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ABSTRACT

An active area of research in supercomputing is concerned with mapping certain finite sums, such
as discrete Fourier transforms, onto arrays of processors. This paper presents systolic mapping
techniques that exploit the parallelism inherent in discrete Fourier transforms. It is established
that, for an M-dimensional signal, parallel executions of such transforms are closely related to
mappings of an (M+1)-dimensional finite vector space into itself. Three examples of such parallel
schemes are then described for the discrete Fourier transform of a two-dimensional finite extent
sequence of size N1×N2. The first is a linear array of N1+N2−1 processors and takes O(N1N2) steps.
The second is an N1×N2 rectangular array of processors and takes O(N1+N2) steps, and the third is
a hexagonal array which uses N1N2+(N2−1)(N1+N2−1) processors and takes O(N1+N2) steps. All
three mappings are optimal in that they achieve asymptotically highest speedup possible over the
sequential execution of the same transform, and can easily be generalized to higher dimensions.
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1. Introduction

Certain finite sums such as discrete Fourier transforms (DFTs) find extensive applications in

many fields such as signal processing [Blahut 1985, Dudgeon and Mesereau 1984, Oppenheim

and Shafer 1984] pattern recognition [Blahut 1985, Jacobson and Wechsler 1984], computer

vision [Gafni and Zeevi 1979], computer arithmetic [Ling and Bayoumi 1988], and tomography

[Hinshaw and Lent 1983]. In most of these fields, one often deals with very large sets of discrete

signals which require more sophisticated techniques than conventional sequential transformation

schemes. For example, the fastest sequential DFT algorithm takes O(N logN) steps on a one-

dimensional, N-point array which should be iterated M times for a M-dimensional array, leading

to O(MNM logN) time complexity. While this order of complexity may be acceptable for small

values of N and M , certain design constraints such as the sampling rate and bandwidth of input

signals, often make it unacceptable to carry out discrete transforms on multidimensional signals

by sequential means.

For faster DFT computations, a number of parallel architectures have been proposed in the

literature [Cappello and Steiglitz 1983, Chakrabarti and Ja’Ja’ 1988, Chowdary et al. 1984,

Gertner and Shamash 1987, Miranker and Winker 1984, Zhang and Yun 1984]. [Thompson 83]

examined the VLSI complexity of one-dimensional DFTs using the area × time2 (AT 2) model

and surveyed several one-dimensional DFT algorithms. [Zhang and Yun 1984] presented a mesh-

connected processor array implementation of a two-dimensional DFT algorithm. [Chowdary et al.

1984] described a fast two-dimensional DFT processor. Recently, [Gertner and Shamash 1987]

introduced a hybrid architecture approach based on the well-known row-column decomposition

algorithm. They described two hybrid architectures, each using a butterfly array of processors

to perform a one-dimensional DFT and an interconnection network to reroute the intermediate

results back to the array between different phases of the algorithm. One of these architectures

uses a perfect shuffle network [Stone 1971] while the other uses what is called a rotation network

to align the outputs of the processor array between different phases of the computation. For an

N1×N2×. . .×NM array, where N1N2 . . .NM = N , the architecture with the rotation network achieves

AT 2 = (N2 log2N) which is optimal. More recently, [Chakrabarti and Ja’Ja’ 1988] generalized the

rotation network concept to obtain AT 2 optimal designs, but with other space and time tradeoffs.

While the designs in [Chakrabarti and Ja’Ja’ 1988, Gertner and Shamash 1987] meet the AT 2

lower bound for computing linear transforms, they require rotation networks with O(N2
1N

2
2 . . .N2

M )

area for an N1N2 . . .NM array of inputs. Moreover, these networks are difficult to layout in VLSI

[Franklin 1981]. To avoid the interconnection problems associated with these designs, this paper

examines three systolic implementations of the row-column decomposition algorithm within the
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context of a program graph contraction procedure which was described in [Shen and Oruç 1989].

Such implementations have been described for other algorithms in the literature [Leiserson 1981,

Kung and Leiserson 1980]. The systolic arrays given in this paper extend these implementations

to the row-column decomposition algorithm by using simple last-in/first-out (LIFO) memories for

the alignment of intermediate results. For an N1 × N2 data array, the first implementation uses

a linear array of N1 + N2 − 1 processors and takes O(N1N2) steps. The second implementation

employs an N1×N2 rectangular array of processors and takes O(N1 +N2) steps, and the third one

uses a hexagonal array of N1N2 + (N2 − 1)(N1 +N2 − 1) processors and takes O(N1 +N2) steps. All

three have asymptotically optimal speedup when compared with the sequential implementation

of the row-column decomposition algorithm. Moreover, these implementations directly generalize

to M-dimensional signals without sacrificing their optimality. It is also shown that these systolic

implementations are just three instances of a wide spectrum of optimal systolic contactions of

the row-column decomposition algorithm.

The rest of the paper is organized as follows. Section 2 describes the program graph model and

the contraction mapping procedure. Section 3 describes the program graph for the row-column

decomposition algorithm. In Section 4, the mapping procedure of Section 2 is used to obtain

systolic contractions of this program graph. Section 5 discusses the memory organization and

interconnections of the resulting processor arrays. In Section 6, the contractions of Section 4

are generalized to discrete transformations of finite extent multidimensional signals. The paper

is concluded in Section 7.

2. Approach

The processor arrays to be described subsequently are all derived from systolic contractions of the

row-column decomposition algorithm [Dudgeon and Mersereau 1984]. Before we describe these,

it is first necessary to outline the main elements of our contraction procedure.

The procedure begins with a labelled program graph representation of the row-column decom-

position algorithm. Such representations, which have been used in the literature [Cytron 1988,

Ramakrishnan et al. 1986, Ramakrishnan and Varman 1984] earlier, are captured by a directed

acyclic graph G =< V,E,D >, where (1) V is a set of vertices, each representing a computation

step (computation vertex), an external input (source vertex), or a result from computation (sink

vertex); (2) E is a set of directed edges which specify the dependences between the computation

vertices in V ; and (3) D is a set of delays assigned to the edges in E so that the delay d asso-

ciated with an edge (a, b) ∈ E indicates that the operation at vertex b is to be initiated precisely

d clock ticks after the initiation of the operation at vertex a. A program graph is mapped to a

processor array by partitioning its computation vertices into disjoint subsets and assigning each
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Figure 1. Contraction of a program graph.

subset to a separate processor. Depending on the partition, this results in a processor array with

a particular topology which will be called a target array or a systolic contraction of that program

graph. Computations in each group of vertices are then carried out by the processor, to which

they are assigned, in a sequential order and at a uniform rate as regulated by a global clock. The

interconnections between processors are determined as follows. Whenever two computation ver-

tices are merged, all the edges between the two are deleted, and all incoming and outgoing edges

to these two vertices are reconnected to the resultant vertex without altering their orientations.

The duplicate edges between the resultant vertices are also deleted unless their orientations are

different. The delays to be assigned to the links between the processors in the target array are

determined by algebraically summing them to zero around each loop of oriented edges much like

the voltages of branches within a loop add up to zero in an electrical circuit. As we shall see

subsequently, satisfying these delay equations simultaneously leads to processor arrays with very

simple processing elements. The determined delay values are used to schedule the arrivals of the

inputs. The exact locations at which the inputs enter a target array are determined in part by

the manner in which the computation vertices are partitioned and assigned to the processors in

the target array. A more formal presentation of the mapping procedure is given in [Shen 1987,

Shen and Oruç 1989]; the following example provides a brief description.

Figure 1 depicts a program graph with four computation vertices, a, b, c, d. Partitioning them into

sets {a, b, c} and {d} results in the target array with two processors P and Q, also shown in the

figure. The computation vertices a, b, and c are assigned to processor P , and computation vertex
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d is assigned to processor Q. These assignments dictate that inputs x, y, and z enter processor P

in the order shown and with delay d1 between x and y, and delay d2 between y and z. On the

other hand, input w enters processor Q d3 clock ticks after y enters P to allow the required time

for the transmission of the data from processor P to processor Q along the link that connects the

two. Thus, a key constraint in assigning the computation vertices to processors and scheduling

the inputs for entry is that the processors fire their computations only when they have all of

their inputs available. Furthermore, processors have no decision capability, implying that they

repeatedly execute the same computation without knowing what their inputs are. All they know

is that they must compute whatever they see at their inputs at predetermined beats of time, for

example, t=1 second., t=3 seconds, t=5 seconds and so on. When a program graph does not

contain any loops of oriented edges, this constraint can easily be enforced by assigning each link

the minimum delay it can tolerate. When it does, we assign the delays to the links by summing

the delays to zero around each loop of oriented edges and simultaneously satisfying the resulting

equations.

In the following sections this procedure will be used to synthesize three systolic contractions of

the row-column decomposition algorithm.

3. The Row-column Decomposition Algorithm

In its most general form, the DFT of an M-dimensional sequence, x(n1, n2 . . . ,

nM ), is expressed as [Dudgeon and Mersereau 1984]

y(k1, k2, . . . kM ) =
∑

n1,n2,...,nM

x(n1, n2, . . . , nM )Wn1k1
N1

Wn2k2
N2

. . .WnMkM
NM

, (1)

where indicies ni, ki run over the domain [0, Ni − 1], 1 ≤ i ≤ M and Wniki
Ni

= exp(−j 2πniki
Ni

) are

complex exponentials.

Several fast algorithms are known for efficiently computing this weighted sum. Among them, the

row and column decomposition algorithm is highly modular, that is, one can compute the DFT

of an M-dimensional signal by carrying it out M times over the indices nM , nM−1, . . . , n2, n1 in an

iterative manner. For example, if M = 2, then

y(k1, k2) =
∑

0≤n1≤N1−1

∑
0≤n2≤N2−1

x(n1, n2)Wn2k2
N1

Wn1k1
N2

, (2)

or if we let

G(n1, k2) =
∑

0≤n2≤N2−1

x(n1, n2)Wn2k2
N2

, (3)

then

y(k1, k2) =
∑

0≤n1≤N1−1

G(n1, k2)Wn1k1
N1

. (4)
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Thus we can compute y(k1, k2) in two steps: First compute Equation (3), then compute Equa-

tion (4). Although both sums are computable, they are not in the best form to evaluate since

we need to simplify the weights Wn1k1
N1

and Wn2k2
N2

, that is, compute n1k1 mod N1 and n2k2 mod N2

when n1k1 ≥ N1, and n2k2 ≥ N2. This problem can be avoided if we use Horner’s rule of summation

and rewrite these sums recursively as given below:

Initial Step:

G(0)(n1, k2) = 0, 0 ≤ n1 ≤ N1 − 1, 0 ≤ k2 ≤ N2 − 1;

y(0)(k1, k2) = 0, 0 ≤ k1 ≤ N1 − 1, 0 ≤ k2 ≤ N2 − 1.

Recursive Steps:

Phase 1: (Compute G(n1, k2))

for n2 = 0 to N2 − 1 do

G(n2+1)(n1, k2) := G(n2)(n1, k2)Wn2k2
N2

+ x(n1, N2 − n2 − 1).

Phase 2: (Compute y(k1, k2))

for n1 = 0 to N1 − 1 do

y(n1+1)(k1, k2) := y(n1)(k1, k2)Wn1k1
N1

+G(N1 − n1 − 1, k2).

Notice that we now need only the weights W ki
Ni

; 0 ≤ ki ≤ Ni − 1, 1 ≤ i ≤ 2 to carry out the

algorithm. It will be assumed that these weights are precomputed and stored in a memory device.

This way, they can be accessed directly without any address computation since we need not

compute n1k1 mod N1 and n2k2 mod N2 anymore. This assumption is not unreasonable given that

a storage device with O(N1 +N2) words should suffice, and that the original problem size, N1N2,

is an order of magnitude greater than O(N1 + N2). In view of this assumption, the row-column

decomposition algorithm for a two-dimensional DFT requires N1N
2
2 multiply-add operations for

the first phase, and N2
1N2 for the second phase, a total of N1N2(N1 +N2) steps.

These formulas generalize to M dimensions in a straighforward way; the DFT of a N1×N2×. . .×NM
sample can be computed using the row-column decomposition algorithm in N1N2 . . .NM (N1 +N2 +

. . . +NM ) multiply-add steps. If N1 = N2 = . . . = NM = N, then the total number of multiply-add

operations becomes MNM+1. It should be noted that, from Equation (1), the direct computation

of an M-dimensional DFT needs (M + 1)N2M steps (NM additions and MNM multiplications

for each of the NM instances of the M-tuple k1k2 . . . kM). Thus, the row-column decomposition
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method reduces the total number of steps by a factor of O(NM−1), which is considerable. However,

this is still too slow for large values of M , and we need to resort to parallel schemes.

The parallel schemes we shall describe in subsequent sections are based on systolic processor

arrays [Kung and Leiserson 1980]. To map the row-column decomposition algorithm on a systolic

array, we first represent each phase of the algorithm by a program graph, as shown in Figure 2.

In Figure 2(a), vertical and oblique lines represent inputs x(n1, n2), 0 ≤ n1 ≤ N1−1, 0 ≤ n2 ≤ N2−1,

and complex exponentials W k2
N2
, 0 ≤ k2 ≤ N2 − 1, respectively. Horizontal lines represent partial

sums, G(n1, k2), which will be used as an input sequence in the next phase of computation. Each

computation vertex multiplies its horizontal and oblique inputs, adds this product to its vertical

input, and sends the result along the horizontal edge to the next vertex. Thus G(n2+1)(n1, k2) :=

G(n2)(n1, k2)W k2
N2

+ x(n1, n2) is evaluated along the horizontal path of N2 computation vertices

(N2 = 3 in Figure 2(a)), which starts with source vertex G0(n1, k2) and ends with destination

vertex GN2(n1, k2).

Figure 2(b) shows the program graph for the second phase of the algorithm. In this case, the

vertical and oblique lines represent intermediate results G(n1, k2), 0 ≤ n1 ≤ N1 − 1, 0 ≤ k2 ≤ N2 − 1,

and complex exponentials W k1
N1
, 0 ≤ k1 ≤ N1 − 1, respectively. The horizontal lines represent the

final sums y(k1, k2), which are the desired results. Observe that the program graphs in Figure 2(a)

and 2(b) each represent a one-dimensional DFT. In general, the DFT of an M-dimensional input

can be represented by M program graphs where the first graph describes the one-dimensional

DFT of the input along the first axis, the second graph describes the one-dimensional DFT along

the second axis, and so on.

4. Row-column Decomposition on Systolic Arrays

This section describes how to map the program graph given in Section 3 on three systolic arrays

with linear, rectangular, and hexagonal geometries. In each case, we will establish that the given

design asymptotically achieves the highest speed up possible, and therefore, is asymptotically

optimal. These designs will later be extended to M-dimensional transforms in Section 6.

Linear Array Implementation

First, consider the linear array implementation. By starting out with the program representation

of the row-column decomposition algorithm, we can obtain a linear processor array by grouping

the computation vertices which fall on the vertical lines as shown in Figure 3. For an N1 × N2

sequence, this results in a linear array with N1 + N2 − 1 processors as illustrated in Figure 4 for

N1 = N2 = 3. The processors are labelled Pi, 0 ≤ i ≤ N1 + N2 − 2 where P0 denotes the rightmost

processor and PN1+N2−2 denotes the leftmost processor.
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Figure 2. A program graph for the row-column decomposition algorithm.
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Figure 3. A contraction which results in a linear array.

The row-column algorithm is carried out by this array in two phases. In the first phase, all inputs

x(i, j) for which i+ j = k are fed into processor Pk in ascending row order, that is, the entries with

the smallest row index first, the entries with the next smallest row index next, and so on. This is

in keeping with the order among x(i, j) as established by the time paths of Figure 3(a). Moreover,
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Figure 4. Row-column decomposition on a linear array.

each x(i, j) is fed into the array N2 times since each processor needs to execute N2 computation

vertices per each group of horizontal lines in the original program.

As a second group of entries, the weights W i
N2
, 0 ≤ i ≤ N1 − 1, enter the array through P0 and

proceed to the left at the same speed as x(i, j) but with N2−1 times the delay between consecutive
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entries in x (twice for the processor array of Figure 4). The elements of G enter the array at

processor PN1+N2−1 and march to the right one clock tick at a time. The increase in the delays

between consecutive entries in the weight sequence is necessary for the correct timing of the

computations at the processors and is accomplished by the delay elements inserted between

consecutive processors. This can be seen by examining a loop of delays shown in heavy lines in

Figure 3. As stated in Section 2, for the target array to be systolic, the algebraic sum of the

delays in every loop of edges in the corresponding program graph must be zero. Using this fact

we can write for the loop shown in Figure 3(a)

d1 + d2 + d3 − d4 − d5 = 0. (5)

Furthermore, we let d1 = d2 = d3 = 1 in order to make the delays between the consecutive entries

in the x sequence equal. This then leads to

3− d4 − d5 = 0, (6)

which we can use to adjust the delays between the elements in the G(i, j) and Wn2
N2

sequences. In

the linear array of Figure 4, we let d4 = 1 and d5 = 2 although it is possible to have other values

for d4 and d5 as long as this equation is satisfied. Also, note that for an N1 ×N2 input sequence,

Equation (6) generalizes to N2 − 1− d4 − d5 = 0.

The arrivals of the inputs at the processors in Figure 4 are scheduled to meet the delays determined

above. The elements of x are skewed as they enter the processors. Similarly, the elements of G are

also skewed N1 clock ticks as they enter the array through processor PN1+N2−1. The computations

in the second phase proceed similarly.

As for the time complexity, the total number of clock ticks to complete the first phase can be

computed directly from the arrivals of the inputs at the processor in the middle, that is, processor

PN2−1. It takes N1 +N2 − 1 clock ticks for the first input to arrive and thereafter N1N2 clock ticks

for the last input to arrive at this processor. At this time, the last element in the G sequence

also arrives at PN2−1 and needs N2 clock ticks to exit from the rightmost processor. Adding these

together, we have N1 + 2N2 − 1 +N1N2 clock ticks.

The second phase of the algorithm is identical to the first one, except that the G sequence

assumes the role of x, and y replaces G as output. The total time Tlinear to compute both phases

of the row-column decomposition algorithm on a linear array with N1 + N2 − 1 processors then

becomes

Tlinear = 2(N1N2 + 2N1 +N2 − 1). (7)
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Let Slinear denote the speedup of the linear array over the sequential implementation of the

row-column decomposition algorithm. Since it takes N1N2(N1 + N2) steps to perform the same

algorithm on a single processor, we have

Slinear =
N1N2(N1 +N2)

2(N1N2 + 2N1 +N2 − 1)
. (8)

If N1 = N2 = N , then

Tlinear = 2N2 + 6N − 2 (9)

and

Slinear =
2N3

2N2 + 6N − 2
= O(N). (10)

This is asymptotically optimal since a total of 2N − 1 processors is used.

The linear array described above is one of many arrays which can be obtained from the program

graph of Figure 2. As another possibility, suppose that we assign all the N1N2 computation vertices

within each horizontal block in Figure 2(a) to the same processor. This can easily be seen to

lead to a linear array with N1 processors. Likewise, by grouping the computation vertices in each

horizontal block in Figure 2(b), we obtain a linear array with N2 processors. Similarly, when all

computation vertices in each diagonal block are assigned to the same processor, another linear

array may be obtained. A detailed discussion of these and other linear array implementations will

be deferred to another place. It suffices to say that these two implementations also result in a

linear speedup as in the linear array given in Figure 4.

Rectangular Array Implementation

While the linear speedup is the best possible for a linear array implementation of the row-

column decomposition algorithm, it only reduces the total computation time to O(N1N2) from

O(N1N2(N1 +N2)). More can be done by using arrays with O(N1N2) processors. To form such an

array, we must partition the computation vertices in the program graph in Figure 2 into roughly

O(N1×N2) processors. One possibility is as shown by the heavy lines in Figure 5 for N1 = N2 = 3.

In this case, each of the two phases of the algorithm is contracted along the antidiagonal paths

to obtain the rectangular arrays of processors shown in Figure 6. The number of processors is

N2 ×N2 for the first phase and N1 ×N1 for the second phase. When N1 = N2 = N , both phases

need N2 processors. As for the assignment of computation vertices to the processors, all com-

putation vertices on the i-th antidiagonal from the top left-hand corner where 0 ≤ i ≤ N1N2 − 1

are assigned to the processor in row 1 + bi/N1c and column i mod N2 in the target array. As can

be seen from Figure 6, only the entries of x and G matrices move in the first phase and similarly

only the entries of y and G move in the second phase. The weights are stored in registers local
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Figure 5. A contraction which results in a rectangular array.

to the processors in both phases. Also from the figure, it is obvious that the delays between the

elements of x must be the same as the delays between the elements of G for the first phase, and

similarly, the delays between the elements of y and those between the entries of G must be the

same for the second phase. As for the arrivals of x and G matrices at the inputs of the array, it
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is easily seen that they need to be skewed as shown in Figure 6 to achieve the correct timing of

computations at the processors.

With these facts, it takes 2N1 − 1 +N2 steps to complete the first phase, and 2N2 − 1 +N1 steps
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to complete the second phase, and hence

Trectangular = 3(N1 +N2)− 2 (11)

steps to run the overall algorithm on an N2×N2 rectangular array of processors for the first phase

and an N1 ×N1 rectangular array of processors for the second phase. It follows that the speedup

over the single processor implementation is

Srectangular =
N1N2(N1 +N2)
3(N1 +N2)− 2

. (12)

If we assume N1 = N2 = N , then

Trectangular = 6N − 2 (13)

and

Srectangular =
2N3

6N − 2
= O(N2). (14)

This again is asymptotically optimal as in the linear processor array case since a total of N2

processors is used.

Another rectangular array implementation can be obtained by mapping each row of computation

vertices to a different processor. In this case the horizontal inputs, –entries of G matrix in the

first phase, and those of y matrix in the second phase– must be made stationary and stored

in local memories of the processors. This, obviously, doubles the memory space needed by the

earlier solution when N1 = N2 = N , since the earlier solution needs to store only the weights W i,j
N

for both phases of the algorithm.

Hexagonal Array Implementation

To implement the row-column decomposition algorithm on a hexagonal array of processors, we

partition the computation vertices as shown in Figure 7 for N1 = N2 = 3. The resulting graph

can then be contracted into a processor arrray (see Figure 8). It should be obvious that after

the contraction, each processor vertex ends up having six distinct adjacent neighbors and thus

can be modelled as a hexagonal cell. It can also be verified that the target array contains

N1N2 + (N2− 1)(N1 +N2− 1) processors for the first phase and N1N2 + (N1− 1)(N1 +N2− 1) for the

second phase. When N1 = N2 = N , both processor counts reduce to 3N2 − 3N + 1.

Now, to describe which computation vertex is mapped to which processor, consider the αth

column of computation vertices where 0 ≤ α ≤ N1 +N2 − 1 in either graph in Figure 7. These can

be partitioned into some β N2×1 column matrices where 0 ≤ β ≤ N1−1. Let these column matrices

be denoted by Ck, 0 ≤ k ≤ β−1 where C1 is the top most matrix, C2 is the next topmost matrix and
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Figure 8. Row-column decomposition on a hexagonal array.

so on. Let C = [CT1 C
T
2 ...C

T
α ]. Then all computation vertices on each antidiagonal of C are mapped

to the same processor in the target array. More specifically, let P0,α, P1,α, ..., Pβ+N2−1,α denote the

processor vertices in the αth column of the target array, where P0,α is the topmost processor

vertex, P1,α is the next topmost processor vertex, and so on. Then all computation vertices on
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the ith antidiagonal of C from the top righthand corner are assigned to Pi,α, 0 ≤ i ≤ β +N2 − 1.

As in the earlier two cases, the row-column decomposition algorithm is executed in two phases.

During the first phase the hexagonal array computes a matrix of partial sums G by performing

a one-dimensional DFT with respect to index n2. During the second phase, a one-dimensional

DFT is performed on G with respect to index n1. Matrix y is then the desired two-dimensional

DFT of the input sequence x.

As for the time delays between the entries in the input and output sequences, consider the loop

shown in Figure 7(a). Given the orientations of the edges in the loop, we can write d1+d2+d3−d4 =

0. If we assume that the entries of the input, output, and weight sequences all move at the same

speed between the processors, we can let d1 = d2 = d3 = 1 which then implies d4 = 3. It follows

that the computations consecutively scheduled on each processor must be executed with three

delay units in between. This accounts for the delays between the entries of the input and output

sequences as shown in Figure 8. It can further be shown that the first phase of the algorithm

needs 3(N1 − 1) + 1 steps for the last entry in the G sequence, that is, G(N1 − 1, N2 − 1) to enter

the array, and N1 + N2 − 1 steps thereafter to move out along the main diagonal which adds up

to 4N1 + N2 − 3 steps. Similarly, the second phase takes 4N2 + N1 − 3 steps, and hence the total

number of steps is

Thexagonal = 5(N1 +N2)− 6, (15)

and the speedup over the single processor implementation is

Shexagonal =
N1N2(N1 +N2)
5(N1 +N2)− 6

. (16)

If N1 = N2 = N , then

Thexagonal = 10N − 6 (17)

steps overall, and

Shexagonal =
2N3

10N − 6
= O(N2). (18)

Even though the speedup in this case is worse than the speedup for the rectangular array in exact

terms, it is still asymptotically optimal since O(N2) processors are used. In fact, one can reduce

the constant multiplying N in Equation 17 by using other hexagonal array contractions of the

row-column decomposition algorithm. However, this does not change the asymptotic complexity

of such contractions which is O(N).

5. Alignment of Intermediate Results

In the last section, we described three processor arrays for the row-column decomposition al-

gorithm without discussing how to align the intermediate results between the two phases of
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Figure 9. Memory organization for the linear array implementation.

the algorithm. In most array processors, the data between successive phases of an algorithm

are aligned by an interconnection network placed between the system’s memory and processors

[Lawrie 1975, Stone 1971]. However, the three systolic arrays described above do not need such

a network, and as we discuss below, a simple LIFO memory is sufficient for aligning the data

between the two phases of the row-column decomposition algorithm.

First, consider the linear array implementation and, for simplicity of discussion, let N1 = N2 = N.

At the end of the first phase, the G sequence leaves the array as a single stream of outputs which

should be organized into a (2N − 1) × N matrix as it enters the array in the next phase. Notice

that the elements with distinct indices in each column are computed in reverse order in the first

phase and hence must be realigned for the second phase. A total of 2N − 1 LIFO memories,

each with N locations, can provide the desired alignment of the G sequence (see Figure 9). It is

possible to save some memory space by observing that not all processors need the same number
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of inputs, but this does not change the overall storage complexity of the solution, which is O(N2).

In addition, a demultiplexer is needed to select the right LIFO unit in storing the entries of G.

The control circuitry for moving the intermediate results back to the array through the LIFOs is

a simple exercise in sequential circuit theory and will not be presented here. It suffices to observe

that the data which leaves the array in the first phase is needed in the reverse order in the second

phase. To select between the x and G sequences for the vertical inputs in the two phases, we can

connect a multiplexer circuit to each vertical input of the array and multiplex these two sequences

as shown in Figure 9.

Next, consider the rectangular array implementation. This time the intermediate results become

available in parallel and hence can be stored simultaneously without using a demultiplexer circuit
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as shown in Figure 10. However, note that the elements of G leave the array in the first phase

in reverse order as in the linear array case, and hence LIFO memories are needed in this case as

well. This time, however, we need only N LIFOs each with N locations.

Finally, for the hexagonal array, Figure 8 reveals that, as in the first two cases, the G sequence

computed in the first phase must be reversed before it enters the array for the second phase.

It can be seen that a total of 2N − 1 LIFOs, each with N locations, is sufficient to carry out

this alignment. Like the rectangular array, no demultiplexer is required since the results become

available simultaneously. It follows that the total storage complexity of this implementation is

the same as that for the linear array.

6. Extension of Results to Other Arrays and Higher Dimensions

So far we have discussed the processor array implementations of one and two dimensional DFTs.

It should be obvious that the mapping technique is not limited to these dimensions since the

contraction of the program graph and task scheduling are carried out for each phase separately,

and will be identical for all phases except that the inputs will be different. Thus for an M-

dimensional DFT, we use the same program graph and the same array –be it linear, rectangular,

hexagonal, or any other– with the same timing. The only part which is involved is the alignment

of intermediate results between the M phases of the algorithm. The key observation is that we

now have M summations whose operands must be multiplexed and permuted into the inputs

of a single target array. [Gertner and Shamash 1987] described a general scheme to align the

intermediate results by a rotation network which essentially transposes the intermediate results

between two consecutive phases. In our designs, we need not use such a network since the

transposition, or reversal of the outputs from one phase to the next phase, can be handled with

a minor modification of the LIFO memories used in the two-dimensional DFT scheme described

above. Rather than have a single LIFO for each vertical input, we now use a pair of LIFOs,

between which we alternate the data reversals and feeds. During a given phase, one will be filled

with the outputs from the array needed for the next phase, while the other feeds the vertical

input to which it is connected with the desired sequence of elements. In the next phase, the roles

of the two LIFOs are interchanged so that the one that was filled during the last phase will now

feed the data for the vertical input, and the other will be filled with the outputs needed for the

following phase. Obviously, this modification does not alter the overall order of complexity of the

alignment hardware, and the bounds which hold for the two-dimensional DFT case remain intact.

As for other processor array implementations of the row-column decomposition scheme, it should

be obvious from the examples given in Section 4 that one can contract the program graphs in

Figure 3 to many other processor arrays by defining other partitions of computation vertices.
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We mentioned a few in Section 4, and many more arrays can be obtained. In general, we can

view the computation vertices of the corresponding program graph as a set S of all points in a

three-dimensional finite vector space, i.e., S = {(x, y, z) : x, y, zε{0, 1, . . . , N − 1}} which contains N3

points. With this representation, any contraction of the program graph can then be viewed as a

mapping of S into a set P of processors where |P | = |S|. For example, if P = {p1 : 0 ≤ i ≤ N3},
then f : S → P defined by f(x, y, z) = pz projects all computation vertices on the z = 0 plane to

p0, those on the z = 1 plane to p1, and so on. This projection describes a contraction of the

original program graph to a linear array with N processors. Other processor arrays can be defined

similarly by using other maps from S to P . The total number of such maps can easily be shown

to be N3N3
for a two-dimensional DFT, and more generally, N (M+1)NM+1

for an M-dimensional

DFT. It can also be shown that not all of these maps lead to systolic arrays, and characterization

of those which result in systolic arrays remains an interesting open problem.

7. Concluding Remarks

We have examined systolic contractions of multidimensional discrete Fourier transforms with a

particular focus on two-dimensional DFTs. It is established that for an M-dimensional DFT,

any such contraction can be represented by a mapping of an (M + 1)-dimensional finite vector

space into itself. In more specific terms, three such contractions leading to linear, rectangular,

and hexagonal processor arrays have been described. Each of these achieves asymptotically

optimal speed up over a single processor implementation, even though the linear array takes

O(N2) time with O(N) processors, and the other two take O(N) time with O(N2) processors. It

should be noted that these time complexities can be reduced to meet the AT 2 lower bound given

in [9]. Nonetheless, this requires a butterfly network which is very costly to lay out in most

circuit technologies including VLSI. Thus, the systolic implementations of multidimensional DFT

described in this paper may provide a good compromise between speed and cost.

There remain several questions which are worth exploring. We have given only three sytolic

implementations of DFTs, and briefly mentioned about a few other possibilities. There are many

more processor arrays which can be synthesized from the program graph of the row-column

decompisition algorithm using the mapping technique given in the paper. In particular, it will be

interesting to determine if there exists a systolic contraction of the row column decomposition

algorithm which takes O(logN) steps for a 2-dimensional sequence of size N×N. Another direction

to take is to study other transforms in the context of our mapping procedure. The DFT typifies

a wide range of discrete transforms, but there are other discrete transformations such as binomial

sums which should be examined separately. Finally, it will be worthwhile to examine systolic

contractions of the fast Fourier fransform (FFT) algorithm. Only a few efforts have been reported
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recently on parallel FFT schemes, and a lot needs to be done to reveal the tradeoffs available

between cost and time in various implementations.
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