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DETECTION AND ESTIMATION THEORY
ANSWER KEY TO FINAL EXAM:

1. Consider a Borel mapping ¥ : R — R such that
EG H\IJ(Y)H < 00, 0 € (Oa 1)

This equivalent to the absolute summability conditions
0|0 (— 1+Z (1—6)26Y|0(y)| < o0, 0 € (0,1).
Assume now that
In other words, assume that
)+ Z 0)%6YU(y) =0, 6 € (0,1).

Elementary calculations show that
—1)+ Y (1—60)%0"T(y)
y=0

= AU(—1)+ i(l — 20+ 0%)6Y ¥ (y)

y=0

= OU(=1)+ ) 0"U(y) —2) 0"I(y) + )0 (y)

= 0U(—-1)+ ¥(0 )+9\IJ( ) — 200(0)
+) 0" T(y —229y+1x1/ Ze)y“qf
—B(0) +0(F(—1) — 20(0) + W(D)

+) 0V (U(y) — 20 (y — 1) + V(y — 2))

(1.1)
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These manipulations are permitted because the absolute summability of the infinite series
allows them to be handled as finite sums would.
As we impose the conditions

O (—1) + 3 (1—0)*0"U(y) =0, 0¢€(0,1)

Y

we conclude that ¥(0) =0, U(—1) —2¥(0) + ¥(1) = 0 and
Wy) =20y — 1)+ (y—2) =0, y=2,3,...

by standard analyticity arguments for power series. It follows that W(—1) + ¥(1) = 0,
and setting ¥(1) = F, we conclude W(—1) = —F. It is easy to see by induction that
U(y) = yF for each y = 2,3,..., hence for all y = —1,0,1,.... In particular, for each 6
in (0,1), we find that

1 ifF=0
Py [U(Y)=0]=Py [YF =0] =
Py[Y =0] = (1—6)? if F£0

and the family {Fy, 0 < 6 < 1} is not a complete family.

2.
2.a. Here, § = 0%, © = R, and Fy is a probability distribution on R* with probability
density function given by

k
1 _ k(0 —na)2
foly) = ( ) e DimWimhe)” g — () € R

V27
2.b. Writing
fo(w) (/—1 BT AT T,y R (1.2)
0 y — e 1= i . e 1= (a3 1= 7., y .
276

and the Factorization Theorem immediately implies that the family {Fp, 6 > 0} is an
exponential family.

2.c. We have

B lg(¥)] = 1 <Ey [K02<Y> - [gﬁyjz] (1)

with

Eg [K,2(Y)] = ko? + 1 (Z a?) (1.4)

=1
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Eo [K,(Y)?] = (2?) <0 + (Za )) (1.5)

by the calculations carried out in the Lecture Notes. The conclusion Ey[g(Y)] = 6 is
now immediate and the estimator ¢ : R¥ — R is indeed an unbiased estimator of § on
the basis of Y.

It is not an MVU estimator because the statistic K : Rk — R? is a not a complete
sufficient statistic. This can be intuited from the fact that here the subset (of R?)

aor-{[ & .0

is a half-line originating from the origin and therefore does not contain a two-dimensional
rectangle!

However the result used to build this intuition is only a sufficient condition! An ironclad
argument is as follows: Fix 6 > 0 and observe from the calculations above that

and

1
Ey E( (Za))] =o? (1.6)
and
K(Y)? (= )
Ey k — a; =0, 1.7
Zi:la? 8 (zzl )] D

Therefore, the statistic 1) : R* — R given by

oo (£4)) (822 (59)- oo

has the property

and yet
By [)(Y) = 0] £0, 6> 0.
Therefore, the statistic K : Rk — R? is a not a complete sufficient statistic.

2.d. Note that the statistic Kyiner : RF — R given by

k
other E Z Naz , YyeE R

=1

is clearly sufficient for the family {Fy, 6 € ©}. Indeed, we have

1 k
e e gKOther(y)
fo(y) ( 2m9>
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so the family {Fjy, 6 € O} is an exponential family. Noting that

a©)={-5. 0>0}=(-x.0)

we conclude that the statistic Komer : R¥ — R is a complete statistic for he family
{Fg, RS @}

Furthermore,
k

Eg [Kother(Y)] = Z Eo [(Y; — pa;)’] = ko

i=1
Thus the statistic ¢* : R — R given by

??IH

k
Z —pa;)’, yeR

is an unbiased estimator of § on the basis of the observation Y. Being obtained as a
function of a complete sufficient statistic, it is necessarily a MV U estimator by virtue of
the Rao-Blackwell Theorem and the uniqueness lemma.

3.
3.a. Here, 0 = (p(1),...,p(A)) so that

0= {p: (p(1),...,p(A)) € (0,1)*: Zp(a) = 1}.

a=1

Furthermore, for each 6 in ©, under Py, the rv Y is a discrete rv taking values in S with
fo(sa) =Py [Y = s,] =pla), a=1,... A

3.b. Fix 0 in ©. Obviously, the probability distribution Fy being discrete with support
S, we find

A
- Hp(a)l[y:s“] — X1 Ly=sa]logp(a) =)

so that the family {F}y, 6 € ©} is indeed an exponential family with

gly) = 1ly=s] and K(y)=A[y=s],...,1[y=sa]), yeR

while
C#) =1 and Q)= (logp(l),...,logp(A)), 0€0O.

3.c. A non-trivial sufficient statistic is given by

K(y):(1[y:31]7"'71[y:314]>,v yeR.
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3.d. It suffices to consider ¥y, ...,y in S. On that range, consider the problem
Maximize Hle fo(y;) subject to # in © .

This is equivalent to

Maximize Zle log fa(y;) subject to 6 in ©

with
k k A
> log folyr) = > (Z 1]y; = s4] logp(a)>
i=1 i=1 \a=1
A k
= > (Z 1]y = sa]> log p(a)
a=1 i=1
A
= ) logp(a) - Ni(a;ys, .-,y (1.8)
a=1
where we have set
k
a=1,... A
Nk(aaylv"'ayk)_;1[3/1'—5&]7 y1,---,yk€R-

This quantity counts the number of times the value s, appears amongst the observations

Y, - Yk
A standard Lagrangian argument leads to considering the problem

2;4:1 logp(a) - Ni(a;y1, - -, Yk)
- (Ziiple) — 1)

Its solution is easily seen to be given by

Ni(a;yq, - .-, N (a;y1, ..., '
gk,ML(ylw .. 7yk‘) = ( 1< ylk yk)v sy K( y}{ yk))

Maximize subject to # € R% and A > 0.

Note that this solution in an element of the closure ©, an acceptable fact despite the
constraint that 0 < p(a) < 1 for each a = 1,..., A imposed on the problem.

3.e. The ML estimator g : R¥ — R# is unbiased. It is consistent by virtue of the
Strong law of Large Numbers and displays asymptotic normality by virtue of the Central
Limit Theorem.

4.
With 6 > 0, note that

0 if y <0
foly) =

0—-1

0a’ (a +1y)~ if y > 0.
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Also, recall that if Y ~ Fj, then

Y
log (a i ) ~ Exp(6).
a

4.a. Fix 0 < p < 1. Recall that

Lo(1—p)

V(p) = Jp(dyp)) with n= T

where for each n > 0, the test d, : R — {0, 1} is given by

dy(y) =0 iff  fo,(y) <nfo,(y), y>0.

Simple calculations show that

0o—01
. a+y 0,
d = ff hall
n(y) 0 1 ( a > 7701
iff  log (a : y) > T(n;600,601), y>0 (1.9)
where . 0 ) 0
(777 07 1)7 91 o 90 Og (77 1) 81 _ 90 Og <77 80>
Thus,
PF(dn> = Pﬁo [d77<Y) = 1]
Y
= Py, {log (a—i— ) < T(77390>91)]
- 1_ 6790T(77;90,91)+ (1.10)
and
PD(dn) = Pfh [dn(y) = 1]
Y
= Py, {bg <a+ ) < T(77§‘90791):|
a
— ] _ e T(m00.00)" (1.11)

Therefore, as discussed in the Lecture Notes, for each p in (0, 1] we have
Jy(dy) = pC(1,1) + (1 = p)C(0,0) + J,(d)
with

To(dy) = To(1—p)- Pe(d,) +Tip- (1 — Po(dy))
= To(1—p)- (1 _ e*G’OT(n;Goﬂl)*') Ty e O To00" (1.12)
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4.b. By direct inspection it is easy to check that
{T(n7 807 ‘91)7 n > 0} = [07 OO)

whencce {Pg(d,), >0} = [0,1) and {Pp(d,), n >0} = [0,1) with lim, o Pr(d,) =
Py(dy) =1 and lim, o Pp(d,) = Pp(dy) = 1. Obviously the ROC curve is defined on the
interval pp interval [0, 1].

5.
5.a. Under the foregoing assumptions, we note that
. fo(y)
d,(y) =0 iff <.
") fa(y)

But, by continuity and strict monotonicity we readily conclude

{ver: 20 <y — (-ooutta)

fa(y)
where ) — o {y x. % _ n} _ (J{b—io_l ().

Obviously, the mapping y — J{ZEZ% is a bijection from R to R, under the assumptions

made here — There is a one-to-one correspondence between 7 and ¢(n) with

fot(m) _

fa(t(n))

5.b. We seck > 0 such that P, [d,(Y) = 1] = o. In view of Part a, we get
a="P,[Y >tn)] =1-F(t(n)), (1.13)
i.e., Fo(t(n)) =1 — «a, and the requisite ) = 1, () is therefore given through
Nap(a) = F (1 — ).
It follows that
Ip(030,8) =0 iff g € (—00, (1as())) = (=00, F 1(1 — a))

Note that these acceptance regions do not depend on b as soon as a < b.

5.c. From the discussion in Part b, it is immediate that there exists a UMP test
dume (o a, ©)) of size a (in (0,1)) to test the null simple hypothesis Hy = H, against
the non-null composite hypothesis H; = (H,, ¢ € ©]). It is given by

dnp(:a,07)(y) =0 iff y e (=s0,F (1—a)).
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6.
We begin by noting that
Fy1o(yl0) f5(0)
B e—(y—e)fﬁ(g)

with

QMAP(y) = argmax (1 [y > 9] 6_(3’_9)]"19(0) = R)
= argmax (e” " f5(0) - 0 <y)

= argmax (e’f3(0): 0<y), yeR (1.15)
6.a. Here we have |
) = —— 6O cR.
fa(0) A S

Thus, with y in R given, we need to solve the optimization problem
. 0 .
Maximize 1$55 subject to 6 < y.

Taking derivatives we get

d e? o 1 20 p (1—10)2
JR— —_— = —_ — —> 6 R.
a0 (1+02) ‘ (1+92 (1+02)2> “hrep= V€

. 0 . . . .
In other words, the function § — %5 is non-decreasing on R, whence its maximum on

(—o0,y] is achieved at 6 =y, i.e.,

gvar(y) =y, yeR (1.16)

6.b. More generally, we consider an arbitrary probability density function fy : R — R,
such that fy(f) > 0 for all # in R. For any y in R given, we need to solve the optimization
problem

Maximize € fy(0) subject to 6 < y.

Taking derivatives we get

G E@00) = (10 + £10)) >0, veR

. 0. . . .
In other words, the function § — 57 is non-decreasing on R, whence its maximum on
(—o0,y| is achieved at 8 =y, i.e.,

aiar(y) =y, yeR (1.17)




