1. Before HMAC was invented, it was quite common to define a MAC by \(\text{Mac}_k(m) = H^s(k||m) \) where \(H \) is a collision-resistant hash function. Show that this is not a secure MAC when \(H \) is constructed via the Merkle-Damgard transform.

2. For each of the following modifications to the Merkle-Damgard transform, determine whether the result is collision resistant. If yes, provide a proof; if not, demonstrate an attack.

 (a) Modify the construction so that the input length is not included at all (i.e., output \(z_B \) and not \(z_{B+1} = h^s(z_B||L) \)). (Assume the resulting hash is only defined for inputs whose length is an integer multiple of the block length.)

 (b) Modify the construction so that instead of outputting \(z = h^s(z_B||L) \), the algorithm outputs \(z_B||L \).

3. Generalize the Merkle-Damgard construction for any compression function that compresses by at least one bit. You should refer to a general input length \(\ell' \) and general output length \(\ell \) (with \(\ell' > \ell \)).

4. Let \((\text{Gen}, H)\) be a collision-resistant hash function and let \(F \) be a PRF. For each of the following, state whether \(\tilde{H} \) is necessarily collision resistant. Justify your answer.

 (a) \(\tilde{H}^s(x_1||x_2) = H^s(x_1)||H^s(x_2) \).

 (b) \(\tilde{H}^s(x_1||x_2) = H^s(x_1 \oplus x_2) \).

 (c) \(\tilde{H}^s(x_1||x_2) = H^s(x_1 \oplus F_s(x_2)) \).

 (d) \(\tilde{H}^s(x) = H^s(H^s(x)) \).