Introduction to Cryptology

Lecture 13
Announcements

• Homework 6 up on course webpage, due on Thursday, 4/2.
Agenda

• Last time:
 – CCA Security (3.7)
 – New topic: Message Integrity (4.1)
 – Message Authentication Codes (MAC) (4.2)

• This time:
 – More MAC definitions (4.2)
 – Constructing a fixed-length MAC (4.3)
 – Domain extension with CBC-MAC (4.4)
 – Authenticated Encryption (4.5)
Security of MACs

The message authentication experiment $MAC_{forge_{A,\Pi}(n)}$:

1. A key k is generated by running $Gen(1^n)$.
2. The adversary A is given input 1^n and oracle access to $Mac_k(\cdot)$. The adversary eventually outputs (m, t). Let Q denote the set of all queries that A asked its oracle.
3. A succeeds if and only if (1) $Vrf_y_k(m, t) = 1$ and (2) $m \notin Q$. In that case, the output of the experiment is defined to be 1.
Security of MACs

Definition: A message authentication code \(\Pi = (Gen, Mac, Vrfy) \) is existentially unforgeable under an adaptive chosen message attack if for all probabilistic polynomial-time adversaries \(A \), there is a negligible function \(neg \) such that:

\[
\Pr[MAC_{forge_{A,\Pi}}(n) = 1] \leq neg(n).
\]
Strong MACs

The strong message authentication experiment $MAC_{sforge_{A,\Pi}}(n)$:

1. A key k is generated by running $Gen(1^n)$.

2. The adversary A is given input 1^n and oracle access to $Mac_k(\cdot)$. The adversary eventually outputs (m, t). Let Q denote the set of all pairs (m, t) that A asked its oracle.

3. A succeeds if and only if (1) $Vrfy_k(m, t) = 1$ and (2) $(m, t) \notin Q$. In that case, the output of the experiment is defined to be 1.
Strong MACs

Definition: A message authentication code \(\Pi = (Gen, Mac, Vrfy) \) is a strong MAC if for all probabilistic polynomial-time adversaries \(A \), there is a negligible function \(neg \) such that:

\[
\Pr[MAC_{\text{forfe}}_{A,\Pi}(n) = 1] \leq neg(n).
\]
Constructing Secure Message Authentication Codes
A Fixed-Length MAC

Let F be a pseudorandom function. Define a fixed-length MAC for messages of length n as follows:

- **Mac**: on input a key $k \in \{0,1\}^n$ and a message $m \in \{0,1\}^n$, output the tag $t := F_k(m)$.

- **Vrfy**: on input a key $k \in \{0,1\}^n$, a message $m \in \{0,1\}^n$, and a tag $t \in \{0,1\}^n$, output 1 if and only if $t = F_k(m)$.
Security Analysis

Theorem: If F is a pseudorandom function, then the construction above is a secure fixed-length MAC for messages of length n.
Security Analysis

Let A be a ppt adversary trying to break the security of the construction. We construct a distinguisher D that uses A as a subroutine to break the security of the PRF.

Distinguisher D:
D gets oracle access to oracle O, which is either F_k, where F is pseudorandom or f which is truly random.
1. Instantiate $A^{\text{Mac}_k}() (1^n)$.
2. When A queries its oracle with message m, output $O(m)$.
3. Eventually, A outputs (m^*, t^*) where $m^*, t^* \in \{0,1\}^n$.
4. If $m^* \in Q$, output 0.
5. If $m^* \notin Q$, query $O(m^*)$ to obtain output z^*.
6. If $t^* = z^*$ output 1. Otherwise, output 0.
Security Analysis

Consider the probability D outputs 1 in the case that O is truly random function f vs. O is a pseudorandom function F_k.

- When O is pseudorandom, D outputs 1 with probability $\Pr[MAC\text{forge}_{A,\Pi}(n) = 1] = \rho(n)$, where ρ is non-negligible.

- When O is random, D outputs 1 with probability at most $\frac{1}{2^n}$. Why?
Security Analysis

\(D \)’s distinguishing probability is:

\[
\left| \frac{1}{2^n} - \rho(n) \right| = \rho(n) - \frac{1}{2^n}.
\]

Since, \(\frac{1}{2^n} \) is negligible and \(\rho(n) \) is non-negligible, \(\rho(n) - \frac{1}{2^n} \) is non-negligible.

This is a contradiction to the security of the PRF.
Domain Extension for MACs
CBC-MAC

Let F be a pseudorandom function, and fix a length function \mathcal{L}. The basic CBC-MAC construction is as follows:

- **Mac**: on input a key $k \in \{0,1\}^n$ and a message m of length $\mathcal{L}(n) \cdot n$, do the following:
 1. Parse m as $m = m_1, \ldots, m_\ell$ where each m_i is of length n.
 2. Set $t_0 := 0^n$. Then, for $i = 1$ to ℓ:

 Set $t_i := F_k(t_{i-1} \oplus m_i)$.

 Output t_ℓ as the tag.

- **Vrfy**: on input a key $k \in \{0,1\}^n$, a message m, and a tag t, do: If m is not of length $\mathcal{L}(n) \cdot n$ then output 0. Otherwise, output 1 if and only if $t = Mac_k(m)$.
CBC-MAC

FIGURE 4.1: Basic CBC-MAC (for fixed-length messages).