1. Determine if each of the following are valid autocorrelation matrices of WSS processes. (Correlation Matrix)

$$m{R}_a = \left[egin{array}{cccc} 4 & 1 & 1 \ -1 & 4 & 1 \ -1 & -1 & 4 \end{array}
ight], m{R}_b = \left[egin{array}{cccc} 2 & 1 & 1 \ 1 & 2 & 0 \ 1 & 0 & 2 \end{array}
ight], m{R}_c = \left[egin{array}{cccc} 2j & 0 & j \ 0 & 2j & 0 \ -j & 0 & 2j \end{array}
ight], m{R}_d = \left[egin{array}{cccc} 1 & 0 & 2 \ 0 & 1 & 0 \ 2 & 0 & 1 \end{array}
ight].$$

Solution:

Recall that the properties of an autocorrelation matrix for a WSS process is that (1) \mathbf{R} is Toeplitz; (2) $\mathbf{R}^H = \mathbf{R}$; (3) \mathbf{R} is non-negative definite.

 \boldsymbol{R}_a is NOT Hermitian; \boldsymbol{R}_b is NOT Toeplitz; \boldsymbol{R}_c is NOT Hermitian; \boldsymbol{R}_d is NOT non-negative definite $(\lambda = 1, -1, 3)$.

- 2. Consider the random process y(n) = x(n) + v(n), where $x(n) = Ae^{j(\omega n + \phi)}$ and v(n) is zero mean white Gaussian noise with a variance σ_v^2 . We also assume the noise and the complex sinusoid are independent. Under the following conditions, determine if y(n) is WSS. Justify your answers. (WSS Process)
 - (a) ω and A are constants, and ϕ is a uniformly distributed over the interval $[0, 2\pi]$.
 - (b) ω and ϕ are constants, and A is a Gaussian random variable $\sim \mathcal{N}(0, \sigma_A^2)$.
- (c) ϕ and A are constants, and ω is a uniformly distributed over the interval $[\omega_0 \Delta, \omega_0 + \Delta]$ for some fixed Δ .

Solution:

(a)
$$E[y(n)] = Ae^{j\omega n}E_{\phi}[e^{j\phi}] + E_{v}[v(n)] = 0$$

$$E[y(n)y^{*}(n-k)] = E_{\phi}[(Ae^{j(\omega n+\phi)} + v(n))(A^{*}e^{-j(\omega(n-k)+\phi)} + v^{*}(n-k))]$$

$$= |A|^{2}E_{\phi}[e^{j\omega k}] + \sigma_{v}^{2}\delta(k)$$

$$= |A|^{2}e^{j\omega k} + \sigma_{v}^{2}\delta(k)$$

1st and 2nd moments are independent of n. Thus, the process is WSS.

(b)
$$E[y(n)] = E_A[A]e^{j(\omega n + \phi)} + E_v[v(n)] = 0$$

$$E[y(n)y^*(n-k)] = E_A[(Ae^{j(\omega n + \phi)} + v(n))(A^*e^{-j(\omega(n-k) + \phi)} + v^*(n-k))]$$

$$= E_A[AA^*]e^{j\omega k} + \sigma_v^2 \delta(k)$$

$$= \sigma_A^2 e^{j\omega k} + \sigma_v^2 \delta(k)$$

1st and 2nd moments are independent of n. Thus, the process is WSS.

(c)
$$E[y(n)] = E_{\omega}[x(n)] + E_{v}[v(n)] = A \cdot E_{\omega}[e^{j\omega n}] \cdot e^{j\phi} = \frac{Ae^{j\phi}}{2jn\Delta} e^{j\omega n} \Big|_{\omega_{0} - \Delta}^{\omega_{0} + \Delta}$$

$$\Rightarrow |E[y(n)]| \leq |\frac{Ae^{j\phi}}{2jn\Delta}| \cdot 2 \to 0 \text{ as } n \to \infty$$

$$E[y(n)y^{*}(n-k)] = E_{\omega}[(Ae^{j(\omega n+\phi)} + v(n))(A^{*}e^{-j(\omega(n-k)+\phi)} + v^{*}(n-k))]$$

$$= |A|^{2}E_{\omega}[e^{j\omega k}] + \sigma_{v}^{2}\delta(k)$$

$$= |A|^{2}e^{j\omega_{0}k}\frac{\sin(k\Delta)}{k\Delta} + \sigma_{v}^{2}\delta(k)$$

The sequence defined here is actually NOT a WSS process, but its 1st and 2nd moment statistics are approximately independent of n as $n \to \infty$.

3. [Rec.II P2(a) revisited] Determine the PSD of the WSS process $y(n) = Ae^{j(\omega_0 n + \phi)} + v(n)$, where v(n) is zero mean white Gaussian noise with a variance σ_v^2 , and ϕ is uniformly distributed over the interval $[0, 2\pi]$. (Power Spectral Density)

Solution:

In the autocorrelation function in P2(a) is

$$r_y(k) = A^2 e^{j\omega k} + \sigma_v^2 \delta(k)$$

By taking discrete time Fourier transform on $r_{\nu}(k)$, we get

$$P_y(\omega) = 2\pi A^2 \delta(\omega - \omega_0) + \sigma_v^2$$

4. Assume v(n) is a white Gaussian random process with zero mean and variance 1. The two filters in Fig. RII.4 are $G(z) = \frac{1}{1-0.4z^{-1}}$ and $H(z) = \frac{2}{1-0.5z^{-1}}$. (Auto-Regressive Process)

Figure RII.4:

- (a) Is u(n) an AR process? If so, find the parameters.
- (b) Find the autocorrelation coefficients $r_u(0)$, $r_u(1)$, and $r_u(2)$ of the process u(n).
- **5.** Let a real-valued AR(2) process be described by

$$u(n) = x(n) + a_1x(n-1) + a_2x(n-2)$$

where u(n) is a white noise of zero-mean and variance σ^2 , and u(n) and past values x(n-1), x(n-2) are uncorrelated. (Yule-Walker Equation)

- (a) Determine and solve the Yule-Walker Equations for the AR process.
- (b) Find the variance of the process x(n).
- **6.** [Problem 5.3 continued] Assume v(n) and w(n) are white Gaussian random processes with zero mean and variance 1. The two filters in Fig. RII.6 are $G(z) = \frac{1}{1-0.4z^{-1}}$ and $H(z) = \frac{2}{1-0.5z^{-1}}$. (Wiener Filter)

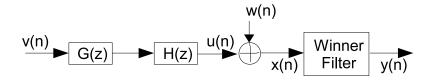


Figure RII.6:

- (a) Design a 1-order Wiener filter such that the desired output is u(n). What is the MSE?
- (b) Design a 2-order Wiener filter. What is the MSE?
- 7. The autocorrelation sequence of a given zero-mean real-valued random process u(n) is r(0) = 1.25, r(1) = r(-1) = 0.5, and r(k) = 0 for any $|k| \ge 2$. (Wiener Filter)
 - (a) What model fits this process best: AR or MA? Find the corresponding parameters.
- (b) Design the Wiener filter when using u(n) to predict u(n+1). Can we do better (in terms of MSE) if we use both u(n) and u(n-1) as the input to the Wiener filter? What if using u(n) and u(n-2)?
- 8. Consider the MIMO (multi-input multi-output) wireless communications system shown in Fig. RII.8. There are two antennas at the transmitter and three antennas at the receiver. Assume the channel gain from the *i*-th transmit antenna to the *j*-th receive antenna is h_{ji} . Take a snapshot at time slot n, the received signal is $y_j(n) = h_{j1}x_1(n) + h_{j2}x_2(n) + v_j(n)$ where $v_j(n)$ are white Gaussian noise (zero mean, variance N_0) independent of signals. We further assume $x_1(n)$ and $x_2(n)$ are uncorrelated, and their power are P_1 and P_2 , respectively. Use $y_1(n), y_2(n)$ and $y_3(n)$ as input, find the optimal Wiener filter to estimate $x_1(n)$ and $x_2(n)$. (Wiener Filter)
- 9. Given an real-valued AR(3) model with parameters $\Gamma_1 = -4/5$, $\Gamma_2 = 1/9$, $\Gamma_3 = 1/8$, and r(0) = 1. Find r(1), r(2), and r(3). (Levinson-Durbin Recursion)

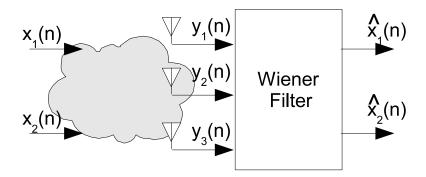


Figure RII.8:

10. Consider the MA(1) process x(n) = v(n) + bv(n-1) with v(n) being a zero-mean white sequence with variance 1. If we use Γ_k to represent this system, prove that (Levinson-Durbin Recursion)

$$\Gamma_{m+1} = \frac{\Gamma_m^2}{\Gamma_{m-1}(1 - |\Gamma_m|^2)}.$$

- 11. Given a p-order AR random process $\{x(n)\}$, it can be equivalently represented by any of the three following sets of values: (Levinson-Durbin Recursion)
 - $\{r(0), r(1), \ldots, r(p)\}$
 - $\{a_1, a_2, \dots, a_p\}$ and r(0)
 - $\{\Gamma_1, \Gamma_2, \dots, \Gamma_p\}$ and r(0)
- (a) If a new random process is defined as x'(n) = cx(n) where c is a real-valued constant, what will be the new autocorrelation sequence r'(k) in terms of r(k) (for k = 1, 2, ..., p)? How about a'_k and Γ'_k ?
- (b) Let a new random process be defined as $x'(n) = (-1)^n x(n)$. Prove that $r'(k) = (-1)^k r(k)$, $a'_k = (-1)^k a_k$ and $\Gamma'_k = (-1)^k \Gamma_k$. (Hint: use induction when proving Γ_k , since Γ_k is calculated recursively.)
- 12. Given a lattice predictor that simultaneously generate both forward and backward prediction errors $f_m(n)$ and $b_m(n)$ (m = 1, 2, ..., M). (Lattice Structure)
 - (a) Find $E(f_m(n)b_i^*(n))$ for both conditions when $i \leq m$ and i > m.
 - (b) Find $E(f_m(n+m)f_i^*(n+i))$ for both conditions when i=m and i < m.
 - (c) Design a joint process estimation scheme using the forward prediction errors.
- (d) If for some reason we can only obtain part of forward prediction error (from order 0 to order k) and part of backward prediction error (from order k + 1 to order M), i.e., we have

 $\{f_0(n), f_1(n), \dots, f_k(n), b_{k+1}(n), b_{k+2}(n), \dots, b_M(n)\}$. Describe how to use such mixed forward and backward prediction errors to perform joint process estimation.

(Hint: the results from (a) and (b) will be useful for questions (c) and (d).)

- 13. Consider the backward prediction error sequence $b_0(n), b_1(n), \dots, b_M(n)$ for the observed sequence $\{u(n)\}$. (Properties of FLP and BLP Errors)
- (a) Define $\boldsymbol{b}(n) = [b_0(n), b_1(n), \dots, b_M(n)]^T$, and $\boldsymbol{u}(n) = [u(n), u(n-1), \dots, u(n-M)]^T$, find \boldsymbol{L} in terms of the coefficients of the backward prediction-error filter where $\boldsymbol{b}(n) = \boldsymbol{L}\boldsymbol{u}(n)$.
- (b) Let the correlation matrix for $\boldsymbol{b}(n)$ be \boldsymbol{D} , and that for $\boldsymbol{u}(n)$ be \boldsymbol{R} . Is \boldsymbol{D} diagonal? What is relation between \boldsymbol{R} and \boldsymbol{D} ? Show that a lower triangular matrix \boldsymbol{A} exists such that $\boldsymbol{R}^{-1} = \boldsymbol{A}^H \boldsymbol{A}$.
- (c) Now we are to perform joint estimation of a desired sequence $\{d(n)\}$ by using either $\{b_k(n)\}$ or $\{u(n)\}$, and their corresponding optimal weight vectors are \mathbf{k} and \mathbf{w} , respectively. What is relation between \mathbf{k} and \mathbf{w} ?