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ABSTRACT

A self–routing permutation network is a connector which can set its own switches to realize
any one-to-one mapping of its inputs onto its outputs. Many permutation networks have
been reported in the literature, but none with self–routing property, except crossbars and
cellular permutation arrays which have excessive cost. This paper describes a self–routing
permutation network which has O(log3 n) bit-level delay and uses O(n log3 n) bit-level
hardware where n is the number of inputs to the network. The network is derived from
a complementary Beneš network by replacing each of its two switches in its first stage by
what is called a 1–sorter, and recursively defining the switches in the third stage as self–
routing networks. The use of 1–sorters results in substantial reduction in both propagation
delay and hardware cost when contrasted with O(n) delay and O(n1.59) hardware of the
recursively decomposed version of a complementary Beneš network. Furthermore, these
complexities match the propagation delay and hardware cost of Batcher’s sorters (only
networks, other than crossbars and cellular permutation arrays, which are known to behave
like self–routing permutation networks.) More specifically, it is shown that the network
of this paper uses about half of the hardware with about four-thirds of the delay of a
Batcher’s sorter.

† This work is supported in part by the National Science Foundation under grant No:CCR-8708864
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I. Introduction

A network with n inputs and n outputs and one which can realize all permutations of
its inputs onto its outputs is called a permutation network and finds applications as a
connector in many switching systems [2,5,14,15] and parallel computers [6,7,25,26]. If, in
addition, such a network can connect its inputs to its outputs by decoding the destinations
of the inputs switch by switch rather than by using a global routing procedure, it is then
called a self–routing permutation network. The advantage of a self–routing scheme over
a global one is that the routing time of a self–routing network matches its propagation
delay. Furthermore, if the address decoding logic at each switch can be kept simple then the
hardware cost of a self–routing network will, in general, be less than that of a network with
a global routing scheme. Consequently, self–routing permutation networks can enhance
the connection power of logn-stage1 shuffle-exchange networks without exacting any time
penalty, unlike other permutation networks which need O(n log n) time to set up [19,28].

An ordinary self–routing permutation network is a “crossbar” switch which is just an
n × n matrix of crosspoints. Suppose that the inputs enter at the rows and the outputs
exit vertically through the columns. Then a self–routing scheme can be implemented by a
simple decrement and test for zero scheme as follows: if input i is to be routed to output
j then the destination of i is set to j and is decremented every time it moves to the next
crosspoint on the ith row until j becomes zero. Once it reaches the jth column, it is then
projected down along this column until it reaches output j. Obviously, no conflicts can
arise in simultaneously routing inputs to outputs as long as each input is routed to at
most one output, and each output is reached from at most one input. This is, definitely,
the case for any one-to-one maps including permutations, hence a crossbar switch can self-
route permutations. Like crossbars, cellular permutation arrays [8,22] can also be made
self–routing by using simple address decoding techniques [11,21].

Even though crossbars and cellular permutation arrays are self–routing, they are expensive
networks as compared to other permutation networks. One way to alleviate the cost
problem is to use an asymptotically optimal permutation network [2]. However, the fastest
routing algorithm for this network runs in O(log2 n) time on a parallel machine with a
more complex interconnection structure than the network itself [13,17]. A few efforts in the
literature point out that the Benes network can be self–routed for some permutations[ 3,18],
but no self–routing scheme which works uniformly over all permutations has ever been

All logarithms in this paper are in base 2 and it is further assumed that n is a power of 2 unless otherwise

stated.
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reported.

Another alternative for self–routing is to use a sorting network. Sorting is closely related
to permuting since if one can sort a set of items into an ascending (or descending) order,
one can also permute them simply by sorting their addresses. Self–routing networks which
use sorting techniques have been reported in the literature [9]. The most widely-known of
these are Batcher’s sorting networks [1,10] which are based on odd-even and bitonic merging
schemes. Both even-odd and bitonic sorters will be referred to as Batcher’s networks as
they have the same hardware and time complexity; their gate–level hardware complexity
is O(n log3 n) and propagation delay is O(log3 n).

Another way of viewing a self–routing permutation network is as a connector whose pro-
gramming hardware is interspersed with its data path. Using this point of view, this paper
will describe a self–routing permutation network which has the same hardware cost and
propagation time complexity as those of Batcher’s networks; but which also has features of
its own. First, this network is not made up of compare/swap units like Batcher’s networks,
and therefore, is not a standard sorting network. Rather, it is derived from a particular
Clos network [5], called the complementary Benes network [4] by replacing its two large
input-stage switches with devices called 1–sorters, and each of its two output-stage switches
by a self–routing permutation network. Second, while its cost and propagation delay are
asymptotically identical to those of a Batcher’s network, its cost is about one-half of the
cost, and its propagation delay is about four-thirds of the delay of the same network by a
conservative estimate. Finally, this new network is not a standard self–routing connector
in that its switches use ranking to decide their outputs, while in a standard self–routing
connector, such as an omega network [12], the switches are set strictly by examining the
bits of destination addresses.

The remainder of the paper will describe this self–routing permutation network in de-
tail. In Section II a brief description of the complementary Beneš network is given. The
self–routing network and 1–sorter are presented in Sections III and IV respectively. In Sec-
tion V, the cost and propagation delay of this network are derived and contrasted with the
cost and propagation delay of a Batcher’s network. The paper is concluded in Section VI.

II. The Complementary Beneš Network

The underlying structure behind the self–routing network is the complementary Beneš
network (CBN) which is depicted in Figure 1. The network consists of three stages, an
input stage (the first column of two switches), a center stage of n/2 2-input switches, and
an output stage (the last column of two switches.) The inputs are listed on the left hand
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Figure 1. A complementary Beneš network.

side and the outputs are listed on the right hand side. The 2-input switches in the center
stage are crossbars; their inputs either go straight through to their outputs (called the
identity connection), or the top input goes to the bottom output, and the bottom input
goes to the top output (called the transpose connection).

The top switch in the input stage is denoted T , the bottom switch is denoted L; the top
switch in the output stage is denoted R, and the bottom switch is denoted B. The 2-input
crossbars in the center are labelled C0, C1, . . . , Cn/2−1. Each of the large switches has n/2
outputs, the inputs and outputs of T and R are labelled 0, 1, . . . , n/2− 1, and the inputs
and outputs of L and B are labelled n/2, n/2 + 1, . . . , n− 1. Ci’s inputs are connected to
the ith output of T and ith output of L and Ci’s outputs are connected to the ith input
of R and ith input of B for 0 ≤ i ≤ n/2− 1.

It is known that an n-input CBN can permute its inputs onto its outputs in any one
of n! ways [2,5]. Furthermore, it is also known that one of the input (or output)-stage
switches can be removed or permanently set to a given state without destroying network’s
permutation capability [20,23]. However, the self–routing version of CBN requires that all
four switches in the input and output stages be present as described in the next section.

III. The Self–routing Network

The self–routing network appears in Figure 2. Just as the CBN, the self–routing network
consists of an input stage, a center stage, and an output stage. The input stage consists of
two n/2-input devices, called 1–sorters and denoted T and L , the center stage consists of
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Figure 2. The self–routing permutation network.

n/2 2-input crossbars, and the output stage consists of two n/2-input self–routing networks,
denoted R and B. Each of the n inputs to the network consists of w-bit data word and d-bit
destination address, where d = logn. For clarity, only the destination addresses are shown
in Figure 2. The destination address di specifies the output on the right hand side to which
the w-bit data word on input i is to be routed. Each input to the network enters one of
the two 1–sorters. The upper 1–sorter in the first stage “sorts” its inputs onto its outputs
in ascending order, using the most significant bit of each of the destination addresses as
the sort keys. The sorted outputs are indicated as d′i; 0 ≤ i ≤ n/2 − 1 in Figure 2. The
lower 1–sorter works similarly, except that it sorts its inputs in descending order. One can
easily form a descending 1–sorter from an ascending 1–sorter simply by inverting the most
significant bits of the sort keys. Rather than carrying out this step explicitly on the sort
keys of the lower 1–sorter, we shall use both types of 1–sorter in our discussion for clarity.

The following establishes that this structure forms a self–routing permutation network.

Theorem 1: The network in Figure 2 can realize any permutation of its inputs onto its
outputs on a self–routing basis.

Proof: We first note that each center–stage switch receives one input from 1–sorter T ,
and one input from 1–sorter B in the first stage. Suppose that, under a given permutation
p, x of the inputs of T are mapped to some x outputs of self–routing network R and
n/2 − x are mapped to some n/2 − x outputs of self–routing network B for some integer
x; 0 ≤ x ≤ n/2. Since T sorts its inputs in ascending order using the most significant bits
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of the addresses of those inputs as keys, all inputs of T which are destined to the outputs
of R are routed to the upper inputs of the first x switches in the center stage, starting at
the top. Furthermore, the inputs for the remaining n/2 − x outputs of R must be drawn
from the inputs of 1–sorter L in the first stage. This in turn implies that x of the inputs
of L will be mapped to some x outputs of B. Now, since L sorts its inputs in descending
order, these x inputs will end up going to the lower inputs of the top most x switches in
the center, thereby pairing up with the other x inputs which arrive at the upper inputs of
these same x switches from T , and are destined to the outputs of R. Consequently, each
of these x switches will have one input which is to be mapped to the outputs of R and one
input which is to be mapped to the outputs of B. Similarly, the n/2 − x inputs T which
are destined to the outputs of B are paired up with the n/2 − x inputs of L which are
destined to the outputs of R. Hence, the remaining n/2− x switches will also receive one
input from each of T and L in the first stage and map one to an output of R and the other
to an output of B.

As for setting the switches in the center, the following simple self–routing scheme suffices:
If the most significant bit of the address emerging from the ith output of T is 1 then switch
Ci is set to the transpose state, and if it is 0 then Ci is set to the identity state. It is
obvious that this guarantees that each of the inputs arriving at that switch from T and L
is routed to the correct subnetwork in the third stage. Since networks R and B are also
self–routing, the entire network can self–route permutation p. Furthermore, this is true
for all x; 0 ≤ x ≤ n/2 and any permutation p of the network’s inputs onto its outputs, and
so the statement follows. ||

In the network of Figure 2 each of the self–routing networks can further be decomposed into
a 3-stage self–routing network by using two 1–sorters, each with n/4-inputs, a set of n/4
2-input switches and two self–routing networks, each with n/4 inputs. This process can be
repeated until each of the networks in the output stage becomes trivial. Figure 3 depicts an
8-input self–routing network which is obtained recursively by decomposing the self–routing
networks in the third stage of the original self–routing permutation network. Self–routing
permutation networks with larger numbers of inputs can be constructed similarly.

Figure 4 illustrates how a permutation is routed through an 8-input self–routing network.
As indicated by the captions, the light gray boxes represent ascending 1–sorters, the dark
ones represent descending 1–sorters, and the remaining boxes are 2-input switches. The
pairs of symbols on the left denote the data and their destination addresses; for example,
datum w0 is to be routed to output 5, w1 to output 2, and so on. The paths are established
as described in Theorem 1. For example, the four inputs to the upper 1–sorter in the first
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Figure 4. Illustration of self–routing.

stage are sorted by using the most significant bits of destinations 5,2,4 and 1. Thus, any
one of the four sequences

(2,1,5,4),(1,2,5,4),(2,1,4,5),(1,2,4,5)

is an ascending output sequence. Note that the emphasis is on whether the most significant
bits of the addresses are 0 or 1 (0 for inputs 1 and 2, and 1 for inputs 5 and 4). A 2-input
switch is set to the transpose state if the most significant bit of the address at its upper
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input is 1, and to the identity state if it is 0. Thus, the top two switches in the second
stage in the network of Figure 4 are set to the identity while the bottom two are set to the
transpose state. The other switches are similarly set.

IV. The 1–sorter

In order to complete the design of the self–routing network described in Section III, we
must provide an explicit construction of a 1–sorter using elementary devices. One way to
implement a 1–sorter is to rank its inputs by their keys and then concentrate the inputs
by their ranks. In what follows we shall use this approach to design a descending 1–sorter.
An ascending 1–sorter can be obtained from a descending one by inverting its inputs.

First, we need a few definitions.

Definition 1: Let ki; 0 ≤ i ≤ n− 1 be a sequence of 1-bit keys. The rank, r0 of key k0 is
−1 if k0 = 0 and 0 if k0 = 1. The rank, ri of key ki; i ≥ 1 is ri−1 if ki = 0, and ri−1 + 1 if
ki = 1. For example, if the keys were 0,1,1,0,1,0, the ranks would be -1,0,1,1,2,2. ||

Definition 2: A ranking circuit of size n is a device with n inputs and n outputs, which
returns the rank of its ith input on its ith output. (Input i has rank ri if its key has rank
ri. ||

Definition 3: An n×n concentrator is a connector which can map any subset of its inputs
onto a subset of consecutive outputs of equal cardinality. If this mapping can be done by
decoding the destination addresses of the inputs switch by switch then the concentrator
will be called a self-concentrator. ||

Figure 5 depicts how to combine a ranking circuit with a concentrator to obtain a 1–
sorter. The ranking circuit receives the most significant bits of the destination addresses
di; 0 ≤ i ≤ n− 1, and returns their ranks at its outputs. The ranks are then concatenated
with the data inputs (i.e., wi; 0 ≤ i ≤ n − 1) and the destination addresses, and fed into
a self-concentrator shown on the right in the figure. Using the ranks of the inputs, the
concentrator then maps those inputs whose destination addresses carry a 1 in their most
significant bits to a set of consecutive outputs starting with the top most output. The
remaining inputs, i.e., those inputs whose destination addresses carry a 0 in their most
significant bits are automatically routed to the remaining outputs. Thus the schematic in
Figure 5 1–sorts its inputs in descending order.

Ranking Circuit

A ranking circuit of n inputs can be formed recursively from two ranking circuits, each
with n/2 inputs, and n/2 2-input adders with an additional 1-bit input which is set to 1
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Figure 6. A recursive construction of a ranking circuit by using elementary adders.

as shown in Figure 6. The ranks of the first n/2 inputs are collected directly from the
outputs of the upper ranking circuit, and the ranks of the bottom half inputs are obtained
by adding the rank of input dn/2−1 to the outputs of the bottom ranking circuit. By
decomposing each of the n/2-input ranking circuits recursively, one can then form a logn-
depth ranking circuit consisting of 1 + n

2 log n 2-input adders. Such a ranking circuit is
shown for n = 8 in Figure 7.
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Figure 7. An 8-input ranking circuit.

A more economical ranking circuit, one which uses O(n) 2-input adders, and of depth
O(log n) can be obtained by using a tree of depth O(log n). To facilitate this, we first rank
the input keys slightly differently than as described in Definition 1. The ranks of 1 keys
are left unchanged, but the rank of each 0 which immediately follows a 1 is incremented by
one. For example, for the sequence given in Definition 1, i.e., 0,1,1,0,1,0, the corresponding
new ranks are 0,0,1,2,2,3. We note that this change does not cause any problem since we
only need the ranks of 1 keys in designing a 1–sorter and those ranks remain intact.

Now, each node in the tree is a simple combinational unit—to be called a Y–unit—which
can be one of four devices as shown in Figure 8: (1) a root Y–unit which is at the root of
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Figure 8. Y–units.

the tree, (2) left Y–units which are the nodes between the leftmost leaf and the root, (3)
right Y–units which are the nodes between the rightmost leaf and the root, and (4) regular
Y–units which are the remaining nodes. The Y–units have three sets of inputs and three
sets of outputs; only the regular Y–units have all of these connections; which connections
the root, left, and right Y–units have are described below along with their function.

The input to a regular Y–unit entering from its parent node is a logn-bit word, denoted
Yti, the outputs to the child nodes are log n-bit words called Ylo and Yro. The inputs to
a Y–unit from the child nodes are also log n-bit words called Yli and Yri. The output to
the parent node is a logn-bit word called Yto. A left Y–unit has all but terminals Yti and
Ylo, and a right Y–unit has all but terminals Yri and Yto of a regular Y–unit.

There are n/2 leaf nodes in the tree (assuming an even n); call the input vector of 0’s and
1’s to be ranked k0, k1, . . . kn−1. Then the input vector is connected to the leaves in the
following way: k0 and k1 are connected to the Yli and Yri inputs of the left most leaf in
that order, k2 and k3 are connected to the Yli and Yri inputs of the next left most leaf in
that order, and so on up to kn−2 and kn−1 which are connected, respectively, to the Yli

and Yri inputs of the rightmost leaf.
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A regular Y–unit realizes the following function:

Yto = Yli + Yri,Ylo = Yti,Yro = Yli + Yti;

a left Y–unit realizes the following function:

Yto = Yli + Yri,Yro = Yli;

a right Y–unit realizes the following function:

Ylo = Yti,Yro = Yli + Yti;

and the root Y–unit realizes the trivial function

Yro = Yli.

The leftmost leaf Y–unit is special in that it has a Ylo output which is permanently set to
0. Similarly, the rightmost leaf Y–unit is special in that it receives three inputs but only
those arriving at Yti, and Y li are used in computing the rank of its inputs.
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To see how the Y–units compute the rank of the 1’s at the leaves, refer to Figure 9. The 1’s
and 0’s enter the tree at the leaves. Each leaf adds its lower inputs and sends the sum up
to its parent. The data moving up the tree along the path from the leftmost node to the
root can all be interpreted as the rank of the next 1 to be encountered. A datum moving
up the tree elsewhere, can be interpreted as the number of 1’s below that datum. These
data continue going up the tree until they encounter a node which is part of the path from
the root to the left most node. A datum going down the tree along the path from the
root to the rightmost node can be interpreted as the rank of the next 1 to be encountered.
Note that, 1 and 0 inputs are both assigned ranks. However, as stated before, the ranks of
0 inputs will be ignored when inputs are self–routed through the concentrator stage, and
only the ranks of 1 inputs will be used.

Self-concentrator

Once the ranking of the keys is completed, the ranks along with the destinations and data
are fed to a concentrator as shown in Figure 5. Suppose that the concentrator’s outputs
are numbered 0, 1, . . . , n − 1 from top to bottom, and also suppose that the destination
addresses of exactly x of the inputs to the concentrator have their most significant bits set
to 1. The concentrator then routes those x inputs to its lowest numbered x outputs, and
its remaining inputs to its remaining outputs.

This kind of concentrator device can be implemented by what is widely known as a mul-
tistage cube network [24,29]. It was established [16,27] that such a network concentrates
any subset of its inputs to any subset of consecutive outputs of equal cardinality. It is
also known that the same network can self–route any of its inputs to any of its outputs.
What needs to be shown is whether this network is also self–concentrating as specified in
Definition 2. The procedure given below shows that the network indeed self-concentrates
if the ranks of the destinations of its inputs are known.

The procedure is straightforward: The switches are set by the ranks and destinations of
inputs as they traverse through the network. Let Si denote an arbitrary but fixed switch in
the ith stage of an n-input cube network where the stages are numbered 0, 1, . . . , log n− 1
from left to right. Let du,logn−1du,logn−2, . . . , du,0 be the binary representation of the
destination address and let ru,logn−1, ru,logn−2, . . . , ru,0 be the binary representation of
the rank which arrive at the upper input of Si. Similarly, let dl,logn−1dl,logn−2, . . . , dl,0
and rl,logn−1, rl,log n−2, . . . , rl,0 denote in binary, respectively, the destination address and
the rank which arrive at the lower input of switch Si. Switch Si is set as shown in Table 1.
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Table 1

ru,i, rl,i du,0, dl,0 = 00 du,0, dl,0 = 01 du,0, dl,0 = 10 du,0, dl,0 = 11

00 − transpose identity impossible

01 − identity identity identity

10 − transpose transpose transpose

11 − identity transpose impossible

As seen from the table, the switches in stage i; 0 ≤ i ≤ log n− 1 are set by using the most
significant bits of the destination addresses and the ith bits of the ranks they receive. The
ranks act very much like the destination addresses in an ordinary cube network, while the
most significant bits of the destination addresses, i.e., bits du,0 and dl,0, determine the way
that the ranks set the switches.

More precisely, when du,0 = dl,0 = 0, the ranks which arrive at switch Si are ignored and
Si can be set to either the identity or transpose state as indicated by the −− entries in the
second column. This is in keeping with the fact that the network is to concentrate only
those inputs whose addresses have a 1 in their most significant bits.

If du,0 = 0 and dl,0 = 1 then Si is set using the ith bit of the rank which arrives at the
lower input of Si. On the other hand, if du,0 = 1 and dl,0 = 0 then Si is set using the ith
bit of the rank which arrives at the upper input of Si. These cases are shown in the third
and fourth columns of the table. Again, these settings are in agreement with the fact that
the network is to concentrate only those inputs whose addresses carry a 1 in their most
significant bits.

Finally, if du,0 = 1 and dl,0 = 1 as shown in the fifth column, then there are two cases to
consider: The first is that the ranks which arrive at Si differ in the ith bit position. In
this case, there is no conflict and the ranks are used as ordinary destination addresses as
in the earlier cases to set Si. The second case is when the ranks are identical in the ith
bit position, i.e., their ith bits are both 0, or both 1. Obviously, if this happens then the
network cannot self-concentrate, but we can show that it never does, as follows. First, for
i = 0 it is obvious that the ranks which arrive at any switch Si in stage 0 must differ in bit
position 0 when du,0 and dl,0 are both 1. Suppose that, for a given i; 1 ≤ i ≤ log n−1, some
two ranks, Rx and Ry arrive at a switch Si in stage i. This implies that Rx and Ry must
have originated from some two inputs which are tied to a cube network of 2i inputs which
is contained in the original n-input cube network. Moreover, the bits i − 1, i − 2, . . . , 0
of Rx and Ry must be identical, since otherwise, they cannot not both be routed to the
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Figure 10. An 8-input 1–sorter.

inputs of Si (This is a well–known property of a cube network). Now, since Rx and Ry

are associated with some two inputs whose destination addresses carry a 1 in their most
significant bits, they cannot not be equal, and therefore must differ in at least one of the
remaining bit positions logn− 1, . . . , i+ 1, i. However, since the ranks are assigned to the
inputs of the cube network in increments of 1, we must have |Rx −Ry| ≤ 2i, and thus Rx
and Ry cannot differ in bit positions logn − 1, log n − 2, . . . , i + 1. Therefore, they must
differ in bit position i, and the statement we set out to prove follows.

The preceding discussion leads to

Theorem 2: An n-input ranking circuit cascaded with an n-input cube network whose
switches are set as in Table 1 forms a self–routing 1–sorter. ||

Figure 10 further illustrates how the tree ranking circuit and the cube network are combined
to form a 1–sorter. One can also use the ranking circuit of Figure 7 in the construction.
The inputs to the cube network are formed by concatenating datum wi with its destination
di and rank ri. The network then uses these ranks along with the destination addresses as
outlined in Table 1 to concentrate wi. It should be noted that the bits of ri are decoded
from right to left as they move from left to right through the network.

15



     

V. Performance Analysis

In this section the hardware cost and propagation delay of the self–routing permutation
network and Batcher’s network will be analyzed. As we assumed before, throughout this
section the formulas which are derived below hold only for n which is a power of two, even
though they can easily be extended to other values of n.

Self–routing Network

First consider the self–routing network. In obtaining its cost, three types of units will
be tallied: (a) 1-bit wide, 2-input crossbar switches, called switch slices, (b) 1-bit wide,
2-input adders, called adder slices, and (c) simple combinational circuits, called function

slices. These latter slices are used to determine the state of a switch from the destination
information it receives at its two inputs. Not all of these slices are needed in all sections
of the self–routing network. The adder slices will be used in the ranking circuit, while
the switch and function slices will be used in the cube network, and the center stage of
the self–routing network. The cost of each switch or adder slice will be counted as 1,
and the cost of a function slice will be assumed to be half the number of its inputs. The
propagation delays of all three slices will be taken as 1. These assumptions are based on
the fact that a 2-input switch slice can be implemented by two 2× 1 multiplexers (which
need about four 2-input gates), and that a 2-input adder slice can be implemented by two
XOR gates, one AND gate, and one OR gate, roughly equivalent to the gate count of two
2-input multiplexers.

First, consider the number of switch slices in the cube network. Let q denote the width of
each data input to a 2-input switch in the network. Referring to Figure 10 it is seen that
along with data inputs wi; 0 ≤ i ≤ n/2− 1, we should also move the log n-bit destination
addresses di; 0 ≤ i ≤ n/2− 1 from the input side to the output side of an n/2-input cube
network. In addition, each switch in the ith stage carries log n/2 − i − 1 bits of rank
information. Thus, we can think of each 2-input switch in the ith stage as consisting of
q + log n+ log n

2 − i− 1 switch slices. Noting that each stage in an n
2 -input cube network

consists of n
4 2-input switches, and summing the number of switch slices which make up

these 2-input switches over all log n
2 stages of the network, we determine the number of

switch slices as:
n

4

log n
2−1∑

i=0

(q + log n) +
log n

2−2∑
i=0

(log
n

2
− i− 1)

 (1)

or,
n

8
log2

(n
2

)
+
(
q + log n

2
− 1

4

)
n

2
log
(n

2

)
. (2)

16



  

Similarly, the number of switch slices in each of the 2-input switches in the center stage of
the n-input self–routing network is q+ log n− 1; q switch slices for the data, and log n− 1
switch slices for the remaining bits in the destination address (the most significant bit is
no longer needed.) Since the center stage consists n/2 2-input switches, the total number
of switch slices is

n

2
(q + log n− 1). (3)

Furthermore, since the ranking circuit does not contain any 2-input switches, we can
multiply (2) by 2 and add it to (3) to obtain the total number of switch slices within the
two 1–sorters and the center stage. Denoting the total number of switch slices in n-input
self–routing permutation network XBSRN(n), we can thus write

XBSRN(n) = 2XBSRN

(n
2

)
+ 2

[
n

2
(log n− 1)

(
q + log n

2
− 1

4

)
+
n

8
log2

(n
2

)]
+
n

2
(q + log n− 1)

(4)

the solution to which is

XBSRN(n) =
1
4
n log3 n+

q

4
n log2 n+

(
q

4
− 1

4

)
n log n (5)

switch slices.

As for the adder slices, we need only consider the ranking segment of the 1–sorters in
the first stage. From the description of an n/2-input ranking circuit, it is easily verified
that it consists of n/2 − 2 Y–units (not counting the root since it is only wire). Each
Y–unit contains two 2-input adders; the maximum sum that the adders can generate for
an n/2-input ranker is n/2 − 1, requiring log n

2 bits for the adder’s inputs and outputs.
Assuming that the total number of adder slices in an 2-input adder is proportional to the
length of its inputs (as in a ripple adder), an n/2-input ranking circuit will roughly contain
2(n/2− 2) log n

2 = (n− 4) log n
2 adder slices. Thus if ASSRN(n) denotes the total number

of adder slices in the n-input self–routing network, we can write

ASSRN(n) = 2ASSRN

(n
2

)
+ 2(n− 4)(log n− 1) (6)

the solution to which is

ASSRN(n) = n log2 n− n log n+ 8 logn− 8n+ 8 (7)

adder slices.
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Finally, we count the number of function slices which are needed to set the switches both
in the center stage of the self–routing network, and those in the cube network segment
of the 1–sorters. The switches in the center stage of the self–routing network are set by
examining a single bit of destination address, and hence the number of function slices
for these switches is n/2. On the other hand, a 2-input switch in the 1–sorters is set by
examining two rank bits and two destination bits as described in Table 1 (this is the worst
case), thereby requiring 2 function slices. It follows that the total number of function slices
in the two 1–sorters is 2(n/2) log n

2 = n log n
2 . Denoting the total number of function slices

in the entire network by FSSRN(n), we can now write

FSSRN(n) = 2FSSRN

(n
2

)
+ 2

(n
2

(log n− 1)
)

+
n

2
(8)

function slices. The solution to this recurrence is

FSSRN(n) =
n

2
log2 n (9)

function slices.

As for the propagation delay DSRN(n) of the n-input self–routing network, we can write

DSRN(n) = DSRN(
n

2
) +Dranker(

n

2
) +Dcube(

n

2
) +DC . (10)

Noting that Dranker(n2 ) = 2 log2 n
2 − 2 log n

2 , Dcube(n2 ) = 2 log n
2 , and DC = 1, it can be

shown that
DSRN(n) = 2/3 log3 n− log2 n+ 1/3 logn+ 1. (11)

Batcher’s Network

The Batcher’s odd-even merge sorter consists (n log2 n)/4+(n log n)/4 compare/swap (CS)
units each of which can be viewed as encompassing 2-input switches (swap unit), and a
function slice (compare unit). If this sorter is used as a permutation network then, each
swap unit must switch some q data bits and logn destination address bits. Multiplying
the total number of bits to be handled with the number of 2-input switches,

XBBatcher(n) =
1
4
n log3 n+

(q + 1)
4

n log2 n+
nq

4
log n. (12)

In order to switch its inputs, each CS unit must compare two logn-bit addresses which can
be carried out by using about logn 1-bit wide comparators (or function slices). Therefore,
the total number of function slices in the n-input Batcher’s network is
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FSBatcher(n) =
n

4
log3 n+

n

4
log2 n. (13)

The gate–level delay of the n-input Batcher’s network can be determined by multiplying
its comparator–level delay [10] by log n :

DBatcher(n) =
1
2

(log3 n+ log2 n). (14)

Table 2 summarizes the results obtained above. The highest order terms for switch, adder,
and function slices, the total hardware, and total propagation delay are tabulated for both
networks. It is seen that both networks use the same number of switch slices while the
self–routing network of this paper uses a smaller order of function slices than Batcher’s
network. Thus, if as we assumed in the preceding section, the cost of all three slices are
identical, then the highest order terms of the total hardware cost of both networks are
equal with the constant term multiplying the highest order term in the cost expression of
the self–routing network being half of that for Batcher’s network. However, function slices
are likely to be more complex than the switch slices in an actual implementation. This
will make the ratio of the constants multiplying the highest order terms even worse for
Batcher’s network. As for propagation delay, the table indicates that both networks have
the same order of delays with Batcher’s network delay being three fourths of the delay of
this paper’s self–routing network.
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Table 2

Cost self–routing Network Batcher’s Network

Crossbar n(log3 n)/4 n(log3 n)/4

Function + Adder Slices 3(n log2 n)/2 n(log3 n)/4

All Hardware n(log3 n)/4 n(log3 n)/2

Propagation Delay 2
3 log3 n− log2 n+ 1

3 log n+ 1 1
2 log3 n+ 1

2 log2 n

VII. Concluding Remarks

A self–routing permutation network using less hardware than Batcher’s sorting networks
has been described. The network has a similar structure to the complementary Beneš net-
work, but uses a device, called a 1–sorter, in certain places, rather than crossbar switches,
or smaller complementary Benes networks. A detailed design of 1–sorters by using rank-
ing and concentrator devices has been provided. Two different ranking circuits have been
described, one by using 2-input adders, and another by using combinational circuits called
Y–units. Both ranking circuits have O(log2 n) gate delay, the one which uses 2-input
adders has O(n log n) cost, and the other has O(n) cost. However, both results in the
same order of cost complexity when used to form a 1–sorter, even though one which uses
Y–units is more economical if the constants are taken into account.

The results of this paper show that the use of 1–sorters leads to both reduction in cost
and a simpler self–routing scheme for permutation maps when compared to Batcher’s
sorting networks. Nonetheless, the cost of the self–routing network described here is still
higher than the cost of an optimal permutation network by a factor of O(log2 n) if the
programming hardware cost of the latter is not taken into account. Even though this is
an unrealistic assumption, it remains open whether one can obtain a self–routing network
whose cost matches that of an optimal permutation network.
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[4] J.D. Carpinelli and A. Y. Oruç “Parallel set-up algorithms for Clos networks,” in
Proceedings of 2nd International Conference on Supercomputing. May 1987, pp.
321-327, Santa Clara, CA.

[5] C. Clos, “A study of non–blocking switching networks,” The Bell System Tech-
nical Journal, March 1953, pp. 406–424.

[6] T–Y Feng, “A survey of interconnection networks,” IEEE Computer, Dec. 1981,
pp. 12–27.

[7] C.-Y. Chin and K. Hwang, “Packet switching networks for multiprocessor and
data flow computers,” IEEE Transaction on Computers, Vol.‘C–33, May 1985,
pp. 991–1003.

[8] W.H. Kautz, K.N. Levitt, and A. Waksman, “Cellular interconnection arrays,”
IEEE Transactions on Computers, Vol. C-17, No. 5, May 1968, pp. 443-451.

[9] S.C. Knauer, J.H. O’Neill, and A. Huang, “self–routing switching network,” in
Principles of CMOS VLSI Design, A Systems Perspective, N. Weste and K.
Eshraghian, Addison-Wesley, Reading, MA, pp. 424–449.

[10] D.E. Knuth, The Art of Computer Programming Reading, MA, Addison–Wesley,
pp. 224–225.

[11] D.M. Koppelman, A. Thirumalai, J.F. McDonald, and A. Yavuz Oruç , “The im-
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