Material covered: Transforms and properties of the transform function of a discrete-time LTI system.

1. Define $H(z)=\sum_{n=-\infty}^{+\infty} h(n) z^{-n}$.
(1). If $h(n)=a^{n} u(n)$, what is $H(z)$?
(2). If $h(n)=-a^{n} u(-n-1)$, what is $H(z)$?
(3). Given $H(z)=\frac{3}{1-0.5 z^{-1}}+\frac{1}{1+0.75 z^{-1}}+\frac{1}{1-2 z^{-1}}$, what are the possible $h(n)$? If $h(n)$ is the impulse response of an LTI system, discuss whether the system is causal or stable.
2. A causal system can be represented by the block diagram in Fig. R1.2.
(1). What is the system transfer function $H(z)$?
(2). Given $a_{0}=1, a_{1}=-0.1, a_{2}=-0.9$, and $b_{1}=0.9, b_{2}=0.81$, is the system stable? minimum phase? Sketch its frequency response $\left|H\left(e^{j \omega}\right)\right|$.
(3). Suppose b_{1} and b_{2} are real numbers, prove that $b_{2}<1, b_{1}+b_{2}>-1$, and $b_{1}-b_{2}<1$ is the condition that the system is stable. (Hint: discuss the cases when the two roots are real and when the roots are complex conjugate.)
3. If $X(z)$ and $Y(z)$ are z-transform of $x(n)$ and $y(n)$, respectively. Prove the following:
(1). The z-transform of $x^{*}(n)$ is $X^{*}\left(z^{*}\right)$ (Conjugate).
(2). The z-transform of $x(-n)$ is $X(1 / z)$ (Time reversal).
(3). If $R_{x y}(k)=\sum_{n=-\infty}^{+\infty} x(n) y^{*}(n-k)$, its z-transform $S_{x y}(z)=X(z) Y^{*}\left(\frac{1}{z^{*}}\right)$ (Cross correlation).
4. See the block diagram shown in Fig. R1.4.
(1). For the two-input two-output sub-block G, what are the impulse responses $h_{i j}(n)$ (i.e., from input x_{j} to output $\left.y_{i}, i, j=1,2\right)$?
(2). For the whole system, what is the impulse response?

