1. Assume that $v(n)$ is a real-valued zero-mean white Gaussian noise with $\sigma_{v}^{2}=1, x(n)$ and $y(n)$ are generated by the equations

$$
\begin{gathered}
x(n)=0.5 x(n-1)+v(n), \\
y(n)=x(n-1)+x(n) .
\end{gathered}
$$

(a) Find the power spectrum of sequence $x(n)$, and its power.
(b) Find the power spectrum of sequence $y(n)$, and its power.
(c) Calculate $r_{y}(k)$ for $k=0,1,2,3$.

Assume now we don't know the real model of the signal, and we want to estimate its power spectrum from $r_{y}(k)$ obtained in part (c). Estimate power spectrum using the following methods:
(d) ARMA $(1,1)$ spectral estimation.
(e) $\operatorname{AR}(2)$ spectral estimation.
(f) Maximum entropy spectral estimation with order 2.
(g) Minimum variance spectral estimation with order 1.

## Solution:

(a) $x(n)$ can be modeled as $\operatorname{AR}(1)$. Hence,

$$
P_{x}(\omega)=\frac{\sigma_{v}^{2}}{\left(1-0.5 e^{-j \omega}\right)\left(1-0.5 e^{j \omega}\right)}=\frac{1}{1.25-\cos \omega} .
$$

For $\operatorname{AR}(1)$ process, we know that $r_{x}(k)=(0.5)^{|k|} r_{x}(0)$ and $r_{x}(0)=4 / 3$.
(b) $y(n)$ can be modeled as $\operatorname{ARMA}(1,1)$.

$$
P_{x}(\omega)=\frac{\left(1+e^{-j \omega}\right)\left(1+e^{j \omega}\right)}{\left(1-0.5 e^{-j \omega}\right)\left(1-0.5 e^{j \omega}\right)}=\frac{2+2 \cos \omega}{1.25-\cos \omega} .
$$

$r_{y}(0)=2 r_{x}(0)+2 r_{x}(1)=4$.
(c) $r_{y}(0)=4 . r_{y}(1)=2 r_{x}(1)+r_{x}(0)+r_{x}(2)=3 . r_{y}(2)=3 / 2 . r_{y}(3)=3 / 4$.
(d) Since the assumed model perfectly matches the real model, the estimated spectrum is exactly the true spectrum

$$
P_{A R M A}(\omega)=\frac{\left(1+e^{-j \omega}\right)\left(1+e^{j \omega}\right)}{\left(1-0.5 e^{-j \omega}\right)\left(1-0.5 e^{j \omega}\right)}=\frac{2+2 \cos \omega}{1.25-\cos \omega} .
$$

(e) Use the Yule-Walker equation,

$$
\left[\begin{array}{l}
r(0) r(1) \\
r(1) \\
r(0)
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=-\left[\begin{array}{l}
r(1) \\
r(2)
\end{array}\right] .
$$

$a_{1}=-15 / 14, a_{2}=3 / 7 . r(0)+a_{1} r(1)+a_{2} r(2)=\sigma^{2}$, we have $\sigma^{2}=10 / 7$.

$$
P_{A R}(\omega)=\frac{10 / 7}{\left(1-15 / 14 e^{-j \omega}+3 / 7 e^{-j 2 \omega}\right)\left(1-15 / 14 e^{j \omega}+3 / 7 e^{j 2 \omega}\right)} .
$$

(f) Maximum entropy is equivalent to AR for Gaussian processes, and hence the result is the same with (e).
(g)

$$
\begin{gathered}
\boldsymbol{R}^{-1}=\frac{1}{7}\left[\begin{array}{cc}
4 & -3 \\
-3 & 4
\end{array}\right] . \\
P_{M V S E}(\omega)=\frac{p+1}{\boldsymbol{e}^{H} \boldsymbol{R}^{-1} \boldsymbol{e}}=\frac{7}{4-3 \cos \omega}
\end{gathered}
$$

2. Show that the periodogram spectrum estimator will result in biased results if an $N$-point rectangular window is applied, i.e., $P_{P E R}(\omega)=\frac{1}{N}\left|\sum_{n=0}^{N-1} x(n) e^{-j \omega n}\right|^{2}$ is biased.

## Solution:

$$
\begin{aligned}
& \quad E\left[P_{P E R}(\omega)\right]=E\left[\frac{1}{N}\left|\sum_{n=0}^{N-1} x(n) e^{-j \omega n}\right|^{2}\right]=\frac{1}{N} E\left[\sum_{n=0}^{N-1} x(n) e^{-j \omega n} \sum_{m=0}^{N-1} x^{*}(m) e^{j \omega m}\right] \\
& =\frac{1}{N} \sum_{n=0}^{N-1} \sum_{m=0}^{N-1} E\left[x(n) x^{*}(m)\right] e^{-j \omega(n-m)}=\frac{1}{N} \sum_{n=0}^{N-1} \sum_{m=0}^{N-1} r(n-m) e^{-j \omega(n-m)}=\frac{1}{N} \sum_{l=-(N-1)}^{N-1}(N- \\
& |l|) r(l) e^{-j \omega l}=\sum_{l=-(N-1)}^{N-1}(1-|l| / N) r(l) e^{-j \omega l}
\end{aligned}
$$

Note that the true spectrum is the Fourier transform of $\{r(l)\}$, i.e., $P(w)=\sum_{l} r(l) e^{-j \omega l}$. As a result, $E\left[P_{P E R}(\omega)\right]=P(w) * w_{T}(\omega)$ is a "smeared" version of the true spectrum, where $w_{T}(\omega)$ is the Fourier transform of a triangle waveform (and hence has the form of $\left.\operatorname{sinc}(\cdot)^{2}\right)$.
3. Consider a wide-sense stationary process consisting of $p$ distinct complex sinusoids in white noise with variance $\sigma^{2}$, i.e.

$$
x(n)=\left[\sum_{i=1}^{p} A_{i} e^{-j\left(n \omega_{i}+\phi_{i}\right)}\right]+v(n)
$$

where $A_{i}$ and $\phi_{i}$ are uncorrelated, and $\phi_{i}$ is a uniformly distributed random variable in $[0,2 \pi)$.
(a) Find the autocorrelation function $r(k)=E[x(n) x(n-k)]$.
(b) Find the $(p+1) \times(p+1)$ correlation matrix $R$.

## Solution:

(a) $r(k)=E\left(x(n) x^{*}(n-k)\right)=\sum_{i=1}^{p} P_{i} e^{-j \omega_{i} k}+\sigma^{2} \delta(k)$, since many cross terms are uncorrelated.
(b) Denote the column vector $\boldsymbol{u}_{i}=\left(1, e^{j \omega_{i}}, \ldots, e^{j \omega_{i} p}\right)^{T} . \boldsymbol{R}=\sum_{i=1}^{p} P_{i} u_{i} \boldsymbol{u}_{i}^{H}+\sigma^{2} \boldsymbol{I}=\boldsymbol{S} \boldsymbol{P} \boldsymbol{S}^{H}+\sigma^{2} \boldsymbol{I}$, where $\boldsymbol{P}=\operatorname{diag}\left(P_{1}, P_{2}, \ldots, P_{p}\right)$, and $\boldsymbol{S}=\left[\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{p}\right]$ is a $(p+1) \times p$ matrix.
4. Consider a random process

$$
x(n)=A \exp \left[j\left(n \omega_{0}+\phi\right)\right]+\alpha_{0} v[n]+\alpha_{1} v[n-1],
$$

where $\{v[n]\}$ is a white noise process with zero mean and variance $\sigma_{v}^{2}$. The phase $\phi$ is uniformly distributed over $[0,2 \pi)$ and uncorrelated with $v[n]$; and $A, \omega_{0}, \alpha_{0}$, and $\alpha_{1}$ are real-valued constants.
(a) Find the autocorrelation function for $\{x[n]\}$ in terms of $A, \omega_{0}, \alpha_{0}, \alpha_{1}$, and $\sigma_{v}^{2}$. Your solution should provide all the necessary steps and justifications.
(b) Consider the process in $\{x[n]\}$ for the case of $\alpha_{0}=1$ and $\alpha_{1}=0$. First, determine the eigen values of an $M \times M$ correlation matrix of the $\{x[n]\}$ process. Next. suppose we have observed $N$ samples, $x[0], x[1], \ldots, x[N-1]$. Use equation, diagram, and concise words to describe the average periodogram method for estimating method for estimating the power spectrum density of the $\{x[n]\}$ process.

## Solution:

(a) Let us denote $x[n]=s[n]+u[n]$, where and $s[n]=A e^{j \phi} e^{j \omega_{0} n} u[n] \triangleq a_{0} v[n]+a_{1} v[n-1]$ are zero mean and uncorrelated. Therefore, autocorrelation function $r_{x}(k)$ can be written as,

$$
r_{x}(k)=r_{s}(k)+r_{u}(k),
$$

$r_{s} k$ can be calculated as following,

$$
\begin{aligned}
r_{s}(k) & =E[s[n] s *[n-k]] \\
& =E\left[A e^{j \phi} e^{j \omega_{0} n} \cdot A e^{-j \phi} e^{-j \omega_{0}(n-k)}\right] \\
& =E\left[A^{2} e^{j \omega_{0} k}\right] \\
& =A^{2} e^{j \omega_{0} k}
\end{aligned}
$$

$u[n]$ is a $2^{\text {nd }}$ order MA process. So, it's autocorrelation function $r_{u}(k)$ can be calculated as following,

$$
\begin{aligned}
r_{u}(k)= & E[u[n] u *[n-k]] \\
= & E\left[\left(a_{0} v[n]+a_{1} v[n-1]\right)\left(a_{0} v[n-k]+a_{1} v[n-k-1]\right)^{*}\right] \\
= & \left.\left(a_{0}^{2}+a_{1}^{2}\right) \sigma_{v}^{2} \delta[k]+\left(a_{0} a_{1} \sigma_{v}^{2}\right)(\delta[k-])+\delta[k+1]\right) \\
& \Rightarrow r_{x} k= \begin{cases}A^{2}+\left(a_{0}^{2}+a_{1}^{2}\right) \sigma_{v}^{2}, & \mathrm{k}=0 ; \\
A^{2} e^{j \omega+0}+a_{0} a_{1} \sigma_{v}^{2}, & |k|=1 ; \\
A^{2} e^{j \omega_{0} k}, & |k|>1 .\end{cases}
\end{aligned}
$$

(b) when $a_{0}=1, a_{1}=0, r_{x}(k)=A^{2} e^{j \omega_{0} k}+\sigma_{v}^{2} \delta[k]$. The autocorrelation matrix can be written as following,

$$
\mathbf{R}_{\mathbf{x}}=\mathbf{R}_{\mathbf{S}}+\sigma_{v}^{2} \mathbf{I},
$$

$$
\begin{gathered}
\text { where } \mathbf{R}_{\mathbf{S}}=A^{2}\left(\begin{array}{cccc}
1 & e^{j \omega_{0}} & \ldots & e^{-j(M-1) \omega_{0}} \\
e^{-j \omega_{0}} & 1 & \ldots & \\
\vdots & \ddots & & \\
\vdots & & \ddots & \\
\text { where } \mathbf{e}=\left(\begin{array}{c}
1 \\
e^{-j \omega_{0}} \\
\vdots \\
e^{-j \omega_{0}(M-1)}
\end{array}\right)
\end{array} .=\begin{array}{c}
\underline{\mathbf{e}}^{H} \\
\end{array} .\right.
\end{gathered}
$$

Note that, $\mathbf{R}_{\mathbf{S}}$ is Hermitian non-negative definite matrix of rank 1 (all rows can be represented as a scalar multiplied by first row). Therefore, $\mathbf{R}_{\mathbf{S}}$ has one eigenvector corresponding to a positive eigenvalue and $M-1$ eigenvectors to zero eigenvalue. Let us denote the positive eigenvalue as $\lambda_{1}$ and corresponding eigenvector as $\underline{\mathbf{v}_{\mathbf{1}}}$,

$$
\mathbf{R}_{\mathbf{S}} \underline{\mathbf{v}_{\mathbf{1}}}=\lambda_{1} \underline{\mathbf{v}_{\mathbf{1}}}
$$

Note that following equation also holds true,

$$
\mathbf{R}_{\mathbf{S}} \underline{\mathbf{e}}=A^{2} \underline{\mathbf{e}}^{H} \underline{\mathbf{e}}=M A^{2} \underline{\mathbf{e}}
$$

Therefore, $\underline{\mathbf{e}}$ is the eigenvector $\underline{\mathbf{v}}_{\mathbf{1}}$ and the eigenvalue $\lambda_{1}=M A^{2}$. If $\underline{\mathbf{u}}$ is an eigenvector of $\mathbf{R}_{\mathbf{x}}$, it is also an eigenvector of $\mathbf{R}_{\mathbf{s}}$ and the corresponding eigenvalues differ by $\sigma_{v}^{2}$.

$$
\begin{aligned}
\mathbf{R}_{\mathbf{x}} \underline{\mathbf{u}} & =\lambda_{x} \underline{\mathbf{u}} \\
\mathbf{R}_{\mathbf{x}} \underline{\mathbf{u}} & =\left(\mathbf{R}_{\mathbf{s}}+\sigma_{v}^{2} \mathbf{I}\right) \underline{\mathbf{u}} \\
& =\mathbf{R}_{\mathbf{s}} \underline{\mathbf{u}}+\sigma_{v}^{2} \underline{\mathbf{u}} \\
\Rightarrow \mathbf{R}_{\mathrm{s}} \underline{\mathbf{u}} & =\left(\lambda_{x}-\sigma_{v}^{2}\right) \underline{\mathbf{u}}
\end{aligned}
$$

Hence, the eigenvalues of $\mathbf{R}_{\mathbf{x}}$ are $M A^{2}+\sigma_{v}^{2}$ and $\sigma_{v}^{2}$.
See class notes for average periodogram.
5. Assume the signal $x(n)=a \cos (\omega n+\phi)+v(n)$, where $a$ is an unknown constant, $v(n)$ is a white Gaussian noise independent of the sinusoid. Suppose we know the autocorrelation coefficients $r(0)=3, r(1)=\sqrt{2}$, and $r(2)=0$, determine the frequency of the sinusoid $\omega$ and the noise power $\sigma_{v}^{2}$.

## Solution:

The cosine wave is two exponential signals with frequencies $\pm \omega$. We have to use $3 \times 3$ correlation matrix,

$$
\boldsymbol{R}=\left[\begin{array}{ccc}
3 & \sqrt{2} & 0 \\
\sqrt{2} & 3 & \sqrt{2} \\
0 & \sqrt{2} & 3
\end{array}\right]
$$

The eigenvalues are $1,3,5$; the eigenvector corresponding to the minimum eigenvalue is $(1,-\sqrt{2}, 1)^{T}$. According to the MUSIC/Pisorenko algorithm, $\sigma_{v}^{2}=1,1-\sqrt{2} e^{j \omega}+e^{j 2 \omega}=0$. Solving the equation, we get $\omega=\pi / 4$.

