1. What is the effect of a dropped ciphertext block (e.g., if the transmitted ciphertext c_1, c_2, c_3, \ldots is received as c_1, c_3, \ldots) when using the CBC, OFB, and CTR modes of operation?

2. Say $\Pi = (\text{Gen}, \text{Mac}, \text{Vrfy})$ is a secure MAC, and for $k \in \{0, 1\}^n$, the tag-generation algorithm Mac_k always outputs tags of length $t(n)$. Prove that t must be super-logarithmic or, equivalently, that if $t(n) = O(\log n)$ then Π cannot be a secure MAC.

Hint: Consider the probability of randomly guessing a valid tag.

3. Assume secure MACs exist. Prove that there exists a MAC that is secure (by Definition 4.2) but is not strongly secure (by Definition 4.3).

4. Consider the following MAC for messages of length $\ell(n) = 2n - 2$ using a pseudorandom function F:
 - On input a message $m_0 || m_1$ (with $|m_0| = |m_1| = n - 1$) and key $k \in \{0, 1\}^n$, algorithm Mac outputs $t = F_k(0 || m_0) || F_k(1 || m_1)$. Algorithm Vrfy is defined in the natural way. Is $(\text{Gen}, \text{Mac}, \text{Vrfy})$ secure? Prove your answer.

5. Let F be a pseudorandom function. Show that each of the following MACs is insecure, even if used to authenticated fixed-length messages. (In each case Gen outputs a uniform $k \in \{0, 1\}^n$. Let $\langle i \rangle$ denote an $n/2$-bit encoding of the integer i.)
 - (a) To authenticate a message $m = m_1, \ldots, m_\ell$, where $m_i \in \{0, 1\}^n$, compute $t := F_k(m_1) \oplus \cdots \oplus F_k(m_\ell)$.
 - (b) To authenticate a message $m = m_1, \ldots, m_\ell$, where $m_i \in \{0, 1\}^{n/2}$, compute $t := F_k(\langle 1 \rangle || m_1) \oplus \cdots \oplus F_k(\langle \ell \rangle || m_\ell)$.