ENEE630 ADSP

1. Determine if each of the following are valid autocorrelation matrices of WSS processes. (Correlation Matrix)

$$\boldsymbol{R}_{a} = \begin{bmatrix} 4 & 1 & 1 \\ -1 & 4 & 1 \\ -1 & -1 & 4 \end{bmatrix}, \boldsymbol{R}_{b} = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}, \boldsymbol{R}_{c} = \begin{bmatrix} 2j & 0 & j \\ 0 & 2j & 0 \\ -j & 0 & 2j \end{bmatrix}, \boldsymbol{R}_{d} = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}.$$

Solution:

Recall that the properties of an autocorrelation matrix for a WSS process is that (1) \mathbf{R} is Toeplitz; (2) $\mathbf{R}^{H} = \mathbf{R}$; (3) \mathbf{R} is non-negative definite.

 \mathbf{R}_a is NOT Hermitian; \mathbf{R}_b is NOT Toeplitz; \mathbf{R}_c is NOT Hermitian; \mathbf{R}_d is NOT non-negative definite ($\lambda = 1, -1, 3$).

2. Consider the random process y(n) = x(n) + v(n), where $x(n) = Ae^{j(\omega n + \phi)}$ and v(n) is zero mean white Gaussian noise with a variance σ_v^2 . We also assume the noise and the complex sinusoid are independent. Under the following conditions, determine if y(n) is WSS. Justify your answers. (WSS Process)

(a) ω and A are constants, and ϕ is a uniformly distributed over the interval $[0, 2\pi]$.

(b) ω and ϕ are constants, and A is a Gaussian random variable $\sim \mathcal{N}(0, \sigma_A^2)$.

(c) ϕ and A are constants, and ω is a uniformly distributed over the interval $[\omega_0 - \Delta, \omega_0 + \Delta]$ for some fixed Δ .

Solution:

(a)

$$E[y(n)] = Ae^{j\omega n} E_{\phi}[e^{j\phi}] + E_v[v(n)] = 0$$

$$E[y(n)y^*(n-k)] = E_{\phi}[(Ae^{j(\omega n+\phi)} + v(n))(A^*e^{-j(\omega(n-k)+\phi)} + v^*(n-k))]$$

$$= |A|^2 E_{\phi}[e^{j\omega k}] + \sigma_v^2 \delta(k)$$

$$= |A|^2 e^{j\omega k} + \sigma_v^2 \delta(k)$$

1st and 2nd moments are independent of n. Thus, the process is WSS.

(b)

$$E[y(n)] = E_A[A]e^{j(\omega n + \phi)} + E_v[v(n)] = 0$$

$$E[y(n)y^*(n-k)] = E_A[(Ae^{j(\omega n + \phi)} + v(n))(A^*e^{-j(\omega(n-k) + \phi)} + v^*(n-k))]$$

$$= E_A[AA^*]e^{j\omega k} + \sigma_v^2\delta(k)$$

$$= \sigma_A^2 e^{j\omega k} + \sigma_v^2\delta(k)$$

1st and 2nd moments are independent of n. Thus, the process is WSS.

(c)

$$\begin{split} E[y(n)] &= E_{\omega}[x(n)] + E_{v}[v(n)] = A \cdot E_{\omega}[e^{j\omega n}] \cdot e^{j\phi} = \frac{Ae^{j\phi}}{2jn\Delta} e^{j\omega n} \bigg|_{\omega_{0} - \Delta}^{\omega_{0} + \Delta} \\ \Rightarrow |E[y(n)]| &\leq |\frac{Ae^{j\phi}}{2jn\Delta}| \cdot 2 \to 0 \text{ as } n \to \infty \\ E[y(n)y^{*}(n-k)] &= E_{\omega}[(Ae^{j(\omega n+\phi)} + v(n))(A^{*}e^{-j(\omega(n-k)+\phi)} + v^{*}(n-k))] \\ &= |A|^{2}E_{\omega}[e^{j\omega k}] + \sigma_{v}^{2}\delta(k) \\ &= |A|^{2}e^{j\omega_{0}k}\frac{\sin(k\Delta)}{k\Delta} + \sigma_{v}^{2}\delta(k) \end{split}$$

The sequence defined here is actually NOT a WSS process, but its 1st and 2nd moment statistics are approximately independent of n as $n \to \infty$.

3. [Rec.II P2(a) revisited] Determine the PSD of the WSS process $y(n) = Ae^{j(\omega_0 n + \phi)} + v(n)$, where v(n) is zero mean white Gaussian noise with a variance σ_v^2 , and ϕ is uniformly distributed over the interval $[0, 2\pi]$. (Power Spectral Density)

Solution:

In the autocorrelation function in P2(a) is

$$r_y(k) = A^2 e^{j\omega k} + \sigma_v^2 \delta(k)$$

By taking discrete time Fourier transform on $r_y(k)$, we get

$$P_y(\omega) = 2\pi A^2 \delta(\omega - \omega_0) + \sigma_v^2$$

4. Assume v(n) is a white Gaussian random process with zero mean and variance 1. The two filters in Fig. RII.4 are $G(z) = \frac{1}{1-0.4z^{-1}}$ and $H(z) = \frac{2}{1-0.5z^{-1}}$. (Auto-Regressive Process)

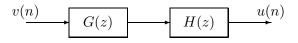


Figure RII.4:

(a) Is u(n) an AR process? If so, find the parameters.

(b) Find the autocorrelation coefficients $r_u(0)$, $r_u(1)$, and $r_u(2)$ of the process u(n).

Solution:

(a)
$$U(z) = \frac{2}{1-0.9z^{-1}+0.2z^{-2}}V(z), u(n) = 0.9u(n-1) - 0.2u(n-2) + 2v(n), a_1 = -0.9, a_2 = 0.2.$$

(b) Apply the Yule-Walker equation,

$$\binom{r_u(0) \ r_u(1)}{r_u(1) \ r_u(0)} \binom{-0.9}{0.2} = -\binom{r_u(1)}{r_u(2)},$$

from which we get

$$r_u(1) = -\frac{a_1}{1+a_2}r_u(0) = \frac{3}{4}r_u(0)$$
$$r_u(2) = \left(\frac{a_1^2}{1+a_2} - a_2\right)r_u(0) = \frac{19}{40}r_u(0)$$

Moreover, since $r_u(0) + a_1 r_u(1) + a_2 r_u(2) = 4\sigma_v^2$ (Here, '4' because in this model it is '2v(n)' rather than 'v(n)'), we have $r_u(0) = \frac{1+a_2}{1-a_2} \frac{4\sigma_v^2}{(1+a_2)^2 - a_1^2} = \frac{200}{21}$. Then, $r_u(1) = \frac{50}{7}$, and $r_u(2) = \frac{95}{21}$. Note:

1. In general, for a *p*-order AR model, given $\{\sigma_v^2, a_1, a_2, \ldots, a_p\}$, we can find $\{r(0), r(1), r(2), \ldots\}$; and vice versa. They are related by Yule-Walker Equations.

2. $r(-k) = r^*(k)$ in general (and hence matrix **R** is Hermitian), and r(-k) = r(k) for real-valued signals. r(0) is the power of sequence u(n), and hence r(0) > 0 from physical point of view.

3. For an AR model, $u(n) = \sum_{k=1}^{p} -a_k u(n-k) + v(n)$ has NO correlation with future $v(m), m = n+1, n+2, \ldots$ (convince yourself). Simply multiply both sides by $u^*(n)$ and take expectation, we get $r(0) = \sum_{k=1}^{p} -a_k r(-k) + E(v(n)u^*(n))$. Note that $E(v(n)u^*(n)) = E(v(n)(\sum_{k=1}^{p} -a_k^*u^*(n-k) + v^*(n)))$ but $E(v(n)u^*(n-k)) = 0$ for $k \ge 1$. Then, $r(0) = \sum_{k=1}^{p} -a_k r(-k) + \sigma_v^2$, which we have used to find the relation of r(0) (signal power) and σ_v^2 (model parameter) in part (b). We could multiply $u^*(n-k)$ instead of $u^*(n)$ and take the expectation, and this is how the Yule-Walker equations are derived.

5. Let a real-valued AR(2) process be described by

$$u(n) = x(n) + a_1 x(n-1) + a_2 x(n-2)$$

where u(n) is a white noise of zero-mean and variance σ^2 , and u(n) and past values x(n-1), x(n-2) are uncorrelated. (Yule-Walker Equation)

- (a) Determine and solve the Yule-Walker Equations for the AR process.
- (b) Find the variance of the process x(n).

Solution: (a) Solve the Yule-Walker equation, we have

$$r_x(0) = -a_1 r_x(-1) - a_2 r_x(-2) + \sigma^2$$

$$r_x(1) = -a_1 r_x(0) - a_2 r_x(-1)$$

$$r_x(2) = -a_1 r_x(1) - a_2 r_x(0)$$

Use the relation that $r_x(k) = r_x(-k)$ and solve this we get

$$r_x(0) = \frac{\sigma^2}{1 - \frac{a_1^2}{1 + a_2} + a_2(\frac{a_1^2}{1 + a_2} - a_2)}$$
$$r_x(1) = -\frac{a_1}{1 + a_2}r_x(0)$$
$$r_x(2) = (\frac{a_1^2}{1 + a_2} - a_2)r_x(0)$$

(b) The process is zero mean, so the variance is $r_x(0)$.

6. [Problem II.4 continued] Assume v(n) and w(n) are white Gaussian random processes with zero mean and variance 1. The two filters in Fig. RII.6 are $G(z) = \frac{1}{1-0.4z^{-1}}$ and $H(z) = \frac{2}{1-0.5z^{-1}}$. (Wiener Filter)

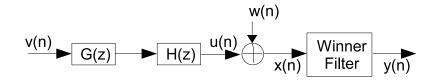


Figure RII.6:

(a) Design a 1-order Wiener filter such that the desired output is u(n). What is the MSE?

(b) Design a 2-order Wiener filter. What is the MSE? *Solution:*

(a)
$$\boldsymbol{R}_{x} = \begin{bmatrix} r_{u}(0) + 1 & r_{u}(1) \\ r_{u}(1) & r_{u}(0) + 1 \end{bmatrix}$$
, and $\boldsymbol{p}_{xd} = \begin{bmatrix} r_{u}(0) \\ r_{u}(1) \end{bmatrix}$. The filter is $\boldsymbol{w} = \boldsymbol{R}_{x}^{-1}\boldsymbol{p}$ with MSE $r_{u}(0) - \boldsymbol{p}_{xd}^{H}\boldsymbol{R}_{x}^{-1}\boldsymbol{p}_{xd}$.

(b) Similar to (a), except
$$\mathbf{R}_x = \begin{bmatrix} r_u(0) + 1 & r_u(1) & r_u(2) \\ r_u(1) & r_u(0) + 1 & r_u(1) \\ r_u(2) & r_u(1) & r_u(0) + 1 \end{bmatrix}$$
, and $\mathbf{p}_{xd} = \begin{bmatrix} r_u(0) \\ r_u(1) \\ r_u(2) \end{bmatrix}$.
MSE is still the same expression, i.e. $r_u(0) - \mathbf{p}_{xd}^H \mathbf{R}_x^{-1} \mathbf{p}_{xd}$.

Note:

1. In general, for a *p*-order AR model, given $\{\sigma_v^2, a_1, a_2, \ldots, a_p\}$, we can find $\{r(0), r(1), r(2), \ldots\}$; and vice versa. They are related by Yule-Walker Equations.

2. $r(-k) = r^*(k)$ in general (and hence matrix **R** is Hermitian), and r(-k) = r(k) for real-valued signals. r(0) is the power of sequence u(n), and hence r(0) > 0 from physical point of view.

3. For an AR model, $u(n) = \sum_{k=1}^{p} -a_k u(n-k) + v(n)$ has NO correlation with future $v(m), m = n+1, n+2, \ldots$ (convince yourself). Simply multiply both sides by $u^*(n)$ and take expectation, we get $r(0) = \sum_{k=1}^{p} -a_k r(-k) + E(v(n)u^*(n))$. Note that $E(v(n)u^*(n)) = E(v(n)(\sum_{k=1}^{p} -a_k^*u^*(n-k) + v^*(n)))$ but $E(v(n)u^*(n-k)) = 0$ for $k \ge 1$. Then, $r(0) = \sum_{k=1}^{p} -a_k r(-k) + \sigma_v^2$, which we have used to find the relation of r(0) (signal power) and σ_v^2 (model parameter) in part (b). We

could multiply $u^*(n-k)$ instead of $u^*(n)$ and take the expectation, and this is how the Yule-Walker equations are derived.

4. When designing Wiener filtering, one should find \mathbf{R}_{xx} and \mathbf{p}_{xd} first. Then, it's straightforward to apply $\mathbf{w} = \mathbf{R}_{xx}^{-1} \mathbf{p}_{xd}$ with MSE $\sigma_d^2 - \mathbf{p}_{xd}^H \mathbf{R}_{xx}^{-1} \mathbf{p}_{xd}$.

7. The autocorrelation sequence of a given zero-mean real-valued random process u(n) is r(0) = 1.25, r(1) = r(-1) = 0.5, and r(k) = 0 for any $|k| \ge 2$. (Wiener Filter)

(a) What model fits this process best: AR or MA? Find the corresponding parameters.

(b) Design the Wiener filter when using u(n) to predict u(n + 1). Can we do better (in terms of MSE) if we use both u(n) and u(n - 1) as the input to the Wiener filter? What if using u(n) and u(n - 2)?

Solution:

(a) Apparently, it is an MA process with order 1, i.e., x(n) = v(n) + bv(n-1), v(n) is a zero-mean white sequence with variance σ_v^2 .

Then, $r(0) = E(x(n)x^*(n)) = (1+|b|^2)\sigma_v^2$, and $r(1) = E(x(n)x^*(n-1)) = b\sigma_v^2$. We can find two solutions $(b = 2, \sigma_v^2 = 0.25)$ and $(b = 0.5, \sigma_v^2 = 1)$.

(b1) $R = E(u(n)u^*(n)) = r(0)$, and $p = E(u(n)u^*(n+1)) = r(-1)$. Hence, $w = r(0)^{-1}r(-1) = 2/5$, i.e., y(n) = 2/5u(n) and MSE = 1.25 - 0.2 = 1.05.

(b2) $\mathbf{R} = E(\binom{u(n)}{u(n-1)}[u^*(n), u^*(n-1)]) = \binom{r(0) \ r(1)}{r(1) \ r(0)} = \binom{1.25 \ 0.5}{0.5 \ 1.25}, \text{ and } \mathbf{p} = E(\binom{u(n)}{u(n-1)}u^*(n+1)) = \binom{0.5}{0}, \ y(n) = 10/21u(n) - 4/21u(n-1), \text{ and } MSE = 1.25 - 5/21 \simeq 1.01.$ Improved.

 $\begin{pmatrix} 0.5 \\ 0 \end{pmatrix}, \ y(n) = \frac{10}{21u(n)} - \frac{4}{21u(n-1)}, \text{ and MSE} = 1.25 - \frac{5}{21} \simeq 1.01. \text{ Improved.}$ $(b3) \ \mathbf{R} = E(\binom{u(n)}{u(n-2)})[u^*(n), u^*(n-2)]) = \binom{r(0)}{r(2)} = \binom{1.25 \ 0}{0 \ 1.25}, \text{ and } \mathbf{p} = E(\binom{u(n)}{u(n-2)}u^*(n+1)) = \binom{0.5}{0}, \ y(n) = \frac{2}{5u(n)} + 0u(n-2) \text{ which is exactly the same with (b1).}$

8. Consider the MIMO (multi-input multi-output) wireless communications system shown in Fig. RII.8. There are two antennas at the transmitter and three antennas at the receiver. Assume the channel gain from the *i*-th transmit antenna to the *j*-th receive antenna is h_{ji} . Take a snapshot at time slot *n*, the received signal is $y_j(n) = h_{j1}x_1(n) + h_{j2}x_2(n) + v_j(n)$ where $v_j(n)$ are white Gaussian noise (zero mean, variance N_0) independent of signals. We further assume $x_1(n)$ and $x_2(n)$ are uncorrelated, and their power are P_1 and P_2 , respectively. Use $y_1(n), y_2(n)$ and $y_3(n)$ as input, find the optimal Wiener filter to estimate $x_1(n)$ and $x_2(n)$. (Wiener Filter)

Solution:

Denote $\boldsymbol{y}(n) = [y_1(n), y_2(n), y_3(n)]^T$, and $\boldsymbol{v}(n) = [v_1(n), v_2(n), v_3(n)]^T$. We can have a matrix representation of the system: $\boldsymbol{y}(n) = \boldsymbol{H}\boldsymbol{x}(n) + \boldsymbol{v}(n)$.

For Wiener filters, we need to find the autocorrelation matrix of the input to the filter, and the cross-correlation vector of the input and the desired output. (It's not a big deal whether such signals are in time domain or other domain, e.g., space domain.)

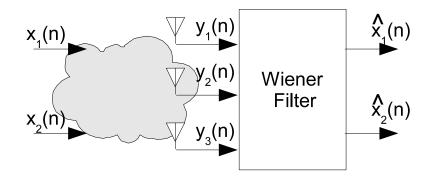


Figure RII.8:

 $\boldsymbol{R}_{yy} = E[\boldsymbol{y}(n)\boldsymbol{y}(n)^{H}] = E[(\boldsymbol{H}\boldsymbol{x}(n) + \boldsymbol{v}(n))(\boldsymbol{H}\boldsymbol{x}(n) + \boldsymbol{v}(n))^{H}] = E[\boldsymbol{H}\boldsymbol{x}(n)\boldsymbol{x}^{H}(n)\boldsymbol{H}^{H}] + E[\boldsymbol{v}(n)\boldsymbol{v}(n))^{H}] = \boldsymbol{H}\begin{bmatrix} P_{1} & 0\\ 0 & P_{2} \end{bmatrix} \boldsymbol{H}^{H} + N_{0}\boldsymbol{I}.$

 $\boldsymbol{r}_{yx1} = E[\boldsymbol{y}(n)x_1(n)^*] = E[\boldsymbol{H}\boldsymbol{x}(n)x_1(n)^*] = P_1 \begin{bmatrix} h_{11} \\ h_{21} \\ h_{31} \end{bmatrix}.$ Then, $\boldsymbol{w}_1 = \boldsymbol{R}_{yy}^{-1}\boldsymbol{r}_{yx1}$. The output is $\hat{x}_1(n) = P_1[h_{11}^*, h_{21}^*, h_{31}^*]\boldsymbol{R}_{yy}^{-1}\boldsymbol{y}(n)$. Similar for \boldsymbol{w}_2 .

9. Given an real-valued AR(3) model with parameters $\Gamma_1 = -4/5$, $\Gamma_2 = 1/9$, $\Gamma_3 = 1/8$, and r(0) = 1. Find r(1), r(2), and r(3). (Levinson-Durbin Recursion)

Solution:

Since $\Gamma_1 = -r(1)/r(0)$, $r(1) = -\Gamma_1 r(0) = 4/5$. $P_0 = r(0) = 1$.

 $\Gamma_1 = -4/5$. Then, $a_{1,0} = 1, a_{1,1} = -4/5$. $P_1 = (1 - |\Gamma_1|^2)P_0 = 9/25$. $\Delta_1 = -P_1\Gamma_2 = -1/25$. Also, $\Delta_1 = r(-2)a_{1,0} + r(-1)a_{1,1}$. Hence, $r(2) = r(-2) = \Delta_1 - r(-1)a_{1,1} = 3/5$.

$$a_{2,0} = 1, a_{2,1} = -4/5 + 1/9(-4/5) = -8/9, a_{2,2} = \Gamma_2 = 1/9. P_2 = (1 - |\Gamma_2|^2)P_1 = 16/45.$$

$$\Delta_2 = -P_2\Gamma_3 = -2/45 = r(-3)a_{2,0} + r(-2)a_{2,1} + r(-1)a_{2,2}, \text{ from which we solve } r(3) = 2/5.$$

10. Consider the MA(1) process x(n) = v(n) + bv(n-1) with v(n) being a zero-mean white sequence with variance 1. If we use Γ_k to represent this system, prove that (Levinson-Durbin Recursion)

$$\Gamma_{m+1} = \frac{\Gamma_m^2}{\Gamma_{m-1}(1 - |\Gamma_m|^2)}$$

Solution:

Note that r(k) = 0 for $|k| \ge 2$. $\Gamma_{m+1} = -\frac{\Delta_m}{P_m}$. $\Delta_m = \sum_{k=0}^m r(k - (m+1))a_{m,k} = r(-1)a_{m,m} = r(-1)\Gamma_m$. Therefore, $\frac{\Gamma_{m+1}}{\Gamma_m} = \frac{\Delta_m}{P_m} \frac{P_{m-1}}{\Delta_{m-1}} = \frac{\Gamma_m}{\Gamma_{m-1}(1 - |\Gamma_m|^2)}$.

11. Given a *p*-order AR random process $\{x(n)\}$, it can be equivalently represented by any of the three following sets of values: (Levinson-Durbin Recursion)

- $\{r(0), r(1), \ldots, r(p)\}$
- $\{a_1, a_2, \dots, a_p\}$ and r(0)
- $\{\Gamma_1, \Gamma_2, \ldots, \Gamma_p\}$ and r(0)

(a) If a new random process is defined as x'(n) = cx(n) where c is a real-valued constant, what will be the new autocorrelation sequence r'(k) in terms of r(k) (for k = 1, 2, ..., p)? How about a'_k and Γ'_k ?

(b) Let a new random process be defined as $x'(n) = (-1)^n x(n)$. Prove that $r'(k) = (-1)^k r(k)$, $a'_k = (-1)^k a_k$ and $\Gamma'_k = (-1)^k \Gamma_k$. (Hint: use induction when proving Γ_k , since Γ_k is calculated recursively.)

Solution:

(a)
$$r'(k) = E(x'(n)x'^*(n-k)) = c^2r(k).$$

According to Yule-Walker equations, $\mathbf{R}^T \mathbf{a} = -\mathbf{r}$ and $\mathbf{R}'^T \mathbf{a}' = -\mathbf{r}'$. Then $c^2 \mathbf{R}^T \mathbf{a}' = -c^2 \mathbf{r}$. Hence $\mathbf{a}' = \mathbf{a}$, i.e., $a'_k = a_k$. As Γ_k is recursively calculated out of $\{a_k\}$, we have $\Gamma'_k = \Gamma_k$.

(b)
$$r'(k) = E(x'(n)x'^*(n-k)) = (-1)^{n+n-k}r(k) = (-1)^k r(k).$$

Use the scale form of Yule-Walker equations, i.e., $\sum_{l=1}^{p} a_l r(k-l) = -r(k)$ for k = 1, 2, ..., p. Similarly, for the modified system, $\sum_{l=1}^{p} a'_l r'(k-l) = -r'(k)$ for k = 1, 2, ..., p, or $\sum_{l=1}^{p} a'_l (-1)^{k-l} r(k-l) = -(-1)^k r(k)$. Obviously, letting $a'_l = (-1)^l a_l$ will make the two equations consistent.

Find Γ_k recursively from $a_{p,k} = a_k$. Hence, $a'_{p,k} = (-1)^k a_{p,k}$. $\Gamma'_p = a'_{p,p} = (-1)^p \Gamma_p$. Assume $a'_{q,k} = (-1)^k a_{q,k} (0 \le k \le q)$ for q < n (and hence $\Gamma'_q = a'_{q,q} = (-1)^q \Gamma_q$), we have to prove it is also true for q - 1. Since

$$a_{q-1,k} = \frac{a_{q,k} - a_{q,q}a_{q,q-k}^*}{1 - |a_{q,q}|^2},$$

we have,

$$a'_{q-1,k} = \frac{a'_{q,k} - a'_{q,q}a'^*_{q,q-k}}{1 - |a'_{q,q}|^2} = \frac{a_{q,k}(-1)^k - (-1)^{2q-k}a_{q,q}a^*_{q,q-k}}{1 - |a_{q,q}|^2} = (-1)^k a_{q-1,k}.$$

QED.

12. Given a lattice predictor that simultaneously generate both forward and backward prediction errors $f_m(n)$ and $b_m(n)$ (m = 1, 2, ..., M). (Lattice Structure)

- (a) Find $E(f_m(n)b_i^*(n))$ for both conditions when $i \leq m$ and i > m.
- (b) Find $E(f_m(n+m)f_i^*(n+i))$ for both conditions when i = m and i < m.
- (c) Design a joint process estimation scheme using the forward prediction errors.

(d) If for some reason we can only obtain part of forward prediction error (from order 0 to order k) and part of backward prediction error (from oder k + 1 to order M), i.e., we have $\{f_0(n), f_1(n), \ldots, f_k(n), b_{k+1}(n), b_{k+2}(n), \ldots, b_M(n)\}$. Describe how to use such mixed forward and backward prediction errors to perform joint process estimation.

(Hint: the results from (a) and (b) will be useful for questions (c) and (d).)

13. Consider the backward prediction error sequence $b_0(n), b_1(n), \ldots, b_M(n)$ for the observed sequence $\{u(n)\}$. (Properties of FLP and BLP Errors)

(a) Define $\boldsymbol{b}(n) = [b_0(n), b_1(n), \dots, b_M(n)]^T$, and $\boldsymbol{u}(n) = [u(n), u(n-1), \dots, u(n-M)]^T$, find \boldsymbol{L} in terms of the coefficients of the backward prediction-error filter where $\boldsymbol{b}(n) = \boldsymbol{L}\boldsymbol{u}(n)$.

(b) Let the correlation matrix for $\boldsymbol{b}(n)$ be \boldsymbol{D} , and that for $\boldsymbol{u}(n)$ be \boldsymbol{R} . Is \boldsymbol{D} diagonal? What is relation between \boldsymbol{R} and \boldsymbol{D} ? Show that a lower triangular matrix \boldsymbol{A} exists such that $\boldsymbol{R}^{-1} = \boldsymbol{A}^{H} \boldsymbol{A}$.

(c) Now we are to perform joint estimation of a desired sequence $\{d(n)\}$ by using either $\{b_k(n)\}$ or $\{u(n)\}$, and their corresponding optimal weight vectors are \boldsymbol{k} and \boldsymbol{w} , respectively. What is relation between \boldsymbol{k} and \boldsymbol{w} ?