v(n)+b v(n-1)$ with $v(n)$ being a zero-mean white sequence with variance 1 . If we use Γ_{k} to represent this system, prove that (Levinson-Durbin Recursion)

$$
\Gamma_{m+1}=\frac{\Gamma_{m}^{2}}{\Gamma_{m-1}\left(1-\left|\Gamma_{m}\right|^{2}\right)}
$$

11. Given a p-order AR random process $\{x(n)\}$, it can be equivalently represented by any of the three following sets of values: (Levinson-Durbin Recursion)

- $\{r(0), r(1), \ldots, r(p)\}$
- $\left\{a_{1}, a_{2}, \ldots, a_{p}\right\}$ and $r(0)$
- $\left\{\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{p}\right\}$ and $r(0)$
(a) If a new random process is defined as $x^{\prime}(n)=c x(n)$ where c is a real-valued constant, what will be the new autocorrelation sequence $r^{\prime}(k)$ in terms of $r(k)$ (for $\left.k=1,2, \ldots, p\right)$? How about a_{k}^{\prime} and Γ_{k}^{\prime} ?
(b) Let a new random process be defined as $x^{\prime}(n)=(-1)^{n} x(n)$. Prove that $r^{\prime}(k)=(-1)^{k} r(k)$, $a_{k}^{\prime}=(-1)^{k} a_{k}$ and $\Gamma_{k}^{\prime}=(-1)^{k} \Gamma_{k}$. (Hint: use induction when proving Γ_{k}, since Γ_{k} is calculated recursively.)

12. Given a lattice predictor that simultaneously generate both forward and backward prediction errors $f_{m}(n)$ and $b_{m}(n)(m=1,2, \ldots, M)$. (Lattice Structure)
(a) Find $E\left(f_{m}(n) b_{i}^{*}(n)\right)$ for both conditions when $i \leq m$ and $i>m$.
(b) Find $E\left(f_{m}(n+m) f_{i}^{*}(n+i)\right)$ for both conditions when $i=m$ and $i<m$.
(c) Design a joint process estimation scheme using the forward prediction errors.
(d) If for some reason we can only obtain part of forward prediction error (from order 0 to order k) and part of backward prediction error (from oder $k+1$ to order M), i.e., we have $\left\{f_{0}(n), f_{1}(n), \ldots, f_{k}(n), b_{k+1}(n), b_{k+2}(n), \ldots, b_{M}(n)\right\}$. Describe how to use such mixed forward and backward prediction errors to perform joint process estimation.
(Hint: the results from (a) and (b) will be useful for questions (c) and (d).)
13. Consider the backward prediction error sequence $b_{0}(n), b_{1}(n), \ldots, b_{M}(n)$ for the observed sequence $\{u(n)\}$. (Properties of FLP and BLP Errors)
(a) Define $\boldsymbol{b}(n)=\left[b_{0}(n), b_{1}(n), \ldots, b_{M}(n)\right]^{T}$, and $\boldsymbol{u}(n)=[u(n), u(n-1), \ldots, u(n-M)]^{T}$, find \boldsymbol{L} in terms of the coefficients of the backward prediction-error filter where $\boldsymbol{b}(n)=\boldsymbol{L} \boldsymbol{u}(n)$.
(b) Let the correlation matrix for $\boldsymbol{b}(n)$ be \boldsymbol{D}, and that for $\boldsymbol{u}(n)$ be \boldsymbol{R}. Is \boldsymbol{D} diagonal? What is relation between \boldsymbol{R} and \boldsymbol{D} ? Show that a lower triangular matrix \boldsymbol{A} exists such that $\boldsymbol{R}^{-1}=\boldsymbol{A}^{H} \boldsymbol{A}$.
(c) Now we are to perform joint estimation of a desired sequence $\{d(n)\}$ by using either $\left\{b_{k}(n)\right\}$ or $\{u(n)\}$, and their corresponding optimal weight vectors are \boldsymbol{k} and \boldsymbol{w}, respectively. What is relation between \boldsymbol{k} and \boldsymbol{w} ?
