ENEE 630 Fall 2012 Homework 1^{1}
 Material covered: Basic multirate operators and interconnection of building blocks.

Problem 1 For the system in Fig. P-1, find an expression for $y(n)$ in terms of $x(n)$. Simplify the expression as best as you can.

Figure: P-1

Problem 2 Show that the two systems shown in Fig. P-2(a) (where k is some integer) are equivalent (that is, $\left.y_{0}(n)=y_{1}(n)\right)$ when $h_{k}(n)=h_{0}(n) \cos (2 \pi k n / L)$.

Figure: P-2(a)

This is a structure where filtering followed by cosine modulation has the same effect as filtering with the cosine modulated impulse response. (This is not true in all situations; see next problem). Now consider the example where $L=5$, and $k=1$. Let $X\left(e^{j \omega}\right)$ and $H_{0}\left(e^{j \omega}\right)$ be as sketched in Fig. P-2(b). Give sketches of $Y\left(e^{j \omega}\right), Y_{0}\left(e^{j \omega}\right)$ and $U\left(e^{j \omega}\right)$.

Figure: P-2(b)

[^0]Problem 3 Show that the two systems shown in Fig.P-3 are no equivalent, that is, $y_{0}(n)$ and $y_{1}(n)$ are not necessarily the same, even if $h_{k}(n)=h_{0}(n) \cos (2 \pi k n / L)$.

Figure: P-3

Problem 4 Consider a sequence $x(n)$ with $X\left(e^{j \omega}\right)$ as shown in Fig. P-4(a).
Suppose we generate the sequences $y(n)$ and $s(n)$ from $x(n)$ as in Fig. P-4(b), where

$$
H\left(e^{j \omega}\right)=\left\{\begin{array}{lr}
1 & \text { for }|\omega|<\pi / 2 \\
0 & \text { for } \pi / 2 \leq|\omega| \leq \pi
\end{array}\right.
$$

Plot the quantities $Y\left(e^{j \omega}\right)$ and $S\left(e^{j \omega}\right)$.

Figure: P-4(a)

Figure: P-4(b)

[^0]: ${ }^{1}$ ver. 201209

