1. Determine if each of the following are valid autocorrelation matrices of WSS processes. (Correlation Matrix)

$$
\boldsymbol{R}_{a}=\left[\begin{array}{ccc}
4 & 1 & 1 \\
-1 & 4 & 1 \\
-1 & -1 & 4
\end{array}\right], \boldsymbol{R}_{b}=\left[\begin{array}{ccc}
2 & 1 & 1 \\
1 & 2 & 0 \\
1 & 0 & 2
\end{array}\right], \boldsymbol{R}_{c}=\left[\begin{array}{ccc}
2 j & 0 & j \\
0 & 2 j & 0 \\
-j & 0 & 2 j
\end{array}\right], \boldsymbol{R}_{d}=\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & 0 \\
2 & 0 & 1
\end{array}\right] .
$$

Solution:

Recall that the properties of an autocorrelation matrix for a WSS process is that (1) \boldsymbol{R} is Toeplitz; (2) $\boldsymbol{R}^{H}=\boldsymbol{R} ;$ (3) \boldsymbol{R} is non-negative definite.
\boldsymbol{R}_{a} is NOT Hermitian; \boldsymbol{R}_{b} is NOT Toeplitz; \boldsymbol{R}_{c} is NOT Hermitian; \boldsymbol{R}_{d} is NOT non-negative definite ($\lambda=1,-1,3$).
2. Consider the random process $y(n)=x(n)+v(n)$, where $x(n)=A e^{j(\omega n+\phi)}$ and $v(n)$ is zero mean white Gaussian noise with a variance σ_{v}^{2}. We also assume the noise and the complex sinusoid are independent. Under the following conditions, determine if $y(n)$ is WSS. Justify your answers. (WSS Process)
(a) ω and A are constants, and ϕ is a uniformly distributed over the interval $[0,2 \pi]$.
(b) ω and ϕ are constants, and A is a Gaussian random variable $\sim \mathcal{N}\left(0, \sigma_{A}^{2}\right)$.
(c) ϕ and A are constants, and ω is a uniformly distributed over the interval $\left[\omega_{0}-\Delta, \omega_{0}+\Delta\right]$ for some fixed Δ.

Solution:

(a)

$$
\begin{aligned}
E[y(n)] & =A e^{j \omega n} E_{\phi}\left[e^{j \phi}\right]+E_{v}[v(n)]=0 \\
E\left[y(n) y^{*}(n-k)\right] & =E_{\phi}\left[\left(A e^{j(\omega n+\phi)}+v(n)\right)\left(A^{*} e^{-j(\omega(n-k)+\phi)}+v^{*}(n-k)\right)\right] \\
& =|A|^{2} E_{\phi}\left[e^{j \omega k}\right]+\sigma_{v}^{2} \delta(k) \\
& =|A|^{2} e^{j \omega k}+\sigma_{v}^{2} \delta(k)
\end{aligned}
$$

1 st and 2 nd moments are independent of n. Thus, the process is WSS.
(b)

$$
\begin{aligned}
E[y(n)] & =E_{A}[A] e^{j(\omega n+\phi)}+E_{v}[v(n)]=0 \\
E\left[y(n) y^{*}(n-k)\right] & =E_{A}\left[\left(A e^{j(\omega n+\phi)}+v(n)\right)\left(A^{*} e^{-j(\omega(n-k)+\phi)}+v^{*}(n-k)\right)\right] \\
& =E_{A}\left[A A^{*}\right] e^{j \omega k}+\sigma_{v}^{2} \delta(k) \\
& =\sigma_{A}^{2} e^{j \omega k}+\sigma_{v}^{2} \delta(k)
\end{aligned}
$$

1st and 2nd moments are independent of n. Thus, the process is WSS.
(c)

$$
\begin{aligned}
E[y(n)] & =E_{\omega}[x(n)]+E_{v}[v(n)]=A \cdot E_{\omega}\left[e^{j \omega n}\right] \cdot e^{j \phi}=\left.\frac{A e^{j \phi}}{2 j n \Delta} e^{j \omega n}\right|_{\omega_{0}-\Delta} ^{\omega_{0}+\Delta} \\
\Rightarrow|E[y(n)]| & \leq\left|\frac{A e^{j \phi}}{2 j n \Delta}\right| \cdot 2 \rightarrow 0 \text { as } n \rightarrow \infty \\
E\left[y(n) y^{*}(n-k)\right] & =E_{\omega}\left[\left(A e^{j(\omega n+\phi)}+v(n)\right)\left(A^{*} e^{-j(\omega(n-k)+\phi)}+v^{*}(n-k)\right)\right] \\
& =|A|^{2} E_{\omega}\left[e^{j \omega k}\right]+\sigma_{v}^{2} \delta(k) \\
& =|A|^{2} e^{j \omega_{0} k} \frac{\sin (k \Delta)}{k \Delta}+\sigma_{v}^{2} \delta(k)
\end{aligned}
$$

The sequence defined here is actually NOT a WSS process, but its 1st and 2nd moment statistics are approximately independent of n as $n \rightarrow \infty$.
3. [Rec.II P2(a) revisited] Determine the PSD of the WSS process $y(n)=A e^{j\left(\omega_{0} n+\phi\right)}+v(n)$, where $v(n)$ is zero mean white Gaussian noise with a variance σ_{v}^{2}, and ϕ is uniformly distributed over the interval $[0,2 \pi]$. (Power Spectral Density)

Solution:

In the autocorrelation function in P2(a) is

$$
r_{y}(k)=A^{2} e^{j \omega k}+\sigma_{v}^{2} \delta(k)
$$

By taking discrete time Fourier transform on $r_{y}(k)$, we get

$$
P_{y}(\omega)=2 \pi A^{2} \delta\left(\omega-\omega_{0}\right)+\sigma_{v}^{2}
$$

4. Assume $v(n)$ is a white Gaussian random process with zero mean and variance 1. The two filters in Fig. RII. 4 are $G(z)=\frac{1}{1-0.4 z^{-1}}$ and $H(z)=\frac{2}{1-0.5 z^{-1}}$. (Auto-Regressive Process)

Figure RII.4:
(a) Is $u(n)$ an AR process? If so, find the parameters.
(b) Find the autocorrelation coefficients $r_{u}(0), r_{u}(1)$, and $r_{u}(2)$ of the process $u(n)$.

Solution:

(a) $U(z)=\frac{2}{1-0.9 z^{-1}+0.2 z^{-2}} V(z), u(n)=0.9 u(n-1)-0.2 u(n-2)+2 v(n), a_{1}=-0.9, a_{2}=0.2$.
(b) Apply the Yule-Walker equation,

$$
\left(\begin{array}{l}
r_{u}(0) \\
r_{u}(1) \\
r_{u}(1)
\end{array} r_{u}(0)\right)\binom{-0.9}{0.2}=-\binom{r_{u}(1)}{r_{u}(2)},
$$

from which we get

$$
\left\{\begin{array}{c}
r_{u}(1)=-\frac{a_{1}}{11+a_{2}} r_{u}(0)=\frac{3}{4} r_{u}(0) \\
r_{u}(2)=\left(\frac{a_{1}^{2}}{1+a_{2}}-a_{2}\right) r_{u}(0)=\frac{19}{40} r_{u}(0)
\end{array}\right.
$$

Moreover, since $r_{u}(0)+a_{1} r_{u}(1)+a_{2} r_{u}(2)=4 \sigma_{v}^{2}$ (Here, ' 4 ' because in this model it is ' $2 v(n)$ ' rather than ' $v(n)^{\prime}$ ', we have $r_{u}(0)=\frac{1+a_{2}}{1-a_{2}} \frac{4 \sigma_{v}^{2}}{\left(1+a_{2}\right)^{2}-a_{1}^{2}}=\frac{200}{21}$. Then, $r_{u}(1)=\frac{50}{7}$, and $r_{u}(2)=\frac{95}{21}$.
Note:

1. In general, for a p-order AR model, given $\left\{\sigma_{v}^{2}, a_{1}, a_{2}, \ldots, a_{p}\right\}$, we can find $\{r(0), r(1), r(2), \ldots\}$; and vice versa. They are related by Yule-Walker Equations.
2. $r(-k)=r^{*}(k)$ in general (and hence matrix \boldsymbol{R} is Hermitian), and $r(-k)=r(k)$ for real-valued signals. $r(0)$ is the power of sequence $u(n)$, and hence $r(0)>0$ from physical point of view.
3. For an AR model, $u(n)=\sum_{k=1}^{p}-a_{k} u(n-k)+v(n)$ has NO correlation with future $v(m), m=$ $n+1, n+2, \ldots$ (convince yourself). Simply multiply both sides by $u^{*}(n)$ and take expectation, we get $r(0)=\sum_{k=1}^{p}-a_{k} r(-k)+E\left(v(n) u^{*}(n)\right)$. Note that $E\left(v(n) u^{*}(n)\right)=E\left(v(n)\left(\sum_{k=1}^{p}-a_{k}^{*} u^{*}(n-\right.\right.$ $\left.k)+v^{*}(n)\right)$) but $E\left(v(n) u^{*}(n-k)\right)=0$ for $k \geq 1$. Then, $r(0)=\sum_{k=1}^{p}-a_{k} r(-k)+\sigma_{v}^{2}$, which we have used to find the relation of $r(0)$ (signal power) and σ_{v}^{2} (model parameter) in part (b). We could multiply $u^{*}(n-k)$ instead of $u^{*}(n)$ and take the expectation, and this is how the Yule-Walker equations are derived.
4. Let a real-valued $\mathrm{AR}(2)$ process be described by

$$
u(n)=x(n)+a_{1} x(n-1)+a_{2} x(n-2)
$$

where $u(n)$ is a white noise of zero-mean and variance σ^{2}, and $u(n)$ and past values $x(n-1), x(n-2)$ are uncorrelated. (Yule-Walker Equation)
(a) Determine and solve the Yule-Walker Equations for the AR process.
(b) Find the variance of the process $x(n)$.

Solution: (a) Solve the Yule-Walker equation, we have

$$
\begin{aligned}
& r_{x}(0)=-a_{1} r_{x}(-1)-a_{2} r_{x}(-2)+\sigma^{2} \\
& r_{x}(1)=-a_{1} r_{x}(0)-a_{2} r_{x}(-1) \\
& r_{x}(2)=-a_{1} r_{x}(1)-a_{2} r_{x}(0)
\end{aligned}
$$

Use the relation that $r_{x}(k)=r_{x}(-k)$ and solve this we get

$$
\begin{aligned}
r_{x}(0) & =\frac{\sigma^{2}}{1-\frac{a_{1}^{2}}{1+a_{2}}+a_{2}\left(\frac{a_{1}^{2}}{1+a_{2}}-a_{2}\right)} \\
r_{x}(1) & =-\frac{a_{1}}{1+a_{2}} r_{x}(0) \\
r_{x}(2) & =\left(\frac{a_{1}^{2}}{1+a_{2}}-a_{2}\right) r_{x}(0)
\end{aligned}
$$

(b) The process is zero mean, so the variance is $r_{x}(0)$.
6. [Problem II. 4 continued] Assume $v(n)$ and $w(n)$ are white Gaussian random processes with zero mean and variance 1. The two filters in Fig. RII. 6 are $G(z)=\frac{1}{1-0.4 z^{-1}}$ and $H(z)=\frac{2}{1-0.5 z^{-}}$. (Wiener Filter)

Figure RII.6:
(a) Design a 1-order Wiener filter such that the desired output is $u(n)$. What is the MSE?
(b) Design a 2-order Wiener filter. What is the MSE?

Solution:

(a) $\boldsymbol{R}_{x}=\left[\begin{array}{cc}r_{u}(0)+1 & r_{u}(1) \\ r_{u}(1) & r_{u}(0)+1\end{array}\right]$, and $\boldsymbol{p}_{x d}=\left[\begin{array}{c}r_{u}(0) \\ r_{u}(1)\end{array}\right]$. The filter is $\boldsymbol{w}=\boldsymbol{R}_{x}^{-1} \boldsymbol{p}$ with MSE $r_{u}(0)-\boldsymbol{p}_{x d}^{H} \boldsymbol{R}_{x}^{-1} \boldsymbol{p}_{x d}$.
(b) Similar to (a), except $\boldsymbol{R}_{x}=\left[\begin{array}{ccc}r_{u}(0)+1 & r_{u}(1) & r_{u}(2) \\ r_{u}(1) & r_{u}(0)+1 & r_{u}(1) \\ r_{u}(2) & r_{u}(1) & r_{u}(0)+1\end{array}\right]$, and $\boldsymbol{p}_{x d}=\left[\begin{array}{c}r_{u}(0) \\ r_{u}(1) \\ r_{u}(2)\end{array}\right]$.

MSE is still the same expression, i.e. $r_{u}(0)-\boldsymbol{p}_{x d}^{H} \boldsymbol{R}_{x}^{-1} \boldsymbol{p}_{x d}$.
Note:

1. In general, for a p-order AR model, given $\left\{\sigma_{v}^{2}, a_{1}, a_{2}, \ldots, a_{p}\right\}$, we can find $\{r(0), r(1), r(2), \ldots\}$; and vice versa. They are related by Yule-Walker Equations.
2. $r(-k)=r^{*}(k)$ in general (and hence matrix \boldsymbol{R} is Hermitian), and $r(-k)=r(k)$ for real-valued signals. $r(0)$ is the power of sequence $u(n)$, and hence $r(0)>0$ from physical point of view.
3. For an AR model, $u(n)=\sum_{k=1}^{p}-a_{k} u(n-k)+v(n)$ has NO correlation with future $v(m), m=$ $n+1, n+2, \ldots$ (convince yourself). Simply multiply both sides by $u^{*}(n)$ and take expectation, we get $r(0)=\sum_{k=1}^{p}-a_{k} r(-k)+E\left(v(n) u^{*}(n)\right)$. Note that $E\left(v(n) u^{*}(n)\right)=E\left(v(n)\left(\sum_{k=1}^{p}-a_{k}^{*} u^{*}(n-\right.\right.$ $\left.k)+v^{*}(n)\right)$) but $E\left(v(n) u^{*}(n-k)\right)=0$ for $k \geq 1$. Then, $r(0)=\sum_{k=1}^{p}-a_{k} r(-k)+\sigma_{v}^{2}$, which we have used to find the relation of $r(0)$ (signal power) and σ_{v}^{2} (model parameter) in part (b). We
could multiply $u^{*}(n-k)$ instead of $u^{*}(n)$ and take the expectation, and this is how the Yule-Walker equations are derived.
4. When designing Wiener filtering, one should find $\boldsymbol{R}_{x x}$ and $\boldsymbol{p}_{x d}$ first. Then, it's straightforward to apply $\boldsymbol{w}=\boldsymbol{R}_{x x}^{-1} \boldsymbol{p}_{x d}$ with MSE $\sigma_{d}^{2}-\boldsymbol{p}_{x d}^{H} \boldsymbol{R}_{x x}^{-1} \boldsymbol{p}_{x d}$.
5. The autocorrelation sequence of a given zero-mean real-valued random process $u(n)$ is $r(0)=1.25, r(1)=r(-1)=0.5$, and $r(k)=0$ for any $|k| \geq 2$. (Wiener Filter)
(a) What model fits this process best: AR or MA? Find the corresponding parameters.
(b) Design the Wiener filter when using $u(n)$ to predict $u(n+1)$. Can we do better (in terms of MSE) if we use both $u(n)$ and $u(n-1)$ as the input to the Wiener filter? What if using $u(n)$ and $u(n-2)$?

Solution:

(a) Apparently, it is an MA process with order 1, i.e., $x(n)=v(n)+b v(n-1), v(n)$ is a zero-mean white sequence with variance σ_{v}^{2}.

Then, $r(0)=E\left(x(n) x^{*}(n)\right)=\left(1+|b|^{2}\right) \sigma_{v}^{2}$, and $r(1)=E\left(x(n) x^{*}(n-1)\right)=b \sigma_{v}^{2}$. We can find two solutions $\left(b=2, \sigma_{v}^{2}=0.25\right)$ and ($b=0.5, \sigma_{v}^{2}=1$).
(b1) $R=E\left(u(n) u^{*}(n)\right)=r(0)$, and $p=E\left(u(n) u^{*}(n+1)\right)=r(-1)$. Hence, $w=r(0)^{-1} r(-1)=$ $2 / 5$, i.e., $y(n)=2 / 5 u(n)$ and $\mathrm{MSE}=1.25-0.2=1.05$.
(b2) $\boldsymbol{R}=E\left(\binom{u(n)}{u(n-1)}\left[u^{*}(n), u^{*}(n-1)\right]\right)=\binom{r(0) r(1)}{r(1) r(0)}=\left(\begin{array}{cc}1.25 & 0.5 \\ 0.5 & 1.25\end{array}\right)$, and $\boldsymbol{p}=E\left(\binom{u(n)}{u(n-1)} u^{*}(n+1)\right)=$ $\binom{0.5}{0}$. $y(n)=10 / 21 u(n)-4 / 21 u(n-1)$, and $\mathrm{MSE}=1.25-5 / 21 \simeq 1.01$. Improved.
(b3) $\boldsymbol{R}=E\left(\binom{u(n)}{u(n-2)}\left[u^{*}(n), u^{*}(n-2)\right]\right)=\left(\begin{array}{c}r(0) r(2) \\ r(2) \\ r(0)\end{array}\right)=\left(\begin{array}{cc}1.25 & 0 \\ 0 & 1.25\end{array}\right)$, and $\boldsymbol{p}=E\left(\binom{u(n)}{u(n-2)} u^{*}(n+1)\right)=$ $\binom{0.5}{0} . y(n)=2 / 5 u(n)+0 u(n-2)$ which is exactly the same with (b1).
8. Consider the MIMO (multi-input multi-output) wireless communications system shown in Fig. RII.8. There are two antennas at the transmitter and three antennas at the receiver. Assume the channel gain from the i-th transmit antenna to the j-th receive antenna is $h_{j i}$. Take a snapshot at time slot n, the received signal is $y_{j}(n)=h_{j 1} x_{1}(n)+h_{j 2} x_{2}(n)+v_{j}(n)$ where $v_{j}(n)$ are white Gaussian noise (zero mean, variance N_{0}) independent of signals. We further assume $x_{1}(n)$ and $x_{2}(n)$ are uncorrelated, and their power are P_{1} and P_{2}, respectively. Use $y_{1}(n), y_{2}(n)$ and $y_{3}(n)$ as input, find the optimal Wiener filter to estimate $x_{1}(n)$ and $x_{2}(n)$. (Wiener Filter)

Solution:

Denote $\boldsymbol{y}(n)=\left[y_{1}(n), y_{2}(n), y_{3}(n)\right]^{T}$, and $\boldsymbol{v}(n)=\left[v_{1}(n), v_{2}(n), v_{3}(n)\right]^{T}$. We can have a matrix representation of the system: $\boldsymbol{y}(n)=\boldsymbol{H} \boldsymbol{x}(n)+\boldsymbol{v}(n)$.

For Wiener filters, we need to find the autocorrelation matrix of the input to the filter, and the cross-correlation vector of the input and the desired output. (It's not a big deal whether such signals are in time domain or other domain, e.g., space domain.)

Figure RII.8:

$$
\left.\begin{array}{l}
\left.\quad \boldsymbol{R}_{y y}=E\left[\boldsymbol{y}(n) \boldsymbol{y}(n)^{H}\right]=E\left[(\boldsymbol{H} \boldsymbol{x}(n)+\boldsymbol{v}(n))(\boldsymbol{H} \boldsymbol{x}(n)+\boldsymbol{v}(n))^{H}\right]=E\left[\boldsymbol{H} \boldsymbol{x}(n) \boldsymbol{x}^{H}(n) \boldsymbol{H}^{H}\right]+E[\boldsymbol{v}(n) \boldsymbol{v}(n))^{H}\right]= \\
\boldsymbol{H}\left[\begin{array}{c}
P_{1} \\
0 \\
0
\end{array} P_{2}\right.
\end{array}\right] \boldsymbol{H}^{H}+N_{0} \boldsymbol{I} . \mathrm{C}\left[\begin{array}{c}
h_{11} \\
\boldsymbol{r}_{y x 1}=E\left[\boldsymbol{y}(n) x_{1}(n)^{*}\right]=E\left[\boldsymbol{H} \boldsymbol{x}(n) x_{1}(n)^{*}\right]=P_{1}\left[\begin{array}{c}
\\
h_{21} \\
h_{31}
\end{array}\right] . \\
\text { Then, } \boldsymbol{w}_{1}=\boldsymbol{R}_{y y}^{-1} \boldsymbol{r}_{y x 1} \text {. The output is } \hat{x}_{1}(n)=P_{1}\left[h_{11}^{*}, h_{21}^{*}, h_{31}^{*}\right] \boldsymbol{R}_{y y}^{-1} \boldsymbol{y}(n) . \\
\text { Similar for } \boldsymbol{w}_{2} .
\end{array}\right.
$$

9. Given an real-valued $\operatorname{AR}(3)$ model with parameters $\Gamma_{1}=-4 / 5, \Gamma_{2}=1 / 9, \Gamma_{3}=1 / 8$, and $r(0)=1$. Find $r(1), r(2)$, and $r(3)$. (Levinson-Durbin Recursion)

Solution:

Since $\Gamma_{1}=-r(1) / r(0), r(1)=-\Gamma_{1} r(0)=4 / 5 . \quad P_{0}=r(0)=1$.
$\Gamma_{1}=-4 / 5$. Then, $a_{1,0}=1, a_{1,1}=-4 / 5 . P_{1}=\left(1-\left|\Gamma_{1}\right|^{2}\right) P_{0}=9 / 25$.
$\Delta_{1}=-P_{1} \Gamma_{2}=-1 / 25$. Also, $\Delta_{1}=r(-2) a_{1,0}+r(-1) a_{1,1}$. Hence, $r(2)=r(-2)=\Delta_{1}-$ $r(-1) a_{1,1}=3 / 5$.

$$
a_{2,0}=1, a_{2,1}=-4 / 5+1 / 9(-4 / 5)=-8 / 9, a_{2,2}=\Gamma_{2}=1 / 9 . P_{2}=\left(1-\left|\Gamma_{2}\right|^{2}\right) P_{1}=16 / 45 .
$$

$$
\Delta_{2}=-P_{2} \Gamma_{3}=-2 / 45=r(-3) a_{2,0}+r(-2) a_{2,1}+r(-1) a_{2,2}, \text { from which we solve } r(3)=2 / 5
$$

10. Consider the MA(1) process $x(n)=v(n)+b v(n-1)$ with $v(n)$ being a zero-mean white sequence with variance 1 . If we use Γ_{k} to represent this system, prove that (Levinson-Durbin Recursion)

$$
\Gamma_{m+1}=\frac{\Gamma_{m}^{2}}{\Gamma_{m-1}\left(1-\left|\Gamma_{m}\right|^{2}\right)} .
$$

Solution:

Note that $r(k)=0$ for $|k| \geq 2 . \Gamma_{m+1}=-\frac{\Delta_{m}}{P_{m}}$.
$\Delta_{m}=\sum_{k=0}^{m} r(k-(m+1)) a_{m, k}=r(-1) a_{m, m}=r(-1) \Gamma_{m}$.
Therefore,

$$
\frac{\Gamma_{m+1}}{\Gamma_{m}}=\frac{\Delta_{m}}{P_{m}} \frac{P_{m-1}}{\Delta_{m-1}}=\frac{\Gamma_{m}}{\Gamma_{m-1}\left(1-\left|\Gamma_{m}\right|^{2}\right)} .
$$

11. Given a p-order AR random process $\{x(n)\}$, it can be equivalently represented by any of the three following sets of values: (Levinson-Durbin Recursion)

- $\{r(0), r(1), \ldots, r(p)\}$
- $\left\{a_{1}, a_{2}, \ldots, a_{p}\right\}$ and $r(0)$
- $\left\{\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{p}\right\}$ and $r(0)$
(a) If a new random process is defined as $x^{\prime}(n)=c x(n)$ where c is a real-valued constant, what will be the new autocorrelation sequence $r^{\prime}(k)$ in terms of $r(k)$ (for $\left.k=1,2, \ldots, p\right)$? How about a_{k}^{\prime} and Γ_{k}^{\prime} ?
(b) Let a new random process be defined as $x^{\prime}(n)=(-1)^{n} x(n)$. Prove that $r^{\prime}(k)=(-1)^{k} r(k)$, $a_{k}^{\prime}=(-1)^{k} a_{k}$ and $\Gamma_{k}^{\prime}=(-1)^{k} \Gamma_{k}$. (Hint: use induction when proving Γ_{k}, since Γ_{k} is calculated recursively.)

Solution:

(a) $r^{\prime}(k)=E\left(x^{\prime}(n) x^{\prime *}(n-k)\right)=c^{2} r(k)$.

According to Yule-Walker equations, $\boldsymbol{R}^{T} \boldsymbol{a}=-\boldsymbol{r}$ and $\boldsymbol{R}^{T} \boldsymbol{a}^{\prime}=-\boldsymbol{r}^{\prime}$. Then $c^{2} \boldsymbol{R}^{T} \boldsymbol{a}^{\prime}=-c^{2} \boldsymbol{r}$. Hence $\boldsymbol{a}^{\prime}=\boldsymbol{a}$, i.e., $a_{k}^{\prime}=a_{k}$. As Γ_{k} is recursively calculated out of $\left\{a_{k}\right\}$, we have $\Gamma_{k}^{\prime}=\Gamma_{k}$.
(b) $r^{\prime}(k)=E\left(x^{\prime}(n) x^{\prime *}(n-k)\right)=(-1)^{n+n-k} r(k)=(-1)^{k} r(k)$.

Use the scale form of Yule-Walker equations, i.e., $\sum_{l=1}^{p} a_{l} r(k-l)=-r(k)$ for $k=1,2, \ldots, p$. Similarly, for the modified system, $\sum_{l=1}^{p} a_{l}^{\prime} r^{\prime}(k-l)=-r^{\prime}(k)$ for $k=1,2, \ldots, p$, or $\sum_{l=1}^{p} a_{l}^{\prime}(-1)^{k-l} r(k-$ $l)=-(-1)^{k} r(k)$. Obviously, letting $a_{l}^{\prime}=(-1)^{l} a_{l}$ will make the two equations consistent.

Find Γ_{k} recursively from $a_{p, k}=a_{k}$. Hence, $a_{p, k}^{\prime}=(-1)^{k} a_{p, k} . \Gamma_{p}^{\prime}=a_{p, p}^{\prime}=(-1)^{p} \Gamma_{p}$. Assume $a_{q, k}^{\prime}=(-1)^{k} a_{q, k}(0 \leq k \leq q)$ for $q<n$ (and hence $\Gamma_{q}^{\prime}=a_{q, q}^{\prime}=(-1)^{q} \Gamma_{q}$), we have to prove it is also true for $q-1$. Since

$$
a_{q-1, k}=\frac{a_{q, k}-a_{q, q} a_{q, q-k}^{*}}{1-\left|a_{q, q}\right|^{2}}
$$

we have,

$$
a_{q-1, k}^{\prime}=\frac{a_{q, k}^{\prime}-a_{q, q}^{\prime} a_{q, q-k}^{\prime *}}{1-\left|a_{q, q}^{\prime}\right|^{2}}=\frac{a_{q, k}(-1)^{k}-(-1)^{2 q-k} a_{q, q} a_{q, q-k}^{*}}{1-\left|a_{q, q}\right|^{2}}=(-1)^{k} a_{q-1, k} .
$$

QED.
12. Given a lattice predictor that simultaneously generate both forward and backward prediction errors $f_{m}(n)$ and $b_{m}(n)(m=1,2, \ldots, M)$. (Lattice Structure)
(a) Find $E\left(f_{m}(n) b_{i}^{*}(n)\right)$ for both conditions when $i \leq m$ and $i>m$.
(b) Find $E\left(f_{m}(n+m) f_{i}^{*}(n+i)\right)$ for both conditions when $i=m$ and $i<m$.
(c) Design a joint process estimation scheme using the forward prediction errors.
(d) If for some reason we can only obtain part of forward prediction error (from order 0 to order k) and part of backward prediction error (from oder $k+1$ to order M), i.e., we have $\left\{f_{0}(n), f_{1}(n), \ldots, f_{k}(n), b_{k+1}(n), b_{k+2}(n), \ldots, b_{M}(n)\right\}$. Describe how to use such mixed forward and backward prediction errors to perform joint process estimation.
(Hint: the results from (a) and (b) will be useful for questions (c) and (d).)
13. Consider the backward prediction error sequence $b_{0}(n), b_{1}(n), \ldots, b_{M}(n)$ for the observed sequence $\{u(n)\}$. (Properties of FLP and BLP Errors)
(a) Define $\boldsymbol{b}(n)=\left[b_{0}(n), b_{1}(n), \ldots, b_{M}(n)\right]^{T}$, and $\boldsymbol{u}(n)=[u(n), u(n-1), \ldots, u(n-M)]^{T}$, find \boldsymbol{L} in terms of the coefficients of the backward prediction-error filter where $\boldsymbol{b}(n)=\boldsymbol{L} \boldsymbol{u}(n)$.
(b) Let the correlation matrix for $\boldsymbol{b}(n)$ be \boldsymbol{D}, and that for $\boldsymbol{u}(n)$ be \boldsymbol{R}. Is \boldsymbol{D} diagonal? What is relation between \boldsymbol{R} and \boldsymbol{D} ? Show that a lower triangular matrix \boldsymbol{A} exists such that $\boldsymbol{R}^{-1}=\boldsymbol{A}^{H} \boldsymbol{A}$.
(c) Now we are to perform joint estimation of a desired sequence $\{d(n)\}$ by using either $\left\{b_{k}(n)\right\}$ or $\{u(n)\}$, and their corresponding optimal weight vectors are \boldsymbol{k} and \boldsymbol{w}, respectively. What is relation between \boldsymbol{k} and \boldsymbol{w} ?

