
ENEE630 ADSP RECITATION 3 w/ solution Ver.201209

1. Consider the structures shown in Fig. RI.1, with input transforms and filter responses as

indicated. Sketch the quantities Y0(e
jω) and Y1(e

jω).

Figure RI.1:

Solution:

Comment: For a down-sampled signal, it’s still possible to recover the original signal (not necessarily

low-pass) using filters and multirate building blocks as long as there is no aliasing (H1 in this

problem).

2. For each case shown in the Fig. RI.2, prove or disprove whether the left system is equivalent

to the right system? Assume M,L,K are all integers larger than 1.

Solution: Assume the input, output, intermediate signals are x(n), y(n), and u(n), respectively.

(a). (FD) U(z) = X(zM ), Y2(z) =
1
M

∑M−1
k=0 U(z1/MW k

M ) = 1
M

∑M−1
k=0 X(zW kM

M ) = X(z).

(TD) u(n) = x( n
M ) if n is a multiple of M , and u(n) = 0 otherwise. Then, y2(n) = u(Mn) = x(n).

(b). (FD) U(z) = 1
M

∑M−1
k=0 X(z1/MW k

M ), Y2(z) = U(zM ) = 1
M

∑M−1
k=0 X(zW k

M ).

(TD) u(n) = x(Mn), y2(n) = u( n
M ) = x(n) only if n is a multiple ofM , i.e., y2(n) =

{

x(n) n is multiple of M

0 otherwise.
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Figure RI.2:

(c). (FD) U(z) = X(zK), Y2(z) = U(zL) = X(zKL).

(TD) u(n) = x( n
K ) only if n is a multiple of K, and y2(n) = u(nL ) only if n is a multiple of L. Zero

otherwise. Hence, y2(n) = x( n
KL) only when n is a multiple of KL.

(d) (FD) U(z) = 1
K

∑K−1
k=0 X(z1/KW k

K), Y2(z) =
1
M

∑M−1
m=0 U(z1/MWm

M )

= 1
MK

∑M−1
m=0

∑K−1
k=0 X(z1/KMe−j 2πm

MK e−j 2πkM

MK ) = 1
MK

∑M−1
m=0

∑K−1
k=0 X(z1/KMW kM+m

MK )

= 1
MK

∑MK−1
t=0 X(z1/KMW t

MK)

(TD) u(n) = x(Kn), y2(n) = u(Mn) = x(KMn).

(e) (FD) Left: Y1(z) =
1
M

∑M−1
k=0 X(zL/MW k

M ); Right: Y2(z) =
1

MK

∑MK−1
k=0 X(zL/MW k

MK)

(TD) Left: y2(n) = x(nM
L ) only when n is a multiple of L; right: y2(n) = x(nM

L ) only when n is a

multiple of KL.

Note: To prove/disprove the equivalence, you can prove either in time domain or in freq domain, no

need to do both. You are recommended to try all on your own (except (d) freq domain) to familiar

yourself with the derivation.

3. Simplify the following systems in Fig. I.3.

Figure RI.3:

Solution: The simplified systems are as follows

Note: The basic relationships from the previous problem and Nobel identities are applied. For part

(d), the trick is z = z3z−2 and z−1 = z−3z2.
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4. In this problem, the term ‘polyphase components’ stands for the Type 1 components with

M = 2.

(a) Let H(z) represent an FIR filter of length 10 with impulse response coefficients h(n) = (1/2)n

for 0 ≤ n ≤ 9 and zero otherwise. Find the polyphase components E0(z) and E1(z).

(b) Let H(z) be IIR with h(n) = (1/2)nu(n) + (1/3)nu(n− 3). Find the polyphase components

E0(z) and E1(z). Give simplified, closed form expressions. (Hint: 1
1+x = 1−x

1−x2 )

(c) Let H(z) = 1/(1 − 2R cos θz−1 + R2z−2), with R > 0 and θ real. This is a system with a

pair of complex conjugate poles at Re±jθ. Find the polyphase components E0(z) and E1(z).

Solution:

(a). E0(z) = 1 + (1/2)2z−1 + (1/2)4z−2 + (1/2)6z−3 + (1/2)8z−4, E1(z) = 1/2 + (1/2)3z−1 +

(1/2)5z−2 + (1/2)7z−3 + (1/2)9z−4.

(b). H(z) = 1
1−(1/2)z−1+

(1/3)3z−3

1−(1/3)z−1 = 1+(1/2)z−1

1−(1/4)z−2+
(1/3)3z−3+(1/3)4z−4

1−(1/9)z−2 . Hence, E0(z) =
1

1−(1/4)z−1+

(1/3)4z−2

1−(1/9)z−1 , and E1(z) =
1/2

1−(1/4)z−1 + (1/3)3z−1

1−(1/9)z−1 .

(c). H(z) = 1
1−2R cos θz−1+R2z−2 = (1+2R cos θz−1+R2z−2)

(1−2R cos θz−1+R2z−2)(1+2R cos θz−1+R2z−2)
. Hence, E0(z) =

1+R2z−1

(1+R2z−1)2−4R2 cos2 θz−1 , and E1(z) =
2R cos θ

(1+R2z−1)2−4R2 cos2 θz−1

5. A uniform DFT analysis bank (Type 1) is shown in Fig. RI.5(a), whereW ∗ is theM×M IDFT

matrix, i.e., the (m,n)-th entry is W−mn
M with indices m,n starting from 0. The transfer function

from input port x(n) to output port xk(n) is denoted by Hk(z). Answer the following questions.

(a) (b)

Figure RI.5:

(a). Prove Hk(z) = H0(zW
k
M ) for 0 ≤ k ≤ M −1. Given H0(e

jω) in Fig. RI.5(b), sketch H1(e
jω)

when M = 2, and H1(e
jω), H2(e

jω) when M = 3.

(b). M = 4. Assume E0(z) = 1+z−1, E1(z) = 1+2z−1, E2(z) = 2+z−1, and E3(z) = 0.5+z−1.
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Find numerical values of these filter coefficients for Hk(z), 0 ≤ k ≤ 3.

(c). M = 2. Let H0(z) = 1 + 2z−1 + 4z−2 + 2z−3 + z−4, and let H1(z) = H0(−z). Draw an

implementation for the pair [H0(z),H1(z)] in the form of a uniform DFT analysis bank, explicitly

showing the polyphase components, the 2× 2 IDFT box, and other relevant details.

Solution:

(a). H0(z) =
∑M−1

m=0 z−mEm(zM ), Hk(z) =
∑M−1

m=0 z−mEm(zM )W−mk
M =

∑M−1
m=0 (zW

k
M )−mEm((zW k

M )M ) =

H0(zW
k
M ). Hk(e

jω) = H0(e
j(ω−2πk/M)).

(b). H0(z) = 1 + z−1 + 2z−2 + 0.5z−3 + z−4 + 2z−5 + z−6 + z−7. H1(z) = 1 + jz−1 − 2z−2 −

0.5jz−3 + z−4 + 2jz−5 − z−6 − jz−7. H2(z) = 1 − z−1 + 2z−2 − 0.5z−3 + z−4 − 2z−5 + z−6 − z−7.

H3(z) = 1− jz−1 − 2z−2 + 0.5jz−3 + z−4 − 2jz−5 − z−6 + jz−7. (j =
√
−1).

(c) Note that W 1
2 = −1, then they can be implemented together using one DFT analysis bank.

E0(z) = 1 + 4z−1 + z−2, E1(z) = 2 + 2z−1.

Note:

1. W 1
M = e−j 2π

M , e.g., W 1
2 = −1, W 1

4 = −j.

2. W ∗ (with entry W−ij
M ) is called the IDFT matrix, whereas W (with entry W ij

M) is called the

DFT matrix. Note that the index starts from 0 and goes up to M − 1. One important property is

that W ∗
W = MI. For instance, when M = 2, W ∗ and W happen to be the same

[

1 1

1 −1

]

,

and hence using the property,

[

1 1

1 −1

][

1 1

1 −1

]

=

[

2 0

0 2

]

,

which you will encounter very often when studying the QMF bank.

3. Type 2 DFT bank (synthesis bank) is found in Problem #1 in Homework #2. Similar

relationship (“shifted version”) can be found between transfer functions.
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4. Given the DFT bank structure, we can expect transfer functions have relationship (a); on

the other hand, given the transfer functions have the relationship, we can implement it by the DFT

structure. Part (b) and part (c) of this problem show the two aspects.

5. For H0(z), since all weights are 1, it is just the type 1 polyphase representation, and hence

H0(z) =
∑M−1

m=0 z−mEm(zM ).
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