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ABSTRACT

Permutation switching is a critical element of many computer and communication
systems. Within a group theoretical framework, this paper provides an indepth study
of permutation networks, and examines the tradeoffs between network cost and set
up or routing time. It introduces the notion of an (n, r, q)-permuter, i.e., a permuter
with n inputs and r outputs that can realize all q! permutations between any q of its
n inputs and q of its r outputs, where q ≤ r ≤ n. This generalization accounts for a
switching environment where the maximum number of simultaneous paths may be less
than the actual number of inputs and outputs. It is shown that the previously known
designs, such as Clos networks result in inferior realizations of (n, r, q)-permuters. Using
concentrators, the paper gives new network designs that lead to (n, r, q)-permuters with
asymptotically minimum cost and quadlogarithmic routing time for all q ≤ r. More
specifically, for q = O(lg n) and q = O(nε), where 0 < ε < 1, an (n, r, q)-permuter with
O(n) switches is given1. For the same values of q, Clos designs require at least n lg lg n
and n lg n switches. Another advantage of the new designs is that they do not require
complex routing schemes as Clos networks since they are inherently self-routing. It is
also established that, when q = n = r, these same designs can be extended to permuters
with O(n lg n) switches.

Index Terms: Clos network, concentrator, coset double coset, expander, permuter,
permutation network, superconcentrator, superpermuter, symmetric group.

∗This work is supported in part by the National Science Foundation under Grant No: CCR-
8708864.

1All logarithms in this paper are in base 2, and lgn denotes log2 n.
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1 Introduction

In many computer and communication systems, permutation maps are used to char-

acterize the interconnections between various components of the system [8,14]. In this

paper, we undertake a comprehensive investigation of the ways in which permutation

maps can be realized in terms of a particular kind of a connector2 that is commonly

referred to as a permutation network in the literature. Here, we will call it a permuter

for notational convenience, and consider three types of permuters. The first one, to

be called an n-permuter, is a connector with n inputs and n outputs and can permute

its inputs onto its outputs in all n! ways. The second type of permuter we consider is

a connector with n inputs and r outputs, where r ≤ n, and can realize all r! permu-

tations between any r-subset of its n inputs and its r outputs. We will refer to this

permuter as an (n, r)-permuter. Finally, the third type of permuter we consider is a

connector with n inputs and r outputs, called an (n, r, q)-permuter, which can realize,

for some positive integer q ≤ r ≤ n, all q! permutations between any q-subset of its n

inputs and any q-subset of its r outputs. The parameter q is called the bandwidth of

the permuter.

All previously known permuters are n-permuters, and with the exception of cellu-

lar permutation arrays [12], they all are based on the well-known 3-stage network of

Clos [2,7]. It is also possible to obtain n-permuters by using shuffle-exchange connec-

tors [19,24,27], but these connectors can essentially be derived from Clos designs. The

main motivation for providing an extension to n-permuters stems from a possibility

that in certain computations, it may be sufficient to have a smaller bandwidth than n.

For example, one can envision a matrix algebra computer with n2 memory elements

and n processors where the processors may be limited to access rows, columns, diago-

nals and
√
n×√n submatrices. In a more flexible setting, one may increase the number

of processors to n2, but still limit the size of access to n. Obviously, these two parallel

organizations can be modeled in terms of (n2, n)-permuters and (n2, n2, n)-permuters.

Accordingly, it is of both theoretical as well as practical interest to determine if and

how the reduction in bandwidth impacts the cost of designing permuters. A major

result of this paper is that for q = O(nε), where 0 < ε < 1, one can design (n, r, q)-

2The definition of a connector will be formally given in Section 2. For now, the reader may think
of it as a network of crossbar switches.
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permuters with O(n) cost, and O(lg2 n) set-up, or routing time. As a comparison, for

the same value of q, Clos designs require O(n lg n) cost, and O(lg4 n/ lg lg n) routing

time. A similar result is also given for (n, r)-permuters. That is, an (n, r)-permuter

with O(n + r lg r) cost and O(lg n + lg2 r) routing time is presented. An extension of

Clos network in this case requires O((n+r) lg r) cost and O(lg4 n/ lg lg n) routing time.

Unlike 3-stage Clos connectors, most of our permuter designs make use of concentrators

and superconcentrators [1,21,10] as their building blocks. The need for such connectors

in designing permuters arises rather naturally when we consider the problem in a group

theoretical framework. In fact, the application of group theory to connector design is

not new. Let Σn denote the set of all permutations over a set of n elements, i.e.,

the symmetric group of degree n. In [3], Benes gave a proof of rearrangeability for a

3-stage Clos connector by using the fact that any permutation group containing all

transpositions, i.e., pairwise exchanges among n elements is Σn. In another paper [4],

he showed that a 3-stage Clos connector with square switches can be algebraically

represented by a product of two double cosets of certain impritimive subgroups of

Σn. In a subsequent paper [5], Benes used this fact to obtain some new rearrangeable

connectors. More recently, it was established in [16,17] that every right (or left) coset

decomposition of Σn induces a 2-stage n-permuter. Unlike the product expression

used in [3], this latter decomposition is based on the fact that any finite group can be

expressed as a union of pairwise disjoint cosets of any of its subgroups.

In this paper, we further develop these ideas by considering double coset decompositions

of Σn rather than its right and left coset decompositions. The use of double cosets was

advocated earlier in a conference paper [18]. The main contrast between the connectors

that were derived there, and most of those given here is the use of linear cost self-

routing concentrators and superconcentrators recently constructed in [9,10]. Linear

cost concentrators and superconcentrators have long been known, but the lack of fast

schemes to route them prevented their use to obtain efficient permuter constructions.

Table 1 lists all nine permuter designs described in the paper. They are identified by

their numbers, and types along with their costs, depths, routing costs, and routing

times. Here, cost represents the number of constant fan-in switches and depth refers

to the largest number of such switches on a path from an input to an output of a

connector. Routing cost accounts for any additional circuitry, or hardware, also in
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Type/Name Design Cost Depth Routing Cost Routing Time

n,G, 1 3-stage O(n1.58) O(n) O(n1.58) O(lg2 n)
n,GS, 2 3-stage O(n lg n) O(lg2 n) O(n lg n) O(lg2 n)

n,G, 3 3-stage O(n1+2 lg−
1
2 n) O(nlg−

1
2 n) O(n1+2 lg−

1
2 n) O(lg2.5 n+ n1/ lg

1
2 n)

n,G, 4 3-stage O(n lg n) O(lg n) O(n lg n) O(lg4 n/ lg lgn)
n, S, 6 2-stage O(n lg n) O(lg2 n) 0 O(lg2 n)
(n, r), G, 5 3-stage O((n+ r) lg r) O(lg r + lg n/r) O(n lg n) O(lg4 n/ lg lgn)
(n, r), S, 7 2-stage O(n+ r lg r) O(lg n+ lg2 r) 0 O(lg n+ lg2 r)
(n, r, q), S, 8 3-stage O((n+ r) lg q) O(lg nr/q + lg2 q) 0 O(lg nr/q + lg2 q)
(n, r, q), S, 9 3-stage O(n+ r + q lg q) O(lg nrq2) 0 O(lg nrq2)

Table 1: Various permuters described in the paper.

terms of constant size switches, over and beyond network’s own cost needed to compute

the switch settings, and the routing time specifies the time it takes the routing hardware

to compute the switch settings in terms of instruction steps (path delays) of constant

fan-in processing elements (logic circuits). The word design refers to a particular

arrangement of switches, and these arrangements are broadly classified as 2-stage and

3-stage designs, indicating that a connector is a cascade of either two or three stages

of smaller size connectors prior to any decomposition. Another distinction we make

among the nine designs is their routing schemes. Some permuter designs use global

routing as indicated by the letter G, some use self-routing as indicated by S, and one

uses a combination of the two schemes as indicated by GS. The first two permuters are

derived from double coset decompositions of Σn using a pair of symmetric subgroups

of Σn while the next three are derived from double coset decompositions of Σn using

products of symmetric subgroups of Σn. The last of these is self-routing. The next

two designs are (n, r)-permuters, the first one with global routing, and the second

with a self-routing scheme. The last two designs are (n, r, q)-permuters and are both

self-routing.

The remainder of the paper is organized as follows. The next section summarizes

the basic notions that are used throughout the paper. Section 3 describes the double

coset decomposition that yields the first two connectors. Section 4 computes the cost

and depth of these two connectors when they are recursively decomposed. Section 5

describes the next two permuters while Section 6 describes Permuter 5. Section 7

presents the permuter designs using concentrators. Section 8 presents the (n, r, q)-
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permuter designs, and the paper is concluded in Section 9.

2 Basic Concepts

This section gives definitions of various connectors that are used throughout the paper.

It also briefly mentions the basic relevant algebraic facts. The reader may refer to

Appendix B for a glossary of notations used in the paper.

Definition 1:

(i) An elementary (n, r)-connector, or (n, r)-switch is a complete bipartite graph

with n distinguished vertices, called inputs, and r distinguished vertices, called

outputs. In switching terms, an (n, r)-switch is a crossbar with n inputs and r

outputs, and nr crosspoints.

(ii) An (n, r)-connector where r ≤ n, is a directed acyclic multigraph with n distin-

guished source vertices, called inputs, r distinguished sink vertices, called outputs,

and each of whose remaining vertices is either a switch, or connector itself. ||

Definition 2: Let q be a positive integer ≤ r. An (n, r)-connector is called an (n, r, q)-

permuter if it can realize all q! permutations between any q of its inputs any q of its

outputs. When q = r, an (n, r, q)-permuter is called an (n, r)-permuter, and when

q = n = r, it is called an n-permuter. ||

Definition 3: An (n, r)-connector is called an (n, r)-concentrator if, for i = 1, 2, . . . , r,

it can connect any i of its inputs to some i of its outputs. It is called an (n, r)-

superconcentrator, if it can connect any i of its inputs to any i of its outputs. ||

Let G be a permutation group acting on a set N = {1, 2, . . . , n}, i.e., each element

of G defines a permutation from N onto itself. For any two permutations g1, g2 ∈
G, define g2g1 as the permutation obtained by composing g1 with g2, i.e., for each

i ∈ N, let g2g1(i) = g2(g1(i)). Let H1 and H2 be any two subgroups of G. A double

coset of the ordered pair of groups (H1, H2) in G is defined as the set of elements

H2gH1 = {h2gh1 : h1 ∈ H1, h2 ∈ H2} where g is an arbitrary but fixed element in G.

An important property that double cosets share with ordinary cosets is that any two

double cosets are either identical or disjoint. That is, we can write

G = H2g1H1 ∪H2g2H1 ∪ · · · ∪H2grH1 (1)
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Figure 1: The double coset representation of a connector.

where any two double cosets in the expression are disjoint. Thus, the decomposition is

unique for any ordered pair of subgroups (H1, H2) except for the choice of permutations

gi, 1 ≤ i ≤ r, that are the coset leaders of the decomposition. In fact, since H2giH1 =

H2g
′
iH1 for any g′i ∈ H2giH1, any permutation in H2giH1 can serve as a coset leader

for H2giH1.

As Figure 1 illustrates, the double coset decompositions of permutation groups are

algebraic analogs of connectors consisting of three stages. The first and third stages

realize the subgroups H1 and H2 respectively, and the center stage, that will be called a

double coset generator, realizes all the double coset leaders in the above decomposition

thereby making the entire connector realize G. In the remainder of the paper, we will

be concerned with connectors that realize the symmetric group of permutations so that

G is replaced by Σn in (1). However, nothing special is assumed about the subgroups

H1 and H2, and to each choice of H1 and H2, there corresponds a 3-stage connector

that realizes Σn.

3 Permuters Based on a Single Symmetric Subgroup

In this section, we present two n-permuters both of which result from a double coset

decomposition of Σn over a single symmetric subgroup. Accordingly, for a given m-

subset M of N, we let H1 = H2 = ΣM , where ΣM is the symmetric subgroup of Σn

consisting of all permutations which fix the elements in N−M. In connector terms, we

are to use two copies of an m-permuter to obtain an n-permuter as shown in Figure 2.

Since the design of an m-permuter is identical to the original problem, except for its

size, it will suffice to consider the design of the double coset generator only. This will

be accomplished by characterizing the double cosets of ΣM in Σn.

We first note that any permutation π ∈ Σn can expressed as

π = (πM,N , πN−M,N−M , πN−M,M) (2)
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Figure 2: An n-permuter formed from two m-permuters.

where

(i) πM,N is a mapping from M into N that coincides with π when the domain of π

is restricted to M, i.e., πM,N(i) = π(i), for all i ∈M,

(ii) πN−M,N−M is a mapping from N −M into N −M that coincides with π when

the domain of π is restricted to N −M and its range is restricted to N −M, i.e.,

πN−M,N−M(i) = π(i), for all i ∈ N −M for which π(i) ∈ N −M,

(iii) πN−M,M is a mapping from N−M into M that coincides with π when the domain

of π is restricted to N−M and its range is restricted to M, i.e., πN−M,M(i) = π(i),

for all i ∈ N −M for which π(i) ∈M.

To illustrate these maps, let N = {1, 2, 3, 4, 5, 6},M = {1, 2, 3}, and

π =

(
1 2 3 4 5 6
4 2 1 6 3 5

)

Then

πM,N =

(
1 2 3
4 2 1

)
, πN−M,N−M =

(
4 6
6 5

)
, πN−M,M =

(
5
3

)
.

It should be noted that these maps are not necessarily permutations. However, we can

define composition maps between πM,N , πN−M,M and each permutation πM ∈ ΣM as

πM,NπM(i) = πM,N(πM(i)) for all i ∈ M and πMπN−M,M(i) = πM(πN−M,M(i)) for all

i ∈ N−M. With these, we can then define, for any πM , π
′
M ∈ ΣM , the product πMππ

′
M

as (πM,NπM , πN−M,N−M , π
′
MπN−M,M). Accordingly, any permutation in the double coset

ΣMπΣM can be represented as in (2), and conversely any permutation that can be

represented as in (2) belongs to the double coset of π. Furthermore, the map πN−M,N−M

remains invariant (i.e., the same) over all permutations in the double coset of π, and

we have
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Theorem 1: ΣMπΣM and ΣMπ
′ΣM coincide in Σn if and only if πN−M,N−M =

π′N−M,N−M .

Proof: The condition is obviously necessary by the preceding discussion. To prove

that it is also sufficient, suppose πN−M,N−M = π′N−M,N−M . Then it must be that π and

π′ map the same elements from N−M into N−M, and hence, they also map the same

elements from N −M to M . Thus, there exists a permutation πM ∈ ΣM such that

π′N−M,M = πMπN−M,M . Furthermore, it is easy to see that, for any π′M,N , there exists a

πM ∈ ΣM such that π′M,N = πM,NπM . Thus, π′ = (πM,NπM , πN−M,N−M , πMπN−M,M), or

π′ ∈ ΣMπΣM . Since any two double cosets are identical or disjoint, ΣMπΣM = ΣMπ
′ΣM

and the statement follows. ||

The point of Theorem 1 is that the double cosets ΣMπΣM in Σn are in one-to-one

correspondence with the bijections between the u-subsets of N −M for all u such that

max(0, n− 2m) ≤ u ≤ n−m. The lower bound on u follows from the fact that when

n −m ≥ m, each π ∈ Σn must map at least n −m −m = n − 2m of the elements in

N −M into N −M ; since π is one-to-one, it cannot map more than m elements from

N −M into M. The union of all such double cosets then gives Σn, that is,

Theorem 2: Let α be the number of distinct double cosets of ΣM in Σn. The union

of any α double cosets ΣMπiΣM , i = 1, 2, . . . , α is Σn if and only if, to each bijection

πN−M,N−M between any two u-subsets of N −M where max(0, n− 2m) ≤ u ≤ n−m,
there corresponds a πi ∈ Σn that coincides with πN−M,N−M when its domain and range

are both restricted to N −M. ||

The number of distinct double cosets of ΣM in Σn is, therefore, given by

n−m∑
u=max(0,n−2m)

(
n−m
u

)(
n−m
u

)
u! (3)

where
(
n−m
u

)
is the number of u-subsets of N −M, and u! is the number of bijections

between any two such subsets3.

Now, consider the design of a connector that realizes this decomposition. We are

given two copies of an m-permuter, and we need to specify the structure of the coset

generator that is placed between these two permuters as shown in Figure 2. Theorem 2

3For all x ≥ 0,
(
x
0

)
is taken to be 1. The u = 0 case in Equation (3) amounts to double cosets whose

permutations map no element from N −M into N −M, and this can only be done in one way. Of
course, this happens only when n−m ≤ m, since otherwise, i.e., if n−m > m, then u ≥ n− 2m > 0.
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Figure 3: Permuter 1 (m ≥ n−m).

implies that, when u = n−m, the coset generator must realize (n−m)! permutations

between its bottom n − m inputs and bottom n − m outputs. These represent the

double cosets whose elements map all n−m inputs in N −M onto the n−m outputs

in N −M. An (n−m)-permuter suffices to realize all these (n−m)! permutations as

well as all bijections between any u-subset of the bottom inputs, any u-subset of the

bottom outputs when max(0, n− 2m) ≤ u ≤ n−m. Given this, the only problem that

remains is to distribute the outputs of this permuter and the left m-permuter upon the

inputs of the right m-permuter and the outputs in N −M. For this, we consider two

cases.

Case 1: m ≥ n − m. In this case, the coset generator is constructed as shown in

Figure 3. Since m ≥ n −m, no more than n −m of the left inputs can be permuted

onto the outputs at the bottom. Thus, connecting any n − m outputs of the left

m-permuter to the bottom n −m outputs suffices to realize any one-to-one mapping

between the left inputs and bottom outputs. These connections are arbitrarily specified

between the topmost n −m outputs of the left m-permuter and the bottom outputs,

since the left m-permuter may be used to bring any (n −m)-subset of the left inputs

upon any n−m of its outputs. Likewise, since no more than n−m inputs at the top

can be permuted onto the right outputs, it suffices to connect the n−m outputs of the

(n −m)-permuter to any n −m inputs of the right m-permuter. The outputs of the

(n−m)-permuter are also connected to the bottom outputs to accomodate up to n−m
connections between the top inputs and bottom outputs. Finally, the m outputs of the

left m-permuter are connected to the m inputs of the right permuter on a one-to-one

basis. Any permutation that maps all inputs on the left onto all outputs on the right
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will need all the m edges provided. These m edges also suffice when fewer than m

inputs are destined to outputs on the right. It, therefore, follows that

Theorem 3: The connector in Figure 3 realizes Σn for all m ≥ n−m. ||

Remark 1: This connector can be viewed as a simple extension of an n-input 3-

stage Clos connector with one of the two n/2-input connectors deleted from its first

stage as described in Waksman [26]. In fact, it becomes a Clos connector if we let

m = n−m = n/2, and cluster the edges in the center into (2, 2)-switches. ||

Case 2: m ≤ n−m. In this case, the permuter in Figure 3 cannot be used since, if each

of the m outputs of the left m-permuter is connected to a single output at the bottom,

some bottom outputs will be left out. Consequently, any permutation that maps any

inputs of the left m-permuter to those outputs cannot be realized by the connector.

Likewise, the (n−m)-permuter at the top has more outputs than the right m-permuter

has inputs, and so any one-to-one connection will leave some outputs of the (n−m)-

permuter unconnected to the right m-permuter. This problem can be solved by using

superconcentrators. As the following theorem establishes, using superconcentrators

renders the right m-permuter vacuous and leads to a 2-stage permuter design as shown

in Figure 4.

Theorem 4: The connector in Figure 4 realizes Σn for all m ≤ n−m.
Proof: Consider an arbitrary, but fixed permutation π ∈ Σn. We must show that all

three maps given in (2) can simultaneously be realized by this connector. Given the

(n−m)-permuter at the top, it must be obvious that πN−M,N−M can be realized. Once

πN−M,N−M is realized, then, using the unoccupied outputs of the (n − m)-permuter

along with the (n−m,m)-superconcentrator on the right, πN−M,M can also be realized.

Having realized these two maps, πM,N can be realized by considering it as comprising

two submaps: (i) πM,M , the map that coincides with πM,N when the range of πM,N is

restricted to M, and (ii) πM,N−M , the map that coincides with πM,N when the range of

the πM,N is restricted to N−M. Given them-permuter on the left, πM,M can be realized

simply by connecting the inputs through that m-permuter to their respective outputs

on the right. Finally, πM,N−M can be realized by (i) identifying its range of outputs

at the bottom, (ii) concentrating these outputs via the (n −m,m)-superconcentrator

to the unoccupied outputs of the m-permuter on the left, and then (iii) using that

permuter to complete the map. ||
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4 Recursive Realizations

In this section, we consider the complexities of recursive decompositions of the two

permuters described in the earlier section. We use four measures of complexity, one

for cost, one for depth, one for routing cost and one for routing time. Cost will

be tallied in terms of constant size switches, and depth will be taken as the largest

number of such switches from an input to an output. Routing cost will account for

any additional circuitry, or hardware, also in terms of constant size switches, over and

beyond network’s own cost needed to compute the switch settings, and the routing

time will give the time it takes the routing hardware to compute the switch settings in

terms of instruction steps (path delays) of constant fan-in processing elements (logic

circuits).

It will be assumed that elementary switches are implemented in terms of binary mul-

tiplexers and demultiplexers, as shown in Figure 5. For n inputs and r outputs, it

is easy to see that an (n, r)-elementary switch can be realized by attaching a binary

tree of r − 1 nodes and lg r depth to each input, and a binary tree of n − 1 nodes of

lg n depth to each output, and tieing the leaf nodes of the two sets of trees together.

Accordingly, an elementary (n, r)-switch will have αc(n(r − 1) + r(n − 1)) cost and

αd(lg n + lg r) = αd lg nr depth where αc and αd are some positive numbers indepen-
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dent of n, and r.

With these assumptions, let C1(n) and C2(n) denote the costs of Permuter 1 and

Permuter 2 and let D1(n), and D2(n) denote their depths, where n is the number of

inputs. Let Csuper(n −m,m) and Dsuper(n −m,m) denote the cost and depth of an

(n−m,m)-superconcentrator respectively. From Figures 3, and 4, the cost and depth

of the two connectors can then be expressed recursively as

C1(n) = 4αc(n−m) + C1(n−m) + 2C1(m); n/2 ≤ m < n (4)

C2(n) = 2Csuper(n−m,m) + C2(n−m) + C2(m); 2 ≤ m ≤ n/2 (5)

D1(n) = 2αd + 2D1(m); n/2 ≤ m < n (6)

D2(n) = Dsuper(n−m,m) +D2(n−m); 2 ≤ m ≤ n/2 (7)

where C1(2) = C2(2) = 4αc and D1(2) = D2(2) = 2αd. The 4αc(n −m) term in the

first recurrence accounts for the cost of multiplexer and demultiplexer devices switches

in the coset generator, and 2αd in the third recurrence represents the depth of the coset

generator in the first permuter. The cost of the connections in the coset generator of

Permuter 2 excluding the superconcentrators is ignored.

It is shown in Appendix A that the minimum solution of (4) is obtained when m = n/2,

in which case

C1(n) = 4αc(n
1.58 − n), (8)
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and for the same value of m, the solution of (6) gives

D1(n) = 2αd(n− 1). (9)

These values of cost and depth can be reduced to O(n lg n) and O(lg2 n) by using the

second permuter design. We first note that a self-routing (n−m,m)-superconcentrator

can be constructed with βc(n −m) cost, and βd lg(n −m) depth [9,10], where βc and

βd are small positive contants4. Substituting these into (5) and (7) we obtain

C2(n) = 2βc(n−m) + C2(n−m) + C2(m); 0 < m < n/2 (10)

D2(n) = βd lg(n−m) +D2(n−m); 2 ≤ m ≤ n/2. (11)

Letting m = n/2 in the above equations, and solving the resulting recurrences with

C2(2) = 4αc, and D2(2) = 2αd yields

C2(n) = βcn lg n− (βc − 2αc)n (12)

D2(n) =
βd
2

(lg2 n− lg n) + 2αd. (13)

Now we consider the routing cost and routing time of the two permuters whenm = n/2.

We adopt the routing algorithm given in [16]. First consider Permuter 1. To keep its

overall cost to O(n1.58), we shall fix the cost of the routing algorithm to O(n1.58). This

algorithm first determines, from any given permutation and its inverse, the settings

for the multiplexer and demultiplexer devices in the coset generator, next it computes

the submaps for the three n/2-permuters, and then recursively repeats the same steps

over each permuter. The multiplexer and demultiplexer devices can all be set in O(1)

steps by checking the most significant bits of the preimages of the bottom half of

outputs. The permutations of the n/2-permuters can be determined by this algorithm

in αt lg n/2 steps with n/2 simple processing elements, each of cost αr, where αr and αt

are positive numbers independent of n. Once these maps are determined all three n/2-

permuters can then be routed in parallel. So, if R1(n), and T1(n) denote, respectively,

the routing cost and routing time of Permuter 1 for n inputs, we have

R1(n) = αrn/2 + 3R1(n/2) (14)

T1(n) = αt lg n/2 + T1(n/2). (15)

4When the cost and depth of this superconcentrator are computed in terms of binary fan-in devices,
βc is about 10, and βd is about 4.
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The solutions of these recurrences with R1(2) = αr, T1(2) = αt give

R1(n) = αr(n
1.58 − n) (16)

T1(n) =
αt
2

(lg2 n− lg n) + αt. (17)

As for the second permuter, the routing scheme described for Permuter 1 can be used

to determine the permutations of its two n/2 permuters in αt lg n/2 time with n/2

processors, each of cost αr, in much the same way. Furthermore, the superconcentrators

in the coset generator can be self-routed as described in [9,10] in βt lg n/2 time, where

βt is a positive number independent of n. Hence, if R2(n) and T2(n) denote the routing

cost and routing time of Permuter 2 for n inputs, we have

R2(n) = αrn/2 + 2R2(n/2) (18)

T2(n) = (αt + βt) lg n/2 + T2(n/2). (19)

The solutions of these recurrences with R1(2) = αr, T1(2) = αt give

R2(n) =
αr
2
n lg n (20)

T2(n) =
αt + βt

2
(lg2 n− lg n) + αt (21)

5 Clos Permuters

In this section we utilize 3-stage Clos permuter designs to obtain permuters with

O(n lg n) cost, O(lg n) depth andO(lg4 n/ lg lg n) routing time. We also derive from this

same design a permuter with O(n1+2 lg−
1
2 n) cost, O(nlg−

1
2 n lg1/2 n) depth, and O(lg2.5 n+

nlg−
1
2 n) routing time. Throughout the section, we will assume n = mk, where m and

k are positive integers.

Let Mi; 1 ≤ i ≤ k, be any k m-sets such that Mi ∩ Mj = Φ whenever i 6= j, and

M1 ∪M2 ∪ · · · ∪Mk = N . Let ΣMi
be the symmetric group over Mi. In this more

general setting, we are given 2k copies of an m-permuter, and we are to combine them

as shown in Figure 6 to realize Σn. Accordingly, the double cosets of interest are of the

form

ΣM1ΣM2 . . . ΣMk
πΣM1ΣM2 . . . ΣMk

(22)

where π ∈ Σn. To characterize these double cosets, let us refine the representation

of π given in Section 3 as (πM1,M1 , πM1,M2 , . . . , πMk,Mk−1
, πMk,Mk

), where, for each pair

14
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Figure 6: An n-permuter formed from 2k m-permuters, k = n/m.

x, y, 1 ≤ x, y ≤ k, πMx,My is a mapping from Mx into My that coincides with π when

the domain and range of π are restricted to Mx and My respectively. It can be verified

that a permutation in Σn belongs to the double coset of π if and only if it can be

expressed this way. The following then becomes an analog of Theorem 1 for this more

generalized double coset decomposition.

Theorem 5: ΣM1ΣM2 . . . ΣMk
πΣM1ΣM2 . . . ΣMk

= ΣM1ΣM2 . . . ΣMk
π′ΣM1ΣM2 . . . ΣMk

if and only if πMx,My and π′Mx,My
map an equal number of elements between Mx and

My, for all x, y; 1 ≤ x, y ≤ k.

Proof: The proof is a straightforward extension of the proof of Theorem 1, and is

omitted. ||

A direct corollary of this fact is that the outputs of each permuter in the first stage in

Figure 6 must be connected to all the permuters in the third stage. If these connections

are to be of depth 1, then the design in Figure 7 results. Furthermore, these connections

are also sufficient as the following statements show.

Let Rπ
Mi,Mj

be the range of πMi,Mj
, i.e., the subset of outputs in Mj to which πMi,Mj

maps inputs from Mi. Let K = {1, 2, . . . , k}, and Rπ
i,K = {j ∈ K : |Rπ

Mi,Mj
| ≥ 1}. In

words, Ri,K is the set of all m-permuters in the third stage to an output of which π

maps an input from the ith m-permuter in the first stage.

Lemma 1: For any π ∈ Σn, there exist k inputs xi ∈ Mi, 1 ≤ i ≤ k and outputs

πMi,Mji
(xi), 1 ≤ i ≤ k such that ji, 1 ≤ i ≤ k are all distinct.

Proof: The proof relies on Hall’s Theorem on distinct representatives (see [11]), and

is similar to that given in ([5],p. 425). Consider any π ∈ Σn, and any α of the sets

of inputs, M1,M2, . . . ,Mk, say Mi1 ,Mi2 , . . . ,Miα , 1 ≤ α ≤ k. Since π is one-to-one it

15



    

must map the mα inputs in Mi1 ∪Mi2 ∪ . . .∪Miα to some αm outputs. These outputs

belong to those m-permuters in the third stage that are in Ri1,K ∪Ri2,K ∪ . . . ∪Riα,K .

Furthermore, since each m-permuter in the third stage has m outputs, we must have

|Ri1,K ∪Ri2,K ∪ . . .∪Riα,K | ≥ mα/m = α. Since this is true for any α, 1 ≤ α ≤ k, Hall’s

theorem implies that there exist k distinct sets of outputs Mji , ji ∈ Ri,K , 1 ≤ i ≤ k,

such that π maps an input from Mi to an output in Mji . That is, there exist k pairs

of inputs and outputs (xi, πMi,Mji
(xi)), where ji, 1 ≤ i ≤ k are all distinct. ||

Theorem 6: For all n,m, k subject to n = mk, the connector in Figure 7 realizes Σn.

Proof: By the above lemma, for any π ∈ Σn there exist k pairs of inputs and out-

puts (x1, πM1,Mj1
(x1)), (x2, πM2,Mj2

(x2)), . . . , (xk, πMk,Mjk
(xk)), where j1, j2, . . . , jk are

all distinct. Furthermore, when xi, 1 ≤ i ≤ k, are removed from Mi, and πMi,Mji
(xi)

are removed from Mji , 1 ≤ i ≤ k, the lemma still holds, except for the fact that each

m-permuter in the first stage now contains m− 1 inputs, and each m-permuter in the

third stage contains m− 1 outputs. Thus, Lemma 1 can be applied m times resulting

in m copies of (x1, πM1,Mj1
(x1)), (x2, πM2,Mj2

(x2)), . . . , (xk, πMk,Mjk
(xk)). Each of these

represents a submap that assigns exactly one input from each m-permuter in the first

stage to an output of a distinct m-permuter in the third stage. Each submap can,

therefore, be realized through a complete bipartite graph in the center stage. Since

the center stage contains m nonoverlapping such graphs, all m submaps can then be

realized by the connector and hence the statement. ||

Let C3(n) and D3(n) denote the cost and depth of this permuter, respectively. A

close examination of the center stage reveals that it encompasses n/k (k, k)-elementary

switches. So, assuming that each elementary (k, k)-switch is realized in terms of con-

stant fan-in devices, the center stage has (n/k)αc(2k(k − 1)) = 2αcn(k − 1) cost and

αd lg k2 = 2αd lg k depth. Combining these, with the recursive construction of Per-

muter 3, we have

C3(n) = 2αcn(k − 1) + 2kC3(n/k), 2 ≤ k ≤ n (23)

D3(n) = 2αd lg k + 2D3(n/k), 2 ≤ k ≤ n. (24)

The solutions of these recurrences with C3(2) = 4αc, D3(2) = 2αd, yield

C3(n) = αc(2(k − 1) + 4)(n/2)1+ 1
lg k − 2αcn(k − 1), (25)

D3(n) = 2αd(1 + lg k)(n/2)
1

lg k − 2αd lg k. (26)
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Figure 7: Permuter 3, k = n/m.

It can be shown that the minimum asymptotic value of C3(n) occurs at k − 1 ≈
(n/2)lg−

1
2 (n/2) and is given by

C3(n) = 2αc(n/2)1+2 lg−
1
2 (n/2) (27)

and for the same value of k,

D3(n) = 2αd lg
1
2 (n/2)

(
(n/2)lg−

1
2 (n/2) − 1

)
+ 2αd(n/2)lg−

1
2 (n/2). (28)

A variant of this permuter is the well-known Clos connector [2] that is obtained simply

by replacing each of them complete bipartite graphs in the center stage of the connector

in Figure 7 by an n/m-permuter as shown in Figure 8. Since an n/m-permuter can

realize each of the submaps described in the proof above, as a direct corollary of

Lemma 1, we have

Theorem 7: (Slepian-Duguid, Benes [2]) For all n,m where m evenly divides n, the

connector in Figure 8 realizes Σn. ||
Let C4(n) and D4(n) denote the cost and depth of this permuter, respectively, where

m = n/k as before. Then an inspection of Figure 8 reveals that

C4(n) =
2n

m
C4(m) +mC4(n/m), 1 ≤ m ≤ n/2 (29)

D4(n) = 2D4(m) +D4(n/m), 1 ≤ m ≤ n/2 (30)

In solving these recurrences, it will be assumed that each m-permuter in the outer

stages is realized as an elementary (m,m)-switch so that C4(m) = 2αcm(m − 1) and

D4(m) = αd lgm2 = 2αd lgm. We note that other cost and depth assumptions can also

be used, for example, each (m,m)-switch can be modeled as an m-input Beneš network
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Figure 8: Permuter 4 (Clos), k = n/m.

with (2, 2) switches. Nonetheless, it will be seen momentarily that these assumptions

are sufficient to obtain an asymptotically minimum cost permuter.

With these assumptions, the above recurrences become

C4(n) = 4αcn(m− 1) +mC4(n/m), 1 ≤ m ≤ n/2 (31)

D4(n) = 4αd lgm+D4(n/m), 1 ≤ m ≤ n/2 (32)

whose solutions with C4(2) = 4αc, and D4(2) = 2αd yield

C4(n) = 4αc
n(m− 1)(−1 + lg n)

lgm
+ 2αcn (33)

D4(n) = 4αd lg n− 2αd (34)

In particular, when m = 2, C4(n) becomes

C4(n) = 4αcn lg n− 2αcn (35)

As for determining the routing cost and routing time of these permuters, we adopt

the routing algorithms in [15,22]. For Permuter 3, Algorithm 5 in [22] can be used to

determine the settings for the coset generator section on a completely connected n-

processor computer, with each processor charged a cost of αr, in αt(lg
2 n) lg n/k time,

where αr, αt are positive constants independent of n and k. Thus, if R3(n) and T3(n)

denote the routing cost and routing time of Permuter 3 under this routing algorithm,

we have from the construction of Permuter 3,

R3(n) = αrn+ 2kR2(n/k), 2 ≤ k ≤ n/2 (36)

T3(n) = αt(lg
2 n) lg n/k + 2T2(n/k), 2 ≤ k ≤ n/2. (37)
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It can be shown that the iteration of the first formula over n until it becomes 2, and

with R3(2) = αr yield

R3(n) = 2αr(n/2)1+ 1
lg k − αrn (38)

As for T3(n), we shall first simplify the recurrence by noting that the first term in (37)

is ≤ αt lg
3 n, for any k ≥ 1. Thus,

T3(n) ≤ αt lg
3 n+ 2T2(n/k), 2 ≤ k ≤ n/2 (39)

Iterating this r times over n, we obtain

T3(n) ≤ αtΣ
r−1
i=02i lg3 n/ki + 2rT3(n/k

r) (40)

≤ αtΣ
r−1
i=0 lg3(n/ki)2i/3 + 2rT3(n/k

r) (41)

≤ αt lg
3 Πr−1

i=1 (n/ki)2i/3 + 2rT3(n/k
r) (42)

≤ αt lg
3

[
n(2r−1)/3

k(r−2)2r/3

]
+ 2rT3(n/k

r) (43)

≤ αt(
2r − 1

(r − 2)2r
) lg3 n

k
+ 2rT3(n/k

r) (44)

≤ (
2αt
r

) lg3 n

k
+ 2rT3(n/k

r), r ≥ 4. (45)

Letting n/kr = 2, T3(2) = αt, gives r = lg(n/2)/ lg k, and

T3(n) ≤ 2αt
lg k lg3(n/k)

lg n
+ αt(n/2)

1
lg k (46)

Now, recalling that k ≈ nlg−
1
2 n minimizes the cost of Permuter 3, if we let k = nlg−

1
2 n

in (38) and (46), then

R3(n) = 2(n/2)1+lg−
1
2 (n/2) − αrn (47)

T3(n) ≤ 2αt(lg
2.5 n+ (n/2)lg−

1
2 (n/2)). (48)

The routing cost and routing time of Permuter 4 can be determined by a similar

analysis. Here, we shall just consider these complexities for k = n/2, in which case, the

parallel routing algorithm given in [15] can be directly applied. The routing cost and

routing time of this algorithm are αrn
1+1/s and αts lg3 n, respectively, for any s; 1 ≤

s ≤ lg n. To match the routing cost to the cost of the permuter, we let s = lg n/ lg lg n,

which then gives

R4(n) = αrn lg n (49)

T4(n) =
αt lg

4 n

lg lg n
. (50)
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6 (n, r)-Permuters

Any of the n-permuters that have been described so far can be generalized to an (n, r)-

permuter, where r ≤ n. To illustrate this, consider the generalization of Permuter 4.

As before, suppose that n = mk, and also suppose that r = mk′ where k, k′ are some

positive integers, and m is the size of the switches in the outer stages. An (n, r)-

permuter can be obtained from an n-input Clos connector simply by deleting k− k′ of

the k permuters in the third stage, and replacing the n/m-permuters in the center stage

by (n/m, r/m)-permuters as shown in Figure 9. The proof that the resulting connector

can permute any r-subset of its n inputs onto its r outputs is a direct corollary of the

proof of Theorem 6 and is omitted. We just note that, in the proof, Lemma 1 must be

applied to the output side of the network as r ≤ n.

Now, if C5(n, r) and D5(n, r) denote the cost and depth of this (n, r)-permuter, respec-

tively, we can generalize Equations (31) and (32) as

C5(n, r) = 2αc(n+ r)(m− 1) +mC5(n/m, r/m) (51)

D5(n, r) = 4αd lgm+D5(n/m, r/m), (52)

where the first terms in the recurrences give the cost and depth of the two outer stages

combined together under assumption that the m-permuters in these stages are realized

in terms of (m,m) elementary switches. Iterating these recurrences i times, we get

C5(n, r) = 2αci(n+ r)(m− 1) +miC5(n/m
i, r/mi) (53)

D5(n, r) = 4αdi lgm+D5(n/m
i, r/mi). (54)

We note that r ≤ n so that if, after i iterations, r/mi = 2, then i = −1+lg r
lgm

, and
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n/mi = 2n/r. Hence

C5(n, r) =
2αc(n+ r)(m− 1)

lgm
(−1 + lg r) + r/2C5(2n/r, 2) (55)

D5(n, r) = 4αd(−1 + lg r) +D5(2n/r, 2), (56)

where C5(2n/r, 2) and D5(2n/r, 2) denote the cost and depth of a (2n/r, 2)-permuter.

If we realize this latter permuter by an elementary (2n/r, 2)-switch then C5(2n/r, 2) =

αc((2n/r)+2(2n/r−1)) = αc(6n/r−2) andD5(2n/r, 2) = αd lg 4n/r. Upon substituting

these in the above equations, we obtain

C5(n, r) =
2αc(n+ r)(m− 1)

lgm
(−1 + lg r) +

rαc
2

(6n/r − 2) (57)

D5(n, r) = 4αd(−1 + lg r) + αd lg 4n/r. (58)

In particular, when m = 2, the cost becomes

C5(n, r) = 2αc(n+ r)(−1 + lg r) +
rαc
2

(6n/r − 2). (59)

It is noted that, when r = n, Equations (57) and (58) reduce to Equations (33) and

(34). It is also noted that this permuter can be routed in much the same way as

Permuter 4 when m = 2, and hence, assuming r = O(n), its routing cost and routing

time are of the same order as the routing cost and routing time of for Permuter 3.

7 Permuters Using Concentrators

Permuter designs described so far have all been based on dividing both a permuter’s

inputs and outputs into disjoint sets, and tieing these sets of inputs (outputs) to distinct

switches. One drawback of this scheme is that it makes it difficult to map inputs to

outputs in a distributed, or self-routing fashion, leading to complex routing schemes.

In this section, we consider an alternative network design wherein only the outputs are

divided. We show that this design can be optimized to obtain a permutation network

with O(n lg n) cost and O(lg2 n) depth that can self-route any permutation in O(lg2 n)

time5. An (n, r)-permuter construction using a concentrator is also given. For certain

values of r, this new (n, r)-permuter construction outperforms Permuter 5 described in

the previous section.

5We must note that, even though Permuter 2 match all these three complexities, routing it requires
a combination of both global and self-routing schemes.
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Figure 10: Permuter 6, k = n/m.

In group theoretic terms, avoiding the division of the inputs into disjoint sets amounts

to replacing the product of subgroups on the left handside side of the decomposition

given in Equation (22) by the trivial subgroup, i.e., the set {e} where e is the identity

permutation. Thus, the permuter corresponding to this decomposition is obtained by

removing all k m-permuters in the first stage of Figure 8. As for the double coset

generator in the center, it is easy to see that all one needs to do is to concentrate

every m-subset of the inputs on the left upon the inputs of each m-permuter in the

third stage. This results in the permuter design shown in Figure 10. Each (n,m)-

concentrator allows any m of the n inputs on the left to reach the m inputs of the

m-permuter to which it is cascaded together. Thereafter the concentrated m inputs

can be permuted to their ultimate destinations by the m-permuter.

The (n,m)-concentrators in Figure 10 can be realized in terms of the self-routing

concentrator described in [9]. For n inputs, and m outputs, m ≤ n, this concentrator

has γcn cost, γd lg n depth, and γt lg n routing time, where γc, γd, γt are small positive

constants (≤ 5) independent of n (see [9]).

Now, let C6(n) andD6(n) denote the cost and depth of this permuter, and Cconcen(n, n/k)

and Dconcen(n, n/k) denote the cost and depth of an (n, n/k)-concentrator, where

k = n/m as before. Then, from Figure 10,

C6(n) = kCconcen(n, n/k) + kC6(n/k) (60)

D6(n) = Dconcen(n, n/k) +D6(n/k), (61)
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or substituting γcn for Cconcen(n, n/k) and γd lg n for Dconcen(n, n/k),

C6(n) = kγcn+ kC6(n/k) (62)

D6(n) = γd lg n+D6(n/k), (63)

Solving these recurrences with k = 2, C6(2) = 4αc, and D6(2) = 2αd yields

C6(n) = 2γcn lg n− 2(γc − αc)n (64)

D6(n) =
γd
2

lg n(lg n+ 1)− (γd − 2αd). (65)

We note that the routing cost of this permuter is zero since it is self-routing. Its routing

time is the same as its depth, except for a constant factor.

Concentrators can also be used to construct more effficient (n, r)-permuters. As an

example, consider the construction given in Figure 11. The concentrator on the left

can map any subset of r inputs to the r inputs of the permuter on the right which

can then permute them in any one of r! ways to the r outputs, making the overall

construction an (n, r)-permuter.

Let C7(n, r) and D7(n, r) denote the cost and depth of this (n, r)-permuter in that

order. Assuming that the concentrator is implemented in terms of the self-routing

concentrator construction described in [9] we have,

C7(n, r) = γcn+ C7(r, r) (66)

D7(n, r) = γd lg n+D7(r, r). (67)

Now, assuming that the r-permuter is implemented using the previous permuter design

these equations become

C7(n, r) = γcn+ 2γcr lg r − 2(γc − αc)r (68)

D7(n, r) = γd lg n+
γd
2

lg r(lg r + 1)− (γd − 2αd). (69)
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Figure 12: Permuter 8.

As in the previous permuter, this permuter is also self-routing, and hence its routing

cost is zero, and its routing time is the same as its depth except for a constant fac-

tor. Furthermore, contrasting this (n, r) permuter with Permuter 5, we see that, when

r = O(n), both permuters have O(n lg n) cost, and O(lg2 n) routing time, while Per-

muter 5 has a smaller depth than this permuter. For other values of r, this permuter

outperforms Permuter 5. For example, when r = O(lg n), this permuter has O(n)

overall cost, and O(lg n) depth and routing time. For the same value of r, Permuter 5

has O(n lg lg n) cost, O(lg n) depth, and O(lg2 n) routing time. More strikingly, the

cost of this permuter remains O(n), even when r = O(nε) for any 0 < ε < 1. This is

because, for any ε, 0 < ε < 1, lg nε ≤ n1−ε, for sufficiently large n. Thus, for r = O(nε),

and sufficiently large n, the second term in (68) is ≤ 2γcn
εn1−ε = O(n). Since the other

two terms are also O(n), the cost remains a linear function of n. In contrast, the cost

of Permuter 5 becomes O(n lg n) for the same value of r.

8 (n, r, q)-Permuters

In this section, we give two (n, r, q)-permuter designs We note that any (n, r)-permuter

design can be used as an (n, r, q)-permuter. In fact, when q = O(r), one can justify

realizing an (n, r, q)-permuter in terms of an (n, r)-permuter. Nonetheless, when q is

less than r (in order of magnitude terms), we establish below that using an (n, r)-

permuter as an (n, r, q)-permuter is not the best one can do.

As a first alternative, we mention that the (n, r)-permuter described in Section 6 can

be modified to obtain an (n, r, q)-permuter at a lower cost. This can be achieved by

replacing the m-permuters in the first and third stages with q-permuters, where q ≤ m,

and reducing the number of permuters in the center to q as shown in Figure 12. Since

each map to be realized involves no more than q inputs and q outputs, it is easy to

24



  

see that, if each of the connectors in the center stage is an (n/m, r/m, 1)-permuter,

then any one-to-one assignment of any q inputs onto any q outputs can be realized by

realizing each (input,output) pair in the assignment on a distinct (n/q, r/q, 1)-permuter

in the center stage. Hence, the overall connector is an (n, r, q)-permuter.

Let C8(n, r, q) and D8(n, r, q) denote the cost and depth of this permuter, respectively,

and Cpermut(q) and Dpermut(q) denote the cost and depth of each of the permuters in

the first and third stages. Then from Figure 12,

C8(n, r, q) = (n+ r)/qCpermut(q) + qC8(n/q, r/q, 1) (70)

D8(n, r, q) = 2Dpermut(q) +D8(n/q, r/q, 1). (71)

An (n/q, r/q, 1)-permuter with about αc(n/q+ r/q) cost and αd(lg n/q+ lg r/q) depth

can be obtained by tieing the root nodes of a binary tree with n/q leaf nodes and

another binary tree with r/q leaf nodes together, and designating the leaf nodes of

the first one as inputs and those of the second as outputs. As for the q-permuters in

the outer stages, they can be realized by using Permuter 6 design given in Section 7.

The minimum cost of this design is given in Equation (64). Substituting q for n

in this equation yields Cpermut(q) ≈ 2γcq lg q, and for this cost, Equation (65) yields

Dpermut(q) ≈ γd
2

lg q(lg q + 1).

Using these facts with Equations (70) and (71) gives

C8(n, r, q) ≈ (n+ r) {2γc lg q + αc} (72)

D8(n, r, q) ≈ γd lg q(lg q + 1) + αd(lg n/q + lg r/q). (73)

As for routing, the q-permuters in the outer stages can be self-routed in roughly
γt
2

lg q(lg q + 1) time, where γt is a constant independent of q, and the (n/q, r/q, 1)-

permuters in the center stage can be self-routed in αt(lg n/q+lg r/q) time without any

additional cost. Summing these together, the routing time T8(n, r, q) of this permuter

is

T8(n, r, q) ≈ γt lg q(lg q + 1) + αt(lg n/q + lg r/q). (74)

Assuming that r = O(n), these expressions suggest the following facts. When q = O(1),

this design yields an (n, r, q)-permuter with O(n) cost, O(lg n) depth, and O(lg n)

routing time. When q = O(lg n), it yields an (n, r, q)-permuter with O(n lg lg n) cost,

O(lg n) depth, and O(lg n) routing time. Finally, when q = O(nε), where 0 < ε < 1
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it yields an (n, r, q)-permuter with O(n lg n) cost O(lg2 n) depth, and O(lg2 n) routing

time.

The first two cases show that this design is superior to realizing an (n, r, q)-permuter

on an (n, r)-permuter. However, when q = O(nε), the same design leads to an (n, r, q)-

permuter whose cost has the same order of complexity as that of an (n, r)-permuter.

An (n, r, q)-permuter with fewer switches. can be obtained by using the connector

design shown in Figure 13. Given that the (n, q)-concentrator on the left can connect

any q of the n inputs to its q outputs, and the (r, q)-concentrator on the right can

connect any q of its r outputs to its q inputs, it is easy to see that this connector is an

(n, r, q)-permuter. Now, if C9(n, r, q) and D9(n, r, q) denote the cost and depth of this

connector respectively, then directly from the figure,

C9(n, r, q) = Cconcen(n, q) + Cpermut(q) + Cconcen(r, q) (75)

D9(n, r, q) = Dconcen(n, q) +Dpermut(q) +Dconcen(r, q) (76)

where Cconcen(n, q), and Dconcen(n, q) are the cost and depth of the concentrator on the

left, Cconcen(r, q), and Dconcen(r, q) are the cost and depth of the concentrator on the

right, and Cpermut(q), and Dpermut(q) are the cost and depth of the permuter in the

center. Using the concentrator design given in [9], we can bound the cost and depth

of this (n, r, q)-permuter. Noting that a self-routing q-permuter can be realized via

Permuter 6 design with no more than 2γcq lg q − 2(γc − αc)q cost and γd
2

lg q(lg q + 1)

depth, we have

C9(n, r, q) ≤ γc(n+ r) + 2γcq lg q (77)

D9(n, r, q) ≤ γd(lg n+ lg r) +
γd
2

lg q(lg q + 1). (78)

It is obvious from these equations that, unlike the previous design, for q = O(lg n),

as well as q = O(nε), 0 < ε < 1 this design yields an (n, r, q)-permuter with O(n)

cost. In fact, for q = O(n0.5), even if the q-permuter in the center is realized as an

elementary (q, q)-switch with q2 crosspoints, the cost of the overall permuter remains
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O(n). Furthermore, given that all three components in this permuter design are self-

routing, its routing cost is zero, and its routing time is the same as its depth, except

for a constant factor.

9 Concluding Remarks

The paper considered permutation type connections within the context of a more gen-

eral model wherein the number of inputs and outputs need not be equal and/or the

number of simultaneous paths through a permuter may be less than the actual number

of inputs and outputs. In all, nine different permuter designs– five n-permuters, two

(n, r)-permuters, and two (n, r, q)-permuters– are presented. Two of these designs are

Clos networks, one is an extension of a Clos network, and the remaining six are new

designs.

A key result of the paper has been the construction of an (n, r)-permuter with O(n+

r lg r) cost and O(lg n + lg2 r) routing time. This is the first known (n, r)-permuter

construction that maintains an asymptotically minimum cost over all values of r, 1 ≤
r ≤ n. The paper also constructed an (n, r, q)-permuter with O(n + r + q lg q) cost

and O(lg n+ lg r+ lg q2) depth and routing time. This is also the first known (n, r, q)-

permuter construction that maintains asymptotically minimum cost over all values of

q, 1 ≤ q ≤ r.

Acknowledgments: The author thanks R. Greenberg, M. Chien, and C. Y. Lee of

University of Maryland for their critical comments.
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APPENDIX A

In what follows it is proved that C1(n), i.e., the cost of the connector in Figure 4 is

Ω(n1.58) for all m;n/2 ≤ m < n.

Given that n/2 ≤ m < n, we let m = qn, where 1/2 ≤ q < 1, and rewrite Equation

(4) in Section 4 as

C1(n) = 4αc(1− q)n+ C1((1− q)n) + 2C1(qn) (79)

Now, given 1/2 ≤ q < 1 it follows that 1−q
q
≤ 1, and hence, for n >> 1, and some

α > 1, C1((1 − q)n) ≥ (1−q
q

)αC1(qn) where α depends on q, but not on n. Upon

replacing C1((1− q)n) with (1−q
q

)αC1(qn) in Equation (79), one obtains

C1(n) ≥ 4αc(1− q)n+ (

(
1− q
q

)α

+ 2)C1(qn) (80)

The solution of this recursion with C1(2) = 4αc, and the approximation −1+lg n ≈ lg n

reveals that

C1(n) ≥ 4αc(1− q)

 n1−
lg[(( 1−q

q )
α

+2)q]
lg q(

(1−q
q

)α + 2
)
q − 1

 + 4αcn
− lg[( 1−q

q )
α

+2]
lg q . (81)

Elementary calculus shows that, for all α > 1, the minimum value of second summand

of C1(n) over 1/2 ≤ q < 1 occurs at q = 1/2, and it is asymptotic to n1.58. Therefore,

C1(n) = Ω(n1.58) for all q, 1/2 ≤ q < 1, or equivalently, for all m,n/2 ≤ m < n.
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APPENDIX B

The notation and symbols used in the paper are listed below.

N The set of integers {1, 2, . . . , n}.
|M |,m The number of elements in set M.

N −M The set of elements in N but not in M.

n−m The number of elements in set N −M.

πX,Y A mapping from set X into set Y.

m-set A set of m elements.

G,H1, H2 Finite groups.

Σn The symmetric group of permutations

of degree n.

ΣM The symmetric group of permutations

over set M.

ΣM1ΣM2 . . . ΣMk
The product of k symmetric groups

defined over sets M1,M2, . . . ,Mk.

Rπ
Mi,Mj

The range of Mi under π that coincides with Mj.

Rπ
i,K The set of all permuters in the third stage to which

π maps an input from the ith permuter in the first stage.

Ci(n) Cost of ith n-permuter.

Di(n) The depth of ith n-permuter.

Ci(n, r) Cost of ith (n, r)-permuter.

Di(n, r) The depth of ith (n, r)-permuter

Ci(n, r, q) The cost of ith (n, r, q)-permuter

Di(n, r, q) The depth of ith (n, r, q)-permuter

Cconcen(n, r) The cost of an (n, r)-concentrator.

Dconcen(n, r) The depth of an (n, r)-concentrator.

Csuper(n, r) The cost of an (n, r)-superconconcentrator

Dsuper(n, r) The depth of an (n, r)-superconconcentrator.

lg n log2 n.

αc, βc, γc Cost constants.

αd, βd, γd Depth constants.

αt, βt, γt Routing time constants.

αr Routing cost constant.
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[17] A. Y. Oruç and S. Scheneider, “2-stage realizations of symmetric groups,” In Proc.
of 1987 Allerton Conference, Urbana, IL., pp. 1037-1039.
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