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ABSTRACT:

A sparse crossbar (n,m)-concentrator is a bipartite graph with n source and m

sink vertices, m ≤ n, in which there exists a matching between every m source
vertices and the m sink vertices. In this paper, we investigate the structure, and
the density of sparse crossbar (n,m)-concentrators among all 2nm bipartite graphs.
We establish that the density of sparse crossbar concentrators is bounded from
below by 0.2887 when m = n, from above by 1/e when m = n/2, and it tends to
0 when m = 1, as n → ∞. We also derive upper and lower bounds on the density
of sparse crossbar (n,m)-concentrators for an arbitrary m ≤ n. The lower bounds
provide an insight into the structure of sparse crossbar concentrators, while the
upper bounds give a partial characterization of bipartite graphs which fail to have
a concentrator property.

1This work is supported in part by the National Science Foundation under grant No. NCR-
9405539.



   

1 Introduction

Consider a device with n distinguished terminals, called inputs, and m distinguished
terminals, called outputs, where each input is connected to some of the outputs by
switches, called crosspoints. Such a device is called a sparse crossbar (n,m, c)-
concentrator if there exists a set of crosspoints by which every c ≤ m inputs can
be connected to some c outputs. The parameter c is called the capacity of the
concentrator. When c = m, the concentrator is said to have a full capacity, and we
drop c from the notation.

Sparse crossbar concentrators have been investigated in the literature in connection
with efficient constructions of more powerful networks[Pip77,Bas81,JO93,MO94].
They have also been studied independently for their crosspoint complexity[Mas77,
NM82] and structural properties[OH96,GO96]. It has been established that an
(n,m, c)-concen- trator requires at least (n − c + 1)m/(m − c + 1) crosspoints,
and this bound is tight when c = m[OH96]. More specifically, it was shown that a
sparse crossbar (n,m)-concentrator can be contructed with (n−m+1)m crosspoints
using a bipartite graph, called a fat-and-slim crossbar for any integers n and m ≤
n. More recently, it was shown that sparse crossbar (n,m)-concentrators can be
constructed with a minimum crosspoint complexity, and using nearly the same
number of crosspoints per each input for arbitrary values of n and m ≤ n[GO96].

In this paper, we consider another interesting problem about sparse crossbar concen-
trators. The problem is to determine how little or abundantly the sparse crossbar
full capacity concentrators are contained among all 2nm sparse crossbars with n

inputs and m outputs. This is a question of density, and as such, it is a measure
of resilience of sparse crossbar concentrators among all bipartite graphs. In par-
ticular, the density of sparse crossbar (n,m)-concentrators among all 2nm sparse
crossbars represents the probability that a randomly constructed sparse crossbar
is a concentrator. This density can also be viewed as the probability that a ran-
domly constructed sparse crossbar concentrator remains a concentrator when some
of its crosspoints fail to work. Aside from these practical motivations, the density
problem is also interesting in its own right, and as we will see, it leads to a more
complete understanding of the structure of sparse crossbar concentrators. In par-
ticular, the lower bounds on the density of sparse crossbar concentrators shed light
on how such graphs are structured, while the upper bounds expose the reasons why



    

many bipartite graphs fail to be a concentrator.

The rest of the paper is organized as follows. In the next section, we present basic
mathematical facts that will be needed in establishing our results. In Section 3,
we summarize some of the recently constructed sparse crossbar concentrators. In
Section 4, we formalize the density concept, and examine the density of sparse
crossbar concentrators for a few small values of n and m. In Section 5, we present
upper and lower bounds on the density of sparse crossbar concentrators. The paper
is concluded in Section 6 with the analysis and comparisons of the lower and upper
bounds, and suggestions for future research.

2 Definitions and Preliminary Facts

We begin with some definitions.

Definition 1 : A sparse crossbar an (n,m)-concentrator is a bipartite graph with
n inputs and m outputs such that there exists a matching between every m of the
inputs and the m outputs.

Definition 2 : The incidence matrix of an (n,m)-concentrator is an n×m binary
matrix B = [bi,j]m×n such that bi,j = 1 if and only if there exists an edge between
input j and output i.

Figure 1 illustrates the three representations of a sparse crossbar concentrator.

A key result which is central to the characterization of sparse concentrators is the
bipartite graph version of Hall’s theorem:

Theorem 1 : Let G be a bipartite graph with n inputs and m ≤ n outputs. A
subset of m inputs has a matching in G iff any j inputs are connected to at least j
outputs, 1 ≤ j ≤ m.

The next two results follow from Hall’s theorem.

Theorem 2 : A bipartite graph with n inputs and m outputs is a sparse concen-
trator if and only if its incidence matrix does not contain a (m − k + 1) × k zero
submatrix, k = 1, 2, . . . ,m.
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Fig. 1: Various representations of a sparse crossbar concentrator.

Proof: Let G be a bipartite graph, and BG be its incidence matrix. If BG contains
a (m−k+1)×k zero matrix then the k inputs associated with this zero submatrix
could at most be connected to

m− (m− k + 1) = k − 1

outputs, and any m inputs that include those k inputs cannot be matched with the
m outputs. On the other hand, suppose that BG does not contain any (m−k+1)×k
zero submatrix. This implies that every k inputs in G are connected to at least k
outputs. Therefore, by Hall’s theorem there must exist a matching between every
m-inputs and the m outputs. ||

Theorem 3 : In a sparse crossbar (n,m)-concentrator, every k of the m outputs
must be connected2 to at least n−m+ k inputs.

Proof: If some k outputs are connected only to n−m+k−1 or fewer inputs, then
some m−k+1 or more inputs will be connected to only m−k outputs, contradicting

2We say that k outputs are connected to r inputs if each of the r inputs is connected to at least
one of the k outputs.



      

that the graph in question is a concentrator. ||

3 Fat-and-slim and Banded Sparse Crossbars

One way to determine whether or not sparse crossbar concentrators occur abun-
dantly among the set of all bipartite graphs is to construct families of sparse concen-
trators, and then compute their cardinalities. Two relatively large families of sparse
crossbar concentrators have recently been introduced in the literature[OH96,GO96].

Definition 3 : Let G = (I,O) be a bipartite graph with n inputs and m outputs.
Suppose that I is partitioned into two sets A1 and A2, where |A1| = n − m and
|A2| = m. G is called an (n,m)-fat-and-slim crossbar if each of the n−m inputs in
A1 is connected to all the m outputs, and if each of the m inputs in A2 is connected
to a single but distinct output.

A (12,4)-fat-and-slim crossbar is depicted in Figure 2.

Theorem 4 : Every (n,m)-fat-and-slim crossbar is an (n,m)-concentrator, and it
uses the minimum number of crosspoints possible, (i.e. (n−m+ 1)m.)

Corollary 1 There exist at least

n× (n− 1)× (n− 2) · · · × (n−m+ 1) (1)

distinct sparse crossbar (n,m)-concentrators.

Proof: The n −m slim section can be fixed in
(
n
m

)
ways, and for each such slim

section, the m crosspoints can be distributed into the m rows in m! ways. ||

By Stirling’s approximation, the cardinality, |FS(n,m)|, of the family of fat-and-
slim crossbar concentrators is

|FS(n,m)| ≈ (
n−m
e

)m(
n

n−m)n+0.5e1/12n−1/(12n+1). (2)

When m = n/2, this becomes

2n(1+
log2 e

2
)+(n/2) log2(n/2)+0.5, (3)

and dividing this by 2n2 shows that, while fat-and-slim (n, n/2)-crossbars form a
large family of sparse crossbar concentrators, their density tends to 0 as n→∞.
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Fig. 2: A (12,4)-fat-and-slim crossbar.

Another family of sparse crossbar concentrators, called banded sparse crossbars can
be obtained by placing blocks of n−m+1 “1”s into the m rows of an m×n incidence
matrix.

Definition 4 An (n,m)-sparse crossbar G is called (column) banded if its incidence
matrix BG = [bi,j] is given by

bi,j =
{

1 if i ≤ j ≤ i+ n−m
0 if j < i or j > i+ n−m

for i = 1, 2, . . . ,m.

Theorem 5 : Every banded (n,m) sparse crossbar is a concentrator.

The theorem can be proved using the following lemma[GO96].

Lemma 1 (Guo-Oruç:) Let X and Y be any two columns of an n × m binary
matrix A. Suppose X covers3 Y, and let ai1,x, . . . , air,x be any r rows of “1”s in X.

Let B be a matrix obtained from A by exchanging ail,x with ail,y, 1 ≤ l ≤ r. If A
does not have a (m− k+ 1)× k zero submatrix, for any k, 1 ≤ k ≤ m, then neither
does B.

Definition 5 : Two sparse crossbar concentrators G1 and G2 are said to be topo-
logically equivalent if G1 can be obtained from G2 by permuting the inputs and/or
outputs of G2, and conversely.

3We say that column X covers column Y if whenever a row in Y contains 1 so does X.
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Fig. 3: A banded sparse crossbar concentrator.

Definition 6 : Any sparse crossbar concentrator which is topologically equivalent
to a banded sparse crossbar is also called banded.

Corollary 2 : For 2 ≤ m ≤ n/2, there exist at least(
n

n− 2m+ 2

)
(2m− 2)! = n× (n− 1)× (n− 2) · · · × (n− 2m+ 3) (4)

distinct banded sparse crossbar concentrators.

Proof: The n − 2m + 2 full columns (i.e., those containing only “1” entries) of
a banded sparse crossbar concentrator can be fixed in

(
n

n−2m+2

)
ways, and any

permutation of the remaining 2m−2 columns gives a distinct banded sparse crossbar
concentrator. ||

Comparing (4) with (1) shows that the set of banded sparse crossbars is larger than
the set of fat-and-slim crossbars when n− 2m+ 3 < n−m+ 1, or m > 2. However,
it can be shown that the density of banded sparse crossbar concentrators also tends
to 0 as n→∞.

We can construct a larger family of sparse concentrators, by increasing the number
of “1”s in each column to n − 2m + 2i, 1 ≤ i ≤ m. It is obvious that the resulting
sparse crossbar for each i, 1 ≤ i ≤ m is a concentrator, and as in the proof of
the corollary, each permutation of the remaining 2m − 2i columns will result in a
distinct concentrator after the n − 2m + 2i full columns are fixed. Hence we have
the following theorem:



     

Theorem 6 For 2 ≤ m ≤ n/2, there exists a family of sparse crossbar concentra-
tors with no less than

m∑
i=1

(
n

n− 2m+ 2i

)
(2m− 2i)!

elements.

It is easy to verify that this set of sparse crossbar concentrators does not overlap
with the set of fat-and-slim sparse crossbars.

4 The Density of Sparse Crossbar Concentrators

We have described two families of sparse crossbar concentrators and the two together
form a set of

(
m∏
j=1

n− j + 1) + (
m∑
i=1

n∏
j=n−2m+2i+1

j)

elements. The main problem we now wish to deal with is “what portion of all the
2nm bipartite graphs are actually sparse crossbar (n,m)-concentrators?” Formally,
we are interested in the density of sparse crossbar concentrators among the 2nm

sparse crossbars with n inputs and m outputs, where:

Definition 7 : The density dC(n,m) of the set of sparse crossbar (n,m)-concentrators,
C(n,m), among all sparse crossbars with n inputs and m outputs is given by:

dC(n,m) = Lim
n→∞|C(n,m)| × 2−nm

It is easy to see that when m = 1, there is only one sparse crossbar concentrator
for all n ≥ 1, and hence

dC(n,1) =Lim
n→∞ 2−n = 0.

For other values of m, the problem is not as trivial. For example, suppose m = n.

In this case, we are dealing with square matrices, and to count all n× mattrices in
which there is a matching, we must have an actual algorithm to construct all such
matrices. For n = 2, it is easy to see that of the 16 2× 2 binary matrices, exactly
7 correspond to sparse crossbar concentrators. For n = 3, we can count them by
examining the structure of 3× 3 matrices that correspond to sparse crossbar (3, 3)-
concentrators. As a first step, consider those 3 × 3 matrices in which the first row
contains a single “1”. For this matrix to correspond to a concentrator, it must have
a “1” in its second row which is located in a different column than the one which



 

contains the 1 in the first row. Likewise, the third row must contain a “1” in a
column other than the columns in which the first and second rows had their “1”s.
With this observation, it is readily seen that, when the first row is 001, the structure
of the concentrator matrices must conform to one of the five patterns, where the
“−” entries indicate that the entry can be 0 or 1. 0 0 1

0 1 −
1 − −

 ,
 0 0 1

1 0 −
− 1 −

 ,
 0 0 1

1 1 −
0 1 −

 ,
 0 0 1

1 1 −
1 0 −

 ,
 0 0 1

1 1 −
1 1 −

 .
Noting that the “−” entries can be replaced with 0 or 1, we find that there exist 28
3×3 concentrators whose first row is 001. Likewise, each of the 3×3 matrices whose
first row contains 010 or 100 contribute 28 to the total count. The next group of
3×3 matrices which correspond to concentrators are those whose first row contains
exactly two “1”s. Consider those matrices whose first row contains 011. It can be
verified that if the second row contains two “1”s, and the locations of these “1”s
do not coincide with the columns in the first row then the third row can contain
any pattern of “0”s and “1”s, except 000. In case that both “1”s are in the same
columns as those in the first row, then the third row must contain a ‘1’ in the first
column, and the other entries can be 0 or 1. Analyzing the other cases similarly, we
have the following patterns of 3× 3 matrices when the first row is 011, and where x
entries indicate that the third row can contain any pattern of “0”s and “1”s except
all “0”s. 0 1 1

0 0 1
1 − −

 ,
 0 1 1

0 1 0
1 − −

 ,
 0 1 1

1 0 0
1 − −

 ,
 0 1 1

1 0 1
− 0 1

 ,
 0 1 1

1 1 0
− 1 0

 ,
 0 1 1

1 0 1
− 1 1

 ,
 0 1 1

1 0 1
x x x

 ,
 0 1 1

1 1 0
x x x


 0 1 1

1 1 1
x x x

 .
The first three patterns contribute 4 concentrators each, the next three contributes
2 concentrators each, and the last three contributes 7 concentrators each, resulting
in a total of 39 concentrators. Similarly, the other two 3×3 matrices whose first row
contains 101 or 110 will each contribute 39 to the total count. Finally, the following
patterns of matrices whose first row contains 111 must be taken into account, where
again the x entries can be any pattern of “0”s and “1”s except all “0”s, and the



     

“-‘” entries can be 0 or 1. 1 1 1
0 0 1
x x −

 ,
 1 1 1

0 1 0
x − x

 ,
 1 1 1

1 0 0
− x x

 ,
 1 1 1

0 1 1
x x x

 ,
 1 1 1

1 0 1
x x x

 ,
 1 1 1

1 1 0
x x x


 1 1 1

1 1 1
x x x

 .
Adding these matrices up we find that they contribute 3×6+4×7 = 46 concentrators
to the total count. Hence, the total number of sparse crossbar (3, 3)-concentrators
is given by

3× 28 + 3× 39 + 46 = 247.

By extending these counting arguments, it can be shown that the total number of
sparse crossbar (4,4)-concentrators is given by 37811. These numbers suggest that
dC(n,n) → 1 as n→∞, but the most we can show that dC(n,n) ≥ 0.288 as n→∞.

Theorem 7 The density of sparse crossbar (n, n)-concentrators is at least 0.288 as
n→∞.

Proof: The proof will follow from a more generalized statement in the next section.

5 Density Bounds

In this section, we present two upper bounds and two lower bounds on the density
of sparse crossbar concentrators.

A. Upper Bounds:

The most obvious upper bound can be derived using Theorem 3 with k = 1. The
theorem states that every sparse crossbar (n,m)-concentrator must have at least
(n − m + 1)m crosspoints. It follows that all m × n matrices with fewer than
(n−m+1)m “1”s should correspond to bipartite graphs which are not concentrators.
Hence,

dC(n,m) ≤ Lim
n→∞

2nm −∑(n−m+1)m−1
i=0

(
nm
i

)
2nm

, (5)

or

dC(n,m) ≤ Lim
n→∞

∑nm
i=(n−m+1)m

(
nm
i

)
2nm

. (6)



     

Using Moon’s inequality[EJ71],

r∑
i>r/2+λ

(
r

i

)
< 2re−2λ2/r,

in the interval 0 ≤ λ ≤ r/2, with r = nm, λ = nm/2−m(m− 1), yields the upper
bound

dC(n,m) ≤ Lim
n→∞e

−2((nm/2−m(m−1))2/nm, (7)

or
dC(n,m) ≤ Lim

n→∞e
−2m((n/2−(m−1))2/n (8)

in the interval 1 ≤ m ≤ n/2 + 1. It follows that

Corollary 3 :
dC(n,n/2) ≤ 1/e ≈ 0.37.

We can derive another upper bound on dC(n,m) in the same interval by lower bound-
ing the number of bipartite graphs which are not concentrators as above. This
time, we count those bipartite graphs in any row of which there are m or more
zeros. Again, by Theorem 3, these correspond to bipartite graphs which are not
concentrators.

Let Rk denote the set of m× n matrices with m or more zeros in the kth row. Let
|Rk| denote the number of elements in Rk. Then,

|Rj1| =
n∑

i=m

(
n

i

)
2n(m−1),

|Rj1 ∩Rj2| =
(

n∑
i=m

(
n

i

))2

2n(m−2),

...

|Rj1 ∩ · · · ∩Rjm| =
(

n∑
i=m

(
n

i

))m
,

for any distinct indices j1, . . . , jm.

We can use these equalities to derive a lower bound on the number, xC(n,m), of
bipartite graphs which are not concentrators with the inclusion exclusion principle.

xC(n,m) ≥ |R1 ∪R2 ∪ · · · ∪Rm|



   

=
∑
i

|Ri| −
∑
i,j

|Ri ∩Rj|+ · · ·+ (−1)m+1|R1 ∩ · · · ∩Rm|

=
m∑
j=1

(
m

j

)
(−1)j+1

(
n∑

i=m

(
n

i

))j
2n(m−j)

= −2nm
m∑
j=1

(
m

j

)(
n∑

i=m

(
n

i

)
(−2−n)

)j
.

Using the equality
m∑
j=1

(
m

j

)
xj = (x+ 1)m − 1,

we get

xC(n,m) ≥ −2nm
(
(
n∑

i=m

(
n

i

)
(−2−n) + 1)m − 1

)
,

= 2nm − (2n −
n∑

i=m

(
n

i

)
)m

= 2nm − (
m−1∑
i=0

(
n

i

)
)m.

Since dC(n,m) = 1− Lim
n→∞(xC(n,m)/2nm), we get

dC(n,m) ≤ Lim
n→∞

(
1
2n

m−1∑
i=0

(
n

i

))m
. (9)

Rewriting the inequality as

dC(n,m) ≤ Lim
n→∞

 1
2n

n∑
i=n−m+1

(
n

i

)m . (10)

and once again, using Moon’s inequality with λ = (n−m+ 1)−n/2, we obtain the
same upper bound

dC(n,m) ≤ Lim
n→∞e

−2m(n/2−m+1)2/n. (11)

in the interval 1 ≤ m ≤ n/2 + 1.

As we will see in the next section, if the second bound is computed directly using the
expression in Eqn. (10) it provides a tighter upper bound on dC(n,m). This bound
can be improved by considering larger values of k in Theorem 2. However, the
counting gets more complicated, and lest we count these non-concentrator graphs
due to the higher order terms precisely, their contribution is negligible on xC(n,m).



   

B. Lower Bounds

To find a lower bound on dC(n,m), we count the number of m × n matrices that
correspond to an (n,m)-concentrator, and can be generated from a fat-and-slim
concentrator. We use the transformation lemma (Lemma 1) that has been stated
before.

First assume that m ≤ n − m. This makes the fat region of the concentrator at
least as large as the slim region. Suppose we choose any i columns from the fat
region and any i columns from the slim region, and swap some entries between the
first columns selected from each group, then between second columns selected from
each group, and so on. For each pair of columns, there can be at most m−1 swaps,
yielding to 2m−1−1 different arrangements of the two columns (we exclude the case
of no swaps). This gives (2m−1− 1)i different concentrators for each selection of the
groups. Summing this up for all the possible selections, we get

|C(n,m)| ≥
m∑
i=0

(
m

i

)(
n−m
i

)
(2m−1 − 1)i.

Now, suppose we add k columns to the fat region, and remove k columns from
the slim region. For each k, we will get a different concentrator since the total
number of crosspoints are changed. We can use the above generation process on
the concentrators obtained in this way, which modifies the bound as

|C(n,m)| ≥
m∑
k=0

m−k∑
i=0

(
m− k
i

)(
n−m+ k

i

)
(2m−1 − 1)i.

We can use the same counting technique for the m > n−m case. In this case, the
summation limits will be different. Also, increasing the fat region will eventually
bring the problem to the previous case, so there will be two summation terms. The
general bound for |C(n,m)| is given by

|C(n,m)| ≥


∑m
k=0

∑m−k
i=0

(
m−k
i

)(
n−m+k

i

)
(2m−1 − 1)i, m ≤ n−m∑m−n/2

k=0

∑n−m+k
i=0

(
m−k
i

)(
n−m+k

i

)
(2m−1 − 1)i

+
∑n/2
k=1

∑n/2−k
i=0

(
n/2−k
i

)(
n/2+k
i

)
(2m−1 − 1)i, m > n−m

and
dC(n,m) ≥ Lim

n→∞
|C(n,m)|

2nm
.

This lower bound can be improved using another construction. The key idea is to
ensure that each input has a distinct output to be matched with. This is guaranteed
if we enter a “1” in a different column in each row as we prove in the next theorem.



     

Theorem 8 : There exist at least

(
m−1∏
i=1

2i(2m−i − 1))× (
n∑

i=n−m+1

(
n

i

)
) (12)

sparse crossbar concentrators.

Proof: We know from Theorem 3 that every row in the incidence matrix of a sparse
crossbar concentrator must have at least n−m+ 1 “1”s. Hence, the first row can
be fixed in any one of

n∑
i=n−m+1

(
n

i

)
ways. Once the first row is fixed this way, we fill some n−m columns which have
“1” entries in the first row with “1”s, and mark a “1” among the remaining “1”s
in the first row. This insures that the input which corresponds to the column with
the marked “1” can be matched with an output. This process can be iterated by
allowing the remaining m − 1 columns in the second row to assume any one of
2m−1 − 1 patterns of “1’s and “0”s (we only need to exclude the all “0” pattern).
Furthermore, the entry at the intersection of the second row and the column in
which the 1 has been marked can be either 0 or 1. Hence, the unspecified m

entries in the second row can be fixed in any one of 2(2m−1 − 1) ways. Iterating
this argument for the next row, and so on, we see that the total number of sparse
crossbar (n,m)-concentrators is not less than the expression given in 12. ||

Remark 1 When n = m, the lower bound in (12) reduces to
n−1∏
i=0

2i(2n−i − 1) = 2n
2
n∏
i=1

(1− 2−i). (13)

Dividing this expression by 2n2, we find that the density of a sparse crossbar (n, n)-
concentrator satisfies the inequality

dC(n,n) ≥
n∏
i=1

(1− 2−i). (14)

Using the Euler expansion [BR42]
∞∏
i=1

(1− qi) = 1− (q+q2) + (q5 + q7)− (q12 + q15) + ...,

with q = 1/2, the indices being alternately n(3n± 1)/2, we find that

dC(n,m) ≥ 1− (1/2 + 1/4) + (1/32 + 1/128)− (1/1024 + 1/32768) ≥ 0.288



  

6 Concluding Remarks

The exact values of the lower and upper bounds are plotted in Figures 4, 5 and 6.
It is seen that the second upper bound is always tighter than the first upper bound.
On the other hand, the first lower bound is slightly tighter than the second lower
bound when m = 0.2n, but the second lower bound gets tighter as m approaches
n. In fact, when m = n, it tends to 0.288, whereas the first lower bound tends to 0.

In this paper, we have investigated the density of sparse crossbar concentrators
within the set of all bipartite graphs with n inputs and m outputs. The results we
presented here offer some clues on how extensively such graphs are found among
bipartite graphs. Perhaps, the most startling fact that has been uncovered is that
the density of sparse crossbar concentrators is strictly greater than 0 (in fact, it is
not less than 0.288 when the number of inputs equals the number of outputs.) The
exact values of the density for n = 2, 3, 4 show that it is likely that it tends to 1
as n → 1, but proving this remains an open problem. For the more general case
( n 6= m,) the lower and upper bounds we have given in the paper seem to have
room for improvement. For the lower bounds, it seems that the contructions given
in the paper can be refined to more accurately count the number of concentrators.
Improving the upper bounds by way of counting the bipartite graphs which are not
concentrators appears to be more intractable.



Fig. 4: Lower and upper bounds when m = 0.2n, 1 ≤ n ≤ 40.



Fig. 5: Lower and upper bounds when m = 0.5tn, 1 ≤ n ≤ 40.



Fig. 6: Lower and upper bounds when m = 0.8n, 1 ≤ n ≤ 40.
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