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Chapter 1

Decision Theory

In this chapter we present the basic ideas of statistical decision theory that will
be used repeatedly in designing optimal receivers in a number of settings. These
design problems can all be reduced to problems ofM -ary hypothesis testing which
we investigate below in generic form.

1.1 The generic hypothesis testing problem

In the statistical hypothesis testing problem, a decision has to be made as to which
of several possible hypotheses (or states of nature) is the correct one. The state
of nature is encoded in a rvH and a decision has to be made on the basis of an
R
d-valued observation vectorX which is statistically related toH. Given that a

cost is incurred for making decisions, the decision-maker seeks to determine the
“best” decision to be implemented. Although several formulations are available
in the literature, here we concentrate on the Bayesian formulation.

1.1.1 The Bayesian model

Let H denote afinite set withM elements for some positive integerM ≥ 2,
sayH := {1, . . . ,M} for the sake of concreteness. The rvH takes values inH
according to the pmf

pm := P [H = m] , m = 1, . . . ,M.

This pmfp = (p1, . . . , pM) is often called theprior onH.
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6 CHAPTER 1. DECISION THEORY

With each of the possible hypothesism = 1, . . . ,M , we associate a probabil-
ity distribution functionFm onRd with the interpretation thatFm is the conditional
distribution ofX givenH = m, i.e.,

P [X ≤ x|H = m] = Fm(x), x ∈ Rd.

The observation rvX is then distributed according to

P [X ≤ x] =
M∑
m=1

pmFm(x), x ∈ Rd

by the Law of Total Probabilities, while

P [X ≤ x, H = m] = pmFm(x), x ∈ Rd, m = 1, . . . ,M.

In other words, the conditional probability distribution of the observations given
the hypothesisand the probability distribution ofH completely specify thejoint
distribution of the rvsH andX.

1.1.2 The optimization problem

On observing the observation vector, the decision-maker implements a decision
rule which returns a state of nature in response to this observation. Thus, an
(admissible) decision rule ordetector1 is simply any mappingd : Rd → H.2 In
the language of Estimation Theory, the mappingδ : Rd → H can be interpreted as
anestimatorfor H (on the basis ofX) with δ(X) representing the corresponding
estimateĤ of H (on the basis ofX). LetD denote the class of all (admissible)
detection rules.

As a cost is incurred for making decisions, we introduce the mappingC :
H×H → R with the interpretation that

C(m, k) =
Cost incurred for decidingk

whenH = m

1In the statistical literature on Hypothesis Testing such a detector is often called atest, while
in the context of Digital Communications, a detector is often refered to as areceiverfor reasons
that will become shortly apparent – We shall follow this tradition in due time!

2Strictly speaking, the definition of an admissible rule should include the property that each of
the sets{x ∈ Rd : δ(x) = m},m = 1, . . . ,M , be a Borel subset ofRd.
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for all k,m = 1, . . . ,M . The use of any admissible ruled in D thus incurs a cost
C(H, δ(X)). However, the value of the costC(H, δ(X)) is not available to the
decision-maker3 and attention focuses instead on theexpected costJ : D → R

defined by
J(δ) := E [C(H, δ(X)] , δ ∈ D.

The Bayesian M-ary hypothesis testing problem(PB) is now formulated as

(PB) : Minimize J over the collection D of admissible decision rules

Solving problem(PB) amounts to identifying detector(s)δ? : Rd → H such that

J(δ?) ≤ J(δ), δ ∈ D.

Any detectorδ? : Rd → H which minimizes the expected cost is referred to as an
optimaldetector.

The problem(PB) can be solved for arbitrary cost functionsC under fairly
weak assumptions on the distributionsF1, . . . , FM . Throughout, to simplify mat-
ters somewhat, we assume that for eachm = 1, . . . ,M , the distribution function
Fm admits a densityfm onRd, i.e.,

Fm(x) =

∫ x1

−∞
. . .

∫ xd

−∞
fm(t)dt1 . . . dtd, x = (x1, . . . , xd) ∈ Rd.

This assumption is enforced in all cases considered here.
Rather than discussing the case of a general cost function, we will instead

focus on a special case of paramount importance to Digital Communications. This
occurs whenC takes the form

C(m, k) =


1 if m 6= k

0 if m = k
, k,m = 1, . . . ,M(1.1)

and the expected cost reduces to the so-calledprobability of error

Er(δ) := P [δ(X) 6= H] , δ ∈ D.(1.2)

Versions of the problem with cost (1.1)–(1.2) will be extensively discussed in this
text. The remainder of the discussion assumes this cost structure.

3Indeed the value ofH is not known, in fact needs to be estimated!
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1.2 Identifying the optimal detector

As the first step in solving the problem(PB), we argue now as to the form of the
optimal detector. We begin by noting that any detectorδ : Rd → H is equivalent
to apartition (∆1, . . . ,∆M) of Rd, that is, a collection of subsets ofRd such that

∆m ∩∆k = ∅, k 6= m
k,m = 1, . . . ,M

with
R
d = ∪Mm=1∆m.

Indeed, any detectorδ : Rd → H induces a partition(∆1, . . . ,∆M) of Rd by
setting

∆m = {x ∈ Rd : δ(x) = m}, m = 1, . . . ,M.

Conversely, with any partition(∆1, . . . ,∆M) of Rd we can associate a detector
d : Rd → H through the correspondence

d(x) = m if x ∈ ∆m, m = 1, . . . ,M.

Start with a detectorδ : Rd → H with induced partition(∆1, . . . ,∆M) as
above. We have

P [δ(X) = H] =
M∑
m=1

pmP [δ(X) = m|H = m]

=
M∑
m=1

pmP [X ∈ ∆m|H = m]

=
M∑
m=1

pm

∫
∆m

fm(x)dx.

As we seek to minimize the probability of error, we conclude that it suffices to
maximize

F (∆1, . . . ,∆M) :=
M∑
m=1

pm

∫
∆m

fm(x)dx

=

∫
Rd

(
M∑
m=1

1 [x ∈ ∆m] pmfm(x)

)
dx
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with respect to partitions(∆1, . . . ,∆M) of Rd.
Inspection of the functionalF suggests a possible candidate for optimality:

For eachm = 1, . . . ,M , set

∆?
m := {x ∈ Rd : pmfm(x) = max

k=1,...,M
pkfk(x)}

with tie breakers if necessary. For sake of concreteness, ties are broken according
to the lexicographic order, i.e., if at pointx, it holds that

pifi(x) = max
k=1,...,M

pkfk(x) = pjfj(x)

for distinct valuesi and j, thenx will be assigned to∆?
i if i < j. With such

precautions, these sets form a partition(∆?
1, . . . ,∆

?
M) of Rd, and the detector

δ? : Rd → H associated with this partition takes the form

δ?(x) = m iff pmfm(x) = max
k=1,...,M

pkfk(x), x ∈ Rd(1.3)

with a lexicographic tie-breaker, or more compactly,

δ?(x) = arg max (m = 1, . . . ,M : pmfm(x)) , x ∈ Rd.

We shall often write thatδ? prescribes

Ĥ = m iff pmfm(x) largest(1.4)

with the interpretation that upon collecting the observation vectorx, the detector
δ? selects the state of naturem as its estimate on the basis ofx.

1.3 The detectorδ? is optimal

That the guess (1.4) is indeed correct forms the content of the next proposition:

Theorem 1.3.1 The detector δ? : Rd → H given by (1.3) is optimal, in that
Er(δ?) ≤ Er(δ) for any other detector δ : Rd → H.

Proof. Introduce the mappingf : Rd → R by

f(x) = max
m=1,...,M

pmfm(x), x ∈ Rd.
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The obvious bound

f(x) ≤
M∑
m=1

pmfm(x), x ∈ Rd

implies ∫
Rd

f(x)dx ≤
M∑
m=1

pm

∫
Rd

fm(x)dx =
M∑
m=1

pm = 1,

and the functionf is indeed integrable over all ofRd. This fact will be used with-
out further mention in the discussion below to validate some of the manipulations
involving integrals.

For any partition(∆1, . . . ,∆M) of Rd, we need to show that

F (∆?
1, . . . ,∆

?
M)− F (∆1, . . . ,∆M) ≥ 0,(1.5)

where

F (∆?
1, . . . ,∆

?
M)− F (∆1, . . . ,∆M)

=
M∑
m=1

(∫
∆?
m

pmfm(x)dx−
∫

∆m

pmfm(x)dx

)
.

Next, for eachm = 1, . . . ,M , by the definition of∆?
m andf it holds that

pmfm(x) = f(x), x ∈ ∆?
m

and
pmfm(x) ≤ f(x), x ∈ ∆m.

Therefore,

F (∆?
1, . . . ,∆

?
M)− F (∆1, . . . ,∆M)

=
M∑
m=1

(∫
∆?
m

f(x)−
∫

∆m

pmfm(x)dx

)

≥
M∑
m=1

(∫
∆?
m

f(x)dx−
∫

∆m

f(x)dx

)

=
M∑
m=1

∫
∆?
m

f(x)dx−
M∑
m=1

∫
∆m

f(x)dx

=

∫
Rd

f(x)dx−
∫
Rd

f(x)dx = 0,
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and the inequality (1.5) is established.

1.4 Alternate forms of the optimal detector

The optimal detectorδ? identified in Theorem 1.3.1 is amenable to useful inter-
pretations which we now develop

The MAP detector With the usual caveat on tie breakers, the definition (1.3) of
the optimal detectorδ? yields

ChooseĤ = m iff pmfm(x) largest

iff
pmfm(x)∑M
k=1 pkfk(x)

largest

iff P [H = m|X = x] largest

where the last equivalence follows from Bayes’ Theorem in the form

P [H = m|X = x] =
pmfm(x)∑M
k=1 pkfk(x)

, x ∈ Rd

for eachm = 1, . . . ,M . In particular,δ? can be viewed as selectinĝH = m
whenever thea posterioriprobability ofH given the “observations”X is largest.
In the parlance of Estimation Theory,δ? is the Maximum A Posteriori(MAP)
estimator of the “parameter”H on the basis of the observationsX.

As monotone increasing transformations are order preserving, the optimal de-
tectorδ? has the equivalent form

ChooseĤ = m iff log (pmf(x|H = m)) largest.

Uniform prior and the ML detector There is one situation of great interest,
from both practical and theoretical viewpoints, where further simplifications are
achieved in the structure of the optimal detector. This occurs when the rvH is
uniformlydistributed overH, namely

P [H = m] =
1

M
, m = 1, . . . ,M.(1.6)
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In that case, the optimal detectorδ? prescribes

ChooseĤ = m iff fm(x) largest,

and therefore implements the so-calledMaximum Likelihood(ML) estimate ofH
on the basis ofx.

1.5 An important example

An important special case arises when the distributionsF1, . . . , FM are all Gaus-
sian distributions with the sameinvertible covariance matrix. This is equivalent
to

[X|H = m] =st µm + V , m = 1, . . . ,M(1.7)

whereV is a zero meanRd-valued Gaussian rv with covariance matrixΣ. We
assumeΣ to be invertible and the mean vectorsµ1, . . . ,µM to be distinct. An
alternative description, based on (1.7), relates the observationX to the state of
natureH through the measurement equation

X = µH + V(1.8)

where the rvsH andV are assumed to be mutually independent rvs distributed
as before. Under this observation model, for eachm = 1, . . . ,M , Fm admits the
density

fm(x) =
1√

(2π)pdet(Σ)
e−

1
2

(x−µm)′Σ−1
(x−µm), x ∈ Rd.(1.9)

We note that

log (pmfm(x))(1.10)

= C + log pm −
1

2
(x− µm)′Σ−1(x− µm),

x ∈ Rd,
m = 1, . . . ,M

with constantC given by

C := −1

2
log
(
(2π)ddet(Σ)

)
.

This constant being independent ofm andx, the optimal detector prescribes

ChooseĤ = m iff 2 log pm − (x− µm)′Σ−1(x− µm) largest.
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Under uniform prior, this MAP detector becomes the ML detector and takes the
form

ChooseĤ = m iff (x− µm)′Σ−1(x− µm) smallest.

The form of the MAP detector given above very crisply illustrates how the
prior information (pm) on the hypothesis is modified by the posterior information
collected through the observation vectorx. Indeed, at first, if only the prior dis-
tribution were known, and with no further information available, it is reasonable
to select the most likely state of natureH = m, i.e., the one with largest value
of pm. However, as the observation vectorx becomes available, its closeness to
µm should provide some indication on the underlying state of nature. More pre-
cisely, if µm is the “closest” (in some sense) to the observationx among all the
vectorsµ1, . . . ,µM , then this should be taken as an indication of high likelihood
thatH = m; here the appropriate notion of closeness is the norm onR

d induced
by Σ−1. The MAP detector combines these two trends when constructing the op-
timal decision in the following way: The state of natureH = mmay have a rather
small value for its priorpm, making ita priori unlikely to be the underlying state
of nature, yet this will be offset if the observationx yields an extremely small
value for the “distance”(x− µm)′Σ−1(x− µm) to the mean vectorµm.

WhenΣ = σ2Id for someσ > 0, the components ofV are mutually indepen-
dent, and the MAP and ML detectors take the simpler forms

ChooseĤ = m iff 2 log pm −
1

σ2
‖x− µm‖2 largest

and
ChooseĤ = m iff ‖x− µm‖2 smallest,

respectively. Thus, given the observation vectorx, the ML detector returns the
state of naturem whose mean vectorµm is closest (in the usual Euclidean sense)
tox. This is an example ofnearest-neighbordetection.

1.6 Consecutive observations

As the discussion in Section 1.5 already shows, the MAP and ML detectors can as-
sume simpler forms in structured situations. In the present section we explore pos-
sible simplifications whenrepeatedobservations of the state of nature are made.

A convenient setup to carry out the discussion is as follows: Consecutive ob-
servations are collected at time epochs labelledi = 1, . . . , n with n > 1. At
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each time epoch, nature is assumed to be in one ofL distinct states, labelled
` = 1, . . . , L, and we writeL = {1, . . . , L}. For eachi = 1, . . . , n, the unknown
state of nature at epochi is encoded in theL-valued rvHi, while the observa-
tion is modeled by anRd-valued rvX i. The “global” state of nature over these
n time epochs is theLn-valued rvH = (H1, . . . , Hn), while theRnd-valued
rv X = (X1, . . . ,Xn) represents the cumulative observation over these same
epochs.

The problem of interest here is that of detecting the global state of natureH
on the basis of the cumulative observation vectorX. A number of assumptions
will now be made; they are present in some situations relevant to Digital Commu-
nications: At this point, theLn-valued rvH is assumed to have an arbitrary pmf,
say

p(h) = P [H = h]

= P [H1 = h1, . . . , Hn = hn] , h = (h1, . . . , hn) ∈ Ln.

We also assume that the observationsX1, . . . ,Xn areconditionally independent
given the global state of nature, with a conditional density of the product form

fh(x) =
n∏
i=1

fhi(xi),
h = (h1, . . . , hn) ∈ Ln

x ∈ Rn .(1.11)

Note that the functional form of (1.11) implies more than the conditional indepen-
dence of the rvsX1, . . . ,Xn as it also stipulates for eachi = 1, . . . , n that the
conditional distribution ofX i givenH dependsonly onHi, the state of nature at
the epochi when this observation is taken.

The results obtained earlier apply for it suffices to identify the state of nature
as the rvH and the observation asX: We then see that the ML detector forH
on the basis of the observation vectorX prescribes

ChoosêH = (h1, . . . , hn) iff
n∏
i=1

fhi(xi) largest.

This leads to the following equivalent prescription

ChooseĤi = hi iff fhi(xi) largest, i = 1, . . . , n.

In other words the corresponding ML detector reduces tosequentiallyapplying
an appropriate ML detector for deciding the state of natureHi at epochi on the
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basis of the observationX i collectedonlyat that epoch foreachi = 1, . . . , n. Of
course this is a great simplification since it can be done sequentially in time.

We now turn to the MAP detector in the situation when the rvsH1, . . . , Hn are
mutually independent(but not necessarily identically distributed), i.e.,

P [H1 = h1, . . . , Hn = hn] =
n∏
i=1

P [Hi = hi](1.12)

with h = (h1, . . . , hn) in Ln. Under this independence assumption on the prior,
the MAP detector forH on the basis of the observation vectorX prescribes

ChoosêH = (h1, . . . , hn) iff
n∏
i=1

P [Hi = hi] fhi(xi) largest.

This time again, a separation occurs under the independence assumption (1.12),
namely the combined prescriptions

ChooseĤi = hi iff P [Hi = hi] fhi(xi) largest, i = 1, . . . , n.

Again great simplification is achieved as the MAP detector reduces tosequentially
applying an MAP detector for deciding the state of natureHi at epochi on the
basis of the observationX i collectedonlyat that epoch foreachi = 1, . . . , n.

1.7 Irrelevant data

When applying the ideas of Decision Theory developed in this chapter, we shall
sometimes encounter the following structured situation: The observed dataX
admits a natural partitioning into two component vectors, sayX = (Y ,Z) for
rvs Y andZ which take values inRp andRq, respectively, withp + q = d.
To simplify the discussion, we still assume that for eachm = 1, . . . ,M , the
distribution functionFm admits a densityfm onRd. In that case, the distribution
of the rvY givenH = m also admits a densitygm given by

gm(y) =

∫
Rq

fm(y, z) dz, y ∈ Rp.

It is a simple matter to check fory in Rp that the conditional distribution of the
rv Z givenY = y andH = m admits a density, denotedhm(·|y). Standard
conditioning arguments readily yield

fm(y, z) = gm(y)hm(z|y), y ∈ Rp, z ∈ Rq.(1.13)
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In fact, with the convention0
0

= 0, we find

hm(z|y) =
fm(y, z)

gm(y)
, y ∈ Rp, z ∈ Rq.(1.14)

Returning to the definition (1.4) of the optimal detector, we see thatδ? pre-
scribes

Ĥ = m iff pmgm(y)hm(z|y) largest

with a tie-breaker. Therefore, if the conditional density at (1.14) were tonot de-
pend onm, i.e.,

h1(z|y) = . . . = hM(z|y) =: h(z|y), y ∈ Rp, z ∈ Rq(1.15)

then (1.14) reduces to

Ĥ = m iff pmgm(y) largest.(1.16)

The condition (1.15) and the resulting form (1.16) of the optimal detector suggest
that knowledge ofZ plays no role in developing inference ofH on the basis of
the pair(Y ,Z), hence the terminologyirrelevantdata given toZ.

In a number of cases occuring in practice, the condition (1.15) is guaranteed by
the following stronger conditional independence: (i) The rvsY andZ are mutu-
ally independent conditionally on the rvH, and (ii) the rvZ is itself independent
of the rvH. In other words, for eachm = 1, . . . ,M , it holds that

P [Y ≤ y,Z ≤ z|H = m] = P [Y ≤ y|H = m]P [Z ≤ z|H = m]

= P [Y ≤ y|H = m]P [Z ≤ z]

for all y andz in Rp andRq, respectively. In that case, it is plain that

fm(y, z) = gm(y)h(z), y ∈ Rp, z ∈ Rq

whereh is theunconditionalprobability density function ofZ. The validity of
(1.15) is now immediate with

h(z|y) = h(z), y ∈ Rp, z ∈ Rq.
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1.8 Sufficient statistics

A mappingT : Rd → R
p is said to be asufficient statisticfor (estimating)H on

the basis ofX if the conditional distribution ofX givenH = m andT (X) does
not depend onm.

The Fisher-Neyman Factorization Theorem given next provides a convenient
characterization of a sufficient statistic in the framework used here.

Theorem 1.8.1 Assume that for eachm = 1, . . . ,M , the distribution function Fm
admits a density fm on Rd. The mapping T : Rd → R

p is a sufficient statistic for
estimating H on the basis of X if and only if there exist mappings h : Rd → R+

and g1, . . . , gM : Rp → R+ such that

fm(x) = h(x)gm(T (x)), x ∈ Rd(1.17)

for each m = 1, . . . ,M .

The usefulness of the Fisher-Neyman Factorization Theorem should be appar-
ent: From the definition (1.4) of the optimal detector, we see thatδ? prescribes

Ĥ = m iff pmh(x)gm(T (x)) largest(1.18)

with a tie-breaker, a prescription equivalent to

Ĥ = m iff pmgm(T (x)) largest(1.19)

with a tie-breaker. In many applicationsp is much smaller thand with obvious
advantages from the point of view of storage and implementation: The datax is
possibly high-dimensional but after some processing, the decision concerning the
state of nature can be taken on the basis of the lower-dimensional quantityT (x).

The following example, already introduced in Section 1.5, should clarify the
advantage of using (1.19) over (1.18): Assume the distributionsF1, . . . , FM to be
Gaussian distributions with the same invertible covariance matrixσ2Id but with
distinct meansµ1, . . . ,µM . Further assume that

µm = λmµ, m = 1, . . . ,M

for distinct scalarsλ1, . . . , λM and non-zero vectorµ. Then, under these assump-
tions, for eachm = 1, . . . ,M , the distributionFm admits the density

fm(x) =
1√

(2πσ2)d
e−

1
2σ2 ‖x−λmµ‖2 , x ∈ Rd(1.20)
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where
‖x− λmµ‖2 = ‖x‖2 − 2λmx

′µ+ λ2
m‖µ‖2.

As a result, the densityfm can be written in the form (1.17) with

h(x) =
1√

(2πσ2)p
e−

1
2σ2 ‖x‖2 , x ∈ Rd

and
gm(t) = e−

1
2σ2 (−2λmt+λ2

m‖µ‖2), t ∈ R.
It now follows from Theorem 1.8.1 that the mappingT : Rd → R given by

T (x) := x′µ, x ∈ Rd

is a sufficient statistic for (estimating)H on the basis ofX – Herep = 1 whiled is
arbitrary (and often very large). While the (high-dimensional) datax is observed,
the decision is taken on the basis of theone-dimensional quantityT (x), namely

Ĥ = m iff log pm −
1

2σ2

(
−2λmT (x) + λ2

m‖µ‖2
)

largest(1.21)

upon taking logarithms in (1.19).

1.9 Exercises

Ex. 1.1 Consider the Bayesian hypothesis problem with an arbitrary cost function
C : H × H → R. Revisit the arguments of Section 1.2 to identify the optimal
detector.

Ex. 1.2 Show that the detector identified in Exercise 1.1 is indeed the optimal
detector. Arguments similar to the ones given in Section 1.3 can be used.

Ex. 1.3 Specialize Exercise 1.2 to the caseM = 2.

Ex. 1.4 Show that the formulations (1.7) and (1.8) are equivalent.

Ex. 1.5 In the setting of Section 1.6, show that the rvH is uniformly distributed
on Ln if and only the rvsH1, . . . , Hn are i.i.d. rvs, each of which is uniformly
distributed onL. Use this fact to obtain the form of the ML detector from the
results derived in the second half of Section 1.6, under the assumption (1.12) on
the prior.
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Ex. 1.6 Consider the situation where the scalar observationX and the state of
natureH are rvs related through the measurement equation

X = µH + V

under the following assumptions: The rvsH andV are mutually independent, the
rv H takes values in some finite setH = {1, . . . ,M}, and theR-valued rvV
admits a densityfV . Hereµ1, . . . , µM denote distinct scalars, sayµ1 < . . . < µM .
Find the corresponding ML detector.

Ex. 1.7 Continue Exercise 1.6 when the noiseV has a Cauchy distribution with
density

fV (v) =
1

π(1 + v2)
, v ∈ R.

Show that the ML detector implements nearest-neighbor detection.

Ex. 1.8 Consider the multi-dimensional version of Exercise 1.6 with the observa-
tionX and the state of natureH related through the measurement equation

X = µH + V

under the following assumptions: The rvsH andV are mutually independent,
the rvH takes values in some finite setH = {1, . . . ,M}, and theRd-valued rv
V admits a densityfV . Here the vectorsµ1, . . . ,µM are distinct elements ofRd.
Find the ML detector whenfV is of the form

fV (v) = g(‖v‖2), v ∈ Rd

for some decreasing functiong : R+ → R+.
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Chapter 2

Gaussian Random Variables

This chapter is devoted to a brief discussion of the class of Gaussian rvs. In
particular, for easy reference we have collected various facts and properties to be
used repeatedly.

2.1 Scalar Gaussian rvs

With
µ ∈ R and σ ≥ 0,

anR-valued rvX is said to be aGaussian(or normally distributed) rv with mean
µ and varianceσ2 if either it is degenerate to a constant withX = µ a.s. (in which
caseσ = 0) or the probability distribution ofX is of the form

P [X ≤ x] =
1√

2πσ2

∫ x

−∞
e−

(t−µ)2

2σ2 dt, x ∈ R

(in which caseσ2 > 0). Under either circumstance, it can be shown that

E

[
eiθX

]
= eiθµ−

σ2

2
·θ2

, θ ∈ R.(2.1)

It is then follows by differentiation that

E [X] = µ and E

[
X2
]

= µ2 + σ2(2.2)

so thatVar[X] = σ2. This confirms the meaning ascribed to the parametersµ and
σ2 as mean and variance, respectively.

21
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It is a simple matter to check that ifX is normally distributed with meanµ and
varianceσ2, then for scalarsa andb, the rvaX + b is also normally distributed
with meanaµ+ b and variancea2σ2. In particular, withσ > 0, the rvσ−1(X−µ)
is a Gaussian rv with mean zero and unit variance.

2.2 The standard Gaussian rv

The Gaussian rv with mean zero and unit variance occupies a very special place
among Gaussian rvs, and is often referred to as thestandardGaussian rv. Through-
out, we denote byU the Gaussian rv with zero mean and unit variance. Its proba-
bility distribution function is given by

P [U ≤ x] = Φ(x) :=

∫ x

−∞
φ(t)dt, x ∈ R(2.3)

with density functionφ given by

φ(x) :=
1√
2π
e−

x2

2 , x ∈ R.(2.4)

As should be clear from earlier comments, the importance of this standard rv
U stems from the fact that for any Gaussian rvX with meanµ and varianceσ2, it
holds thatX =st µ+ σU , so that

P [X ≤ x] = P

[
σ−1(X − µ) ≤ σ−1(x− µ)

]
= P

[
U ≤ σ−1(x− µ)

]
= Φ(σ−1(x− µ)), x ∈ R.

The evaluation of probabilities involving Gaussian rvs thus reduces to the evalua-
tion of related probabilities for the standard Gaussian rv.

For eachx in R, we note by symmetry thatP [U ≤ −x] = P [U > x], so that
Φ(−x) = 1 − Φ(x), andΦ is therefore fully determined by the complementary
probability distribution function ofU on [0,∞), namely

Q(x) := 1− Φ(x) = P [U > x] , x ≥ 0.(2.5)

2.3 Gaussian integrals

There are a number of integrals that can be evaluated explicitly by making use of
the fact that the Gaussian density function (2.4) must integrate to unity. We refer
to these integrals asGaussian integrals, and provide an expression for them.
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Lemma 2.3.1 For every a in R and b > 0, it holds that

I(a, b) :=

∫
R

eax−bx
2

dx =

√
π

b
e
a2

4b .(2.6)

Proof. To evaluateI(a, b) we use a “completion-of-square” argument to write

ax− bx2 = −b
(
x2 − a

b
x
)

= −b
(
x− a

2b

)2

+
a2

4b
, x ∈ R

so that

I(a, b) = e
a2

4b

∫
R

e−b(x−
a
2b)

2

dx

=

√
π

b
e
a2

4b

∫
R

√
b

π
e−b(x−

a
2b)

2

dx.

The desired conclusion (2.6) follows once we observe that∫
R

√
b

π
e−b(x−

a
2b)

2

dx = 1

as the integral of a Gaussian density with meanµ = a
2b

and varianceσ2 = 1
2b

.

Sometimes we shall be faced with the task of evaluating integrals that reduce
to integrals of the form (2.6). This is taken on in

Lemma 2.3.2 For every pair a and b in R, it holds that

J(λ; a, b) :=

∫
R

e−λ(a+bx)2

φ(x) dx

=
1√

1 + 2λb2
· e−

λa2

1+2λb2 , λ > 0.(2.7)

Proof. Fix λ > 0. For eachx in R, we note that

1

2
x2 + λ(a+ bx)2 =

1

2

(
1 + 2λb2

)
x2 + λa2 + 2λabx.
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Hence, upon making the change of variableu = x
√

1 + 2λb2, we find

J(λ; a, b) = e−λa
2

∫
R

φ(
√

1 + 2λb2x)e−2λabx dx

= e−λa
2

∫
R

e
− 2λab√

1+2λb2
u
φ(u)

du√
1 + 2λb2

=
e−λa

2

√
1 + 2λb2

∫
R

e
− 2λab√

1+2λb2
u
φ(u) du

=
e−λa

2√
2π(1 + 2λb2)

I(α, β)(2.8)

with

α := − 2λab√
1 + 2λb2

and β :=
1

2
.

Applying Lemma 2.3.1, we note that

α2

4β
=
α2

2
=

2λ2a2b2

1 + 2λb2

so that

I(α, β) =
√

2πe
α2

2 =
√

2πe
2λ2a2b2

1+2λb2 .(2.9)

The desired conclusion readily follows from (2.8) and (2.9) once we observe that

−λa2 +
2λ2a2b2

1 + 2λb2
= − λa2

1 + 2λb2
.

As an easy corollary of Lemma 2.3.1, any Gaussian rvX with meanµ and
varianceσ2 has amoment generating functiongiven by

E

[
eθX
]

= eθµ+σ2

2
·θ2

, θ ∈ R.(2.10)

Indeed, for eachθ in R, direct inspection shows that

E

[
eθX
]

=

∫
R

1√
2πσ2

eθx−
(x−µ)2

2σ2 dx

= eθµ
∫
R

1√
2πσ2

eθt−
t2

2σ2 dt

=
1√

2πσ2
eθµI

(
θ,

1

2σ2

)
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where the second equality is obtained by the change of variablet = x − µ, and
(2.10) follows by making use of Lemma 2.3.1. Observe that (2.1) can also be
obtained formally from (2.10) upon replacingθ in the latter byiθ.

2.4 EvaluatingQ(x)

The complementary distribution function (2.5) repeatedly enters the computation
of various probabilities of error. Given its importance, we need to develop good
approximations toQ(x) over the entire rangex ≥ 0.

The error function In the literature on digital communications, probabilities of
error are often expressed in terms of the so-callederror functionErf : R+ → R

and of its complementErfc : R+ → R defined by

Erf(x) =
2√
π

∫ x

0

e−t
2

dt, x ≥ 0(2.11)

and

Erfc(x) =
2√
π

∫ ∞
x

e−t
2

dt, x ≥ 0.(2.12)

A simple change of variables (t = u√
2
) in these integrals leads to the relationships

Erf(x) = 2

(
Φ(x
√

2)− 1

2

)
and Erfc(x) = 2Q(x

√
2),

so that
Erf(x) = 1− Erfc(x), x ≥ 0.

Conversely, we also have

Φ(x) =
1

2

(
1 + Erf

(
x√
2

))
and Q(x) =

1

2
Erfc

(
x√
2

)
.

Thus, knowledge of any one of the quantitiesΦ, Q, Erf or Erfc is equivalent to
that of the other three quantities. Although the last two quantities do not have
a probabilistic interpretation, evaluatingErf is computationally more efficient.
Indeed,Erf(x) is an integral of a positive function over thefinite interval [0, x]
(and not over an infinite interval as in the other cases).
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Chernoff bounds To approximateQ(x) we begin with a crude bound which
takes advantage of (2.10): Fixx > 0. For eachθ > 0, the usual Chernoff bound
argument gives

P [U > x] ≤ E

[
eθU
]
e−θx

= e−θx+ θ2

2

= e−
x2

2 e
(θ−x)2

2(2.13)

where in the last equality we made use of a completion-of-square argument. The
best lower bound

Q(x) ≤ e−
x2

2 , x ≥ 0(2.14)

is achieved upon selectingθ = x in (2.13). We refer to the bound (2.14) as a
Chernoff bound; it is not very accurate for smallx > 0 sincelimx→0 Q(x) = 1

2

while limx→0 e
−x

2

2 = 1.

Approximating Q(x) (x → ∞) The Chernoff bound shows thatQ(x) decays

to zero for largex at least as fast ase−
x2

2 . However, sometimes more precise
information is needed regarding the rate of decay ofQ(x). This issue is addressed
as follows:

For eachx ≥ 0, a straigthforward change of variable yields

Q(x) =

∫ ∞
x

φ(t)dt

=

∫ ∞
0

φ(x+ t)dt

= φ(x)

∫ ∞
0

e−xte−
t2

2 dt.(2.15)

With the Taylor series expansion ofe−
t2

2 in mind, approximations forQ(x) of
increased accuracy thus suggest themselves by simply approximating the second
exponential factor (namelye−xt) in the integral at (2.15) by terms of the form

n∑
k=0

(−1)k

2kk!
t2k, n = 0, 1, . . .(2.16)
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To formulate the resulting approximation contained in Proposition 2.4.1 given
next, we set

Qn(x) = φ(x)

∫ ∞
0

(
n∑
k=0

(−1)k

2kk!
t2k

)
e−xtdt, x ≥ 0

for eachn = 0, 1, . . ..

Proposition 2.4.1 Fix n = 0, 1, . . .. For each x > 0 it holds that

Q2n+1(x) ≤ Q(x) ≤ Q2n(x),(2.17)

with

| Q(x)−Qn(x) |≤ (2n)!

2nn!
x−(2n+1)φ(x).(2.18)

where

Qn(x) = φ(x)
n∑
k=0

(−1)k(2k)!

2kk!
x−(2k+1).(2.19)

A proof of Proposition 2.4.1 can be found in Section 2.12. Upon specializing
(2.17) ton = 0 we get

e−
x2

2

x
√

2π

(
1− 1

x2

)
≤ Q(x) ≤ e−

x2

2

x
√

2π
, x > 0(2.20)

and the asymptotics

Q(x) ∼ e−
x2

2

x
√

2π
(x→∞)(2.21)

follow. Note that the lower bound in (2.20) is meaningful only whenx ≥ 1.

2.5 Gaussian random vectors

Let µ denote a vector inRd and letΣ be a symmetric and non-negative definite
d× d matrix, i.e.,Σ′ = Σ andθ′Σθ ≥ 0 for all θ in Rd.

An Rd-valued rvX is said to be a Gaussian rv with mean vectorµ and co-
variance matrixΣ if there exist ad × p matrixT for some positive integerp and
i.i.d. zero mean unit variance Gaussian rvsU1, . . . , Up such that

TT ′ = Σ(2.22)
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and
X =st µ+ TU p(2.23)

whereU p is theRp-valued rv(U1, . . . , Up)
′.

From (2.22) and (2.23) it is plain that

E [X] = E [µ+ TU p] = µ+ TE [U p] = µ

and

E

[
(X − µ) (X − µ)′

]
= E

[
TU p (TU p)

′]
= TE

[
U pU

′
p

]
T ′

= TIpT
′ = Σ,(2.24)

whence
E [X] = µ and Cov[X] = Σ.

Again this confirms the terminology used forµ andΣ as mean vector and covari-
ance matrix, respectively.

It is a well-known fact from Linear Algebra [, , p. ] that for any symmetric
and non-negative definited× d matrixΣ, there exists ad× d matrixT such that
(2.22) holds withp = d. This matrixT can be selected to besymmetricandnon-
negative definite, and is called thesquare rootof Σ. Consequently, for any vector
µ in Rd and any symmetric non-negative definited × d matrix Σ, there always
exists anRd-valued Gaussian rvX with mean vectorµ and covariance matrixΣ
– Simply take

X =st µ+ TU d

whereT is the square root ofΣ.

2.6 Characteristic functions

The characteristic function of Gaussian rvs has an especially simple form which
is now developed.

Lemma 2.6.1 The characteristic function of a Gaussian Rd-valued rv X with
mean vector µ and covariance matrix Σ is given by

E

[
eiθ

′X
]

= eiθ
′µ− 1

2
θ′Σθ, θ ∈ Rd.(2.25)
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Conversely, any Rd-valued rv X whose characteristic function is given by (2.25)
for some vector µ in Rd and symmetric non-negative definite d× d matrix Σ is a
Gaussian Rd-valued rvX with mean vector µ and covariance matrix Σ.

Proof. Consider anRd-valued rvX which is a Gaussian rv with mean vectorµ
and covariance matrixΣ. By definition, there exist ad × p matrix T for some
positive integerp and i.i.d. zero mean unit variance Gaussian rvsU1, . . . , Up such
that (2.22) and (2.23) hold.

For eachθ in Rd, we get

E

[
eiθ

′X
]

= eiθ
′µ · E

[
eiθ

′TU p

]
= eiθ

′µ · E
[
ei(T

′θ)′U p

]
= eiθ

′µ · E
[
ei
∑p
k=1(T ′θ)kUk

]
= eiθ

′µ ·
p∏

k=1

E

[
ei(T

′θ)kUk
]

(2.26)

= eiθ
′µ ·

p∏
k=1

e−
1
2
|(T ′θ)k|2(2.27)

The equality (2.26) is a consequence of the independence of the rvsU1, . . . , Up,
while (2.27) follows from their Gaussian character (and (2.1)).

Next, we note that

p∑
k=1

|(T ′θ)k|2 = (T ′θ)′(T ′θ)

= θ′(TT ′)θ = θ′Σθ(2.28)

upon invoking (2.22). It is now plain from (2.27) that the characteristic function
of the GaussianRd-valued rvX is given by (2.25).

Conversely, consider anRd-valued rvX with characteristic function of the
form (2.25) for some vectorµ in Rd and some symmetric non-negative definite
d × d matrix Σ. By comments made earlier, there exists ad × d matrixT such
that (2.22) holds. By the first part of the proof, theRd-valued rvX̃ given by
X̃ := µ + TU d has characteristic function given by (2.25). Since a probability
distribution is completely determined by its characteristic function, it follows that
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the rvsX andX̃ obey the same distribution. The rṽX being Gaussian with mean
vectorµ and covariance matrixΣ, the rvX is necessarily Gaussian as well with
mean vectorµ and covariance matrixΣ.

2.7 Existence of a density

In general, anRd-valued Gaussian rv as defined above may not admit a density
function. To see why, consider the null space of its covariance matrixΣ,1 namely

N(Σ) := {x ∈ Rd : Σx = 0d}.

Observe thatθ′Σθ = 0 if and only if θ belongs toN(Σ), in which case (2.25)
yields

E

[
eiθ

′
(X−µ)

]
= 1

and we conclude that
θ′(X − µ) = 0 a.s.

In other words, with probability one, the rvX − µ is orthogonal to the linear
spaceN(Σ).

To proceed, we assume that the covariance matrixΣ is not trivial (in that it
has some non-zero entries) for otherwiseX = µ a.s. In the non-trivial case, there
are now two possibilities depending on thed× d matrixΣ being positive definite
or not. Note that the positive definiteness ofΣ, i.e.,θ′Σθ = 0 necessarily implies
θ = 0d, is equivalent to the conditionN(Σ) = {0d}.

If the d×dmatrixΣ is not positive definite, hence only positive semi-definite,
then the mass of the rvX − µ is concentrated on the orthogonal spaceN(Σ)⊥

of N(Σ), whence the distribution ofX has its support on the linear manifold
µ+N(Σ)⊥ and is singular with respect to Lebesgue measure.

On the other hand, if thed × d matrix Σ is positive definite, then the matrix
Σ is invertible, det(Σ) 6= 0 and the Gaussian rvX with mean vectorµ and
covariance matrixΣ admits a density function given by

f(x) =
1√

(2π)ddet(Σ)
e−

1
2

(x−µ)′Σ−1
(x−µ), x ∈ Rd.

1This linear space is sometimes called the kernel ofΣ.
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2.8 Linear transformations

The following result is very useful in many contexts, and shows that linear trans-
formations preserve the Gaussian character:

Lemma 2.8.1 let ν be an element of Rq and let A be an q × d matrix. Then, for
any Gaussian rv Rd-valued rv X with mean vector µ and covariance matrix Σ,
the Rq-valued rv Y given by

Y = ν +AX

is also a Gaussian rv with mean vector ν +Aµ and covariance matrixAΣA′.

Proof. First, by linearity we note that

E [Y ] = E [ν +AX] = ν +Aµ

so that

Cov[Y ] = E

[
A(X − µ) (A(X − µ))′

]
= AE [(X − µ)(X − µ)′]A′

= AΣA′.(2.29)

Consequently, theRq-valued rvY has mean vectorν+Aµ and covariance matrix
AΣA′.

Next, by the Gaussian character ofX, there exist ad × p matrixT for some
positive integerp and i.i.d. zero mean unit variance Gaussian rvsU1, . . . , Up such
that (2.22) and (2.23) hold. Thus,

Y =st ν +A (µ+ TU p)

= ν +Aµ+ATU p

= µ̃+ T̃U p(2.30)

with
µ̃ := ν +Aµ and T̃ := AT

and the Gaussian character ofY is established.

This result can also be established through the evaluation of the characteristic
function of the rvY . As an immediate consequence of Lemma 2.8.1 we get
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Corollary 2.8.1 Consider a Gaussian rv Rd-valued rvX with mean vector µ and
covariance matrix Σ. For any subset I of {1, . . . , d} with |I| = q ≤ d, the Rq-
valued rv XI given by XI = (Xi, i ∈ I)′ is a Gaussian rv with mean vector
(µi, i ∈ I)′ and covariance matrix (Σij, i, j ∈ I).

2.9 Independence of Gaussian rvs

Characterizing the mutual independence of Gaussian rvs turns out to be quite
straightforward as the following suggests: Consider the rvsX1, . . . ,Xr where
for eachs = 1, . . . , r, the rvXs is anRds-valued rv with mean vectorµs and
covariance matrixΣs. With d = d1 + . . . + dr, letX denote theRd-valued rv
obtained by concatenatingX1, . . . ,Xr, namely

X =

 X1
...
Xr

 .(2.31)

Its mean vectorµ is simply

µ =

 µ1
...
µr

(2.32)

while its covariance matrixΣ can be written in block form as

Σ =


Σ1 Σ1,2 . . . Σ1,r

Σ2,1 Σ2 . . . Σ2,r
...

...
...

...
Σr,1 Σr,2 . . . Σr

(2.33)

with the notation

Σs,t := Cov[Xs,X t] s, t = 1, . . . , r.

Lemma 2.9.1 With the notation above, assume the Rd-valued rvX to be a Gaus-
sian rv with mean vector µ and covariance matrix Σ. Then, for each s = 1, . . . , r,
the rvXs is a Gaussian rv with mean vector µs and covariance matrix Σs. More-
over, the rvsX1, . . . ,Xr are mutually independent Gaussian rvs if and only they
are uncorrelated, i.e.,

Σs,t = δ(s, t)Σt, s, t = 1, . . . , r.(2.34)
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The first part of Lemma 2.9.1 is a simple rewrite of Corollary 2.8.1. Some-
times we refer to the fact that the rvX is Gaussian by saying that the rvsX1, . . . ,Xr

arejointly Gaussian. A converse to Lemma 2.9.1 is available:

Lemma 2.9.2 Assume that for each s = 1, . . . , r, the rvXs is a Gaussian rv with
mean vector µs and covariance matrix Σs. If the rvs X1, . . . ,Xr are mutually
independent, then the Rd-valued rv X is an Rd-valued Gaussian rv with mean
vector µ and covariance matrix Σ as given by (2.33) with (2.34).

It might be tempting to conclude that the Gaussian character ofeachof the rvs
X1, . . . ,Xr alonesuffices to imply the Gaussian character of the combined rv
X. However, it can be shown through simple counterexamples that this is not so.
In other words, the joint Gaussian character ofX does not follow merely from
that of its componentsX1, . . . ,Xr withoutfurther assumptions.

2.10 Convergence and limits of Gaussian rvs

In later chapters we will need to define integrals with respect to Gaussian pro-
cesses. As in the deterministic case, thesestochasticintegrals will be defined as
limits of partial sums of the form

Xn :=
kn∑
i=1

a
(n)
j Y

(n)
j , n = 1, 2, . . .(2.35)

where for eachn = 1, 2, . . ., the integerkn and the coefficientsa(n)
j , j = 1, . . . , kn,

are non-random while the rvs{Y (n)
j , j = 1, . . . , kn} arejointly Gaussian rvs. Typ-

ically, asn goes to infinity so doeskn. Note that under the foregoing assumptions
for eachn = 1, 2, . . ., the rvXn is Gaussian with

E [Xn] =
kn∑
i=1

a
(n)
j E

[
Y

(n)
j

]
(2.36)

and

Var[Xn] =
kn∑
i=1

kn∑
j=1

a
(n)
i a

(n)
j Cov[Y

(n)
i , Y

(n)
j ].(2.37)
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Therefore, the study of such integrals is expected to pass through the conver-
gence of sequence of rvs{Xn, n = 1, 2, . . .} of the form (2.35). Such considera-
tions lead naturally to the need for the following result [, Thm. , p.]:

Lemma 2.10.1 Let {Xk, k = 1, 2, . . .} denote a collection of Rd-valued Gaus-
sian rvs. For each k = 1, 2, . . ., let µk and Σk denotes the mean vector and
covariance matrix of the rv Xk. The rvs {Xk, k = 1, . . .} converge in distribu-
tion (in law) if and only there exist an element µ in Rd and a d× d matrix Σ such
that

lim
k→∞

µk = µ and lim
k→∞

Σk = Σ.(2.38)

In that case,
Xk =⇒k X

where X is an Rd-valued Gaussian rv with mean vector µ and covariance matrix
Σ.

The second half of condition (2.38) ensures that the matrixΣ is symmetric
and non-negative definite, hence a covariance matrix.

Returning to the partial sums (2.35) we see that Lemma 2.10.1 (applied with
d = 1) requires identifying the limitsµ = limn→∞ E [Xn] andσ2 = limn→∞Var[Xn],
in which caseXn =⇒n X whereX is anR-valued Gaussian rv with meanµ and
varianceΣ. In Section?? we discuss a situation where this can be done quite
easily.

2.11 Rvs derived from Gaussian rvs

Rayleigh rvs A rv X is said to be aRayleighrv with parameterσ (σ > 0) if

X =st

√
Y 2 + Z2(2.39)

with Y andZ independent zero mean Gaussian rvs with varianceσ2. It is easy to
check that

P [X > x] = e−
x2

2σ2 , x ≥ 0(2.40)

with corresponding density function

d

dx
P [X ≤ x] =

x

σ2
e−

x2

2σ2 , x ≥ 0.(2.41)
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It is also well known that the rvΘ given by

Θ := arctan

(
Z

Y

)
(2.42)

is uniformly distributed over[0, 2π) and independent of the Rayleigh rvX, i.e.,

P [X ≤ x,Θ ≤ θ] =
θ

2π

(
1− e−

x2

2σ2

)
, θ ∈ [0, 2π), x ≥ 0.(2.43)

Rice rvs A rv X is said to be aRicerv with parametersα (in R) andσ (σ > 0)
if

X =st

√
(α + Y )2 + Z2(2.44)

with Y andZ independent zero mean Gaussian rvs with varianceσ2. It is easy to
check thatX admits a probability density function given by

d

dx
P [X ≤ x] =

x

σ2
e−

x2+α2

2σ2 · I0

(αx
σ2

)
, x ≥ 0.(2.45)

Here,

I0(x) :=
1

2π

∫ 2π

0

ex cos tdt, x ∈ R(2.46)

is the modified Bessel function of the first kind of order zero.

Chi-square rvs For eachn = 1, 2, . . ., the Chi-square rv withn degrees of
freedom is the rv defined by

χ2
n =st U

2
1 + . . .+ U2

n

whereU1, . . . , Un aren i.i.d. standard Gaussian rvs.

2.12 A Proof of Proposition 2.4.1

The main idea is to use the Taylor series approximations (2.16) in the relation
(2.15). To do so, we begin by establishing some elementary facts concerning the
Taylor series approximations of the negative exponentiale−y (y ≥ 0): For each
n = 0, 1, . . ., set

Hn(y) :=
n∑
k=0

(−1)k

k!
yk, y ≥ 0.(2.47)
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Lemma 2.12.1 For eachy ≥ 0 andn = 0, 1, . . ., it holds that

H2n+1(y) ≤ e−y ≤ H2n(y)(2.48)

with

| Hn(y)− e−y |≤ yn

n!
.(2.49)

Proof. Fix y ≥ 0 andn = 0, 1, . . .. By differentiation we readily check that

H ′n+1(y) = −Hn(y),

so that
d

dy

(
e−y −Hn+1(y)

)
= −

(
e−y −Hn(y)

)
.

Integrating and using the factHn+1(0) = 1, we find

e−y −Hn+1(y) = −
∫ y

0

(
e−t −Hn(t)

)
dt.(2.50)

An easy induction argument now yields (2.48) once we note for the basis step that
H0(y) > e−y for all y > 0.

To obtain the bound (2.49) on the accuracy of approximatinge−y byHn(y), we
proceed by induction onn. Forn = 0, it is always the case that|e−y−H0(y)| ≤ 1,
whence (2.49) holds for ally ≥ 0 and the basis step is established. Next, we
assume that (2.49) holds for ally ≥ 0 for n = m with somem = 0, 1, . . ., namely

|e−y −Hm(y)| ≤ ym

m!
, y ≥ 0.(2.51)

Hence, upon invoking (2.50) we observe that

|e−y −Hm+1(y)| ≤
∫ y

0

|e−t −Hm(t)|dt

≤
∫ y

0

tm

m!
dt =

ym+1

(m+ 1)!
, y ≥ 0

and the induction step is established.

Back to the proof of Proposition 2.4.1: Fixx > 0 andn = 0, 1, . . .. As we have
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in mind to use (2.48) to bound the second exponential factor in the integrand of
(2.15), we note that∫ ∞

0

e−xtHn

(
t2

2

)
dt =

n∑
k=0

(−1)k

2kk!

∫ ∞
0

t2ke−xtdt

=
n∑
k=0

(−1)k

2kk!
x−(2k+1)

∫ ∞
0

u2ke−udu

=
n∑
k=0

(−1)k(2k)!

2kk!
x−(2k+1)(2.52)

where the last equality made use of the well-known closed-form expressions∫ ∞
0

upe−udu = p!, p = 0, 1, . . .

for the moments of a standard exponential distribution.
The bounds (2.48) together with (2.15) yield the inequalities

φ(x)

∫ ∞
0

e−xtH2n+1

(
t2

2

)
dt ≤ Q(x) ≤ φ(x)

∫ ∞
0

e−xtH2n

(
t2

2

)
dt,

and (2.17) follows from the evaluation (2.52).
Using the definition ofQ(x) andQn(x) we conclude from (2.49) that

| Q(x)−Qn(x) | = φ(x)

∣∣∣∣∫ ∞
0

e−xt
[
e−

t2

2 −Hn

(
t2

2

)]
dt

∣∣∣∣
≤ φ(x)

∫ ∞
0

e−xt
t2n

2nn!
dt,

and (2.18) follows.

2.13 Exercises

Ex. 2.1 Derive the relationships between the quantitiesΦ, Q, Erf or Erfc which
are given in Section 2.4.
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Ex. 2.2 Given the covariance matrixΣ, explain why the representation (2.22)–
(2.23) may not be unique. Give a counterexample.

Ex. 2.3 Give a proof for Lemma 2.9.1 and of Lemma 2.9.2.

Ex. 2.4 Construct anR2-valued rvX = (X1, X2) such that theR-valued rvsX1

andX2 are each Gaussian but theR2-valued rvX is not (jointly) Gaussian.

Ex. 2.5 Derive the probability distribution function (2.40) of a Rayleigh rv with
parameterσ (σ > 0).

Ex. 2.6 Show by direct arguments that ifX is a Rayleigh distribution with pa-
rameterσ, thenX2 is exponentially distributed with parameter(2σ2)−1 [Hint:

ComputeE
[
e−θX

2
]

for a Rayleigh rvX for θ ≥ 0.]

Ex. 2.7 Derive the probability distribution function (2.45) of a Rice rv with pa-
rametersα (in R) andσ (σ > 0).

Ex. 2.8 Write a program to evaluateQn(x).

Ex. 2.9 Let X1, . . . , Xn be i.i.d. Gaussian rvs with zero mean and unit variance
and writeSn = X1 + . . .+Xn. For eacha > 0 show that

P [Sn > na] ∼ e−
na2

2

a
√

2πn
(n→∞).(2.53)

This asymptotic is known as the Bahadur-Rao correction to the large deviations
asymptotics ofSn.

Ex. 2.10 Find all the momentsE [Up] (p = 1, . . .) whereU is a zero-mean unit
variance Gaussian rv.

Ex. 2.11 Find all the momentsE [Up] (p = 1, . . .) whereX is a χ2
n-rv with n

degrees of freedom.



Chapter 3

Vector space methods

In this chapter we develop elements of the theory of vector spaces. As we shall
see in subsequent chapters, vector space methods will prove useful in handling the
so-called waveform channels by transforming them into vector channels. Vector
spaces provide a unifying abstraction to carry out this translation. Additional
information can be found in the references [?, ?].

3.1 Vector spaces – Definitions

We begin by introducing the notion ofvector space. Consider a setV whose
elements are calledvectorswhile we refer to the elements ofR asscalars. We
assume thatV is equipped with an internal operation ofaddition, say+ : V ×V →
V , with the property that(V,+) is acommutativegroup. This means that

1. (Commutativity)

v +w = w + v, v,w ∈ V

2. (Associativity)

(u+ v) +w = u+ (v +w), u,v,w ∈ V

3. (Existence of a zero vector) There exists an element0 in V such that

v + 0 = v = 0 + v, v ∈ V

39
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4. (Existence of negative vectors) For every vectorv in V , there exists a vector
in V , denoted−v, such that

v + (−v) = 0 = (−v) + v

It is a simple matter to check that there can be only one such zero vector0, and
that for every vectorv in V , its negative−v is unique.

In order for the group(V,+) to become avector space onR we need to endow
it with an external multiplication operation whereby multiplying a vector by a
scalar is given a meaning as a vector. Thismultiplicationoperation, say· : R ×
V → V , is required to satisfy the following properties:

1. (Distributivity)

(a+ b) · v = a · v + b · v, a, b ∈ R, v ∈ V

2. (Distributivity)

a · (v +w) = a · v + a ·w, a ∈ R, v,w ∈ V

3. (Associativity)

a · (b · v) = (ab) · v = b · (a · v) , a, b ∈ R, v ∈ V

4. (Unity law)
1 · v = v, v ∈ V

It is customary to drop the multiplication symbol· from the notation, as we do
from now. Two important examples will be developed in Chapter 4, namely the
usual spaceRd and the space of finite energy signals defined on some interval.

Throughout the remainder of this chapter, we assume given a vector space
(V,+) onR.

3.2 Linear independence

Given afinitecollection of vectorsv1, . . . ,vp in V , the vector
∑p

i=1 aivi is called
a linear combinationof the vectorsv1, . . . ,vp in V (with weightsa1, . . . , ap in
R).



3.3. SUBSPACES AND LINEAR SPANS 41

The vectorsv1, . . . ,vp in V arelinearly independentif the relation

p∑
i=1

aivi = 0(3.1)

with scalarsa1, . . . , ap in R implies

a1 = . . . = ap = 0.(3.2)

In that case, we necessarily havevi 6= 0 for eachi = 1, 2, . . . , p (for otherwise
(3.1) does not necessarily imply (3.2)).

If the vectorsv1, . . . ,vp are linearly independent inV , then the relation

p∑
i=1

aivi =

p∑
i=1

bivi

with scalarsa1, b1, . . . , ap, bp impliesai = bi for all i = 1, . . . , p. In other words,
the representation of a vector as a linear combination of a finite number of linearly
independent vectors is necessarily unique.

As we shall see when discussing spaces of signals such asL2(I), it will be
natural to introduce the following extension of the concept of linear independence:
Consider an arbitrary family{vα, α ∈ A} of elements inV with A some index
set (not necessarily finite). We say that the vectors{vα, α ∈ A} form a linearly
independent family if each of its finite subsets is a linearly independent collection.
Formally, this is equivalent to requiring that for everyp = 1, 2, . . . and for every
collectionα1, . . . , αp of distinct elements inA, the relation

p∑
i=1

aivαi = 0(3.3)

with scalarsa1, . . . , ap in R impliesa1 = . . . = ap = 0.

3.3 Subspaces and linear spans

A (linear)subspaceE of the vector space(V,+) (onR) is any subset ofV which
is closed under vector addition and multiplication by scalars, i.e.,

v +w ∈ E and av ∈ E
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wheneverv andw are elements ofE anda is an arbitrary scalar.
Consider an arbitrary family{vα, α ∈ A} of elements inV withA some index

set (not necessarily finite). We say thatv belongs to the(linear) spanof {vα, α ∈
A}, denotedsp (vα, α ∈ A), if v can be expressed as a linear combination of a
finite number of elements of{vα, α ∈ A}, i.e., there exists afinite number of
indices inA, sayα1, . . . , αp for somep, and scalarsa1, . . . , ap in R such that

v =

p∑
i=1

aivαi .

This representation is not a priori unique.
The linear span of this family{vα, α ∈ A} is a linear subspace, and is in fact

the smallest linear subspace ofE that contains{vα, α ∈ A}. In particular, ifA is
finite, sayA = {1, . . . , p} for sake of concreteness, then

sp (v1, . . . ,vp) :=

{
p∑
i=1

aivi : (a1, . . . , ap) ∈ Rp
}
.

A subspaceE of V is now said to havedimensionp if there existsp lin-
early independent vectorsu1, . . . ,up in E (not merely inV ) such thatE =
sp (u1, . . . ,up). The notion of dimension is well defined in that ifv1, . . . ,vq
is another collection of linearly independent vectors inE (not merely inV ) such
thatE = sp (v1, . . . ,vq), thenp = q. Any set ofp linearly independent vectors
w1, . . . ,wp such thatE = sp (w1, . . . ,wp) is called abasisof E.

3.4 Scalar product and norm

Many of the vector spaces of interest are endowed with a scalar product, a notion
which provides a way to measure correlations between vectors. Formally, a scalar
product on the vector space(V,+) is a mapping〈·, ·〉 : V ×V → Rwhich satisfies
the following conditions

1. (Bilinearity) For eachv in V , the mappingsV → R : w → 〈v,w〉 and
V → R : w → 〈w,v〉 are linear mappings, i.e.,

〈v, aw + bu〉 = a〈v,w〉+ b〈v,u〉

and
〈aw + bu,v〉 = a〈w,v〉+ b〈u,v〉

for all u andw in V , and all scalarsa andb in R
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2. (Symmetry)
〈v,w〉 = 〈w,v〉, v,w ∈ V

3. (Positive definiteness)

〈v,v〉 > 0 if v 6= 0 ∈ V

It is easy to see that〈v,v〉 = 0 whenv = 0, so that

〈v,v〉 ≥ 0, v ∈ V.

Put differently,〈v,v〉 = 0 for some vectorv in V if and only if v = 0.
Once a scalar product is available, it is possible to associate with it a notion

of vector length. We define a notion ofnorm or vector length onV through the
definition

‖v‖ :=
√
〈v,v〉, v ∈ V.(3.4)

The terminology is justified through the following properties which are commonly
associated with the notion of length in Euclidean geometry.

Proposition 3.4.1 The mapping V → R+ : v → ‖v‖ defined by (3.4) satisfies
the following properties

1. (Homogeneity) For each v in V , it holds that

‖tv‖ = |t| · ‖v‖, t ∈ R.

2. (Positive definiteness) If ‖v‖ = 0 for some v in V , then v = 0

3. (Triangular inequality) For every pair v and w of elements of V , it holds
that

‖v +w‖ ≤ ‖v‖+ ‖w‖

The properties listed in Proposition 3.4.1 form the basis for the notion of norm
in more general settings [?].

Proof. The homogeneity and positive definiteness are immediate consequence
of the definition (3.4) when coupled with the bilinearity of the underlying scalar
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product and its positive definiteness. To establish the triangular inequality, con-
sider elementsv andw of V . It holds that

‖v +w‖2 = ‖v‖2 + ‖w‖2 + 2〈v,w〉
≤ ‖v‖2 + ‖w‖2 + 2‖v‖ · ‖w‖
= (‖v‖+ ‖w‖)2(3.5)

where the first equality follows by bilinearity of the scalar product, and the in-
equality is justified by the Cauchy-Schwartz inequality (discussed in Proposition
3.4.2 below). This establishes the triangular inequality.

We conclude this section with a proof of the Cauchy-Schwartz inequality.

Proposition 3.4.2 The Cauchy-Schwartz inequality

|〈v,w〉| ≤ ‖v‖ · ‖w‖, v,w ∈ V(3.6)

holds with equality in (3.6) if and only if v andw are co-linear, i.e., there exists a
scalar a in R such that v = aw.

Proof. Fix v andw elements ofV , and note that

Q(t) := ‖v + tw‖2

= ‖v‖2 + 2t〈v,w〉+ t2‖w‖2, t ∈ R(3.7)

by bilinearity of the scalar product. The fact thatQ(t) ≥ 0 for all t in R is
equivalent to the quadratic equationQ(t) = 0 having at most one (double) real
root. This forces the corresponding discriminant∆ to be non-positive, i.e.,

∆ = (2〈v,w〉)2 − 4‖v‖2‖w‖2 ≤ 0,

and the proof of (3.6) is completed. Equality occurs in (3.6) if and only if∆ = 0,
in which case there existst? in R such thatQ(t?) = 0, whencev + t?w = 0, and
the co-linearity ofv andw follows.

In the remainder of this chapter, all discussions are carried out in the context
of a vector space(V,+) onR equipped with a scalar product〈·, ·〉 : V × V → R.
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3.5 Orthogonality

The elementsv andw of V are said to beorthogonalif

〈v,w〉 = 0.

We also say that the vectorsv1, . . . ,vp are (pairwise) orthogonal if

〈vi,vj〉 = 0, i 6= j, i, j = 1, . . . , p.

More generally, consider an arbitrary family{vα, α ∈ A} of elements inV with
A some index set (not necessarily finite). We say that this family is anorthogonal
family if every one of its finite subset is itself a collection of orthogonal vectors.
A moment of reflection shows that this is equivalent to requiring the pairwise
conditions

〈vα,vβ〉 = 0, α 6= β ∈ A.(3.8)

Moreover, for any subsetE of V , the elementv of V is said to be orthogonal
toE if

〈v,w〉 = 0, w ∈ E.
If the setE coincides with the linear span of the vectorsv1, . . . ,vp, thenv is
orthogonal toE if and only if 〈v,vi〉 = 0 for all i = 1, . . . , p.

An important consequence of orthogonality is the following version of Pythago-
ras Theorem.

Proposition 3.5.1 When v andw are orthogonal elements in V , we have Pythago-
ras’ relation

‖v +w‖2 = ‖v‖2 + ‖w‖2.(3.9)

This result can be used to show a relationship between linear independence
and orthogonality.

Lemma 3.5.1 If the non-zero vectors v1, . . . ,vp are orthogonal, then they are
necessarily linearly independent.

Proof. Indeed, for any scalarsa1, . . . , ap in R, repeated application of Pythago-
ras’ Theorem yields

‖
p∑
i=1

aivi‖2 =

p∑
i=1

|ai|2‖vi‖2.
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Therefore, the constraint
∑p

i=1 aivi = 0 implies |ai|2‖vi‖2 = 0 for all i =
1. . . . , p. The vectorsv1, . . . ,vp being non-zero, we have‖vi‖2 6= 0 for all
i = 1. . . . , p, so that|ai|2 = 0 for all i = 1. . . . , p. In short,a1 = . . . = ap = 0!
Thus, the vectorsv1, . . . ,vp are indeed linearly independent.

The notions of orthogonality and norm come together through the notion of
orthonormality: If the vectorsv1, . . . ,vp are orthogonal with unit norm, they are
said to beorthornormal, a property characterized by

〈vi,vj〉 = δ(i, j), i, j = 1, . . . , p.(3.10)

The usefulness of this notion is already apparent when considering the follow-
ing representation result.

Lemma 3.5.2 If E is a linear space of V spanned by the orthornormal family
u1, . . . ,up, then the representation

h =

p∑
i=1

〈h,ui〉ui, h ∈ E(3.11)

holds, and E has dimension p.

The assumption of Lemma 3.5.2 can always be achieved as should be clear
from the Gram-Schmidt orthonormalization procedure discussed in Section 3.8.

Proof. By the definition ofE as a span of the vectorsu1, . . . ,up, every element
h in E is of the form

h =

p∑
i=1

hiui(3.12)

for an appropriate selection of scalarsh1, . . . , hp. For eachj = 1, . . . , p, we find

〈h,uj〉 = 〈
p∑
i=1

hiui,uj〉 =

p∑
i=1

hi〈ui,uj〉 = hj

upon invoking orthonormality, and (3.11) follows from (3.12).

We emphasize that the discussion of Sections 3.4 and 3.5 depends only on
the defining properties of the scalar product. This continues to be the case in the
material of the next section.
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3.6 Distance and projection

We can define a notion ofdistanceonV by setting

d(v,w) := ‖v −w‖, v,w ∈ V.(3.13)

Consider now the situation whereE is a linear subspace ofV andv is an
element inV . We are interested in finding an elementv? in E which has the
smallest distance tov, namely

d(v,v?) = inf
x∈E

d(v,x).(3.14)

The uniqueness and characterization of such an elementv? (when it exists) are
addressed in

Proposition 3.6.1 Let E be a linear subspace of V , and let v denote an arbitrary
element in V . If there exists an element v? in E satisfying (3.14), it is unique and
characterized by the simultaneous validity of the relations

〈v − v?,h〉 = 0, h ∈ E.(3.15)

Conversely, any element v? in E satisfying (3.15) necessarily satisfies (3.14).

Before giving the proof of Proposition 3.6.1 in the next section we discuss
some easy consequences of the conditions (3.15). These conditions state that
the vectorv − v? is orthogonalto E. The unique elementv? satisfying these
constraints is often called theprojectionof v ontoE, and at times we shall use the
notation

v? = ProjE(v),

in which case (3.15) takes the form

〈v − ProjE(v),h〉 = 0, h ∈ E.(3.16)

It is often useful to viewv? as thebest approximationof v in E, with v − v?
interpreted as theerror incurred by approximatingv by v?. In this interpretation,
(3.15) states that the error is orthogonal to the space of all admissible approxi-
mations (i.e., those inE). If v is itself an element ofE, thenv − v? is now an
element ofE and (3.15) (withh = v − v? now inE) yields‖v − v?‖ = 0 or
equivalently,ProjE(v) = v, as expected.
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For any elementv in V whose projection ontoE exists, Pythagoras Theorem
gives

‖v‖2 = ‖ProjE(v)‖2 + ‖v − ProjE(v)‖2(3.17)

as a direct consequence of (3.16)
The linearity of the projection operator is a simple consequence of Proposition

3.6.1 and is left as an exercise to the reader:

Corollary 3.6.1 For any linear space E of V , the projection mapping ProjE :
V → E is a linear mapping wherever defined: For every v and w in V whose
projections ProjE(v) and ProjE(w) onto E exist, the projection of av+ bw onto
E exists for arbitrary scalars a and b in R, and is given by

ProjE(av + bw) = aProjE(v) + bProjE(w).

We stress again that at this level of generality, there is no guarantee that the
projection always exists. There is however a situation of great practical impor-
tance where this is indeed the case.

Lemma 3.6.1 Assume E to be a linear subspace of V spanned by the orthornor-
mal family u1, . . . ,up for some finite integer p. Then, every element v in V
admits a projection onto E given by

ProjE(v) =

p∑
i=1

〈v,ui〉ui.(3.18)

For future use, under the conditions of Lemma 3.6.1, we note that

‖ProjE(v)‖2 =

p∑
i=1

|〈v,ui〉|2, v ∈ V(3.19)

as a simple consequence of the orthonormality of the familyu1, . . . ,up.

Proof. Pick an elementv in V , and set

v? :=

p∑
i=1

〈v,ui〉ui.
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The elementv? belongs toE, with

〈v − v?,ui〉 = 〈v,ui〉 − 〈v?,ui〉

= 〈v,ui〉 −
p∑
j=1

〈v,uj〉〈uj,ui〉

= 〈v,ui〉 − 〈v,ui〉 = 0, i = 1, . . . , p.(3.20)

From Lemma 3.5.2 it is plain thatv − v? is orthogonal toE, thusv? satisfies
(3.15) and the proof is now completed by invoking Proposition 3.6.1.

3.7 A proof of Proposition 3.6.1

First, there can be at most one element inE which satisfies (3.15) for if there were
two such elements, sayv?1 andv?2 in E, then

〈v − v?k,h〉 = 0,
k = 1, 2
h ∈ E

so that
〈v?1 − v?2,h〉 = 0, h ∈ E.

Usingh = v?1 − v?2, element ofE, in this last relation we find‖v?1 − v?2‖ = 0,
whencev?1 = v?2 necessarily.

Let v? be an element inE which satisfies (3.14). For anyh in E, the vector
v?+ th is also an element ofE for all t in R. Thus, by the definition ofv? it holds
that

‖v − v?‖2 ≤ ‖v − (v? + th)‖2, t ∈ R

with
‖v − (v? + th)‖2 = ‖v − v?‖2 + t2‖h‖2 − 2t〈v − v?,h〉.

Consequently,
t2‖h‖2 − 2t〈v − v?,h〉 ≥ 0, t ∈ R.

This last inequality readily implies

t‖h‖2 ≥ 2〈v − v?,h〉, t > 0
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and
−|t|‖h‖2 ≤ 2〈v − v?,h〉, t < 0.

Letting t go to zero in each of these last two inequalities yields〈v − v?,h〉 ≤ 0
and〈v − v?,h〉 ≥ 0, respectively, and the desired conclusion (3.15) follows.

Conversely, consider any elementv? in E satsifying (3.15). For eachx in E,
(3.15) implies the orthogonality ofv − v? andh = v? − x (this last vector being
in E), and Pythagoras Theorem thus yields

‖v − x‖2 = ‖v − v?‖2 + ‖v? − x‖2 ≥ ‖v − v?‖2.

This establishes the minimum distance requirement forv? and (3.15) indeed char-
acterizes the solution to (3.14).

3.8 Gram-Schmidt orthonormalization

As the discussion in Section 3.6 already indicates, the ability to identifyProjE(v)
is greatly simplified ifE is spanned by a finite orthonormal family. WhileE may
not be first introduced as being generated by a family of orthonormal vectors, it
is however possible to find another family of vectors, this time orthonormal, that
nevertheless spansE. The procedure to do so is known as the Gram-Schmidt
orthonormalization procedure.

More formally, this procedure provides an algorithm to solve the following
problem: Given non-zero vectorsv1, . . . ,vn in V , find a collection of orthonormal
vectorsu1, . . . ,vp in V such that

sp (v1, . . . ,vn) = sp (u1, . . . ,up) .

While there is no a priori constraint onn, it is plain from previous remarks that
p ≤ n. The Gram-Schmidt procedure is iterative and works as follows:

Step 1: Pickv1 and define the vectoru1 by

u1 :=
v1

‖v1‖
.

This definition is well posed since‖v1‖ 6= 0 for the non-zero vectorv1. Obvi-
ously,‖u1‖ = 1. Set

`(1) := 1 and E1 := sp(u1),



3.8. GRAM-SCHMIDT ORTHONORMALIZATION 51

and go to Step 2.
At Stepk, the procedure has already returned the` orthonormal vectorsu1, . . . ,u`

with ` = `(k) ≤ k, and letE` denote the corresponding linear span, i.e.,E` :=
sp(u1, . . . ,u`).

Stepk + 1: Pickvk+1.
Eithervk+1 lies in the spanE`, i.e.,

vk+1 =
∑̀
j=1

〈vk+1,uj〉uj,

in which case, set

`(k + 1) := `(k) and E`(k+1) := E`(k)

and go to Stepk + 2;
Or vk+1 does not lie inE`, i.e.,

vk+1 6=
∑̀
j=1

〈vk+1,uj〉uj = ProjE`(vk+1),

in which case define

u`+1 :=
v′k+1

‖v′k+1‖
with

v′k+1 := vk+1 − ProjE`(vk+1)

= vk+1 −
∑̀
j=1

〈vk+1,uj〉uj.

The algorithm is well defined sincev′k+1 6= 0, while v′k+1 is orthogonal toE` by
virtue of (3.16). It is now plain that the vectorsu1, . . . ,u`,u`+1 form an orthonor-
mal family. Set

`(k + 1) = `(k) + 1 and E`(k+1) := sp
(
E`(k) ∪ {u`(k)+1}

)
and go to Stepk + 2.

This algorithm terminates in a finite number of steps, in fact no more thann
steps. All the projections encountered in the course of running the algorithm do
exist by virtue of Lemma 3.6.1 as they are onto subspaces spanned by a finite
number of orthonormal vectors.
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3.8.1 Exercises

Ex. 3.1 Show that in a commutative group(V,+), there can be only one zero
vector.

Ex. 3.2 Show that in a commutative group(V,+), for every vectorv in V , its
negative−v is unique.

Ex. 3.3 Letu1, . . . ,up andv1, . . . ,vq denote two collections of linearly indepen-
dent vectors inV . Show that ifsp (u1, . . . ,up) = sp (v1, . . . ,vq), then necessar-
ily p = q.

Ex. 3.4 If E is a linear subspace ofV , then it necessarily contains the zero ele-
ment0. Moreover,v belongs toE if and only if−v belongs toE.

Ex. 3.5 For non-zero vetrorsv andw in V , we define their correlation coefficient
by

ρ(v;w) =
〈v,w〉
‖v‖‖w‖

.

Ex. 3.6 Show that|ρ(v;w)| ≤ 1. Find a necessary and sufficient condition for
ρ(v;w) = 1 andρ(v;w) = −1.

Ex. 3.7 If the setE is the linear span of the vectorsv1, . . . ,vp in V , then show
thatv is orthogonal toE if and only if 〈v,vi〉 = 0 for all i = 1, . . . , p.

Ex. 3.8 Consider a linear subspeceE which is is spanned by the setF in V . Show
thatv in V is orthogonal toE if and only if vis orthogonal toF .

Ex. 3.9 LetE1 andE2 be subsets ofV such thatE1 ⊆ E2. Assume that for some
v in V , its projectionProjE2

(v) exists and is an element ofE1. Explain why

ProjE1
(v) = ProjE2

(v).

Ex. 3.10 Prove Corollary 3.6.1.

Ex. 3.11 Repeat Exercise 3.3 using the Gram-Schmidt orthonormalization proce-
dure.
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Ex. 3.12 Let (V1,+) and (V2,+) denote two vector spaces onR. A mapping
T : V1 → V2 is linear if

T (av + bw) = aT (v) + bT (w), v,w ∈ V1, a, b ∈ R.

For any subsetE of V1, we write T (E) = {T (v), v ∈ E}. For E a linear
subspace ofV1, show thatT (E) is a linear subspace ofV2.

Ex. 3.13 For i = 1, 2, let (Vi,+) denote a vector space onR, equipped with its
own scalar product〈·, ·〉i : Vi × Vi → R, and let‖ · ‖i denote the corresponding
norm. A mappingT : V1 → V2 is said to be norm-preserving if

‖T (v)‖2 = ‖v‖1, v ∈ V1.

Show that if the mappingT is linear, then it is norm-preserving if and only ifT
preserves the scalar product, i.e.,

〈T (v), T (w)〉2 = 〈v,w〉1, v,w ∈ V1.

Ex. 3.14
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Chapter 4

Finite-dimensional representations

Building on the discussion of Chapter 3, we now present two vector spaces of
interest for subsequent developments.

4.1 Finite-dimensional spaces

The simplest example of a vector space is the spaceR
d with d some positive

integer. An elementv of Rd is identified with thed-uple(v1, . . . , vd) with vi in R
for eachi = 1, . . . , d.

In Rd, the addition and multiplication operations are defined componentwise
in the usual way by

v +w := (v1 + w1, . . . , vd + wd)

and
av := (av1, . . . , avd), a ∈ R

for any pair of vectorsv = (v1, . . . , vd) andw = (w1, . . . , wd) in Rd. It is a
simple matter to show that these operations turn(Rd,+) into a vector space on
R. The zero element in(Rd,+) is simply the vector0 = (0, . . . , 0) with all zero
entries.

Statements on the linear independence of vectors inR
d are statements in Lin-

ear Algebra. Indeed, consider vectorsv1, . . . ,vp in Rd with vi = (vi1, . . . , vid)
for eachi = 1, . . . , p. The linear independentce requirements (3.1) and (3.2) now
read as requiring that thed simultaneousrelations

p∑
i=1

aivij = 0, j = 1, . . . , d

55
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with scalarsa1, . . . , ap in R imply a1 = . . . = ap = 0. In other words, the linear
independence of the vectorsv1, . . . ,vp is tantamount to a rank property of the
p× d matrixV = (vij).

The vector spaceRd is endowed with the scalar product given by

〈v,w〉 :=
d∑
i=1

viwi, v,w ∈ Rd.

It is a straightforward to check the requisite bilinearity, symmetry and positive
definiteness. The norm induced by this scalar product now takes the form

‖v‖ :=
√

(v,v) =

(
d∑
i=1

|vi|2
) 1

2

, v ∈ Rd

and the corresponding distance is simply the Euclidean distance onR
d given by

d(v,w) := ‖v −w‖ =

(
d∑
i=1

|vi − wi|2
) 1

2

, v,w ∈ Rd.

The vector spaceRd contains a very special set of vectors, denoted bye1, . . . , ed,
which form an extremely convenient orthonormal family: For eachi = 1, . . . , d,
the vectorei = (ei1, . . . , eid) has all its components zero except theith which is
equal to one, i.e.,

eij = δ(i, j), i, j = 1, . . . , d.

Obviously,
〈ei, ej〉 = δ(i, j), i, j = 1, . . . , d

and for every elementv = (v1, . . . , vd) in Rd, we can write

v = (v1, . . . , vd)

= v1(1, 0, . . . , 0) + v2(0, 1, . . . , 0) + vd(0, 0, . . . , 1)

= v1e1 + . . .+ vded.

Thus,Rd (as a subspace of itself) has dimensiond, and therefore no more thand
non-zero vectors can ever be orthogonal, hence orthonormal, inR

d.
As an immediate consequence, any linear subspaceE of Rd can always be

viewed as the linear span of afinite number of orthonormal vectors. Hence, by
Lemma 3.6.1 the projection operator ontoE is well defined as a mappingProjE :
R
d → E on the whole ofRd where it is linear by Corollary 3.6.1.
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4.2 Signal spaces

Let I be a non-degenerate interval of the real lineR, say [a, b] (with a < b),
(−∞, b] or [a,∞). A (real-valued) signal is any functionϕ : I → R. The energy
of the signalϕ is the quantityE(ϕ) defined by

E(ϕ) :=

∫
I

|ϕ(t)|2dt.

The signalϕ has finite energy ifE(ϕ) <∞. The space of all finite energy signals
on the intervalI is denoted byL2(I), namely

L2(I) := {ϕ : I → R : E(ϕ) <∞}.

The setL2(I) can be endowed with a vector space structure by introducing a
vector addition and multiplication by constants, i.e., for anyϕ andψ in L2(I) and
any scalara in R, we define the signalsϕ+ ψ andaϕ by

(ϕ+ ψ)(t) := ϕ(t) + ψ(t), t ∈ I

and
(aϕ)(t) := aϕ(t), t ∈ I.

The signalsϕ + ψ andaϕ are all finite energy signals ifϕ andψ are inL2(I). It
is easy to show that equipped with these operations,(L2(I),+) is a vector space
onR. The zero element for(L2(I),+) will be the zero signalϑ : I → R defined
by ϑ(t) = 0 for all t in I.

In L2(I) the notion of linear independence specializes as follows: The signals
ϕ1, . . . , ϕp in L2(I) are linearly independent if

p∑
i=1

aiϕi = ϑ

with scalarsa1, . . . , ap in R impliesa1 = . . . = ap = 0. This equivalent to the
validity of the simultaneous relations

p∑
i=1

aiϕi(t) = 0, t ∈ I

with scalarsa1, . . . , ap in R implying a1 = . . . = ap = 0. In contrast with the
situation inRd, here there isno constraint onp as the following example shows
[Exercise 4.7].
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Example 4.2.1 TakeI = [0, 1] and for eachk = 0, 1, . . ., define the signalϕk :
[0, 1]→ R byϕk(t) = tk (t ∈ I). For eachp = 1, 2, . . ., the signalsϕ0, ϕ1, . . . , ϕp
are linearly independent inL2(I). Therefore,L2(I) cannot be of finite dimension.

Here as well, we can define a product scalar by setting

〈ϕ, ψ〉 :=

∫
I

ϕ(t)ψ(t)dt, ϕ, ψ ∈ L2(I).

We leave it as an exercise to show that this definition gives rise to a scalar product
onL2(I). The norm of a finite energy signal is now defined by

‖ϕ‖ :=
√

(ϕ, ϕ), ϕ ∈ L2(I)

or in extensive form,

‖ϕ‖ =

(∫
I

|ϕ(t)|2dt
) 1

2

=
√
E(ϕ), ϕ ∈ L2(I).

It should be noted that this notion of “energy norm” is not quite a norm onL2(I)
as understood earlier. Indeed, positive definiteness fails here since‖ϕ‖ = 0 does
not necessarily implyϕ = ϑ – Just takeϕ(t) = 1 for t in I ∩Q andϕ(t) = 0 for
t in I ∩ Qc, in which case‖ϕ‖ = 0 but ϕ 6= ϑ! This difficulty is overcome by
partitioningL2(I) into equivalence classeswith signals considered as equivalent
if their difference has zero energy, i.e., the two signalsψ andψ′ in L2(I) are
equivalent if‖ψ−ψ′‖2 = 0. It is this collection of equivalence classes that should
be endowed with a vector space structure and a notion of scalar product, instead
of the collection of all finite energy signals defined onI – Pointers are provided in
Exercises 4.3-4.6. This technical point will be not pursued any further as it does
not affect the analyses carried out here. Thus, with a slight abuse of notation, we
will consider the “scalar product” defined earlier onL2(I) as abona fidescalar
product.

With these definitions, the notions of orthogonality and orthonormality are
defined as before. However, while inRd there could be no more thand vectors
which can ever be orthonormal, this is not the case inL2(I) [Exercise 4.8].

Example 4.2.2 Pick I = [0, 1] and for eachk = 0, 1, . . . define the signalsϕk :
I → R by

ϕ0(t) = 1, ϕk(t) =
√

2 cos(2πkt), t ∈ I, k = 1, 2, . . .(4.1)

For eachp = 1, 2, . . ., the signalsϕ0, ϕ1, . . . , ϕp are orthonormal inL2(I).
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The notion of distance onL2(I) associated with the energy norm takes the
special form

d(ϕ, ψ) :=

(∫
I

|ϕ(t)− ψ(t)|2dt
) 1

2

, ϕ, ψ ∈ L2(I).

4.3 Projections inL2(I)

As we now explore the notion of projection onto a linear subspaceE of L2(I),
we shall see shortly that in sharp contrast with the situation inR

d, existence is not
automatic anymore. In other words, for an arbitrary signalψ in L2(I), there is
no guarantee that there will always be an elementψ? in E which has the smallest
distance toψ, i.e.,

d(ψ, ψ?) = inf
ϕ∈E

d(ψ, ϕ).(4.2)

Additional assumptions are needed onE for (4.2) to hold for all signals inL2(I).
However, whenψ? does exist, it is necessarily unique by virtue of Proposition
3.6.1.

To gain a better understanding as to why the projection ontoE may fail to
exist, consider the situation where acountably infinitefamily of orthonormal sig-
nals{ϕk, k = 1, 2, . . .} is available. For eachn = 1, 2, . . ., let En denote the
linear span of then first signalsϕ1, . . . , ϕn. Fix ψ in L2(I). By Lemma 3.6.1 the
projection ofψ ontoEn always exists, and is given by

ψ̂n := ProjEn(ψ) =
n∑
k=1

〈ψ, ϕk〉ϕk,

and (3.19) yields

‖ψ̂n‖2 =
n∑
k=1

|〈ψ, ϕk〉|2.

With the corresponding error defined by

ψ̃n := ψ − ψ̂n,

we find from (3.17) that

‖ψ‖2 = ‖ψ̂n‖2 + ‖ψ̃n‖2
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by the orthogonality condition (3.15).
Combining these observations leads to

‖ψ̃n‖2 = ‖ψ‖2 − ‖ψ̂n‖2 = ‖ψ‖2 −
n∑
k=1

|〈ψ, ϕk〉|2,

and the convergence
lim
n→∞

‖ψ̃n‖2 := ε(ψ)

takes place in a monotonically decreasing manner. Of course, this is consistent
with the geometric viewpoint according to whicĥψn is the best approximation of
ψ among the elements ofEn. The inclusionsEn ⊂ En+1, n = 1, 2, . . . imply that
the approximations{ψ̂n, n = 1, 2, . . .} are increasingly accurate, or equivalently,
that the magnitude of the error, namely‖ψ̃n‖, decreases.

A natural question is to determine the limiting valueε(ψ). Several cases arise
depending on whetherε(ψ) > 0 or ε(ψ) = 0. In the discussion we make use of
the easy identity

E∞ := sp (ϕk, k = 1, 2, . . .) = ∪kEk.(4.3)

Case 1 – If ψ belongs toE∞, thenψ is an element ofEp for somep andψ̂p+k =

ψ for all k = 0, 1, . . ., whenceψ̃p+k = ϑ, andε(ψ) = 0. Obviously the projection
ontoE∞ does exist withψ = ProjE∞(ψ).

Case 2 – Whenψ is not an element ofE∞, thenψ is not the zero signalϑ but
two distinct scenarios are possible.

Case 2.a – With ψ not inE∞, if ε(ψ) = 0, thenψ can be approximated ever
closely by an element ofE∞ sincelimn→∞ ‖ψ − ψ̂n‖2 = 0. It is then customary
to say thatψ is an element of theclosureof E∞, a fact noted

ψ ∈ E∞ = sp(ϕk, k = 1, 2, . . .).

The setE∞ is called the closure of the linear subspaceE∞; it is itself a linear
subspace ofL2(I) which could be defined by

E∞ := {ϕ ∈ L2(I) : ε(ϕ) = 0}.

However,ProjE∞(ψ) doesnot exist as the following argument by contradic-
tion shows: If the projectionProjE∞(ψ) were indeed to exist, then it would have
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to be an element ofE∞, sayψ̂. By the definition ofE∞, the signalψ̂ is an ele-
ment ofEp for somep and it is a simple matter to check thatψ̂ = ψ̂p+k for all
k = 0, 1, . . .. Consequently, making use of earlier observations, we find

‖ψ‖2 = ‖ψ̂k+p‖2 + ‖ψ̃k+p‖2 = ‖ψ̂‖2 + ‖ψ̃k+p‖2, k = 0, 1, . . .

Letting k go to infinity and using the factε(ψ) = 0, we obtain‖ψ‖2 = ‖ψ̂‖2. It
follows from (3.17) that‖ψ̃‖ = 0 since‖ψ‖2 = ‖ψ̂‖2 + ‖ψ̃‖2 (with ψ̃ = ψ − ψ̂).
Therefore,ψ̃ = ϑ andψ = ψ̂. But this implies thatψ was an element ofE∞ and
an contradiction ensues.

On the other hand,ProjE∞(ψ) does exist and it is customary to represent it
formally as aninfiniteseries, namely

ProjE∞(ψ) =
∞∑
k=1

〈ψ, ϕk〉ϕk,(4.4)

to capture the intuitive fact thatProjE∞(ψ) is the “limiting” signal increasingly

approximated by the projection signals{ψ̂n, n = 1, 2, . . .}. Note that hereψ =
ProjE∞(ψ).

It follows from the discussion above that only finitely many of the coefficients
{〈ψ, ϕk〉, k = 1, 2 . . .} can ever be zero, and some care therefore needs to be
exercised in defining this element (4.4) ofL2(I) – Up to now only finite linear
combinations have been considered. For our purpose, it suffices to note that for
any sequence{ck, k = 1, . . .} of scalars, the infinite series

∑∞
k=1 ckϕk can be

made to represent an element ofL2(I) under the summability condition

∞∑
k=1

|ck|2 <∞.(4.5)

This can be achieved by showing that the partial sums

k∑
`=1

c`ϕ`, k = 1, 2, . . .

converge in some suitable sense to an element ofL2(I) (which is represented by∑∞
k=1 ckϕk). We invite the reader to check that indeed

∞∑
k=1

|〈ψ, ϕk〉|2 <∞, ψ ∈ L2(I).(4.6)
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Example 4.3.1 Continue with the situation in Example 4.2.2, and set

ψ(t) :=
∞∑
k=1

1

k2
cos(2πkt), t ∈ I.

The signalψ is a well defined element ofL2(I) with ε(ψ) = 0, and yetψ is not an
element ofE∞.

Case 2.b – With ψ not inE∞, if ε(ψ) > 0, thenψ cannot be an element of
E∞ and therefore cannot be approximated ever so closely by an element inE∞.
HereProjE∞(ψ) may not exist, butProjE∞(ψ) always does exist with

ψ 6= ProjE∞(ψ) =
∞∑
k=1

〈ψ, ϕk〉ϕk.

We follow up these comments with the following examples.

Example 4.3.2 Continue with the situation in Example 4.2.2, and take

ψ(t) := sin(2πt), t ∈ I.

Here,ε(ψ) > 0 and the projection ofψ ontoE∞ exists andProjE∞(ψ) = ϑ.

Example 4.3.3 Continue with the situation in Example 4.2.2, and take

ψ(t) := sin(2πt) +
∞∑
k=1

1

k2
cos(2πkt), t ∈ I.

This time, it is still the case thatε(ψ) > 0 but the projection ofψ ontoE∞ does
not exist.

The last two example show that it is possible to have

E∞ 6= L2(I),

a possibility reflecting the fact that the orthonormal family{ϕk, k = 1, 2, . . .} is
not rich enough in that its (finite) linear combinations are not sufficient to approx-
imate some element inL2(I) to any prescribed level of accuracy. This motivates
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the following definition: The orthonormal family{ϕk, k = 1, 2, . . .} is said to be
complete(in L2(I)) if

E∞ = L2(I).

This is equivalent to
ε(ψ) = lim

n→∞
‖ψ − ψ̂n‖ = 0

for everysignalψ in L2(I).

Example 4.3.4 Pick I = [0, 1] and for eachk = 0, 1, . . . define the signalsϕk :
I → R by

ϕ2k(t) =
√

2 cos(2πkt), t ∈ I, k = 1, 2, . . .

and
ψ2k+1(t) =

√
2 sin(2πkt), t ∈ I, k = 0, 1, . . .

with ϕ0(t) = 1 (t ∈ I). It is a non-trivial fact concerning the structure of the
spaceL2(I) that the orthonormal family{ϕk, k = 0, 1, . . .} is complete [?]

4.4 Finite-dimensional spaces ofL2(I)

The discussion from earlier sections suggests ways to represent finite energy sig-
nals. Given an orthonormal family{ϕk, k = 1, 2, . . .} in L2(I), we associate with
each finite energy signal a sequence of finite dimensional vectors. Formally, for
eachn = 1, 2, . . ., we set

Tn(ψ) := (〈ψ, ϕ1〉, . . . , 〈ψ, ϕn〉), ψ ∈ L2(I).(4.7)

The vectorTn(ψ) is an element ofRn. By restricting our attention toEn we get
the following useful fact.

Lemma 4.4.1 For each n = 1, 2, . . ., the correspondence Tn : En → R
n given by

(4.7) is a norm-preserving bijection, i.e., Tn is onto and one-to-one with

‖Tn(ψ)‖2 =
n∑
k=1

|〈ψ, ϕk〉|2 = ‖ψ‖2, ψ ∈ En.(4.8)

More generally we have

〈Tn(ϕ), Tn(ψ)〉 =
n∑
k=1

〈ϕ, ϕk〉〈ψ, ϕk〉 = 〈ϕ, ψ〉, ϕ, ψ ∈ En.(4.9)
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Proof. First, when restricted toEn, the projection operatorProjEn reduces to the
identity, i.e.,ProjEn(ψ) = ψ wheneverψ is an element ofEn. Thus, with the
notation introduced earlier, for anyψ in En, we have

ψ = ψ̂n =
n∑
k=1

〈ψ, ϕk〉ϕk

so that

‖ψ‖2 =
n∑
k=1

|〈ψ, ϕk〉|2

and (4.8) holds. The relation (4.9) is proved in a similar way.
As a result, ifTn(ψ) = Tn(ψ′) for signalsψ andψ′ inEn, thenTn(ψ−ψ′) = 0

by linearity and‖ψ − ψ′‖ = ‖Tn(ψ − ψ′)‖ = 0 by isometry. The inescapable
conclusion is thatψ = ψ′, whenceTn is one-to-one.

Finally, any vectorv = (v1, . . . , vn) in Rn gives rise to a signalψv in En
through

ψv :=
n∑
k=1

vkϕk.

It is plain that〈ψv, ϕk〉 = vk for eachk = 1, . . . , n, henceTn(ψv) = v and the
mappingTn is onto.

As a result, any elementψ of En can be representeduniquelyby a vector in
R
n. This correspondence, formalized in Lemma 4.4.1, is norm-preserving and

allows signals inEn to be viewed as finite-dimensional vectors.
Next, we address the situation of arbitrary signals. To do so, we will need to

assume that the orthonormal family{ϕk, k = 1, 2, . . .} is rich enough.

Theorem 4.4.1 Assume the orthonormal family{ϕk, k = 1, 2, . . .} to be com-
plete inL2(I). Then, any finite energy signalψ in L2(I) admits a unique repre-
sentation as a sequence

(〈ψ, ϕk〉, k = 1, 2, . . .) .

Moreover, Parseval’s identity

‖ψ‖2 =
∞∑
k=1

|〈ψ, ϕk〉|2, ψ ∈ L2(I)(4.10)

holds.
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4.5 Exercises

Ex. 4.1 Consider two familiesu1, . . . ,up andw1, . . . ,wq of linearly independent
vectors inRd. Show that we necessarily havep = q whenever

sp (u1, . . . ,up) = sp (w1, . . . ,wq) .

Ex. 4.2 Let u1, . . . ,up be an orthonormal family inRd for some integerp ≤ d.
Find the linear span of the family of2p vectors inRd defined by

f(b) :=

p∑
`=1

(−1)b`+1u`

with b = (b1, . . . , bp) a binary string of lengthp, i.e., b` = 0 or b` = 1 for
` = 1, . . . , p.

Ex. 4.3 Two signalsψ andψ′ in L2(I) are said to be equivalent if‖ψ−ψ′‖2 = 0,
and we writeψ ∼ ψ′. Show that this notion defines an equivalence relation on
L2(I).

Ex. 4.4 With the notation of Exercise 4.3, show that addition of signals and mul-
tiplication of signals by scalars are compatible with this equivalence relation∼.
More precisely, withψ ∼ ψ′ andϕ ∼ ϕ′ in L2(I), show thatψ+ϕ ∼ ψ′+ϕ′ and
aψ ∼ aψ′ for every scalara.

Ex. 4.5 With ψ ∼ ψ′ andϕ ∼ ϕ′ in L2(I), show that‖ψ‖2 = ‖ψ′‖2 and that
〈ψ, ϕ〉 = 〈ψ′, ϕ′〉.

Ex. 4.6 Let L2(I) denote the collection of equivalence classes induced onL2(I)
by the equivalence relation∼. Using Exercise 4.4 and Exercise 4.5, define a
structure of vector space onL2(I) and a notion of scalar product.

Ex. 4.7 Show that the signals{ϕk, k = 0, 1, . . .} of Example 4.2.1 are linearly
independent inL2(I).

Ex. 4.8 Show that the signals{ϕk, k = 0, 1, . . .} of Example 4.2.2 form an or-
thonormal family inL2(I).
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Ex. 4.9 Apply the Gram-Schmidt orthonormalization procedure to the family{ϕk, k =
0, 1, 2} in L2[0, 1] given by

ϕk(t) = tk,
t ∈ [0, 1]
k = 0, 1, 2

Does the answer depend on the order in which the algorithm processes the signals
ϕ0, ϕ1 andϕ2?

Ex. 4.10 The distinct finite energy signalsψ1, . . . , ψn defined on[0, 1] have the
property thatψ1(t) = . . . = ψn(t) for all t in the subinterval[α, β] with 0 < α <
β < 1. Are such signals necessarily linearly independent inL2[0, 1]? Explain.

Ex. 4.11 Starting with a finite energy signalg in L2[0, T ] with E(g) > 0, define
the two signalsgc andgs in L2(0, T ) by

gc(t) := g(t) cos (2πfct) and gs(t) := g(t) sin (2πfct) , 0 ≤ t ≤ T

for some carrier frequencyfc > 0. Show that the signalsgc andgs are always
linearly independent inL2[0, T ].

Ex. 4.12 Consider theM signalss1, . . . , sM in L2[0, T ] given by

sm(t) = A cos(2πfct+ θm),
0 ≤ t ≤ T

m = 1, . . . ,M

with amplitudeA > 0, carrierfc > 0 and distinct phases0 ≤ θ1 < . . . < θM <
2π. What is the dimensionL of sp (s1, . . . , sM)? Find an orthonormal family in
L2[0, T ], sayϕ1, . . . , ϕL, such thatsp (s1, . . . , sM) = sp (ϕ1, . . . , ϕL). Find the
corresponding finite dimensional representation.

Ex. 4.13 Apply the Gram-Schmidt orthonormalization procedure to the family of
M signals given in Exercise 4.12.

Ex. 4.14 Same problem as in Exercise 4.12. for theM signals given by

sm(t) = Amg(t),
0 ≤ t ≤ T

m = 1, . . . ,M

with g a pulse inL2[0, T ] and distinct amplitudesA1 < . . . < AM .
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Ex. 4.15 Apply the Gram-Schmidt orthonormalization procedure to the family of
M signals given in Exercise 4.14.

Ex. 4.16 For the collection{ϕk, k = 0, 1, . . .} in Example 4.2.1, findϕ in
L2(0, 1) such thatϕ does not belong to the linear spansp(ϕk, k = 0, 1, . . .),
but does belong to its closuresp(ϕk, k = 0, 1, . . .).

Ex. 4.17 Consider a set{s1, . . . , sM} ofM linearly dependent signals inL2[0, T ).
Now partition the interval[0, T ) into K non-empty subintervals, say[tk, tk+1)
(k = 0, . . . , K − 1) with t0 = 0 and tM = T . For eachk = 1, . . . , K, let
αk = (αk1, . . . , αkM) denote an element ofRM , and define the new constellation
{s?1, . . . , s?M} by

s?m(t) = αkmsm(t), t ∈ [tk−1, tk), k = 1, . . . , K

for eachm = 1, . . . ,M . Find conditions on the original constellation{s1, . . . , sM}
and on the vectorsα1, . . . ,αK that ensure the linear independence (inL2(0, T ))
of the signals{s?1, . . . , s?K}.

Ex. 4.18 Consider a finite energy non-constant pulseg : [0, 1] → R, with g(t) >
0 in the unit interval[0, 1]. Are the signalsg and g2 linearly independent in
L2[0, 1]? Are the signalsg, g2, . . . , gp always linearly independent inL2[0, 1]?

Ex. 4.19 For eachα > 0, let sα andcα denote the signalsR→ R given by

sα(t) = sin (αt) and cα(t) = cos (αt) , t ∈ R.

For T > 0 andα 6= β, find conditions for each of the collections{sα, cα},
{sα, sβ}, {sα, cα, sβ} and{sα, cα, sβ, cβ} (restricted to the interval[0, T ]) to be
orthogonal inL2(0, T ).

Ex. 4.20 Show (4.3).

Ex. 4.21 Discuss Example 4.3.1.

Ex. 4.22 Discuss Example 4.3.2.

Ex. 4.23 Discuss Example 4.3.3.

Ex. 4.24


