Problem 1. Travelers buying airline tickets on a particular flight purchase economy class (40%), economy plus (35%) or business (25%). Of those in economy, 30% purchase duty-free goods in the onboard store, of those in economy plus 60% purchase duty-free, and of those in business 50%. Given that the next passenger bought duty-free, what is the probability that he is traveling in economy?

Solution: (Bayes formula)

\[P(E_jD) = \frac{P(D_jE)P(E)}{P(D)} = \frac{P(D|E)P(E)}{P(D|E)P(E) + P(D|E+)P(E+) + P(D|B)P(B)} \]

\[= \frac{0.3 \cdot 0.4}{0.3 \cdot 0.4 + 0.6 \cdot 0.35 + 0.5 \cdot 0.25} = \frac{24}{91} \]

Problem 2. A coin with \(Pr(H) = p \) is tossed repeatedly and independently until the first \(H \) is observed. Compute the probability of the event \(E \) that the first head appears in an even-numbered toss.

Solution 1: Let \(A_1 \) be the event that \(H \) appears in the first toss. We have

\[P(E) = P(E|A_1)P(A_1) + P(E|A_c^1)P(A_c^1). \]

Of course, \(P(E|A_1) = 0 \), and \(E|A_c^1 \) is the event that \(H \) appears in an odd toss if we start counting from toss 2. We obtain \(P(E|A_c^1) = P(E^c) = 1 - P(E) \), and then from (1)

\[P(E) = 0 \cdot p + (1 - P(E)) \cdot (1 - p) \]

which gives \(P(E) = (1 - p)/(2 - p) \).

Solution 2: The probability that \(H \) appears in toss \(2k, k \geq 1 \) is \((1 - p)^{2k-1}p \), so

\[P(E) = \sum_{k=1}^{\infty} (1 - p)^{2k-1}p = \frac{p}{1 - p} \sum_{k=1}^{\infty} ((1 - p)^2)^k = \frac{p}{1 - p} \cdot \frac{(1 - p)^2}{1 - (1 - p)^2} \]

\[= \frac{1 - p}{2 - p}. \]

Problem 3. Toss a fair coin 4 times and consider the random variable \(X \) indicating number of heads. Calculate \(P[X = x | X \text{ even}] \) for \(x = 0; 1; 2; 3; 4 \).

Solution: Let \(A = \{X \text{ even}\} \). We have

\[P(A) = \frac{1}{16} \left(\binom{4}{0} + \binom{4}{2} + \binom{4}{4} \right) = \frac{1}{16}(1 + 6 + 1) = 1/2. \]
Then

\[P[X = x | X \text{ even}] = \frac{P[X = x \text{ and } X \text{ even}]}{P[X \text{ even}]} = \begin{cases} 0, & x = 1, 3 \\ 2P[X = x], & x = 0, 2, 4 \end{cases} = \begin{cases} 0, & x = 1, 3 \\ \frac{1}{2}, & x = 0, 4 \end{cases} \frac{3}{4}, & x = 2 \] .

Problem 4. In an intersection, a car speeds to make the light with probability 0.2 and the decision to “go for it” is taken by different drivers independently. You have observed 6 cars passing through the intersection. Let \(X \) be the RV that equals the number of cars that sped to make the green light. (a) What is \(EX, \text{Var}(X) \)? (b) Find the probability that \(P(|X - EX| > 1) \) (approximate answer to within 10% is acceptable).

Solution: (a) \(X \) binomial with \(n = 6, p = 0.2 \), so \(EX = 1.2, \text{Var}(X) = 0.96 \).

(b)

\[
P(|X - EX| > 1) = 1 - P(|X - EX| \leq 1) = 1 - P(X \in \{1, 2\}) = 1 - 6 \cdot 0.2 \cdot 0.8^5 - \binom{6}{2} (0.2)^2 (0.8)^4
\]

\[
= 1 - 1.2 \cdot 0.32768 - 15 \cdot 0.04 \cdot 0.4096 \approx 1 - 0.38 - 0.25 = 0.37
\]

(the exact value is 0.361024).

Problem 5. I have 10 different apps on my phone. Someone hacked into it, and was able to make an app start every 6 minutes, but not to control which app starts, so every 6 minutes a random one out of the 10 launches itself. Assume that, unless I start using the app just launched, it’s immediately terminated, so they appear only for a very brief period of time.

(a) I decided to make use of this situation, and whenever I need an app I just wait for it to be launched. Suppose that I need app \(\#1 \). Let \(X \) be the number of apps that will be started before \(\#1 \) appears. What is the PMF of \(X \), and what is its expected value and variance? Note that \(EX \) and \(\text{Var}(X) \) should be expressed as numbers.

(b) I took the phone out of my pocket at a random, uniformly distributed time during the day. What’s the expected wait till the appearance of app \(\#1 \)?

Solution: (a) \(X \) is (almost) geometrically distributed: \(p_X(i) = \left(\frac{9}{10} \right)^i \frac{1}{10}, i = 0, 1, \ldots \). The “almost” comes from the fact that geometric is number of trials till first success including the trial that constitutes the success, while \(X \) is one less than that number. Denoting this geometric by \(Y \), we note that \(X = Y - 1 \), so

\[
EX = EY - 1 = \frac{1}{p} - 1 = 9; \quad \text{Var}(X) = \text{Var}(Y) = \frac{1 - p}{p^2} = \frac{9/10}{1/100} = 90.
\]

(b) It will take \(EU = 3 \) minutes on average for the first app to appear, where \(U \) is an RV uniformly distributed on the segment \([0, 6]\). After that, according to part (a), app \(\#1 \) will be the 10th on average, so the expected wait is \(3 + 6 \cdot 9 = 57 \) min.