Announcements

• HW8 due today
• HW9 up on course webpage. Due on Thursday, 4/23.
Agenda

• Last time:
 – Practical constructions of block ciphers (6.2)
 • Feistel, AES, DES
 – Please read (6.2.3) on your own on Differential and Linear Cryptanalysis

• This time:
 – Practical constructions of CRHF (6.3)
 – Number Theory (8.1)
Posted lecture notes include only the Number Theory material.
Modular Arithmetic

Definition of modulo:
We say that two integers a, b are congruent modulo p denoted by
$$a \equiv b \mod p$$
If
$$p \mid (a - b)$$
(i.e. p divides $(a - b)$).
Modular Arithmetic

Examples: All of the following are true

\[2 \equiv 15 \mod 13 \]
\[28 \equiv 15 \mod 13 \]
\[41 \equiv 15 \mod 13 \]
\[-11 \equiv 15 \mod 13 \]
Modular Arithmetic

Operation: addition mod p
Regular addition, take modulo p.

Example: $8 + 10 \mod 13 \equiv 18 \mod 13 \equiv 5 \mod 13$.
Properties of Addition mod p

Consider the set \mathbb{Z}_p of integers $\{0,1,...,p-1\}$ and the operation addition mod p.

• Closure: Adding two numbers in \mathbb{Z}_p and taking mod p yields a number in \mathbb{Z}_p.

• Identity: For every $a \in \mathbb{Z}_p$, $[0 + a] \mod p \equiv a \mod p$.

• Inverse: For every $a \in \mathbb{Z}_p$, there exists a $b \in \mathbb{Z}_p$ such that $a + b \equiv 0 \mod p$.
 – b is simply the negation of a ($b = -a$).
 – Note that using the property of inverse, we can do subtraction. We define $c - d \mod p$ to be equivalent to $c + (-d) \mod p$.

• Associativity: For every $a, b, c \in \mathbb{Z}_p$:
 $$(a + b) + c = a + (b + c) \mod p.$$

\mathbb{Z}_p is a group with respect to addition!
Definition of a Group

A group is a set G along with a binary operation \circ for which the following conditions hold:

- **Closure**: For all $g, h \in G$, $g \circ h \in G$.
- **Identity**: There exists an identity $e \in G$ such that for all $g \in G$, $e \circ g = g = g \circ e$.
- **Inverse**: For all $g \in G$ there exists an element $h \in G$ such that $g \circ h = e = h \circ g$. Such an h is called an inverse of g.
- **Associativity**: For all $g_1, g_2, g_3 \in G$, $(g_1 \circ g_2) \circ g_3 = g_1 \circ (g_2 \circ g_3)$.

When G has a finite number of elements, we say G is finite and let $|G|$ denote the order of the group.
Abelian Group

A group G with operation \circ is abelian if the following holds:

• Commutativity: For all $g, h \in G$, $g \circ h = h \circ g$.

We will always deal with finite, abelian groups.
Other groups over the integers

• We will be interested mainly in multiplicative groups over the integers, since there are computational problems believed to be hard over such groups.
 – Such hard problems are the basis of number-theoretic cryptography.

• Group operation is multiplication mod p, instead of addition mod p.
Multiplication mod p

Example:
\[3 \cdot 8 \mod 13 \equiv 24 \mod 13 \equiv 11 \mod 13. \]
Multiplicative Groups

Is \mathbb{Z}_p a group with respect to multiplication mod p?

• Closure—YES
• Identity—YES (1 instead of 0)
• Associativity—YES
• Inverse—NO

 – 0 has no inverse since there is no integer a such that $0 \cdot a \equiv 1 \text{ mod } p$.

For p prime, define $\mathbb{Z}^*_p = \{1, \ldots, p - 1\}$ with operation multiplication mod p.

We will see that \mathbb{Z}^*_p is indeed a multiplicative group!

To prove that \mathbb{Z}^*_p is a multiplicative group, it is sufficient to prove that every element has a multiplicative inverse (since we have already argued that all other properties of a group are satisfied).

This is highly non-trivial, we will see how to prove it using the Euclidean Algorithm.
Inefficient method of finding inverses mod p

Example: Multiplicative inverse of $9 \mod 11$.

9 · 1 ≡ 9 mod 11
9 · 2 ≡ 18 ≡ 7 mod 11
9 · 3 ≡ 27 ≡ 5 mod 11
9 · 4 ≡ 36 ≡ 3 mod 11
9 · 5 ≡ 45 ≡ 1 mod 11

What is the time complexity?
Brute force search. In the worst case must try all 10 numbers in \mathbb{Z}^*_{11} to find the inverse.

This is exponential time! Why? Inputs to the algorithm are $(9,11)$. The length of the input is the length of the binary representation of $(9,11)$. This means that input size is approx. $\log_2 11$ while the runtime is approx. $2^{\log_2 11} = 11$. The runtime is exponential in the input length.

Fortunately, there is an efficient algorithm for computing inverses.
Euclidean Algorithm

Theorem: Let a, p be positive integers. Then there exist integers X, Y such that $Xa + Yb = \gcd(a, p)$.

Given a, p, the Euclidean algorithm can be used to compute $\gcd(a, p)$ in polynomial time. The extended Euclidean algorithm can be used to compute X, Y in polynomial time.

We will see the extended Euclidean algorithm next class
Proving \mathbb{Z}^*_p is a multiplicative group

In the following we prove that every element in \mathbb{Z}^*_p has a multiplicative inverse when p is prime. This is sufficient to prove that \mathbb{Z}^*_p is a multiplicative group.

Proof. Let $a \in \mathbb{Z}^*_p$. Then $\gcd(a, p) = 1$, since p is prime. By the Euclidean Algorithm, we can find integers X, Y such that $aX + pY = \gcd(a, p) = 1$.

Rearranging terms, we get that $pY = (aX - 1)$ and so $p \mid (aX - 1)$. By definition of modulo, this implies that $aX \equiv 1 \mod p$.

By definition of inverse, this implies that X is the multiplicative inverse of a.

Note: By above, the extended Euclidean algorithm gives us a way to compute the multiplicative inverse in polynomial time.