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Chapter 1

Decision Theory

In this chapter we present the basic ideas of statistical decision theory that will
be used repeatedly in designing optimal receivers in a number of settings. These
design problems can all be reduced to problem¥ ediry hypothesis testing which

we investigate below in generic form.

1.1 The generic hypothesis testing problem

In the statistical hypothesis testing problem, a decision has to be made as to which
of several possible hypotheses (or states of nature) is the correct one. The state
of nature is encoded in a i and a decision has to be made on the basis of an
R?-valued observation vectoX which is statistically related té/. Given that a

cost is incurred for making decisions, the decision-maker seeks to determine the
“best” decision to be implemented. Although several formulations are available
in the literature, here we concentrate on the Bayesian formulation.

1.1.1 The Bayesian model

Let H denote dinite set with M/ elements for some positive integéf > 2,
sayH := {1,..., M} for the sake of concreteness. TheHvtakes values irH
according to the pmf

pm:=P[H=m], m=1,..., M.
This pmfp = (p1, ..., pa) is often called therior on H.
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6 CHAPTER 1. DECISION THEORY

With each of the possible hypothesis= 1, ..., M, we associate a probabil-
ity distribution functionF,,, onR¢ with the interpretation thaf,,, is the conditional
distribution of X given H = m, i.e.,

P[X < z|H =m] = F,(x), xcR%

The observation nX is then distributed according to
M
PIX <@ =) puFu(x), xR
m=1

by the Law of Total Probabilities, while
PX <ax,H=m]=pFnlx), zcR) m=1,... M.

In other words, the conditional probability distribution of the observations given
the hypothesigndthe probability distribution off completely specify thgint
distribution of the rvs and X.

1.1.2 The optimization problem

On observing the observation vector, the decision-maker implements a decision
rule which returns a state of nature in response to this observation. Thus, an
(admissible) decision rule atetectot is simply any mapping : R — H.2 In
the language of Estimation Theory, the mappingR? — H can be interpreted as
anestimatorfor H (on the basis oX) with 6(X) representing the corresponding
estimateH of H (on the basis ofX). Let D denote the class of all (admissible)
detection rules.

As a cost is incurred for making decisions, we introduce the map@ing
H x 'H — R with the interpretation that

Cost incurred for deciding

C(m, k) = whenH = m

LIn the statistical literature on Hypothesis Testing such a detector is often catstl ahile
in the context of Digital Communications, a detector is often refered toraseaverfor reasons
that will become shortly apparent — We shall follow this tradition in due time!

2Strictly speaking, the definition of an admissible rule should include the property that each of
the setdxz € R4 : §(x) =m}, m=1,..., M, be a Borel subset @*.
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forall k,m =1,..., M. The use of any admissible ruden D thus incurs a cost
C(H,d(X)). However, the value of the co6t(H, §(X)) is not available to the
decision-makérand attention focuses instead on theected cosf : D — R
defined by

J(0):=E[C(H,§X)], 0€D.

The Bayesian M-ary hypothesis testing probléfs ) is now formulated as
(Pg) :  Minimize J over the collection D of admissible decision rules
Solving problem(Pz) amounts to identifying detector(8) : R? — H such that
J(6%) < J(0), 0 €D.

Any detector* : R? — H which minimizes the expected cost is referred to as an
optimaldetector.

The problem(Pg) can be solved for arbitrary cost functionsunder fairly
weak assumptions on the distributiofs . . ., F),. Throughout, to simplify mat-
ters somewhat, we assume that for eack- 1, ..., M, the distribution function
F,, admits a density/,, onR?, i.e.,

T T4
Fo.(x) = / / fm@)dty ... .dtg, == (21,...,24) € R

This assumption is enforced in all cases considered here.

Rather than discussing the case of a general cost function, we will instead
focus on a special case of paramount importance to Digital Communications. This
occurs wher(' takes the form

1 ifm#£k

(1.2) C(m, k) = , km=1,.... M
0 fm=k

and the expected cost reduces to the so-calfedability of error

(1.2) Er(6) :=P[6(X) # H|], J§eD.

Versions of the problem with cost (1.1)—(1.2) will be extensively discussed in this
text. The remainder of the discussion assumes this cost structure.

3Indeed the value off is not known, in fact needs to be estimated!
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1.2 Identifying the optimal detector

As the first step in solving the proble(#5), we argue now as to the form of the
optimal detector. We begin by noting that any deteétoiR? — H is equivalent

to apartition (A4, ..., Ay) of RY, that is, a collection of subsets &f such that
B k#m
An N A, =0, kkm=1,....M
with
RY = UM_ A,

Indeed, any detectaf : RY — H induces a partitiof{Ay, ..., Ay) of R? by
setting
Ap={xcR: §(x)=m}, m=1,...,M.

Conversely, with any partitiofiA 4, ..., Ay/) of R we can associate a detector
d : R* — H through the correspondence

dlx)=m if ze€A,, m=1,...,M.

Start with a detectod : R? — H with induced partition(A1, ..., Ay) as
above. We have

P5(X)=H] = Y pnP[0(X)=m|H=m)]

M
= ) pmP[X € Ay|H = m]

m=1

M

As we seek to minimize the probability of error, we conclude that it suffices to
maximize

M
F(Aq, ..., Ay) = m m(x)d
(A1, ..., Ay) mZ:lp /Amf(w)fﬂ

— /Rd (Z 1[x € A, pmfm(m)> dx
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with respect to partitiongA,, ..., A,,) of R4
Inspection of the functional’ suggests a possible candidate for optimality:
Foreachn =1,..., M, set

Ay = {z R ppf(z) = max pyfi(e))

with tie breakers if necessary. For sake of concreteness, ties are broken according
to the lexicographic order, i.e., if at poimt it holds that

pifi(x) = . maXMpkfk(w) = pjfj(w)

for distinct valuesi and j, thenx will be assigned taA? if ¢ < j. With such
precautions, these sets form a partitiah?, ..., A%,) of R?, and the detector
& : R? — 'H associated with this partition takes the form

(L3)  S@=m M pufal@) = max pfi(), @R

.....

with a lexicographic tie-breaker, or more compactly,
§*(x) =argmax(m=1,..., M : ppfu(z)), =cR%
We shall often write thad* prescribes
(1.4) H=m iff p,f.(x)largest

with the interpretation that upon collecting the observation veetdhe detector
0* selects the state of natureas its estimate on the basisof

1.3 The detectord* is optimal
That the guess (1.4) is indeed correct forms the content of the next proposition:

Theorem 1.3.1 The detector §* : RY — H given by (1.3) is optimal, in that
Er(6*) < Er(§) for any other detector § : RY — H.

Proof. Introduce the mapping : R? — R by
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The obvious bound
M
<> puful@), xR
m=1
implies
M M
» f(x)dx < me /Rd fm(x)dx = me =1,
m=1 m=1

and the functiory is indeed integrable over all @?. This fact will be used with-
out further mention in the discussion below to validate some of the manipulations
involving integrals.

For any partition Ay, ..., Ay,) of RY, we need to show that

(1.5) F(AY,. ., Ay) = F(Ar, .., Ay) >0,
where
F(AY, ..., A%) — F(Ay, ..., Ay)

i( [ ptataiin= [ psaiaii).

’HL

Next, for eachm = 1,..., M, by the definition ofA7 and f it holds that

Pmfm(®) = f(x), ®E A}
and

pmfm<m) < f(:l?), z €A,
Therefore,

F(AL. . Aly) = F(Ay,... . Au)

( f@- [ mpmfm<as>dw)
ml(A*f da:—/f da;>

-3 [ @ dw—z/ (e

m=1

= Rdf dw—/f Jdx = 0,

(=1l
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and the inequality (1.5) is established. ]

1.4 Alternate forms of the optimal detector

The optimal detectos* identified in Theorem 1.3.1 is amenable to useful inter-
pretations which we now develop

The MAP detector With the usual caveat on tie breakers, the definition (1.3) of
the optimal detectod* yields

Choosel =m  iff  pufn(z) largest
M

> ket Prfi(@)

iff —~ P[H=m|X = x| largest

largest

where the last equivalence follows from Bayes’ Theorem in the form

IP’[H:m|X:m]:ijf—m(w>, x € R
> k1 Prfr()
for eachm = 1,..., M. In particular,6* can be viewed as selectin@ =m

whenever the posterioriprobability of H given the “observationsX is largest.
In the parlance of Estimation Theory; is the Maximum A Posterior(MAP)
estimator of the “parameter! on the basis of the observatiois.

As monotone increasing transformations are order preserving, the optimal de-
tectoré* has the equivalent form

ChooseH =m iff log (pnf(x|H = m)) largest

Uniform prior and the ML detector There is one situation of great interest,
from both practical and theoretical viewpoints, where further simplifications are
achieved in the structure of the optimal detector. This occurs when th&isv
uniformlydistributed ovef, namely

1

(1.6) P[H:m]:M, m=1,..., M.
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In that case, the optimal detecirprescribes
ChooseH = m  iff fm(x) largest

and therefore implements the so-calMdximum LikelihoodML) estimate of
on the basis of.

1.5 An important example

An important special case arises when the distributiBns. ., F,, are all Gaus-
sian distributions with the samagvertible covariance matrix. This is equivalent
to

(1.7) (X|H=m|=aqpn, +V, m=1,....M

whereV is a zero meaiR¢-valued Gaussian rv with covariance matbix We

assumeX to be invertible and the mean vectqus, . . ., u,, to be distinct. An
alternative description, based on (1.7), relates the observXfido the state of
natureH through the measurement equation

(1.8) X=py+V
where the rvsf andV are assumed to be mutually independent rvs distributed
as before. Under this observation model, for eack- 1, ..., M, F,, admits the
density
1 / -1
(1.9) fu(z)= eI @B @) g R
(2m)Pdet ()

We note that

(1.10)1og (pu fn ()

1 _ x € RY,

m=1,.... M
with constantC' given by
C = —%log ((2m)?det (X)) .
This constant being independentrafandx, the optimal detector prescribes

Choosefl =m iff 2logp, — (& — p,)'S ' (x — p,,) largest
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Under uniform prior, this MAP detector becomes the ML detector and takes the
form R
ChooseH =m iff (x—p,)E ' (x — p,,) smallest

The form of the MAP detector given above very crisply illustrates how the
prior information f,,,) on the hypothesis is modified by the posterior information
collected through the observation vectar Indeed, at first, if only the prior dis-
tribution were known, and with no further information available, it is reasonable
to select the most likely state of natufe = m, i.e., the one with largest value
of p,,. However, as the observation vectobecomes available, its closeness to
w,,, should provide some indication on the underlying state of nature. More pre-
cisely, if . is the “closest” (in some sense) to the observasiommong all the
vectorspy,, . .., iy, then this should be taken as an indication of high likelihood
that I = m; here the appropriate notion of closeness is the nori‘oimduced
by 1. The MAP detector combines these two trends when constructing the op-
timal decision in the following way: The state of natufe= m may have a rather
small value for its priop,,, making ita priori unlikely to be the underlying state
of nature, yet this will be offset if the observatianyields an extremely small
value for the “distancelz — p,,)’~ "' (x — p,,) to the mean vectaou, .

WhenX = 021, for somes > 0, the components df are mutually indepen-
dent, and the MAP and ML detectors take the simpler forms

~ ) 1
Choosefl =m iff  2logp, — =l — ,,|* largest
o

and R
ChooseH = m iff ||z — u,,||*> smallest

respectively. Thus, given the observation vecitothe ML detector returns the
state of naturen whose mean vectqi,, is closest (in the usual Euclidean sense)
to x. This is an example afearest-neighbodetection.

1.6 Consecutive observations

As the discussion in Section 1.5 already shows, the MAP and ML detectors can as-
sume simpler forms in structured situations. In the present section we explore pos-
sible simplifications wherepeatedbservations of the state of nature are made.

A convenient setup to carry out the discussion is as follows: Consecutive ob-
servations are collected at time epochs labelled 1,....,n with n > 1. At
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each time epoch, nature is assumed to be in oné dfstinct states, labelled
¢=1,...,L,and we writeL = {1,...,L}. Foreach = 1,...,n, the unknown
state of nature at epochis encoded in th&-valued rv H;, while the observa-
tion is modeled by afR?-valued rvX;. The “global” state of nature over these

n time epochs is the&"-valued vH = (H,..., H,), while the R"¢-valued
v X = (X,,...,X,) represents the cumulative observation over these same
epochs.

The problem of interest here is that of detecting the global state of n&fure
on the basis of the cumulative observation vecxor A number of assumptions
will now be made; they are present in some situations relevant to Digital Commu-
nications: At this point, th&€"-valued rvH is assumed to have an arbitrary pmf,
say

p(h) = P[H =h]
= P[Hy=hi,....,H,=hy], h=(hy,... hy)€EL"

We also assume that the observatidgs ..., X, areconditionally independent
given the global state of nature, with a conditional density of the product form

(1.112) fp(x) = Hfhi(xi)7 h = (hlg;;ef&}in) eL" ‘
i=1

Note that the functional form of (1.11) implies more than the conditional indepen-
dence of the rvsX, ..., X, as it also stipulates for each= 1, ..., n that the
conditional distribution ofX'; given H depend®nly on H;, the state of nature at
the epoch when this observation is taken.

The results obtained earlier apply for it suffices to identify the state of nature
as the rvH and the observation aX': We then see that the ML detector f&f
on the basis of the observation vecfrprescribes

n

ChooseH = (hi, ..., h,) iff [ /v () largest

=1
This leads to the following equivalent prescription
Choosef]i =h; iff  fp(x;)largest i=1,... n.

In other words the corresponding ML detector reducesetiguentiallyapplying
an appropriate ML detector for deciding the state of nafiyet epoch; on the
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basis of the observatioX ; collectedonly at that epoch foeachi = 1,...,n. Of

course this is a great simplification since it can be done sequentially in time.
We now turn to the MAP detector in the situation when theldys. . ., H,, are

mutually independer{but not necessarily identically distributed), i.e.,

(1.12) PHy =h,...,H,=h,) = [[P[H: = hi

=1
with h = (hq,..., h,) in £™. Under this independence assumption on the prior,
the MAP detector folH on the basis of the observation vecfrprescribes

ChooseH = (hi,....h,) iff [[P[H; = hi] f(x;) largest
=1

This time again, a separation occurs under the independence assumption (1.12),
namely the combined prescriptions

Choosefl; = h; iff P[H; = h;] fn (x;)largest i=1,... n.

Again great simplification is achieved as the MAP detector reducssoentially
applying an MAP detector for deciding the state of nattreat epoch: on the
basis of the observatioX ; collectedonly at that epoch foeach: = 1,...,n.

1.7 Irrelevant data

When applying the ideas of Decision Theory developed in this chapter, we shall
sometimes encounter the following structured situation: The observedXata
admits a natural partitioning into two component vectors, Xay-= (Y, Z) for

rvs Y and Z which take values irR? andR?, respectively, withp + ¢ = d.

To simplify the discussion, we still assume that for each= 1,..., M, the
distribution functionF,, admits a density,,, onR?. In that case, the distribution

of the rvY given H = m also admits a density,, given by

gm(y) = | fuly,2z)dz, yeR
Ra

It is a simple matter to check fay in R? that the conditional distribution of the
rv Z givenY = y and H = m admits a density, denotdd, (-|y). Standard
conditioning arguments readily yield

(1.13) fn(Y,2) = gn(Y)hm(2ly), y€R?, z€RL
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In fact, with the conventiorg =0, we find

fm(Y,2)
gm(y) 7

Returning to the definition (1.4) of the optimal detector, we see thatre-
scribes

(1.14) hm(zly) = y € R, z € R%

~

H=m iff pngm(y)hm(z|y) largest

with a tie-breaker. Therefore, if the conditional density at (1.14) weretale-
pend onm, i.e.,

(1.15)  m(zly) =... = hu(zly) = h(zly), yeR’ zeR
then (1.14) reduces to
(1.16) H=m Iiff Pm9m(y) largest
The condition (1.15) and the resulting form (1.16) of the optimal detector suggest
that knowledge oZ plays no role in developing inference &f on the basis of
the pair(Y’, Z), hence the terminologyrelevantdata given taZ.
In a number of cases occuring in practice, the condition (1.15) is guaranteed by
the following stronger conditional independence: (i) TheYvaind Z are mutu-

ally independent conditionally on the i, and (ii) the rvZ is itself independent
of the rv H. In other words, for eaclh = 1, ..., M, it holds that

PY <y, Z<zlH=m| = P]Y <yl|H =m|P]

for all y andz in R? andRR?, respectively. In that case, it is plain that

(Y, 2) = gm(y)h(z), y€eRP, z€RI

whereh is theunconditionalprobability density function oZ. The validity of
(2.15) is now immediate with

h(zly) = h(z), yeR? zec R
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1.8 Sufficient statistics

A mappingT : R¢ — R? is said to be aufficient statistidor (estimating) on
the basis ofX if the conditional distribution ofX given H = m and7'(X) does
not depend omn.
The Fisher-Neyman Factorization Theorem given next provides a convenient
characterization of a sufficient statistic in the framework used here.

Theorem 1.8.1 Assume that foreachm = 1, ..., M, the distribution function F,,,
admits a density f,, on R?. The mapping T : R — RP? is a sufficient statistic for
estimating H on the basis of X if and only if there exist mappings h : RY — R,
and g1, ...,g9y : RP — R, such that

(1.17) fn(@) = (@) gm(T(®)), xR’
foreachm =1,..., M.

The usefulness of the Fisher-Neyman Factorization Theorem should be appar-
ent: From the definition (1.4) of the optimal detector, we seedhptescribes

(1.18) H=m iff puh(x)gn(T(z))largest
with a tie-breaker, a prescription equivalent to
(1.19) H=m iff png.(T(x))largest

with a tie-breaker. In many applicatiopsis much smaller thad with obvious
advantages from the point of view of storage and implementation: Thexdiata
possibly high-dimensional but after some processing, the decision concerning the
state of nature can be taken on the basis of the lower-dimensional quaftity

The following example, already introduced in Section 1.5, should clarify the
advantage of using (1.19) over (1.18): Assume the distributigns. . , F; to be
Gaussian distributions with the same invertible covariance maty but with
distinct meangu,, . . ., ;. Further assume that

Wy = A, m=1.... M

for distinct scalars\q, . .., A\j; and non-zero vectqe. Then, under these assump-
tions, for eachn = 1, ..., M, the distributionF;,, admits the density

(1.20) fnl) = L il e e
" (2mo2)d ’
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where
lz = Mgl = llzl|* = 2Xm@' s+ A7 [| ]

As a result, the density;,, can be written in the form (1.17) with

h(x) = _ e 22T g e R

(2ma?)P 7

and

G(t) = €757 (CRAREALIMIE) 4 e R
It now follows from Theorem 1.8.1 that the mappifg R? — R given by

T(z):=a'p, xecR’

is a sufficient statistic for (estimatingj on the basis oX —Herep = 1 whiled is
arbitrary (and often very large). While the (high-dimensional) daisobserved,
the decision is taken on the basis of e dimensional quantity’(x), namely

(121) H=m iff logpm — = (—2X.T(x) + A2 ||p|?) largest

202

upon taking logarithms in (1.19).

1.9 Exercises

Ex. 1.1 Consider the Bayesian hypothesis problem with an arbitrary cost function
C : 'H x H — R. Reuvisit the arguments of Section 1.2 to identify the optimal
detector.

Ex. 1.2 Show that the detector identified in Exercise 1.1 is indeed the optimal
detector. Arguments similar to the ones given in Section 1.3 can be used.

Ex. 1.3 Specialize Exercise 1.2 to the cake= 2.
Ex. 1.4 Show that the formulations (1.7) and (1.8) are equivalent.

Ex. 1.5 In the setting of Section 1.6, show that theHvis uniformly distributed

on £" if and only the rvsH,, ..., H, are i.i.d. rvs, each of which is uniformly
distributed onl. Use this fact to obtain the form of the ML detector from the
results derived in the second half of Section 1.6, under the assumption (1.12) on
the prior.
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Ex. 1.6 Consider the situation where the scalar observafioand the state of
natureH are rvs related through the measurement equation

X=pu+V

under the following assumptions: The ri#sandV are mutually independent, the
rv H takes values in some finite set = {1,..., M}, and theR-valued rvV
admits a densityy . Herep,, . . ., s denote distinct scalars, say < ... < .
Find the corresponding ML detector.

Ex. 1.7 Continue Exercise 1.6 when the noigehas a Cauchy distribution with

density
1

frv(v) = 0+ 07)

Show that the ML detector implements nearest-neighbor detection.

, veR.

Ex. 1.8 Consider the multi-dimensional version of Exercise 1.6 with the observa-
tion X and the state of natut related through the measurement equation

under the following assumptions: The ré#sand V' are mutually independent,
the rv H takes values in some finite skt = {1,..., M}, and theR¢-valued rv
V admits a density. Here the vectorg,, . .., u,, are distinct elements d#“.
Find the ML detector wherfy, is of the form

fv(v) =g(lvl*), veR?

for some decreasing function: R, — R,.
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Chapter 2

Gaussian Random Variables

This chapter is devoted to a brief discussion of the class of Gaussian rvs. In
particular, for easy reference we have collected various facts and properties to be
used repeatedly.

2.1 Scalar Gaussianrvs
With
peR and o >0,

anR-valued rvX is said to be &aussian(or normally distributed) rv with mean
u and variance? if either it is degenerate to a constant with= ;. a.s. (in which
cases = 0) or the probability distribution oX is of the form

1 xT
Pixsa=g— [ ¢

(in which caser? > 0). Under either circumstance, it can be shown that

(¢

,)2
202 dt, relR

(2.1) E [¢X] = ¢®~T%, §eR
It is then follows by differentiation that
(2.2) EX]=p and E[X*]=p"+o0?

so thatVar[X| = 2. This confirms the meaning ascribed to the parametarsd
0% as mean and variance, respectively.

21
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Itis a simple matter to check that¥ is normally distributed with meamand
varianceo?, then for scalara andb, the rvaX + b is also normally distributed
with meanay + b and variance?s?. In particular, witho > 0, the rve =1 (X — i)
Is a Gaussian rv with mean zero and unit variance.

2.2 The standard Gaussian rv

The Gaussian rv with mean zero and unit variance occupies a very special place
among Gaussian rvs, and is often referred to astdedardGaussian rv. Through-

out, we denote by/ the Gaussian rv with zero mean and unit variance. Its proba-
bility distribution function is given by

2.3) PU < 2] = ®(z) = / o), zER
with density functionp given by
(2.4) () = \/%6122, r €R.

As should be clear from earlier comments, the importance of this standard rv
U stems from the fact that for any Gaussian¥fwvith meanu and variance?, it
holds thatX =, u + oU, so that

PX<a] = Plo (X —p) <o 'z —p)]
= P[U<o ' (z—p)
= ®(c M (z—p), el
The evaluation of probabilities involving Gaussian rvs thus reduces to the evalua-
tion of related probabilities for the standard Gaussian rv.
For eachr in R, we note by symmetry th& [U < —z] = P[U > z], so that

O(—z) = 1 — ®(x), and® is therefore fully determined by the complementary
probability distribution function ot/ on [0, co), namely

(2.5) Q) =1—®(x)=P[U >z, z>0.

2.3 Gaussian integrals

There are a number of integrals that can be evaluated explicitly by making use of
the fact that the Gaussian density function (2.4) must integrate to unity. We refer
to these integrals aSaussian integralsand provide an expression for them.
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Lemma 2.3.1 For every a in R and b > 0, it holds that

(2.6) 1@¢y:/&fwdm:¢iﬁ.
" b

Proof. To evaluate/ (a,b) we use a “completion-of-square” argument to write

aa:—beZ—b(xQ—%x>:—b<:1:—2%>2—|—2—2, relR

so that

I(a,b) = eﬁ/e_b(”_'zib)gd
R

T
= \/Eeﬁ/\/ze_b(x_%f dx.
b rR VT

The desired conclusion (2.6) follows once we observe that

/ \/Ee_b(g”_%>2 dr =1
gV

as the integral of a Gaussian density with mgan 3= and variance® = % [ ]

Sometimes we shall be faced with the task of evaluating integrals that reduce
to integrals of the form (2.6). This is taken on in

Lemma 2.3.2 For every pair a and b in R, it holds that

J(\a,b) = /eMﬁW%@ﬁm
R

1 Aa?
2.7 = T, \A>0.
27 V14202

Proof. Fix A > 0. For eachr in R, we note that

(1 + 2)\b2) 22 + \a® + 2)\abz.

N —

1
51‘2 + Ma + bx)? =
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Hence, upon making the change of variable z+/1 + 2\b?, we find
J(\iab) = e / O(V1 4 2\02x)e 2 dy
R

2 ——2dab__,, du
— e N /6 V142202 u) —
R #) V1+2\?
e—a? __2xab_,
— - @ e \/1+2/\b2 u du
\/1+2)\b2 R Cb( )
—\a?
(&
2.8 = I(a,
(2.8) 27(1 + 2M\0?) (@ 5)
with
2 ab and
oa:=—————— an ==
V14 2\?

Applying Lemma 2.3.1, we note that

o? a? 2)2a2b?

3 2 1422

so that . s
a 2A%a"b”
(2.9) I{a, B) = V2me z = \/2me 14237
The desired conclusion readily follows from (2.8) and (2.9) once we observe that
VeI 2)\2a2h? _ Aa?

12002 142002
|

As an easy corollary of Lemma 2.3.1, any GaussiaXrwith meany and
variances? has anoment generating functiagiven by

02 2
(2.10) E[e"*] =27 feR.
Indeed, for eacH in R, direct inspection shows that

1 g (2=

E[eex] = /\/2—26 202 dx
R V27O

1 2
Ou 0t——2dt
— e [ 20
/]R V2mo?

1 1
= (6, —
\/27m26 ( ’202)
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where the second equality is obtained by the change of variable: — 11, and
(2.10) follows by making use of Lemma 2.3.1. Observe that (2.1) can also be
obtained formally from (2.10) upon replacifgn the latter byi6.

2.4 EvaluatingQ(x)

The complementary distribution function (2.5) repeatedly enters the computation
of various probabilities of error. Given its importance, we need to develop good
approximations t@)(x) over the entire range > 0.

The error function In the literature on digital communications, probabilities of
error are often expressed in terms of the so-cadledr functionErf : R, — R
and of its complemeriirfc : R, — R defined by

2 T
(2.11) Erf(z) = —/ e dt, >0
W=7
and 5 oo
(2.12) Erfe(x) = ﬁ/x e Pdt, x>0

A simple change of variableg & %) in these integrals leads to the relationships

Erf(z) =2 (Cb(xx/i) - %) and  Erfe(z) = 2Q(zv/2),

so that
Erf(z) =1 — Erfe(z), x>0.

Conversely, we also have

O(z) = % (1 + Exf (%)) and Q(z) = %Erfc (%) .

Thus, knowledge of any one of the quantities), Erf or Erfc is equivalent to

that of the other three quantities. Although the last two quantities do not have
a probabilistic interpretation, evaluatiigrf is computationally more efficient.
Indeed,Erf(x) is an integral of a positive function over tfii@ite interval [0, x|

(and not over an infinite interval as in the other cases).
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Chernoff bounds To approximatel)(xz) we begin with a crude bound which
takes advantage of (2.10): Fix> 0. For eachd > 0, the usual Chernoff bound
argument gives

PlU>z] < E[e"]e ™
e-e#%

22 (0-2)?

(2.13) = e ze 2

where in the last equality we made use of a completion-of-square argument. The
best lower bound

(2.14) Qz)<e T, z>0

o

is achieved upon selectiry= = in (2.13). We refer to the bound (2.14) as a

Chernoff bound; it is not very accurate for smalt> 0 sincelim, ., Q(z) = 3

12
while lim,_,ge~ 2 = 1.

Approximating Q(z) (r — oo) The Chernoff bound shows thé(x) decays

to zero for larger at least as fast aﬁié However, sometimes more precise
information is needed regarding the rate of deca§ ©f). This issue is addressed
as follows:

For eachr > 0, a straigthforward change of variable yields

Q) = /Ooas(t)dt
= / oz +t)d

(2.15) - )/0 e~ .

With the Taylor series expansion efé in mind, approximations fof)(x) of
increased accuracy thus suggest themselves by simply approximating the second
exponential factor (namely **) in the integral at (2.15) by terms of the form

~ (=1)*
(2.16) > s =01,

k=0
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To formulate the resulting approximation contained in Proposition 2.4.1 given
next, we set

foreachn =0,1,.. ..

Proposition 2.4.1 Fixn = 0,1, .. .. For each x > 0 it holds that

(2.17) Qant1(7) < Q) < Qon(w),
with
(2n)! —(2n+1)
(2.18) | Q) = Qule) 1< ora™ Vg (a).
where . .
(2.19) Qn() = 8(x) (_12)k,£,2’“) e
k=0 )

A proof of Proposition 2.4.1 can be found in Section 2.12. Upon specializing
(2.17) ton = 0 we get

2

(2.20) . (1 1) Q@< T 20

) )
/21 x? /2T

2

_x

and the asymptotics
e 2

(2.21) Q) ~ ——

follow. Note that the lower bound in (2.20) is meaningful only wheh 1.

(z — o0)

2.5 Gaussian random vectors

Let o denote a vector ifR? and letX be a symmetric and non-negative definite
d x d matrix, i.e.,X' = 3 and@’'x0 > 0 for all @ in R¢,

An R?-valued rvX is said to be a Gaussian rv with mean veqtoand co-
variance matrix® if there exist al x p matrix T' for some positive integer and
I.i.d. zero mean unit variance Gaussiantys. . ., U, such that

(2.22) TT =%



28 CHAPTER 2. GAUSSIAN RANDOM VARIABLES

and
(2.23) X =4 p+TU,
whereU, is theRP-valued rv(Uy, ..., U,)".

From (2.22) and (2.23) it is plain that

EX]|=E[p+TU,| =pn+TE[U,| =p

and
E[(X—p)(X—p)] = E[TU,(TU,)]
= TE[U,U,|T
(2.24) - TI,T =%,
whence

E[X]=p and Cov[X]|=23.

Again this confirms the terminology used ferand3 as mean vector and covari-
ance matrix, respectively.

It is a well-known fact from Linear Algebra [, , p. ] that for any symmetric
and non-negative definitéx d matrix 3, there exists @ x d matrix T" such that
(2.22) holds withp = d. This matrixT" can be selected to lsymmetriandnon-
negative definiteand is called thequare rootof 3. Consequently, for any vector
p in R? and any symmetric non-negative definitex d matrix X, there always
exists amR“-valued Gaussian X with mean vectop and covariance matrix
— Simply take

X =4 m+ TU,

whereT is the square root ot.

2.6 Characteristic functions

The characteristic function of Gaussian rvs has an especially simple form which
is now developed.

Lemma 2.6.1 The characteristic function of a Gaussian R%-valued rv X with
mean vector p and covariance matrix X is given by

(2.25) E [eiH'X } _ 03020 g cpa
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Conversely, any R¢-valued rv X whose characteristic function is given by (2.25)
for some vector p in R? and symmetric non-negative definite d x d matrix ¥ is a
Gaussian R%-valued rv X with mean vector p and covariance matrix .

Proof. Consider arR?-valued rvX which is a Gaussian rv with mean vecjor
and covariance matri¥X. By definition, there exist & x p matrix T' for some
positive integep and i.i.d. zero mean unit variance Gaussianlfys . . , U, such
that (2.22) and (2.23) hold.

For eachd in R?, we get

E [GZH'X} _ g —ez‘H'TUp}

_ 0 g [T 0)’Up}

&=

— 0,

&=

'eizz:1<T’9>kUk]

(2.26) — JOn.

—=,

E [ei(T’H)kUk]

B
Il

1

o3IO,

:@

(2.27) _ .

B
Il

1

The equality (2.26) is a consequence of the independence of tlig rvs., U,
while (2.27) follows from their Gaussian character (and (2.1)).
Next, we note that

DTN = (T'0)(T'6)
k=1
(2.28) — 0(TT)0 =0's0

upon invoking (2.22). Itis now plain from (2.27) that the characteristic function
of the GaussiaiR?-valued rvX is given by (2.25).

Conversely, consider aR¢-valued rv X with characteristic function of the
form (2.25) for some vectop in RY and some symmetric non-negative definite
d x d matrix 3. By comments made earlier, there exist$ a d matrix T such
that (2.22) holds. By the first part of the proof, tRé-valued rvX given by
X = pu + TU , has characteristic function given by (2.25). Since a probability
distribution is completely determined by its characteristic function, it follows that
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the rvsX andX obey the same distribution. The X being Gaussian with mean
vectoru and covariance matriX, the rv X is necessarily Gaussian as well with
mean vectop: and covariance matrix. [ |

2.7 Existence of a density

In general, arR¢-valued Gaussian rv as defined above may not admit a density
function. To see why, consider the null space of its covariance mattinamely

NE):={xcR?: Tz =0,

Observe that’'>0 = 0 if and only if & belongs toN (X)), in which case (2.25)
yields
E [eia (X_“)} =1

and we conclude that
0(X —pn)=0 as.

In other words, with probability one, the &X' — u is orthogonal to the linear
spaceN (X).

To proceed, we assume that the covariance mairig not trivial (in that it
has some non-zero entries) for otherwde= p a.s. In the non-trivial case, there
are now two possibilities depending on the d matrix X being positive definite
or not. Note that the positive definitenesSifi.e.,0’30 = 0 necessarily implies
0 = 0,4, is equivalent to the conditio¥V (X) = {0,}.

If the d x d matrix X is not positive definite, hence only positive semi-definite,
then the mass of the X’ — p is concentrated on the orthogonal spa¢ex )+
of N(X), whence the distribution aX has its support on the linear manifold
w1+ N(X)* and is singular with respect to Lebesgue measure.

On the other hand, if thé x d matrix X is positive definite, then the matrix
3 is invertible, det(X) # 0 and the Gaussian nX with mean vectoru and
covariance matrix admits a density function given by

flz) = L t@wS '@ g epe
(2m)ddet ()

1This linear space is sometimes called the kernel of
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2.8 Linear transformations

The following result is very useful in many contexts, and shows that linear trans-
formations preserve the Gaussian character:

Lemma 2.8.1 let v be an element of R? and let A be an q x d matrix. Then, for
any Gaussian rv R%-valued rv X with mean vector p and covariance matrix X,
the R?-valued rv Y given by

Y=v+AX

is also a Gaussian rv with mean vector v + Ap and covariance matrix AL A’

Proof. First, by linearity we note that

EY]=E[v+AX]|=v+ Ap

so that
Cov[Y] = E[A(X —p) (AX — p))]
= AE[(X —p)(X —p)] A’
(2.29) = AYA'

Consequently, thR?-valued rvY has mean vectar+ A and covariance matrix
AY A’

Next, by the Gaussian character Xf, there exist al x p matrix T for some
positive integep and i.i.d. zero mean unit variance Gaussianlfys . ., U, such
that (2.22) and (2.23) hold. Thus,

Y =4 v+A(p+TU,)
= v+Au+ATU,
(2.30) - Rp+TU,
with N
p:=v+Apu and T :=AT
and the Gaussian characterYfis established. [ |

This result can also be established through the evaluation of the characteristic
function of the rvY". As an immediate consequence of Lemma 2.8.1 we get
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Corollary 2.8.1 Consider a Gaussian rv R?-valued rv X with mean vector p and
covariance matrix 3. For any subset I of {1,...,d} with |I| = q¢ < d, the R?-
valued rv X | given by X = (X;, i € I)' is a Gaussian rv with mean vector
(pi, @ € I)" and covariance matrix (X;;, i,j € I).

2.9 Independence of Gaussian rvs

Characterizing the mutual independence of Gaussian rvs turns out to be quite
straightforward as the following suggests: Consider theXys. .., X, where

for eachs = 1,...,r, the rvX, is anR%-valued rv with mean vector, and
covariance matrixz,. With d = d; + ... + d,, let X denote théR?-valued rv
obtained by concatenatiny, ..., X,, namely
X1
(2.312) X = :
X,
Its mean vectoy is simply
H
(2.32) K= :
Ky
while its covariance matri¥x; can be written in block form as
¥ Xy ... Xy,
by by AU 3
(2.33) = | T
o1 Yo ... X,

with the notation
3 :=Cov[ X, Xy s,t=1,...,r

Lemma 2.9.1 With the notation above, assume the R%-valued rv X to be a Gaus-
sian rv with mean vector p and covariance matrix 3. Then, foreachs =1,...,r,
the rv X  is a Gaussian rv with mean vector p, and covariance matrix ;. More-
over, thervs X, ..., X, are mutually independent Gaussian rvs if and only they
are uncorrelated, i.e.,

(2.34) Yo =0(s,0)%, s, t=1,...,1
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The first part of Lemma 2.9.1 is a simple rewrite of Corollary 2.8.1. Some-
times we refer to the fact that the X is Gaussian by saying thatthe 1Xs;, ..., X,
arejointly Gaussian. A converse to Lemma 2.9.1 is available:

Lemma 2.9.2 Assume that for eachs = 1, ..., r, the rv X, is a Gaussian rv with
mean vector p, and covariance matrix 3. If the rvs X4, ..., X, are mutually
independent, then the R%-valued rv X is an R%-valued Gaussian rv with mean
vector p and covariance matrix 3 as given by (2.33) with (2.34).

It might be tempting to conclude that the Gaussian characeadfof the rvs
X1,...,X, alonesuffices to imply the Gaussian character of the combined rv
X. However, it can be shown through simple counterexamples that this is not so.
In other words, the joint Gaussian characteX6fdoes not follow merely from
that of its componentX +, . . ., X, withoutfurther assumptions.

2.10 Convergence and limits of Gaussian rvs

In later chapters we will need to define integrals with respect to Gaussian pro-
cesses. As in the deterministic case, th&sehastidntegrals will be defined as
limits of partial sums of the form

(2.35) X, = Za(-n)Y-(n), n=12,...

where foreach = 1,2, .. ., the integek,, and the coeﬁicientsﬁ”),j =1,...,kn,

are non-random while the &', j = 1,...,k,} arejointly Gaussian rvs. Typ-
ically, asn goes to infinity so doek,. Note that under the foregoing assumptions
foreachn = 1,2, ..., the rv.X,, is Gaussian with

(2.36) EX]=Y " [v")]

and

(2.37) Var[X,,] = Z Z agn) agn)Cov[Y;(”), Y‘(”)]_
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Therefore, the study of such integrals is expected to pass through the conver-
gence of sequence of §sX,,, n = 1,2,...} of the form (2.35). Such considera-
tions lead naturally to the need for the following result [, Thm. , p.]:

Lemma 2.10.1 Let { X}, k = 1,2,...} denote a collection of R?-valued Gaus-
sian rvs. For each k = 1,2,..., let p, and ¥ denotes the mean vector and
covariance matrix of the rv X . The rvs { Xy, k = 1,...} converge in distribu-
tion (in law) if and only there exist an element p in R? and a d x d matrix 3 such
that

(2.38) klljg@ p, = p  and klljf)l() 3 =2

In that case,
X, =1 X

where X is an R%-valued Gaussian rv with mean vector p and covariance matrix
3.

The second half of condition (2.38) ensures that the mairiis symmetric
and non-negative definite, hence a covariance matrix.

Returning to the partial sums (2.35) we see that Lemma 2.10.1 (applied with
d = 1) requires identifying the limitg = lim,, ., E [X,,] ande? = lim,, .., Var[X,,],
in which caseX,, —,, X whereX is anR-valued Gaussian rv with meanand
varianceX. In Section?? we discuss a situation where this can be done quite
easily.

2.11 Rvs derived from Gaussian rvs

Rayleigh rvs A rv X is said to be &ayleighrv with parametet (o > 0) if
(2.39) X =4 VY2422

with Y andZ independent zero mean Gaussian rvs with variaricét is easy to
check that ,

(2.40) PX>z]=e22, >0
with corresponding density function

d 2
(2.41) —P[X <a] = %6_20_2, x> 0.
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It is also well known that the r® given by

Z

2.42 = —
( ) O := arctan (Y)

is uniformly distributed ovef0, 27) and independent of the Rayleigh X, i.e.,

2

(243) P[X <z,0 <] :2i (1—6522>, 0 € [0,2m), > 0.

™

Ricervs Arv X is said to be ®Ricerv with parameters (in R) ando (o > 0)
if

(2.44) X =4V(a+Y)?+ 22

with Y andZ independent zero mean Gaussian rvs with variaricét is easy to
check thatX admits a probability density function given by

d T _a?+a? ox
(2.45) —P[X <a] = Se W g (§) )
Here,
1 2m
(2.46) Iy(x) = 2—/ e”tdt, zeR
T Jo

is the modified Bessel function of the first kind of order zero.
Chi-square rvs For eachn = 1,2,..., the Chi-square rv witlh degrees of
freedom is the rv defined by

Xo=a Ul +...+U.

wherelUy, ..., U, aren i.i.d. standard Gaussian rvs.

2.12 A Proof of Proposition 2.4.1

The main idea is to use the Taylor series approximations (2.16) in the relation
(2.15). To do so, we begin by establishing some elementary facts concerning the
Taylor series approximations of the negative exponeatial(y > 0): For each
n=20,1,..., set

— (=1)* 4
(2.47) H,(y) =) gk oy >0.
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Lemma 2.12.1Foreachy > 0andn = 0,1, ..., it holds that

(2.48) Hyni1(y) < e7¥ < Hon(y)
(2.49) | Hoy) = |< 2

Proof. Fixy > 0andn =0, 1,.... By differentiation we readily check that

H;L+1(?J) = —Hn(y),

so that p
dy (67 = Hupa(y)) = — (7 — Hu(y)) -

Integrating and using the faét, . ;(0) = 1, we find

(2.50) eV — Hy o (y) = — /0 (et = Ho(1)) dt.

An easy induction argument now yields (2.48) once we note for the basis step that
Ho(y) > e ¥forally > 0.

To obtain the bound (2.49) on the accuracy of approximatiidy H,,(y), we
proceed by induction on. Forn = 0, itis always the case that ¥ — Hy(y)| < 1,
whence (2.49) holds for al} > 0 and the basis step is established. Next, we
assume that (2.49) holds for gl> 0 for n = m with somem = 0,1, .. ., namely

(2.51) e — Hay)| < 25y >0
m.

Hence, upon invoking (2.50) we observe that

)
e = Hun) £ [l = Ha0ld
0
Yy tm m+1
< [ Zat=2L—
o m! (m+1)!
and the induction step is established. ]

Back to the proof of Proposition 2.4.1: Fix> 0 andn = 0,1,.... As we have
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in mind to use (2.48) to bound the second exponential factor in the integrand of
(2.15), we note that

006_th ﬁ dt — i(_l)k Oot2k:e—ztdt
0 "\ 2 N 2kkl /o

k=0

n k o0
= 3 G [T
P 27 k! 0

(2.52) = - wx—(%ﬂ)

2k k!
k=0

where the last equality made use of the well-known closed-form expressions

/ e du=p!, p=0,1,...
0

for the moments of a standard exponential distribution.
The bounds (2.48) together with (2.15) yield the inequalities

¢(a7)/0 e " Hypiy (%) dt < Q(x) < ¢(x)/0 e, (%) it.

and (2.17) follows from the evaluation (2.52).
Using the definition of)(z) and@,,(x) we conclude from (2.49) that

Q@) = Qule) | = o) | [ {e—é—Hn (%)]dt‘

00 tth
R
ola) [ et g,

and (2.18) follows. [ |

IN

2.13 Exercises

Ex. 2.1 Derive the relationships between the quantities), Erf or Erfc which
are given in Section 2.4.
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Ex. 2.2 Given the covariance matriX, explain why the representation (2.22)—
(2.23) may not be unique. Give a counterexample.

Ex. 2.3 Give a proof for Lemma 2.9.1 and of Lemma 2.9.2.

Ex. 2.4 Construct arR?-valued rvX = (X, X,) such that théR-valued rvsX,
and X, are each Gaussian but tRé-valued rvX is not (jointly) Gaussian.

Ex. 2.5 Derive the probability distribution function (2.40) of a Rayleigh rv with
parametet (o > 0).

Ex. 2.6 Show by direct arguments that ¥ is a Rayleigh distribution with pa-
rametero, then X2 is exponentially distributed with paramet&ts?)~! [Hint:

ComputeE [e—”ﬂ for a Rayleigh rvX for 6 > 0.]

Ex. 2.7 Derive the probability distribution function (2.45) of a Rice rv with pa-
rametersy (in R) ando (o > 0).

Ex. 2.8 Write a program to evaluat@, ().

Ex. 2.9 Let X;,..., X, beii.d. Gaussian rvs with zero mean and unit variance
and writeS,, = X; + ...+ X,,. For eachu > 0 show that

na

e 2
av2mn

This asymptotic is known as the Bahadur-Rao correction to the large deviations
asymptotics of5,,.

(2.53) P[S,, > na| ~

(n — 00).

Ex. 2.10 Find all the moment& [U?] (p = 1,...) whereU is a zero-mean unit
variance Gaussian rv.

Ex. 2.11 Find all the moment& [U?] (p = 1,...) whereX is ax2-rv with n
degrees of freedom.



Chapter 3

Vector space methods

In this chapter we develop elements of the theory of vector spaces. As we shall
see in subsequent chapters, vector space methods will prove useful in handling the
so-called waveform channels by transforming them into vector channels. Vector
spaces provide a unifying abstraction to carry out this translation. Additional
information can be found in the referenc@s7).

3.1 Vector spaces — Definitions

We begin by introducing the notion afector space Consider a set’ whose
elements are calledectorswhile we refer to the elements @& asscalars We
assume that is equipped with an internal operationaxdition say+ : V' xV —
V', with the property thatV, +) is acommutativeggroup. This means that

1. (Commutativity)

v+tw=w+v, v,weV
2. (Associativity)
(ut+v)+w=u+(v+w), u,v,weV
3. (Existence of a zero vector) There exists an eler@entl” such that
v+0=v=0+v, veV

39
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4. (Existence of negative vectors) For every veeiar 1/, there exists a vector
in V', denoted-wv, such that

v+ (—v)=0=(—-v)+w

It is a simple matter to check that there can be only one such zero \&cod
that for every vectop in V, its negative—wv is unique.

In order for the groupV, +) to become &ector space o we need to endow
it with an external multiplication operation whereby multiplying a vector by a
scalar is given a meaning as a vector. Tisltiplication operation, say : R x
V — V, is required to satisfy the following properties:

1. (Distributivity)
(a+b)-v=a-v+b-v, abeR veV
2. (Distributivity)
a-(v+w)=a-v+a-w, a€R v,weV

3. (Associativity)

a-(b-v)=(ab)-v=0>b-(a-v), a,beR veV

4. (Unity law)
l-v=v, veV

It is customary to drop the multiplication symbdlom the notation, as we do
from now. Two important examples will be developed in Chapter 4, namely the
usual spac®? and the space of finite energy signals defined on some interval.

Throughout the remainder of this chapter, we assume given a vector space
(V.+) onR.

3.2 Linear independence

Given afinite collection of vector, ..., v, in V, the vector} "?_, a,v; is called
alinear combinationof the vectorsv,, ..., v, in V' (with weightsa,, ..., a, in
R).
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The vector, ..., v, in V arelinearly independentf the relation

p
=1
with scalarsuy, . . ., a, in R implies
(3.2) ap=...=ap,=0.

In that case, we necessarily hawg# 0 for eachi = 1,2,..., p (for otherwise
(3.1) does not necessarily imply (3.2)).
If the vectorsv,, ..., v, are linearly independent ivi, then the relation

p

P
g aivi:E bjv;
i=1

=1

with scalarsiy, by, . . ., a,, b, impliesa; = b; foralli = 1,...,p. In other words,
the representation of a vector as a linear combination of a finite number of linearly
independent vectors is necessarily unique.

As we shall see when discussing spaces of signals suéR(ds, it will be
natural to introduce the following extension of the concept of linear independence:
Consider an arbitrary familyv,,, o € A} of elements in/ with A some index
set (not necessarily finite). We say that the vecfars, o € A} form a linearly
independent family if each of its finite subsets is a linearly independent collection.
Formally, this is equivalent to requiring that for every= 1,2, ... and for every
collectionay, . . ., a,, of distinct elements i, the relation

p
(3.3) > aive, =0
=1
with scalarsyy, . .., a, in Rimpliesa; = ... =a, = 0.

3.3 Subspaces and linear spans

A (linear) subspace” of the vector spacél/, +) (onR) is any subset of” which
is closed under vector addition and multiplication by scalars, i.e.,

v+weFE and av e E
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whenevew andw are elements off anda is an arbitrary scalar.

Consider an arbitrary familjw,,, a € A} of elements i/ with A some index
set (not necessarily finite). We say thabelongs to th¢linear) spanof {v,,, a €
A}, denotedsp (v, a € A), if v can be expressed as a linear combination of a
finite number of elements ofv,, a € A}, i.e., there exists &éinite number of
indices inA, sayay, ..., a, for somep, and scalarg,, . . ., a, in R such that

p
v = E AV,
i=1

This representation is not a priori unique.

The linear span of this familyv,, o € A} is a linear subspace, and is in fact
the smallest linear subspacelothat containdv,,, « € A}. In particular, ifA is
finite, sayA = {1, ..., p} for sake of concreteness, then

p
sp (v1,...,v,) == {Zaivi (ar, ..., ap) GRP}.
i=1

A subspaceF’ of V' is now said to havelimensionp if there existsp lin-
early independent vectors,, ..., u, in £ (not merely inV) such thatt =
sp (u1,...,u,). The notion of dimension is well defined in thataf, ..., v,
is another collection of linearly independent vectorgiiinot merely inl”) such
that ' = sp (vy,...,v,), thenp = ¢. Any set ofp linearly independent vectors
wy, ..., w, such thatt = sp (wy,...,w,) is called abasisof E.

3.4 Scalar product and norm

Many of the vector spaces of interest are endowed with a scalar product, a notion
which provides a way to measure correlations between vectors. Formally, a scalar
product on the vector spac¥, +) is amapping-, -) : V' x V' — R which satisfies

the following conditions

1. (Bilinearity) For eachv in V, the mappingd — R : w — (v, w) and
V — R:w — (w,v) are linear mappings, i.e.,

(v, aw + bu) = a(v, w) + b{v, u)

and
(aw + bu,v) = a(w, v) + b{u, v)
for all w andw in V, and all scalars andb in R
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2. (Symmetry)
(v,w) = (w,v), vweV

3. (Positive definiteness)

(v,v) >0 if v#0eV

It is easy to see thd, v) = 0 whenwv = 0, so that
(v,v) >0, vel.

Put differently,(v, v) = 0 for some vectow in V' if and only if v = 0.

Once a scalar product is available, it is possible to associate with it a notion
of vector length We define a notion ofiorm or vector length orl” through the
definition

(3.4) loll == /.0, weV.

The terminology is justified through the following properties which are commonly
associated with the notion of length in Euclidean geometry.

Proposition 3.4.1 The mapping V' — R, : v — ||v|| defined by (3.4) satisfies
the following properties

1. (Homogeneity) For each v in V, it holds that

[toll = [t] - [loll, teR.

2. (Positive definiteness) If ||v|| = 0 for some v in V', thenv = 0

3. (Triangular inequality) For every pair v and w of elements of V, it holds
that
lv +wl|| < f|lv]| + [Jwl]

The properties listed in Proposition 3.4.1 form the basis for the notion of norm
in more general setting®].

Proof. The homogeneity and positive definiteness are immediate consequence
of the definition (3.4) when coupled with the bilinearity of the underlying scalar
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product and its positive definiteness. To establish the triangular inequality, con-
sider elements andw of V. It holds that

lv+wl* = (o + [w]* + 2{v, w)
< ol + wll® + 2)vl] - fJwl]

(3.5) = (ol + [[wl])®

where the first equality follows by bilinearity of the scalar product, and the in-
equality is justified by the Cauchy-Schwartz inequality (discussed in Proposition
3.4.2 below). This establishes the triangular inequality. [ |

We conclude this section with a proof of the Cauchy-Schwartz inequality.
Proposition 3.4.2 The Cauchy-Schwartz inequality
(3.6) (v, w)| < |lv]| - lw]l, v,weV

holds with equality in (3.6) if and only if v and w are co-linear, i.e., there exists a
scalar a in R such that v = aw.

Proof. Fix v andw elements of/, and note that

Q) = |v+tw|?
(3.7) = |v|]® +2t{v,w) + *|w|? teR

by bilinearity of the scalar product. The fact thaft) > 0 for all ¢ in R is

equivalent to the quadratic equati@}{t) = 0 having at most one (double) real
root. This forces the corresponding discriminanto be non-positive, i.e.,

A= (2(v,w))* — 4fo]|lw]® <0,

and the proof of (3.6) is completed. Equality occurs in (3.6) if and ondy # 0,
in which case there exists in R such that)(t*) = 0, whencev + t*w = 0, and
the co-linearity ofv andw follows. [ |

In the remainder of this chapter, all discussions are carried out in the context
of a vector spacéV, +) onR equipped with a scalar produgt-) : V. x V — R.
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3.5 Orthogonality

The element® andw of V' are said to b@rthogonalif
(v, w) = 0.
We also say that the vectors, . . . , v, are (pairwise) orthogonal if

<'U7;,’Uj>:0, Z#]? Z7]:177p

More generally, consider an arbitrary family,,, o € A} of elements irl/ with
A some index set (not necessarily finite). We say that this family crérogonal
family if every one of its finite subset is itself a collection of orthogonal vectors.
A moment of reflection shows that this is equivalent to requiring the pairwise
conditions
(3.8) (Va,vp) =0, a#pecA

Moreover, for any subsdt of 1, the element of V is said to be orthogonal
to F if

(v,w)=0, wekE.

If the setE' coincides with the linear span of the vectars ..., v,, thenv is
orthogonal toF if and only if (v,v;) =0foralli =1,...,p.

An important consequence of orthogonality is the following version of Pythago-
ras Theorem.

Proposition 3.5.1 When v and w are orthogonal elements in V', we have Pythago-
ras’ relation
(3.9) lv +wl* = [[v]* + [[w]

This result can be used to show a relationship between linear independence
and orthogonality.

Lemma 3.5.1 If the non-zero vectors vy, ...,v, are orthogonal, then they are
necessarily linearly independent.

Proof. Indeed, for any scalars,, ..., a, in R, repeated application of Pythago-

ras’ Theorem yields
p p
I Zai’viHQ = Z Jas?[|vs|.
=1 =1
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Therefore, the constraint’}_, a;v; = 0 implies |q;)?||v;||* = 0 for all i =
1....,p. The vectorsvy,...,v, being non-zero, we havgv;||> # 0 for all
i=1....,p,sothatla;]* = 0foralli = 1....,p. Inshort,a; = ... = a, = 0!
Thus, the vectors;, ..., v, are indeed linearly independent. ]

The notions of orthogonality and norm come together through the notion of
orthonormality: If the vectors, ..., v, are orthogonal with unit norm, they are
said to beorthornormal a property characterized by

(310) <’Ui,’Uj> :5(2,]>, 2,] = 1,...7p.

The usefulness of this notion is already apparent when considering the follow-
ing representation result.

Lemma 3.5.2 If E' is a linear space of V' spanned by the orthornormal family
Ui, ..., u,, then the representation

p
(3.11) h=>) (h,u)u;, hcE
i=1

holds, and E has dimension p.

The assumption of Lemma 3.5.2 can always be achieved as should be clear
from the Gram-Schmidt orthonormalization procedure discussed in Section 3.8.

Proof. By the definition ofE’ as a span of the vectots, . . . , u,, every element
h in Eis of the form ,
(3.12) h=>Y hu;

=1

for an appropriate selection of scalass. . ., h,. Foreachy =1,...,p, we find

p p
(howy) = (O hiwi,wg) =Y hiwg, ug) = hy
i=1 =1

upon invoking orthonormality, and (3.11) follows from (3.12). [ |

We emphasize that the discussion of Sections 3.4 and 3.5 depends only on
the defining properties of the scalar product. This continues to be the case in the
material of the next section.
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3.6 Distance and projection
We can define a notion @fistanceon V' by setting
(3.13) dv,w) = |v-w|, v,weV.

Consider now the situation whet@é is a linear subspace df andwv is an
element inV’. We are interested in finding an elemaritin £ which has the
smallest distance to, namely

(3.14) d(v,v*) = (%réfE d(v,x).

The unigueness and characterization of such an elente(when it exists) are
addressed in

Proposition 3.6.1 Let E be a linear subspace of V', and let v denote an arbitrary
element in V. If there exists an element v* in F satistying (3.14), it is unique and
characterized by the simultaneous validity of the relations

(3.15) (v—v*,h)=0, heckE.
Conversely, any element v* in E satisfying (3.15) necessarily satisfies (3.14).

Before giving the proof of Proposition 3.6.1 in the next section we discuss
some easy consequences of the conditions (3.15). These conditions state that
the vectorv — v* is orthogonalto £. The unique element* satisfying these
constraints is often called thmojectionof v onto £/, and at times we shall use the
notation

v" = Projg(v),

in which case (3.15) takes the form
(3.16) (v —Projg(v),h) =0, heckE.

It is often useful to vieww* as thebest approximatiorof v in E, with v — v*
interpreted as therror incurred by approximating by v*. In this interpretation,
(3.15) states that the error is orthogonal to the space of all admissible approxi-
mations (i.e., those i®). If v is itself an element ofZ, thenv — v* is now an
element of £’ and (3.15) (withh = v — v* now in E) yields ||lv — v*|| = 0 or
equivalently,Proj;(v) = v, as expected.
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For any element in VV whose projection onté& exists, Pythagoras Theorem
gives
(3.17) [v]|* = |Projp(v)|I* + |lv — Projg(v)|*
as a direct consequence of (3.16)

The linearity of the projection operator is a simple consequence of Proposition
3.6.1 and is left as an exercise to the reader:

Corollary 3.6.1 For any linear space E of V, the projection mapping Proj :
V' — FE' is a linear mapping wherever defined: For every v and w in V' whose
projections Proj(v) and Proj(w) onto E exist, the projection of av + bw onto
E exists for arbitrary scalars a and b in R, and is given by

Projg(av + bw) = aProjg(v) + bProjgz(w).

We stress again that at this level of generality, there is no guarantee that the
projection always exists. There is however a situation of great practical impor-
tance where this is indeed the case.

Lemma 3.6.1 Assume E to be a linear subspace of V' spanned by the orthornor-
mal family w,,...,u, for some finite integer p. Then, every element v in V
admits a projection onto £ given by

p

(3.18) Projg(v) =Y (v, u;)u;.

=1
For future use, under the conditions of Lemma 3.6.1, we note that

p
(3.19) IProjp(@)[* =Y (v, u)’, veV
i=1

as a simple consequence of the orthonormality of the family . ., u,,.

Proof. Pick an element in V , and set
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The elemenv* belongs toF, with

(v—v u;) = (v,u;) — (v, u;)
= (o) = Y (o))
(3.20) = (v,u;) — va,ui> =0, i=1,...,p.

From Lemma 3.5.2 it is plain that — v* is orthogonal toF, thusv* satisfies
(3.15) and the proof is now completed by invoking Proposition 3.6.1. [ ]

3.7 A proof of Proposition 3.6.1

First, there can be at most one elementiwhich satisfies (3.15) for if there were
two such elements, say andv; in E, then

k=12

(v—vi,h)=0, hek

so that
(vi—wvi,h)=0, he€E.

Usingh = v} — v}, element ofF, in this last relation we findvi — v3|| = 0,
whencev] = v} necessarily.

Let v* be an element iy which satisfies (3.14). For arly in E, the vector
v*+this also an element of for all ¢ in R. Thus, by the definition of* it holds
that

lv —v*|]* < [lv — (v* +th)|", teR

with
v — (v* +th)|* = [|v — v*|]* + £?||h||* — 2t(v — v*, h).

Consequently,
||k|? - 2t{v —v*,h) >0, tcR.

This last inequality readily implies

t|h|®> > 2(v —v* h), t>0
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and
—[tlllp]* < 2(v —v*,h), t<0.

Letting ¢ go to zero in each of these last two inequalities yidlds- v*, h) < 0
and(v — v*, h) > 0, respectively, and the desired conclusion (3.15) follows.

Conversely, consider any elemarttin £ satsifying (3.15). For each in E,
(3.15) implies the orthogonality af — v* andh = v* — « (this last vector being
in ), and Pythagoras Theorem thus yields

lv —=|* = [lv = v*|* + [[o* — z|* = [lo — "

This establishes the minimum distance requirementfand (3.15) indeed char-
acterizes the solution to (3.14). ]

3.8 Gram-Schmidt orthonormalization

As the discussion in Section 3.6 already indicates, the ability to idePtify,, (v)
Is greatly simplified ifE’ is spanned by a finite orthonormal family. Whitemay
not be first introduced as being generated by a family of orthonormal vectors, it
is however possible to find another family of vectors, this time orthonormal, that
nevertheless spans. The procedure to do so is known as the Gram-Schmidt
orthonormalization procedure.

More formally, this procedure provides an algorithm to solve the following

problem: Given non-zero vectors, . . ., v, in V, find a collection of orthonormal
vectorsuy, ..., v, in V such that
sp (V1,...,0,) =sp (Ur,...,u,).

While there is no a priori constraint o it is plain from previous remarks that
p < n. The Gram-Schmidt procedure is iterative and works as follows:
Step 1: Pick v; and define the vectat; by

V1

U, = .
A

This definition is well posed sincgv, || # 0 for the non-zero vectov;. Obvi-
ously,||u;|| = 1. Set

((1):=1 and E;:=sp(uy),
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and go to Step 2.
At Stepk, the procedure has already returneddbehonormal vectors,, . . . , u,
with ¢ = ¢(k) < k, and letE, denote the corresponding linear span, i&.,=

Sp(uh s 7’U’Z)'
Stepk + 1: Pickvg,.
Eitherv,,, lies in the spart,, i.e.,

L

Vk+1 = Z<Uk:+lv u;)uj,

j=1
in which case, set
f(/{? + 1) = f(kﬁ) and Eg(k_,_l) = Eg(k)

and go to Stegg + 2;
Or v, does not lie inF,, i.e.,

¢
Vi1 # Y (Vi1 w)u; = Projp, (veg),
=1

in which case define

Vit
el = 77
[yl
with
Vg1 = Vg1 — Projg, (vi4)

4
= Uk+41 — Z<'Uk+1a u;)u;.
j=1
The algorithm is well defined sineg,_ , # 0, while v}, is orthogonal taZ, by
virtue of (3.16). Itis now plain that the vectous, . . . , uy, u,,; form an orthonor-
mal family. Set

g(l{i + 1) = f(kﬁ) +1 and Eg(k_H) = 18p (Eg(k) @) {’ll/g(/g)+1})

and go to Steg + 2.

This algorithm terminates in a finite number of steps, in fact no moreithan
steps. All the projections encountered in the course of running the algorithm do
exist by virtue of Lemma 3.6.1 as they are onto subspaces spanned by a finite
number of orthonormal vectors.



52 CHAPTER 3. VECTOR SPACE METHODS

3.8.1 Exercises

Ex. 3.1 Show that in a commutative groupy, +), there can be only one zero
vector.

Ex. 3.2 Show that in a commutative groyp’, +), for every vectorv in V, its
negative—wv Is unique.

Ex. 3.3 Letu,,...,u, andvy, ..., v, denote two collections of linearly indepen-
dent vectors ifi”. Show that ifsp (w4, ..., u,) = sp (vi,...,v,), then necessar-

ily p=gq.
Ex. 3.4 If E'is a linear subspace &f, then it necessarily contains the zero ele-
ment0. Moreover,v belongs toF if and only if —v belongs toF.

Ex. 3.5 For non-zero vetrors andw in V', we define their correlation coefficient
by

(v, w)

p(v;w) =
[v[[[|w]

Ex. 3.6 Show that|p(v; w)| < 1. Find a necessary and sufficient condition for
p(v;w) = 1andp(v;w) = —1.

Ex. 3.7 If the setE is the linear span of the vectots, ..., v, in V, then show
thatw is orthogonal ta? if and only if (v, v;) = 0foralli =1,...,p.

Ex. 3.8 Consider a linear subspeéawhich is is spanned by the sétin V. Show
thatv in V' is orthogonal ta? if and only if vis orthogonal taF.

Ex. 3.9 Let £/, andE, be subsets df such thatF);, C E,. Assume that for some
v in V, its projectionProj, (v) exists and is an element &f,. Explain why

Projp, (v) = Projg, (v).

Ex. 3.10 Prove Corollary 3.6.1.

Ex. 3.11 Repeat Exercise 3.3 using the Gram-Schmidt orthonormalization proce-
dure.



3.8. GRAM-SCHMIDT ORTHONORMALIZATION 53

Ex. 3.12 Let (V;,+) and (V;, +) denote two vector spaces @ A mapping
T:V, — Vyis linear if

T(av + bw) = aT'(v) + bT'(w), v,we Vi, a,beR.

For any subsef¥ of V;, we writeT'(E) = {T'(v), v € E}. For E a linear
subspace of;, show thatl'(E) is a linear subspace &f,.

Ex. 3.13 Fori = 1,2, let (V;,+) denote a vector space @ equipped with its
own scalar product, -); : V; x V; — R, and let|| - ||; denote the corresponding
norm. A mappindl’ : V; — V5 is said to be norm-preserving if

IT(@)ll2 = [[vlly, veW.

Show that if the mappind’ is linear, then it is norm-preserving if and only7if
preserves the scalar product, i.e.,

(T(v), T(w)) = (v,w);, v,we V.

Ex. 3.14
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Chapter 4

Finite-dimensional representations

Building on the discussion of Chapter 3, we now present two vector spaces of
interest for subsequent developments.

4.1 Finite-dimensional spaces

The simplest example of a vector space is the sfRcavith d some positive
integer. An element of R¢ is identified with thed-uple (vy, . .., vg) with v; in R
foreachi =1,...,d.

In R¢, the addition and multiplication operations are defined componentwise
in the usual way by

v+ w:= (v +wy, ..., 04+ wy)
and
av := (avy,...,avy), a€R
for any pair of vectore = (vy,...,vg) andw = (wy,...,wy) in RL Itis a

simple matter to show that these operations t{Rf, +) into a vector space on
R. The zero element ifiR?, +) is simply the vectod = (0, ..., 0) with all zero
entries.

Statements on the linear independence of vectoRs'iare statements in Lin-
ear Algebra. Indeed, consider vectars ..., v, in R? with v; = (v, ..., vi)
foreachi = 1,...,p. The linear independentce requirements (3.1) and (3.2) now
read as requiring that thesimultaneouselations

p
Zaivij:(), ]:1,,d
i=1

55
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with scalarsay, ..., a, inRimply a; = ... = a, = 0. In other words, the linear
independence of the vectots, ..., v, is tantamount to a rank property of the
p x dmatrixV = (v;;).

The vector spacR? is endowed with the scalar product given by

d
(v,w) = Zviwi, v,w e R
=1
It is a straightforward to check the requisite bilinearity, symmetry and positive
definiteness. The norm induced by this scalar product now takes the form

loll:= V/(v,v) = (Z ‘Ui|2> , veR!

and the corresponding distance is simply the Euclidean distan&¢ given by

1
d 2
d(v,w) = ||v — w| = (Z lv; — wi|2) . v,w € R
=1

The vector spac®? contains a very special set of vectors, denoted by. . , e,
which form an extremely convenient orthonormal family: For eaehl,...,d,
the vectore; = (e;1, . .., e;q) has all its components zero except tHewhich is
equal to one, i.e.,

eij:(;(i,j), Z,]:]_,,d

Obviously,
<€i,€j>:(5(’i,j), Z,jzl,,d
and for every element = (vy,...,v,) in R, we can write
v = (Ul,...,Ud)

= 01(1,0,...,0)+v2(0,1,...,0)—|—Ud(0,0,...,1)

= vie; +...+vygeq.

Thus,R? (as a subspace of itself) has dimensiband therefore no more than
non-zero vectors can ever be orthogonal, hence orthonornigt, in

As an immediate consequence, any linear subspacé R? can always be
viewed as the linear span offimite number of orthonormal vectors. Hence, by
Lemma 3.6.1 the projection operator ottas well defined as a mappirigroj, :
R? — E on the whole ofR? where it is linear by Corollary 3.6.1.
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4.2 Signal spaces

Let 7 be a non-degenerate interval of the real [Resay [a,b] (with a < b),
(—o0,b] or [a, 00). A (real-valued) signal is any functiop: I — R. The energy
of the signaly is the quantitye(y) defined by

E(p) = / () Pt

The signalp has finite energy i€ () < co. The space of all finite energy signals
on the intervall is denoted by.,(7), namely

Ly(l):={¢p: 1 —=R: E(p) < o0}

The setl,(/) can be endowed with a vector space structure by introducing a
vector addition and multiplication by constants, i.e., for amgnd in L,(7) and
any scalar in R, we define the signals + ) anday by

(p4+0)(t) == pt)+(t), tel

and
(ap)(t) :=ap(t), tel.
The signalsp + ¢ andayp are all finite energy signals if and« are inLy(7). It
is easy to show that equipped with these operatiohs,/), +) is a vector space
onR. The zero element farL,(7), +) will be the zero signad : I — R defined
by d(t) = 0forall tin I.
In Ly(I) the notion of linear independence specializes as follows: The signals

©1,. ..,y N Ly(I) are linearly independent if
p
Z aip; =V
i=1
with scalarsay, ..., a, in R impliesa; = ... = a, = 0. This equivalent to the

validity of the simultaneous relations
p
D aipi(t) =0, tel
=1
with scalarsa,, ..., a, in R implyinga; = ... = a, = 0. In contrast with the

situation inR?, here there isi0 constraint orp as the following example shows
[Exercise 4.7].
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Example 4.2.1 Take/ = [0, 1] and for eachk = 0, 1,. .., define the signapy, :
[0,1] — Rbypy(t) = t* (t € I). Foreachp = 1,2, ..., the signalspy, ¢1, . . ., ¢,
are linearly independent ifi?(7). ThereforeL,(7) cannot be of finite dimension.

Here as well, we can define a product scalar by setting

(o, 0) = / SB(0)dt, oo € Lo().

We leave it as an exercise to show that this definition gives rise to a scalar product
on Ly (7). The norm of a finite energy signal is now defined by

el := v/ (0, 0), @€ Ly(I)

or in extensive form,

el = ( !w(t)Ithf — VER), ¢e ()

It should be noted that this notion of “energy norm” is not quite a norni£(i)
as understood earlier. Indeed, positive definiteness fails here|girice: 0 does
not necessarily imply = 9 — Just takeo(t) = 1 for t in I N Q andy(t) = 0 for
tin I N Q¢ in which casg|p| = 0 buty # 9! This difficulty is overcome by
partitioning L, (/) into equivalence classesith signals considered as equivalent
if their difference has zero energy, i.e., the two signaland’ in Ly(I) are
equivalent if||) — ¢||* = 0. It is this collection of equivalence classes that should
be endowed with a vector space structure and a notion of scalar product, instead
of the collection of all finite energy signals defined b Pointers are provided in
Exercises 4.3-4.6. This technical point will be not pursued any further as it does
not affect the analyses carried out here. Thus, with a slight abuse of notation, we
will consider the “scalar product” defined earlier én(/) as abona fidescalar
product.

With these definitions, the notions of orthogonality and orthonormality are
defined as before. However, while Rf there could be no more thahvectors
which can ever be orthonormal, this is not the cask.ifY) [Exercise 4.8].

Example 4.2.2 Pick I = [0, 1] and for eachk = 0,1, ... define the signalgy, :
I — R by

(4.2) wolt) =1, @i(t) = \/§cos(27rk:t), tel, k=1,2,...

For eachp = 1, 2,. .., the signalspy, ¢1, . . ., i, are orthonormal inL?().
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The notion of distance oil,(/) associated with the energy norm takes the
special form

2

dto,0) = ( [let0) = vola) . v e L)

4.3 Projections inLy(I)

As we now explore the notion of projection onto a linear subspaae# Ly(1),
we shall see shortly that in sharp contrast with the situatid&firexistence is not
automatic anymore. In other words, for an arbitrary signah L,(7), there is
no guarantee that there will always be an elemenn E which has the smallest
distance tay, i.e.,

(4.2) (e, v) = inf (¢, ).

Additional assumptions are neededBrior (4.2) to hold for all signals ity (7).
However, when)* does exist, it is necessarily unique by virtue of Proposition
3.6.1.

To gain a better understanding as to why the projection é¢htoay fail to
exist, consider the situation whereauntably infinitefamily of orthonormal sig-
nals {¢x, k = 1,2,...} is available. For each = 1,2,..., let E, denote the
linear span of the: first signalsy, . .., ¢,. Fix ¢ in Ly(I). By Lemma 3.6.1 the
projection ofy) onto F,, always exists, and is given by

n

~

Yy, := Projp (V) = ZW% k)P

k=1

and (3.19) yields
1l® = > 1, o).
k=1
With the corresponding error defined by
'LZn = 1/’ - {ﬁ\m
we find from (3.17) that

16112 = 10all® + 1nl?
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by the orthogonality condition (3.15).
Combining these observations leads to

16 ll” = 1817 = 1l = 117 = > b, u) P,
k=1

and the convergence B
Tim [ |? = ()

takes place in a monotonically decreasing manner. Of course, this is consistent
with the geometric viewpoint according to whigh is the best approximation of
¢ among the elements &f,. The inclusions?,, C E,,1, n = 1,2,...imply that
the approximation$y,,, n = 1,2,...} are increasingly accurate, or equivalently,
that the magnitude of the error, namﬂl&nn, decreases.

A natural question is to determine the limiting vak(e>). Several cases arise
depending on whethet(y)) > 0 ore(¢) = 0. In the discussion we make use of
the easy identity
(4.3) Eo :=sp(pg, k=1,2,...) = UpEf.

Case 1 - If ¢ belongs taF., theny is an element ot for somep and$p+k =
yforallk=0,1,..., whencey,, = 9, ande(¢) = 0. Obviously the projection
onto E, does exist with) = Proj,_(v).

Case 2 — Whenv is notan element oft,, thent is notthe zero signat) but
two distinct scenarios are possible.

Case 2.a— With ¢ notin E, if £(¢)) = 0, theny can be approximated ever

closely by an element af,, sincelim,, ., ||) — zZnH2 = 0. Itis then customary
to say that) is an element of thelosureof F., a fact noted

V€ By =sp(eon, k=1,2,...).

The setFE, is called the closure of the linear subspdgg; it is itself a linear
subspace of.»(I) which could be defined by

Ey :={p € Ly(I): (p) =0}.

However,Proj;_(v)) doesnot exist as the following argument by contradic-
tion shows: If the projectioroj,_ (1) were indeed to exist, then it would have
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to be an element of/, sayw By the definition ofE, the S|gnakb is an ele-
ment of £, for somep and it is a simple matter to check thzat_ ¢p+k for all
k=0,1,.... Consequently, making use of earlier observations, we find

1911 = rspll® + Inpll® = 1017 + [nel®, & =0,1,...

Letting & go to infinity and using the facet(y)) = 0, we obtain|[y[|*> = I[9]2. It
follows from (3.17) thalﬂwu — 0 since||¢[|2 = [[¢]2 + [|¢]|2 (with ¢ = ¢ — 1)).
Thereforew Y andy = w But this implies that) was an element o, and
an contradiction ensues.

On the other handProjz_(¢) does exist and it is customary to represent it
formally as arninfinite series, namely

o0

(4.4) Projr—(v) = Y (, ¢x)@x,

k=1
to capture the intuitive fact thatrojz—(¢) is the “limiting” signal increasingly
approximated by the projection signa{@n, n = 1,2,...}. Note that here) =

Projp—().

It follows from the discussion above that only finitely many of the coefficients
{{(, 1), k = 1,2...} can ever be zero, and some care therefore needs to be
exercised in defining this element (4.4) bf(1) — Up to now only finite linear
combinations have been considered. For our purpose, it suffices to note that for
any sequencéc;, k = 1,...} of scalars, the infinite seri€s - | cxy, can be
made to represent an element/ef /) under the summability condition

o0

(4.5) D el < oo

k=1

This can be achieved by showing that the partial sums

k
ZCg(pg, ]{721,2,...
/=1

converge in some suitable sense to an element Of) (which is represented by
> e, cripr). We invite the reader to check that indeed

(4.6) D )P < oo, € Ly(I).
k=1
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Example 4.3.1 Continue with the situation in Example 4.2.2, and set

o0

Ot = Zki os(2rkt), tel.

The signalk) is a well defined element & (1) with (¢)) = 0, and yet) is not an
element off ..

_ Case 2.b— With ¢ notin E, if () > 0, theny> cannot be an element of
E., and therefore cannot be approximated ever so closely by an elemggt.in
HereProjy () may not exist, buProj;z () always does exist with

W # Projp(¥) = ) (1, ¢n)e
k=1

We follow up these comments with the following examples.

Example 4.3.2 Continue with the situation in Example 4.2.2, and take
Y(t) :==sin(2wt), tel.

Here,c(+) > 0 and the projection ofs onto £, exists andProj,_(¢) = .

Example 4.3.3 Continue with the situation in Example 4.2.2, and take
() := sin(27t) i i s(2rkt), tel
k=1 k2 |

This time, it is still the case that(¢)) > 0 but the projection of) onto £, does
not exist.

The last two example show that it is possible to have

E_oo # L2<I)7

a possibility reflecting the fact that the orthonormal farfily,., £ = 1,2,...} is
not rich enough in that its (finite) linear combinations are not sufficient to approx-
imate some element ih, () to any prescribed level of accuracy. This motivates
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the following definition: The orthonormal familftp,, £ =1,2,...} is said to be
completg(in Ly(1)) if o
This is equivalent to R
£() = Jim v — G = 0
for everysignaliy in Ly(1).
Example 4.3.4Pick I = [0, 1] and for eachk = 0,1, ... define the signalg;, :

I — R by
or(t) = V2cos(2mkt), tel, k=1,2,...

and
Yors1(t) = V2sin(2xkt), tel, k=0,1,...

with po(t) = 1 (¢t € I). Itis a non-trivial fact concerning the structure of the
spacelL,(I) that the orthonormal familfy,, & = 0,1,...} is complete P]

4.4  Finite-dimensional spaces of (/)

The discussion from earlier sections suggests ways to represent finite energy sig-
nals. Given an orthonormal famifyp,, £ = 1,2,...}in Ly(I), we associate with

each finite energy signal a sequence of finite dimensional vectors. Formally, for
eachn = 1,2, ..., we set

(4.7) To(¥) = (1), (U n)), ¥ € La(I).

The vectorT,,(v) is an element oR". By restricting our attention t@,, we get
the following useful fact.

Lemma 4.4.1 Foreachn = 1,2, .. ., the correspondence T;, : E,, — R" given by
(4.7) is a norm-preserving bijection, i.e., T,, is onto and one-to-one with

(4.8) T ()P =D 1 ) = l)1°, ¢ € B,
k=1

More generally we have

n

k=1
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Proof. First, when restricted té&,, the projection operatdtroj,_ reduces to the
identity, i.e.,Proj; (1) = 1 whenever) is an element of,. Thus, with the
notation introduced earlier, for anyin E,,, we have

n

k=1
so that

112 = 1, o) ?
k=1

and (4.8) holds. The relation (4.9) is proved in a similar way.
As aresult, ifl;,(¢) = T, (¢") for signalsy andy’ in E,,, thenT), (v —v¢') = 0

by linearity and||y — ¢'|| = || T.(¢ — ¢')|| = 0 by isometry. The inescapable
conclusion is that) = ¢/, whence€T, is one-to-one.

Finally, any vectorv = (vy,...,v,) in R" gives rise to a signaly in E,
through

Yy = Z VP -
k=1

It is plain that(iyw, ¢x) = v for eachk = 1,... n, hencel,,(y) = v and the
mappingT;, is onto. [ |

As a result, any element of E, can be representadhiquelyby a vector in
R™. This correspondence, formalized in Lemma 4.4.1, is horm-preserving and
allows signals inF,, to be viewed as finite-dimensional vectors.

Next, we address the situation of arbitrary signals. To do so, we will need to
assume that the orthonormal family,, £ = 1,2,...} is rich enough.

Theorem 4.4.1 Assume the orthonormal famifyp,, £ = 1,2,...} to be com-
plete in Ly (7). Then, any finite energy signalin L,(/) admits a unique repre-
sentation as a sequence

(W, o), k=1,2,...).
Moreover, Parseval’s identity

(4.10) 112 =" 1,00, ¢ € La(])
k=1

holds.
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4.5 Exercises

Ex. 4.1 Consider two families,, . .., u, andw;, ..., w, of linearly independent
vectors inR¢. Show that we necessarily haye= ¢ whenever

sp (w1, ..., u,) =sp (wy,...,w,).

Ex. 4.2 Letu,,...,u, be an orthonormal family iR’ for some integep < d.
Find the linear span of the family @f vectors inR¢ defined by

p

F(b) =) (—1)"H

(=1

with b = (by,...,b,) a binary string of lengtfp, i.e., b, = 0 or b, = 1 for
(=1,...,p.

Ex. 4.3 Two signalsy andy’ in L,(I) are said to be equivalent|jfy — ¢'||?> = 0,
and we writey) ~ v’. Show that this notion defines an equivalence relation on
Lo(I).

Ex. 4.4 With the notation of Exercise 4.3, show that addition of signals and mul-
tiplication of signals by scalars are compatible with this equivalence relation
More precisely, with) ~ ¢’ andp ~ ¢’ in Ly(I), show that) + ¢ ~ 9" + " and

ayy ~ ay)’ for every scalarn.

Ex. 4.5 With ¢ ~ ¢/ andg ~ ¢’ in Ly(I), show that||||2 = ||¢/||? and that
(1, o) = (¢, ¢').

Ex. 4.6 Let £5(1) denote the collection of equivalence classes inducefl,0h)
by the equivalence relation. Using Exercise 4.4 and Exercise 4.5, define a
structure of vector space diy(/) and a notion of scalar product.

Ex. 4.7 Show that the signal§p,, &£ = 0,1,...} of Example 4.2.1 are linearly
independent irLy (7).

Ex. 4.8 Show that the signal&p,, & = 0,1,...} of Example 4.2.2 form an or-
thonormal family inLy (7).
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Ex. 4.9 Apply the Gram-Schmidt orthonormalization procedure to the fafaily, & =
0,1,2} in Ly[0, 1] given by

Does the answer depend on the order in which the algorithm processes the signals
©0, 1 andep,?

Ex. 4.10 The distinctfinite energy signalg, . . ., v, defined on0, 1] have the
property that), (t) = ... = ¢, (t) for all ¢ in the subintervala, 5] with 0 < a <
(3 < 1. Are such signals necessarily linearly independeritiif, 1]? Explain.

Ex. 4.11 Starting with a finite energy signalin L,[0, 7] with £(g) > 0, define
the two signalg. andg, in Ly(0,T') by

ge(t) :=g(t)cos 2rf.t) and gg(t) :=g(t)sin(2nft), 0<t<T

for some carrier frequency. > 0. Show that the signalg. and g, are always
linearly independent i1 [0, 7).

Ex. 4.12 Consider theV/ signalss, ..., sy in L0, T] given by

0<t<T

Sm(t) = Acos(2m fot + 6,,), S I,

g ey

with amplitudeA > 0, carrierf. > 0 and distinct phases < 0; < ... < 0y <
27. What is the dimensio of sp (sq, ..., s))? Find an orthonormal family in
L,[0,T], sayes,. .., ¢, such thasp (s1,...,sy) = sp(¢1,...,¢L). Find the
corresponding finite dimensional representation.

Ex. 4.13 Apply the Gram-Schmidt orthonormalization procedure to the family of
M signals given in Exercise 4.12.

Ex. 4.14 Same problem as in Exercise 4.12. for thesignals given by

0<t<T
Sult) = Ang(t), ST

with g a pulse inL,[0, 7] and distinct amplituded; < ... < Ay,.
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Ex. 4.15 Apply the Gram-Schmidt orthonormalization procedure to the family of
M signals given in Exercise 4.14.

Ex. 4.16 For the collection{¢x, & = 0,1,...} in Example 4.2.1, findp in
L,(0,1) such thaty does not belong to the linear spam(¢x, £ = 0,1,...),
but does belong to its closuse(yx, £ =0,1,...).

Ex. 4.17 Consider a sefsy, . .., sy } of M linearly dependent signals itp[0, T').
Now partition the interval0, 7") into K non-empty subintervals, sd¥, tx.1)

(k =0,...,K —1)with t, = 0 andty, = T. For eachk = 1,... K, let
ar = (a1, ..., o) denote an element @, and define the new constellation
{st,...,s%} by

S;L(t) :akmsm(t), te [tkfl,tk), k= 1,...,K

foreachm = 1,..., M. Find conditions on the original constellati¢sy, . .., sy}
and on the vectora;, . .., ax that ensure the linear independencel(#t0, ')
of the signalg{s7, ..., sk }.

Ex. 4.18 Consider a finite energy non-constant pujsel0, 1] — R, with g(t) >
0 in the unit interval[0,1]. Are the signalsy and ¢* linearly independent in
L,[0,1]? Are the signalg;, ¢%, ..., g” always linearly independent if,[0, 1]?

Ex. 4.19 For eachy > 0, let s, andc, denote the signalR — R given by
So(t) =sin (at) and c¢,(t) = cos(at), teR.

ForT > 0 anda # g, find conditions for each of the collectiods,, ¢, },
{Sa, 5} {5asCa, Sg} @Nd{s,, ca, sg, cz} (restricted to the interveD, 7)) to be
orthogonal inL, (0, T').

Ex. 4.20 Show (4.3).

Ex. 4.21 Discuss Example 4.3.1.
Ex. 4.22 Discuss Example 4.3.2.
Ex. 4.23 Discuss Example 4.3.3.
Ex. 4.24



