Introduction to Cryptology

Lecture 22
Announcements

• HW10 due today
• HW11 posted on course webpage. Due on 5/7.
 – We will have 12 homeworks total. The 2 lowest homework grades will be dropped.
Agenda

• Last time:
 – Number Theory and Cryptographic Assumptions (8.3)

• This time:
 – Key Exchange Definition, Diffie-Hellman Key Exchange (10.3)
 – Public Key Encryption Definitions (11.2)
 – El Gamal Encryption (11.4)
 – RSA Encryption (11.5)
Key Agreement

The key-exchange experiment $KE_{A,\Pi}^{eav}(n)$:

1. Two parties holding 1^n execute protocol Π. This results in a transcript trans containing all the messages sent by the parties, and a key k output by each of the parties.

2. A uniform bit $b \in \{0,1\}$ is chosen. If $b = 0$ set $\hat{k} := k$, and if $b = 1$ then choose $\hat{k} \in \{0,1\}^n$ uniformly at random.

3. A is given trans and \hat{k}, and outputs a bit b'.

4. The output of the experiment is defined to be 1 if $b' = b$ and 0 otherwise.

Definition: A key-exchange protocol Π is secure in the presence of an eavesdropper if for all ppt adversaries A there is a negligible function neg such that

$$\Pr[KE_{A,\Pi}^{eav}(n) = 1] \leq \frac{1}{2} + neg(n).$$
Diffie-Hellman Key Exchange

\[x \leftarrow \mathbb{Z}_q \]
\[h_1 := g^x \]
\[\underline{\mathbb{G}, q, g, h_1} \]
\[y \leftarrow \mathbb{Z}_q \]
\[h_2 := g^y \]
\[k_A := h_2^x \]
\[k_B := h_1^y \]

FIGURE 10.2: The Diffie-Hellman key-exchange protocol.
Security Analysis

Theorem: If the DDH problem is hard relative to G, then the Diffie-Hellman key-exchange protocol Π is secure in the presence of an eavesdropper.
Recall DDH problem

We say that the DDH problem is hard relative to G if for all ppt algorithms A, there exists a negligible function neg such that

\[
\left| \Pr[A(G, q, g, g^x, g^y, g^z) = 1] - \Pr[A(G, q, g, g^x, g^y, g^{xy}) = 1] \right| \leq neg(n).
\]
Security Reduction

Assume DH key-exchange protocol is insecure. Then, there exists a ppt adversary A such that

$$\Pr\left[K_{E_{A,\Pi}}^eav(n) = 1\right] \geq \frac{1}{2} + \epsilon(n),$$

for non-negligible ϵ. We construct the following adversary A' breaking the DDH assumption.

A' does the following: On input (G, q, g, h_1, h_2, h_3), A' sets $\text{trans} := (G, q, g, h_1, h_2)$ and sets $\hat{k} := h_3$. A' runs $A(\text{trans}, \hat{k})$ and returns whatever A returns.
Security Analysis

Case 1: \((G, q, g, h_1, h_2, h_3) = (G, q, g, g^x, g^y, g^z)\)
\[\Pr[A'(G, q, g, g^x, g^y, g^z) = 1] = \Pr[KE_{eav}^{A,\Pi}(n) = 1|b = 1]\]

Case 2: \((G, q, g, h_1, h_2, h_3) = (G, q, g, g^x, g^y, g^{x\cdot y})\)
\[\Pr[A'(G, q, g, g^x, g^y, g^{x\cdot y}) = 1] = \Pr[KE_{eav}^{A,\Pi}(n) = 0|b = 0] = 1 - \Pr[KE_{eav}^{A,\Pi}(n) = 1|b = 0].\]

Thus, \(\frac{1}{2} |\Pr[A'(G, q, g, g^x, g^y, g^z) = 1] - \Pr[A'(G, q, g, g^x, g^y, g^{x\cdot y}) = 1]| = \Pr[KE_{eav}^{A,\Pi}(n) = 1] - \frac{1}{2} \geq \epsilon(n).\)

And so
\[|\Pr[A'(G, q, g, g^x, g^y, g^z) = 1] - \Pr[A'(G, q, g, g^x, g^y, g^{x\cdot y}) = 1]| \geq 2\epsilon(n),\]
which is non-negligible.
This is a contradiction to the DDH assumption.
Public Key Encryption

Definition: A public key encryption scheme is a triple of ppt algorithms (Gen, Enc, Dec) such that:

1. The key generation algorithm Gen takes as input the security parameter 1^n and outputs a pair of keys (pk, sk). We refer to the first of these as the public key and the second as the private key. We assume for convenience that pk and sk each has length at least n, and that n can be determined from pk, sk.

2. The encryption algorithm Enc takes as input a public key pk and a message m from some message space. It outputs a ciphertext c, and we write this as $c \leftarrow Enc_{pk}(m)$.

3. The deterministic decryption algorithm Dec takes as input a private key sk and a ciphertext c, and outputs a message m or a special symbol \perp denoting failure. We write this as $m := Dec_{sk}(c)$.

Correctness: It is required that, except possibly with negligible probability over (pk, sk) output by $Gen(1^n)$, we have $Dec_{sk}\left(Enc_{pk}(m)\right) = m$ for any legal message m.
CPA-Security

The CPA experiment $PubK_{A,\Pi}^{cpa}(n)$:

1. $Gen(1^n)$ is run to obtain keys (pk, sk).
2. Adversary A is given pk, and outputs a pair of equal-length messages m_0, m_1 in the message space.
3. A uniform bit $b \in \{0, 1\}$ is chosen, and then a challenge ciphertext $c \leftarrow Enc_{pk}(m_b)$ is computed and given to A.
4. A outputs a bit b'. The output of the experiment is 1 if $b' = b$, and 0 otherwise.

Definition: A public-key encryption scheme $\Pi = (Gen, Enc, Dec)$ is CPA-secure if for all ppt adversaries A there is a negligible function neg such that

$$Pr \left[PubK_{A,\Pi}^{cpa}(n) = 1 \right] \leq \frac{1}{2} + neg(n).$$
Discussion

• In the public key setting security in the presence of an eavesdropper and CPA security are equivalent (since anyone can encrypt using the public key).

• CPA-secure encryption cannot be deterministic!!
 – Why not?
Important Property

Lemma: Let G be a finite group, and let $m \in G$ be arbitrary. Then choosing uniform $k \in G$ and setting $k' := k \cdot m$ gives the same distribution for k' as choosing uniform $k' \in G$. Put differently, for any $\hat{g} \in G$ we have

$$\Pr[k \cdot m = \hat{g}] = 1/|G|.$$
El Gamal Encryption Scheme

CONSTRUCTION 11.16

Let G be as in the text. Define a public-key encryption scheme as follows:

- **Gen:** on input 1^n run $G(1^n)$ to obtain (G, q, g). Then choose a uniform $x \leftarrow \mathbb{Z}_q$ and compute $h := g^x$. The public key is (G, q, g, h) and the private key is (G, q, g, x). The message space is G.

- **Enc:** on input a public key $pk = (G, q, g, h)$ and a message $m \in G$, choose a uniform $y \leftarrow \mathbb{Z}_q$ and output the ciphertext

 $$(g^y, h^y \cdot m).$$

- **Dec:** on input a private key $sk = (G, q, g, x)$ and a ciphertext (c_1, c_2), output

 $$\hat{m} := c_2/c_1^x.$$

The El Gamal encryption scheme.
El Gamal Example

• Let the group G be the group of quadratic residues over \mathbb{Z}_p^*, where p is a strong prime (i.e. $p = 2q + 1$ for prime q).
• $p = 11$, $g = 4$, $x = 3$, $h = 9$, $m = 5$
• $Enc_{(11,5,4,9)}(5)$: Choose $y = 2$
 Output: $c := \langle 5, 4 \cdot 5 \rangle = \langle 5, 9 \rangle$
• $Dec_{(11,5,4,3)}(\langle 5, 9 \rangle) = \frac{9}{5^3} = \frac{9}{4} = 9 \cdot 3 = 27 \mod 11 = 5$.
Security Analysis

Theorem: If the DDH problem is hard relative to G, then the El Gamal encryption scheme is CPA-secure.