Introduction to Cryptology

Lecture 3
Announcements

• Homework 1 due on Thursday 2/5
 – Hand in code for Problem 1 and decrypted ciphertext along with other solutions

• Readings up on course webpage on Computational Complexity
 – We will start computational approach to cryptography next week.
Agenda

• Last time:
 – Cryptanalysis of the Vigenere Cipher (1.3)
 – Terminology and Definitions

• This time:
 – Terminology and Definitions
 – Formal definition of a symmetric encryption scheme (2.1)
 – Shannon’s definition of perfect secrecy (2.1)
 – Equivalent definitions (2.1)
 – Construction of a perfectly secret scheme (2.2)
Terminology

• Discrete Random Variable: A discrete random variable is a variable that can take on a value from a finite set of possible different values each with an associated probability.

• Example: Bag with red, blue, yellow marbles. Random variable X describes the outcome of a random draw from the bag. The value of X can be either red, blue or yellow, each with some probability.
More Terminology

• A discrete probability distribution assigns a probability to each possible outcomes of a discrete random variable.
 – Ex: Bag with red, blue, yellow marbles.

• An experiment or trial (see below) is any procedure that can be infinitely repeated and has a well-defined set of possible outcomes, known as the sample space.
 – Ex: Drawing a marble at random from the bag.

• An event is a set of outcomes of an experiment (a subset of the sample space) to which a probability is assigned
 – Ex: A red marble is drawn.
 – Ex: A red or yellow marble is drawn.
Conditional Probability

• A **conditional probability** measures the probability of an event given that (by assumption, presumption, assertion or evidence) another event has occurred.

• Probability of event \(X \), conditioned on event \(Y \): \(\Pr[X \mid Y] \)

• Example: Probability the second marble drawn will be red, conditioned on the first marble being yellow.
Basic Facts from Probability

• If two events are independent if and only if \(\Pr[X | Y] = \Pr[X] \).

• AND of two events: \(\Pr[X \land Y] = \Pr[X] \cdot \Pr[Y | X] \)

• AND of two independent events: \(\Pr[X \land Y] = \Pr[X] \cdot \Pr[Y] \)

• OR of two events: \(\Pr[X \lor Y] \leq \Pr[X] + \Pr[Y] \)
 – This is called a “union bound.”
Formally Defining a Symmetric Key Encryption Scheme
Syntax

- An encryption scheme is defined by three algorithms
 - Gen, Enc, Dec
- Specification of message space \mathcal{M} with $|\mathcal{M}| > 1$.
- Key-generation algorithm Gen:
 - Probabilistic algorithm
 - Outputs a key k according to some distribution.
 - Keyspace \mathcal{K} is the set of all possible keys
- Encryption algorithm Enc:
 - Takes as input key $k \in \mathcal{K}$, message $m \in \mathcal{M}$
 - Encryption algorithm may be probabilistic
 - Outputs ciphertext $c \leftarrow Enc_k(m)$
 - Ciphertext space \mathcal{C} is the set of all possible ciphertexts
- Decryption algorithm Dec:
 - Takes as input key $k \in \mathcal{K}$, ciphertext $c \in \mathcal{C}$
 - Decryption is deterministic
 - Outputs message $m := Dec_k(c)$
Distributions over K, M, C

- Distribution over K is defined by running Gen and taking the output.
 - For $k \in K$, $\Pr[K = k]$ denotes the probability that the key output by Gen is equal to k.
- For $m \in M$, $\Pr[M = m]$ denotes the probability that the message is equal to m.
 - Models a priori knowledge of adversary about the message.
 - E.g. Message is English text.
- Distributions over K and M are independent.
- For $c \in C$, $\Pr[C = c]$ denotes the probability that the ciphertext is c.
 - Given Enc, distribution over C is fully determined by the distributions over K and M.
Definition of Perfect Secrecy

• An encryption scheme \((Gen, Enc, Dec)\) over a message space \(M\) is perfectly secret if for every probability distribution over \(M\), every message \(m \in M\), and every ciphertext \(c \in C\) for which \(\Pr[C = c] > 0\):
 \[
 \Pr[M = m \mid C = c] = \Pr[M = m].
 \]
An Equivalent Formulation

• Lemma: An encryption scheme \((Gen, Enc, Dec)\) over a message space \(M\) is perfectly secret if and only if for every probability distribution over \(M\), every message \(m \in M\), and every ciphertext \(c \in C\):
 \[
 \Pr[C = c \mid M = m] = \Pr[C = c].
 \]
Basic Logic

• Usually want to prove statements like \(P \rightarrow Q \) (“if \(P \) then \(Q \”\)

• To prove a statement \(P \rightarrow Q \) we may:
 – Assume \(P \) is true and show that \(Q \) is true.
 – Prove the contrapositive: Assume that \(Q \) is false and show that \(P \) is false.
Basic Logic

• Consider a statement $P \iff Q$ (P if and only if Q)
 – Ex: Two events X, Y are independent if and only if $\Pr[X \land Y] = \Pr[X] \cdot \Pr[Y]$.
• To prove a statement $P \iff Q$ it is sufficient to prove:
 – $P \implies Q$
 – $Q \implies P$
Proof (Preliminaries)

• Recall Bayes’ Theorem:

\[
- \Pr[A \mid B] = \frac{\Pr[B \mid A] \cdot \Pr[A]}{\Pr[B]}
\]

• We will use it in the following way:

\[
- \Pr[M = m \mid C = c] = \frac{\Pr[C = c \mid M = m] \cdot \Pr[M = m]}{\Pr[C = c]}
\]
Proof

Proof: →

• To prove: If an encryption scheme is perfectly secret then

“for every probability distribution over M, every message $m \in M$, and every ciphertext $c \in C$:

$\Pr[C = c \mid M = m] = \Pr[C = c]$. "
Proof (cont’d)

• Fix some probability distribution over M, some message $m \in M$, and some ciphertext $c \in C$.

• By perfect secrecy we have that
 \[\Pr[M = m \mid C = c] = \Pr[M = m]. \]

• By Bayes’ Theorem we have that:
 \[\Pr[M = m \mid C = c] = \frac{\Pr[C = c \mid M = m] \cdot \Pr[M = m]}{\Pr[C = c]} = \Pr[M = m]. \]

• Rearranging terms we have:
 \[\Pr[C = c \mid M = m] = \Pr[C = c]. \]