ENEE 630 Homework 7¹

Material Covered: Parameters in LD Recursion and Prediction Error

Problem 1 Consider a wide-sense stationary process $\{u(n)\}$ whose autocorrelation function has the following values for different lags:

$$r(0) = 1$$

$$r(1) = 0.8$$

$$r(2) = 0.6$$

$$r(3) = 0.4$$

- (a) Use the Levinson-Durbin recursion to evaluate the reflection coefficients Γ_1, Γ_2 and Γ_3 .
- (b) Set up a three-stage lattice predictor for this process, using the values for the reflection coefficients found in part (a).
- (c) Evaluate the average power of the prediction error produced at the output of each of the three stages in this lattice predictor. Hence, make a plot of prediction error power vs. prediction order. Comment on your results.

Problem 2 (a) A time series $\{u_1(n)\}$ consists of a single sinusoidal process of complex amplitude α and angular frequency w in additive white noise of zero mean and variance σ_v^2 as shown by

$$u_1(n) = \alpha e^{jwn} + v(n)$$

where

$$E[|\alpha|^2] = \sigma_\alpha^2$$

$$E[|v(n)|^2] = \sigma_v^2$$

 $^{^{1}}$ ver. 201211

The time series $\{u(n)\}$ is applied to a linear predictor of order M, optimized in the Wiener sense. Do the following:

- (i) Determine the tap weights of the prediction-error filter of order M, and the final value of the prediction error power P_M .
- (ii) Determine the reflection coefficients $\Gamma_1, \Gamma_2, \dots, \Gamma_M$ of the corresponding lattice predictor.
- (iii) How are the results in part (i) and part (ii) modified when we let the noise variance σ_v^2 approach zero?
- (b) Consider next an AR process $\{u_2(n)\}\$ described by

$$u_2(n) = -\alpha e^{jw} u_2(n-1) + v(n)$$

where, as before, $\{v(n)\}$ is an additive white noise process of zero mean and variance σ_v^2 . Assume that $0 < |\alpha| < 1$ but very close to 1. The time series $\{u_2(n)\}$ is also applied to a linear predictor of order M, optimized in the Wiener sense.

- (i) Determine the tap weights of the new prediction-error filter of order M.
- (ii) Determine the reflection coefficients $\Gamma_1, \Gamma_2, \dots, \Gamma_M$ of the corresponding lattice predictor.
- (c) Use your results in parts (a) and (b) to compare the similarities and differences between the linear prediction of the time series $\{u_1(n)\}$ and $\{u_2(n)\}$.
- **Problem 3** Starting with the definition of Δ_{m-1} , show that Δ_{m-1} equals the cross-correlation between the delayed backward prediction error $b_{m-1}(n-1)$ and the forward prediction error $f_{m-1}(n)$.
- **Problem 4** Consider an autoregressive process {u(n)} of order 2, described by the difference equation

$$u(n) = u(n-1) - 0.5u(n-2) + v(n)$$

where $\{v(n)\}\$ is a white noise process of zero mean and variance 0.5

- (a) Find an average power of $\{u(n)\}$.
- (b) Find the reflection coefficients Γ_1 and Γ_2 .

- (c) Find the average prediction-error powers P_1 and P_2 .
- **Problem 5 (a)** Construct the two-stage lattice predictor for the second-order autoregressive process $\{u(n)\}$ considered in problem 4.
 - (b) Given a white noise process $\{v(n)\}$, construct the two-stage lattice synthesizer for generating the autoregressive process $\{u(n)\}$. Check your answer against the second-order difference equation for the process $\{u(n)\}$ considered in problem 4.