
ENEE630 ADSP Part II w/ solution

1. Determine if each of the following are valid autocorrelation matrices of WSS processes.

(Correlation Matrix)

Ra =









4 1 1

−1 4 1

−1 −1 4









,Rb =









2 1 1

1 2 0

1 0 2









,Rc =









2j 0 j

0 2j 0

−j 0 2j









,Rd =









1 0 2

0 1 0

2 0 1









.

Solution:

Recall that the properties of an autocorrelation matrix for a WSS process is that (1) R is

Toeplitz; (2) RH = R; (3) R is non-negative definite.

Ra is NOT Hermitian; Rb is NOT Toeplitz; Rc is NOT Hermitian; Rd is NOT non-negative

definite (λ = 1,−1, 3).

2. Consider the random process y(n) = x(n) + v(n), where x(n) = Aej(ωn+φ) and v(n) is zero

mean white Gaussian noise with a variance σ2
v . We also assume the noise and the complex sinusoid

are independent. Under the following conditions, determine if y(n) is WSS. Justify your answers.

(WSS Process)

(a) ω and A are constants, and φ is a uniformly distributed over the interval [0, 2π].

(b) ω and φ are constants, and A is a Gaussian random variable ∼ N (0, σ2
A).

(c) φ and A are constants, and ω is a uniformly distributed over the interval [ω0 − ∆, ω0 + ∆]

for some fixed ∆.

Solution:

(a)

E[y(n)] = AejωnEφ[e
jφ] + Ev[v(n)] = 0

E[y(n)y∗(n− k)] = Eφ[(Ae
j(ωn+φ) + v(n))(A∗e−j(ω(n−k)+φ) + v∗(n− k))]

= |A|2Eφ[e
jωk] + σ2

vδ(k)

= |A|2ejωk + σ2
vδ(k)

1st and 2nd moments are independent of n. Thus, the process is WSS.

(b)

E[y(n)] = EA[A]e
j(ωn+φ) + Ev[v(n)] = 0

E[y(n)y∗(n− k)] = EA[(Ae
j(ωn+φ) + v(n))(A∗e−j(ω(n−k)+φ) + v∗(n− k))]

= EA[AA
∗]ejωk + σ2

vδ(k)

= σ2
Ae

jωk + σ2
vδ(k)
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1st and 2nd moments are independent of n. Thus, the process is WSS.

(c)

E[y(n)] = Eω[x(n)] + Ev[v(n)] = A ·Eω[e
jωn] · ejφ =

Aejφ

2jn∆
ejωnω0+∆

ω0−∆

⇒ |E[y(n)]| ≤ |
Aejφ

2jn∆
| · 2 → 0 as n → ∞

E[y(n)y∗(n − k)] = Eω[(Ae
j(ωn+φ) + v(n))(A∗e−j(ω(n−k)+φ) + v∗(n− k))]

= |A|2Eω[e
jωk] + σ2

vδ(k)

= |A|2ejω0k
sin(k∆)

k∆
+ σ2

vδ(k)

The sequence defined here is actually NOT a WSS process, but its 1st and 2nd moment statistics

are approximately independent of n as n → ∞.

3. [Rec.II P2(a) revisited] Determine the PSD of the WSS process y(n) = Aej(ω0n+φ) + v(n),

where v(n) is zero mean white Gaussian noise with a variance σ2
v , and φ is uniformly distributed

over the interval [0, 2π]. (Power Spectral Density)

Solution:

In the autocorrelation function in P2(a) is

ry(k) = A2ejωk + σ2
vδ(k)

By taking discrete time Fourier transform on ry(k), we get

Py(ω) = 2πA2δ(ω − ω0) + σ2
v

4. Assume v(n) is a white Gaussian random process with zero mean and variance 1. The two

filters in Fig. RII.4 are G(z) = 1
1−0.4z−1 and H(z) = 2

1−0.5z−1 . (Auto-Regressive Process)

v(n)
- G(z) - H(z) -

u(n)

Figure RII.4:

(a) Is u(n) an AR process? If so, find the parameters.

(b) Find the autocorrelation coefficients ru(0), ru(1), and ru(2) of the process u(n).

Solution:

(a) U(z) = 2
1−0.9z−1+0.2z−2V (z), u(n) = 0.9u(n − 1)− 0.2u(n − 2) + 2v(n), a1 = −0.9, a2 = 0.2.
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(b) Apply the Yule-Walker equation,

(

ru(0) ru(1)

ru(1) ru(0)

)(

−0.9

0.2

)

= −

(

ru(1)

ru(2)

)

,

from which we get






ru(1) = − a1
1+a2

ru(0) =
3
4ru(0)

ru(2) =
(

a2
1

1+a2
− a2

)

ru(0) =
19
40ru(0)

Moreover, since ru(0) + a1ru(1) + a2ru(2) = 4σ2
v (Here, ‘4’ because in this model it is ‘2v(n)’ rather

than ‘v(n)’), we have ru(0) =
1+a2
1−a2

4σ2
v

(1+a2)2−a2
1

= 200
21 . Then, ru(1) =

50
7 , and ru(2) =

95
21 .

Note:

1. In general, for a p-order AR model, given {σ2
v , a1, a2, . . . , ap}, we can find {r(0), r(1), r(2), . . .};

and vice versa. They are related by Yule-Walker Equations.

2. r(−k) = r∗(k) in general (and hence matrix R is Hermitian), and r(−k) = r(k) for real-valued

signals. r(0) is the power of sequence u(n), and hence r(0) > 0 from physical point of view.

3. For an AR model, u(n) =
∑p

k=1−aku(n−k)+v(n) has NO correlation with future v(m),m =

n+ 1, n + 2, . . . (convince yourself). Simply multiply both sides by u∗(n) and take expectation, we

get r(0) =
∑p

k=1−akr(−k) + E(v(n)u∗(n)). Note that E(v(n)u∗(n)) = E(v(n)(
∑p

k=1−a∗ku
∗(n −

k) + v∗(n))) but E(v(n)u∗(n − k)) = 0 for k ≥ 1. Then, r(0) =
∑p

k=1−akr(−k) + σ2
v , which we

have used to find the relation of r(0) (signal power) and σ2
v (model parameter) in part (b). We

could multiply u∗(n−k) instead of u∗(n) and take the expectation, and this is how the Yule-Walker

equations are derived.

5. Let a real-valued AR(2) process be described by

u(n) = x(n) + a1x(n− 1) + a2x(n− 2)

where u(n) is a white noise of zero-mean and variance σ2, and u(n) and past values x(n−1), x(n−2)

are uncorrelated. (Yule-Walker Equation)

(a) Determine and solve the Yule-Walker Equations for the AR process.

(b) Find the variance of the process x(n).

Solution: (a) Solve the Yule-Walker equation, we have

rx(0) = −a1rx(−1)− a2rx(−2) + σ2

rx(1) = −a1rx(0)− a2rx(−1)

rx(2) = −a1rx(1)− a2rx(0)

Use the relation that rx(k) = rx(−k) and solve this we get
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rx(0) =
σ2

1−
a21

1 + a2
+ a2(

a21
1 + a2

− a2)

rx(1) = −
a1

1 + a2
rx(0)

rx(2) = (
a21

1 + a2
− a2)rx(0)

(b) The process is zero mean, so the variance is rx(0).

6. [Problem II.4 continued] Assume v(n) and w(n) are white Gaussian random processes with

zero mean and variance 1. The two filters in Fig. RII.6 are G(z) = 1
1−0.4z−1 and H(z) = 2

1−0.5z−1 .

(Wiener Filter)

Figure RII.6:

(a) Design a 1-order Wiener filter such that the desired output is u(n). What is the MSE?

(b) Design a 2-order Wiener filter. What is the MSE?

Solution:

(a) Rx =

[

ru(0) + 1 ru(1)

ru(1) ru(0) + 1

]

, and pxd =

[

ru(0)

ru(1)

]

. The filter is w = R−1
x p with MSE

ru(0)− pH
xdR

−1
x pxd.

(b) Similar to (a), except Rx =









ru(0) + 1 ru(1) ru(2)

ru(1) ru(0) + 1 ru(1)

ru(2) ru(1) ru(0) + 1









, and pxd =









ru(0)

ru(1)

ru(2)









.

MSE is still the same expression, i.e. ru(0)− pH
xdR

−1
x pxd.

Note:

1. In general, for a p-order AR model, given {σ2
v , a1, a2, . . . , ap}, we can find {r(0), r(1), r(2), . . .};

and vice versa. They are related by Yule-Walker Equations.

2. r(−k) = r∗(k) in general (and hence matrix R is Hermitian), and r(−k) = r(k) for real-valued

signals. r(0) is the power of sequence u(n), and hence r(0) > 0 from physical point of view.

3. For an AR model, u(n) =
∑p

k=1−aku(n−k)+v(n) has NO correlation with future v(m),m =

n+ 1, n + 2, . . . (convince yourself). Simply multiply both sides by u∗(n) and take expectation, we

get r(0) =
∑p

k=1−akr(−k) + E(v(n)u∗(n)). Note that E(v(n)u∗(n)) = E(v(n)(
∑p

k=1−a∗ku
∗(n −

k) + v∗(n))) but E(v(n)u∗(n − k)) = 0 for k ≥ 1. Then, r(0) =
∑p

k=1−akr(−k) + σ2
v , which we

have used to find the relation of r(0) (signal power) and σ2
v (model parameter) in part (b). We
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could multiply u∗(n−k) instead of u∗(n) and take the expectation, and this is how the Yule-Walker

equations are derived.

4. When designing Wiener filtering, one should findRxx and pxd first. Then, it’s straightforward

to apply w = R−1
xxpxd with MSE σ2

d − pH
xdR

−1
xxpxd.

7. The autocorrelation sequence of a given zero-mean real-valued random process u(n) is

r(0) = 1.25, r(1) = r(−1) = 0.5, and r(k) = 0 for any |k| ≥ 2. (Wiener Filter)

(a) What model fits this process best: AR or MA? Find the corresponding parameters.

(b) Design the Wiener filter when using u(n) to predict u(n+1). Can we do better (in terms of

MSE) if we use both u(n) and u(n − 1) as the input to the Wiener filter? What if using u(n) and

u(n− 2)?

Solution:

(a) Apparently, it is an MA process with order 1, i.e., x(n) = v(n)+bv(n−1), v(n) is a zero-mean

white sequence with variance σ2
v .

Then, r(0) = E(x(n)x∗(n)) = (1+ |b|2)σ2
v , and r(1) = E(x(n)x∗(n− 1)) = bσ2

v . We can find two

solutions (b = 2, σ2
v = 0.25) and (b = 0.5, σ2

v = 1).

(b1) R = E(u(n)u∗(n)) = r(0), and p = E(u(n)u∗(n + 1)) = r(−1). Hence, w = r(0)−1r(−1) =

2/5, i.e., y(n) = 2/5u(n) and MSE = 1.25− 0.2 = 1.05.

(b2) R = E(
(

u(n)
u(n−1)

)

[u∗(n), u∗(n−1)]) =
(

r(0)
r(1)

r(1)
r(0)

)

=
(

1.25
0.5

0.5
1.25

)

, and p = E(
(

u(n)
u(n−1)

)

u∗(n+1)) =
(

0.5
0

)

. y(n) = 10/21u(n) − 4/21u(n − 1), and MSE = 1.25 − 5/21 ≃ 1.01. Improved.

(b3) R = E(
( u(n)
u(n−2)

)

[u∗(n), u∗(n−2)]) =
(

r(0)
r(2)

r(2)
r(0)

)

=
(1.25

0
0

1.25

)

, and p = E(
( u(n)
u(n−2)

)

u∗(n+1)) =
(0.5

0

)

. y(n) = 2/5u(n) + 0u(n − 2) which is exactly the same with (b1).

8. Consider the MIMO (multi-input multi-output) wireless communications system shown in

Fig. RII.8. There are two antennas at the transmitter and three antennas at the receiver. Assume

the channel gain from the i-th transmit antenna to the j-th receive antenna is hji. Take a snapshot

at time slot n, the received signal is yj(n) = hj1x1(n) + hj2x2(n) + vj(n) where vj(n) are white

Gaussian noise (zero mean, variance N0) independent of signals. We further assume x1(n) and

x2(n) are uncorrelated, and their power are P1 and P2, respectively. Use y1(n), y2(n) and y3(n) as

input, find the optimal Wiener filter to estimate x1(n) and x2(n). (Wiener Filter)

Solution:

Denote y(n) = [y1(n), y2(n), y3(n)]
T , and v(n) = [v1(n), v2(n), v3(n)]

T . We can have a matrix

representation of the system: y(n) = Hx(n) + v(n).

For Wiener filters, we need to find the autocorrelation matrix of the input to the filter, and the

cross-correlation vector of the input and the desired output. (It’s not a big deal whether such signals

are in time domain or other domain, e.g., space domain. )
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Figure RII.8:

Ryy = E[y(n)y(n)H ] = E[(Hx(n)+v(n))(Hx(n)+v(n))H ] = E[Hx(n)xH(n)HH ]+E[v(n)v(n))H ] =

H
[

P1

0
0
P2

]

HH +N0I.

ryx1 = E[y(n)x1(n)
∗] = E[Hx(n)x1(n)

∗] = P1









h11

h21

h31









.

Then, w1 = R−1
yy ryx1. The output is x̂1(n) = P1[h

∗

11, h
∗

21, h
∗

31]R
−1
yy y(n).

Similar for w2.

9. Given an real-valued AR(3) model with parameters Γ1 = −4/5, Γ2 = 1/9, Γ3 = 1/8, and

r(0) = 1. Find r(1), r(2), and r(3). (Levinson-Durbin Recursion)

Solution:

Since Γ1 = −r(1)/r(0), r(1) = −Γ1r(0) = 4/5. P0 = r(0) = 1.

Γ1 = −4/5. Then, a1,0 = 1, a1,1 = −4/5. P1 = (1− |Γ1|
2)P0 = 9/25.

∆1 = −P1Γ2 = −1/25. Also, ∆1 = r(−2)a1,0 + r(−1)a1,1. Hence, r(2) = r(−2) = ∆1 −

r(−1)a1,1 = 3/5.

a2,0 = 1, a2,1 = −4/5 + 1/9(−4/5) = −8/9, a2,2 = Γ2 = 1/9. P2 = (1− |Γ2|
2)P1 = 16/45.

∆2 = −P2Γ3 = −2/45 = r(−3)a2,0 + r(−2)a2,1 + r(−1)a2,2, from which we solve r(3) = 2/5.

10. Consider the MA(1) process x(n) = v(n) + bv(n − 1) with v(n) being a zero-mean white

sequence with variance 1. If we use Γk to represent this system, prove that (Levinson-Durbin

Recursion)

Γm+1 =
Γ2
m

Γm−1(1− |Γm|2)
.
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Solution:

Note that r(k) = 0 for |k| ≥ 2. Γm+1 = −∆m

Pm

.

∆m =
∑m

k=0 r(k − (m+ 1))am,k = r(−1)am,m = r(−1)Γm.

Therefore,
Γm+1

Γm
=

∆m

Pm

Pm−1

∆m−1
=

Γm

Γm−1(1− |Γm|2)
.

11. Given a p-order AR random process {x(n)}, it can be equivalently represented by any of the

three following sets of values: (Levinson-Durbin Recursion)

• {r(0), r(1), . . . , r(p)}

• {a1, a2, . . . , ap} and r(0)

• {Γ1,Γ2, . . . ,Γp} and r(0)

(a) If a new random process is defined as x′(n) = cx(n) where c is a real-valued constant, what

will be the new autocorrelation sequence r′(k) in terms of r(k) (for k = 1, 2, . . . , p)? How about a′k

and Γ′

k?

(b) Let a new random process be defined as x′(n) = (−1)nx(n). Prove that r′(k) = (−1)kr(k),

a′k = (−1)kak and Γ′

k = (−1)kΓk. (Hint: use induction when proving Γk, since Γk is calculated

recursively.)

Solution:

(a) r′(k) = E(x′(n)x′∗(n− k)) = c2r(k).

According to Yule-Walker equations, RTa = −r and R′Ta′ = −r′. Then c2RTa′ = −c2r.

Hence a′ = a, i.e., a′k = ak. As Γk is recursively calculated out of {ak}, we have Γ′

k = Γk.

(b) r′(k) = E(x′(n)x′∗(n− k)) = (−1)n+n−kr(k) = (−1)kr(k).

Use the scale form of Yule-Walker equations, i.e.,
∑p

l=1 alr(k−l) = −r(k) for k = 1, 2, . . . , p. Sim-

ilarly, for the modified system,
∑p

l=1 a
′

lr
′(k− l) = −r′(k) for k = 1, 2, . . . , p, or

∑p
l=1 a

′

l(−1)k−lr(k−

l) = −(−1)kr(k). Obviously, letting a′l = (−1)lal will make the two equations consistent.

Find Γk recursively from ap,k = ak. Hence, a′p,k = (−1)kap,k. Γ′

p = a′p,p = (−1)pΓp. Assume

a′q,k = (−1)kaq,k(0 ≤ k ≤ q) for q < n (and hence Γ′

q = a′q,q = (−1)qΓq), we have to prove it is also

true for q − 1. Since

aq−1,k =
aq,k − aq,qa

∗

q,q−k

1− |aq,q|2
,

we have,

a′q−1,k =
a′q,k − a′q,qa

′∗

q,q−k

1− |a′q,q|
2

=
aq,k(−1)k − (−1)2q−kaq,qa

∗

q,q−k

1− |aq,q|2
= (−1)kaq−1,k.

QED.
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12. Given a lattice predictor that simultaneously generate both forward and backward prediction

errors fm(n) and bm(n) (m = 1, 2, . . . ,M). (Lattice Structure)

(a) Find E(fm(n)b∗i (n)) for both conditions when i ≤ m and i > m.

(b) Find E(fm(n+m)f∗

i (n+ i)) for both conditions when i = m and i < m.

(c) Design a joint process estimation scheme using the forward prediction errors.

(d) If for some reason we can only obtain part of forward prediction error (from order 0 to

order k) and part of backward prediction error (from oder k + 1 to order M), i.e., we have

{f0(n), f1(n), . . . , fk(n), bk+1(n), bk+2(n), . . . , bM (n)}. Describe how to use such mixed forward and

backward prediction errors to perform joint process estimation.

(Hint: the results from (a) and (b) will be useful for questions (c) and (d). )

13. Consider the backward prediction error sequence b0(n), b1(n), . . . , bM (n) for the observed

sequence {u(n)}. (Properties of FLP and BLP Errors)

(a) Define b(n) = [b0(n), b1(n), . . . , bM (n)]T , and u(n) = [u(n), u(n− 1), . . . , u(n−M)]T , find L

in terms of the coefficients of the backward prediction-error filter where b(n) = Lu(n).

(b) Let the correlation matrix for b(n) be D, and that for u(n) be R. Is D diagonal? What is

relation between R and D ? Show that a lower triangular matrix A exists such that R−1 = AHA.

(c) Now we are to perform joint estimation of a desired sequence {d(n)} by using either {bk(n)}

or {u(n)}, and their corresponding optimal weight vectors are k and w, respectively. What is

relation between k and w ?
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