1. Describe in detail a man-in-the-middle attack on the Diffie-Hellman key-exchange protocol whereby the adversary ends up sharing a key \(k_A \) with Alice and a different key \(k_B \) with Bob, and Alice and Bob cannot detect that anything has gone wrong.

What happens if Alice and Bob try to detect the presence of a man-in-the-middle adversary by sending each other (encrypted) questions that only the other party would know how to answer?

2. Consider the following key-exchange protocol:

 (a) Alice chooses \(k, r \leftarrow \{0, 1\}^n \) at random, and sends \(s := k \oplus r \) to Bob.
 (b) Bob chooses \(t \leftarrow \{0, 1\}^n \) at random and sends \(u := s \oplus t \) to Alice.
 (c) Alice computes \(w := u \oplus r \) and sends \(w \) to Bob.
 (d) Alice outputs \(k \) and Bob outputs \(w \oplus t \).

Show that Alice and Bob output the same key. Analyze the security of the scheme (i.e., either prove its security or show a concrete attack).

3. Consider the following key-exchange protocol:

 Common input: The security parameter \(1^n \).
 (a) Alice runs \(G(1^n) \) to obtain \((G, q, g) \).
 (b) Alice chooses \(x_1, x_2 \leftarrow \mathbb{Z}_q \) and sends \(\alpha = x_1 + x_2 \) to Bob.
 (c) Bob chooses \(x_3 \leftarrow \mathbb{Z}_q \) and sends \(h_2 = g^{x_3} \) to Alice.
 (d) Alice sends \(h_3 = g^{x_1 x_3} \) to Bob.
 (e) Alice outputs \(h_2^{x_1} \). Bob outputs \((g^\alpha)^{x_3} \cdot (h_3)^{-1} \).

Show that Alice and Bob output the same key. Analyze the security of the scheme (i.e., either prove its security or show a concrete attack).

4. Show that any 2-round key-exchange protocol (that is, where each party sends a single message) can be converted into a CPA-secure public-key encryption scheme.

5. Fix an RSA public key \(\langle N, e \rangle \) and assume we have an algorithm \(A \) that always correctly computes \(\text{lsb}(x) \) given \([x^e \mod N] \). Write full pseudocode for an algorithm \(A' \) that computes \(x \) from \([x^e \mod N] \).