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Security in Wireless Systems

• Inherent openness in wireless communications channel: eavesdropping and jamming attacks

Bob

Alice

Eve
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Countering Security Threats in Wireless Systems

• Cryptography

– at higher layers of the protocol stack

– based on the assumption of limited computational power at Eve

– vulnerable to large-scale implementation of quantum computers

• Techniques like frequency hopping, CDMA

– at the physical layer

– based on the assumption of limited knowledge at Eve

– vulnerable to rogue or captured node events

• Information theoretic security

– at the physical layer

– no assumption on Eve’s computational power

– no assumption on Eve’s available information

– unbreakable, provable, and quantifiable (in bits/sec/hertz)

– implementable by signal processing, communications, and coding techniques

• Combining all: multi-dimensional, multi-faceted, cross-layer security
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Shannon’s 1949 Security Paper

• Noiseless bit pipes to Bob and Eve

• Introduces one-time pad
Y = X ⊕K

• If K is uniform and independent of X , then Y is independent of X

• If we know K, then X = Y ⊕K

• For perfect secrecy, length of K (key rate) must be as large as length of X (message rate)

• Two implications:

– Need “absolutely secure” links to exchange keys

– Need constant rates (equal to message rate) on these links

• Beginning of cryptography
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Private Key Cryptography

• Based on one-time pad

• There are separate secure communication links for key exchange

• Encryption and decryption are done using these keys

• Hard to construct “absolutely secure” links

• Hard to distribute and maintain secure keys

– Especially in wireless and/or infrastructureless networks, i.e., ad-hoc and sensor networks

• Number of keys rapidly increases with the number of nodes

– Need a distinct key for each transmitter-receiver pair
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Public Key Cryptography

• Encryption is based on publicly known key (or method)

• Decryption can be performed only by the desired destination

• No need for “absolutely secure” links to distribute and maintain keys

• Security based on computational advantage

• Security against computationally limited adversaries

• Basic idea: Certain operations are easy in one direction, difficult in the other direction

– Multiplication is easy, factoring is difficult (RSA)

– Exponentiation is easy, discrete logarithm is difficult (Diffie-Hellman)

6



Rivest-Shamir-Adleman (RSA)

• Choose two large integers p and q. Let n = pq and φ = (p−1)(q−1).

• Choose two numbers D and E such that DE mod φ = 1. Also, E is co-prime with φ.

• Make E and n public.

• E is the encryption key, which is publicly known. D is the decryption key.

• Alice wants to send a message m (which is a number between 0 and n−1) to Bob.

• Alice calculates c = mE and sends it.

• Bob, knowing D, calculates cD = mDE in mod n.

• It is known that mDE mod n = m, hence Bob gets the message.

• For Eve to decode the message, she needs D.

• To find D, Eve needs to factor n into p and q, and calculate φ, and knowing E, find D.

• Factoring a large integer into its prime multipliers is known to be a difficult problem.

7



Diffie-Hellman

• Alice and Bob wish to settle on a secret key.

• Choose a large base n, and an integer g.

• Alice chooses a key k1, Bob chooses a key k2.

• Alice calculates gk1 and sends it to Bob.

• Bob calculates gk2 and sends it to Alice.

• Alice raises what she receives from Bob to power k1, and gets gk1k2 .

• Bob raises what he receives from Alice to power k2, and gets gk1k2 .

• Alice and Bob agree on the secret key gk1k2 .

• For Eve to decypher the key, she needs to take discrete logarithms of what she observes.

• Eve needs to find k1 by log(gk1) and find k2 by log(gk2) and calculate gk1k2

• Taking the discrete logarithm of a large number is known to be a difficult problem.
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Cryptography versus Physical-Layer Security
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Single-User Channel Review

• We first consider the single-user channel:

X ŴYW

BobAlice

• Channel is memoryless

p(yn|xn) =
n

∏
i=1

p(yi|xi)

• Capacity of a single-user memoryless channel is

C = max
p(x)

I(X ;Y )
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Single-User Channel: Achievability

• Fix a p(x). Fill the 2nR×n codebook with i.i.d. realizations:
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• Receiver decides ŵ is sent, if it is the unique message such that (xn(ŵ),yn) is jointly typical

• Probability of error goes to zero as n→ ∞, if

R≤C = max
p(x)

I(X ;Y )
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Single-User Channel: Converse

• The converse proof goes as follows

nR = H(W )

= I(W ;Y n)+H(W |Y n)

≤ I(W ;Y n)+nεn

≤ I(Xn;Y n)+nεn

=
n

∑
i=1

I(Xn;Yi|Y i−1)+nεn

≤
n

∑
i=1

H(Yi)−H(Yi|Xi)+nεn

=
n

∑
i=1

I(Xi;Yi)+nεn

≤ nC +nεn
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Wiretap Channel

• Wyner introduced the wiretap channel in 1975.

• Major departure from Shannon’s model: noisy channels.

• Eve’s channel is degraded with respect to Bob’s channel: X → Y → Z

BobAlice

W X Y

Z

Ŵ

|
n

H W Z

Eve

• Secrecy is measured by equivocation, Re, at Eve, i.e., the confusion at Eve:

Re = lim
n→∞

1
n

H(W |Zn)

13



Notions of Perfect Secrecy

• Perfect secrecy is achieved if Re = R

Re = lim
n→∞

1
n

H(W |Zn) = lim
n→∞

1
n

H(W ) = R

• Two notions of perfect secrecy.

• Weak secrecy: Normalized mutual information vanishes as above

lim
n→∞

1
n

I(W ;Zn) = 0

• Strong secrecy: Message and Eve’s observation are almost independent

lim
n→∞

I(W ;Zn) = 0

• All capacity results obtained for weak secrecy have been extended for strong secrecy

• However, there is still no proof of equivalence or strict containment
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Capacity-Equivocation Region

• Wyner characterized the optimal (R,Re) region:

R≤ I(X ;Y )

Re ≤ I(X ;Y )− I(X ;Z)

• Main idea is to split the message W into two coordinates, secret and public: (Ws,Wp).

• Ws needs to be transmitted in perfect secrecy:

lim
n→∞

1
n

I(Ws;Zn) = 0

• Wp has two roles

– Carries some information on which there is no secrecy constraint

– Provides protection for Ws
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Secrecy Capacity

• Perfect secrecy when R = Re.

• The maximum perfect secrecy rate, i.e., the secrecy capacity:

Cs = max
X→Y→Z

I(X ;Y )− I(X ;Z)

• Main idea is to replace Wp with dummy indices

• In particular, each Ws is mapped to many codewords:

– Stochastic encoding (a.k.a. random binning)

• This one-to-many mapping aims to confuse the eavesdropper
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A Typical Capacity-Equivocation Region

• Wyner characterized the optimal (R,Re) region:

R≤ I(X ;Y )

Re ≤ I(X ;Y )− I(X ;Z)

• A typical (R,Re) region:

Cs C R

Re

• There might be a tradeoff between rate and its equivocation:

– Capacity and secrecy capacity might not be simultaneously achievable
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Achievability of the Secrecy Capacity-I

• We will show the achievability of the perfect secrecy rate

Rs = I(X ;Y )− I(X ;Z)

• Fix a distribution p(x)

• Generate 2n(Rs+R̃s) xn sequences through p(xn) = ∏n
i=1 p(xi)

• Index these sequences as xn(ws, w̃s) where

ws ∈
{

1, . . . ,2nRs
}

w̃s ∈
{

1, . . . ,2nR̃s
}

• ws denotes the actual secret message

• w̃s denotes the protection (confusion) messages with no information content

– Their sole purpose is to confuse the eavesdropper, i.e., ensure the confidentiality of ws
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Achievability of the Secrecy Capacity-II

• Codebook structure and stochastic encoding
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Achievability of the Secrecy Capacity-III

• Recall

Rs = I(X ;Y )− I(X ;Z)

• We set R̃s as

R̃s = I(X ;Z)

• If ws is the secret message, select w̃s randomly from
{

1, . . . ,2nR̃s
}

, and send xn(ws, w̃s)

• Legitimate user decides on ŵs if (xn(ŵs, w̃s),yn) is jointly typical.

• Legitimate user decodes both the secret message and the dummy message reliably since:

Rs + R̃s ≤ I(X ;Y )

• Therefore, the secret message is sent to Bob reliably.

• Next, we show that the secret message is sent perfectly securely also:

lim
n→∞

1
n

I(Ws;Zn) = 0
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Achievability of the Secrecy Capacity-IV

• Equivocation calculation.

• We have the following:

H(Ws|Zn) = H(Ws,W̃s|Zn)−H(W̃s|Ws,Zn)

= H(Ws,W̃s)− I(Ws,W̃s;Zn)−H(W̃s|Ws,Zn)

≥ H(Ws,W̃s)− I(Xn;Zn)−H(W̃s|Ws,Zn)

= H(Ws)+H(W̃s)− I(Xn;Zn)−H(W̃s|Ws,Zn)

which is

I(Ws;Zn)≤ I(Xn;Zn)+H(W̃s|Ws,Zn)−H(W̃s)

• We treat each term separately
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Achievability of the Secrecy Capacity-V

• We have

H(W̃s) = nR̃s = nI(X ;Z)

• We have

I(Xn;Zn)≤
n

∑
i=1

I(Xi;Zi)≤ n(I(X ;Z)+ γn)

• Finally, we consider

H(W̃s|Ws,Zn)

• Given Ws = ws, xn(ws,W̃s) can take 2nR̃s values where R̃s = I(X ;Z)

• Thus, the eavesdropper can decode W̃s given Ws = ws by looking for the unique w̃s such that
(xn(ws, w̃s),Zn) is jointly typical.

• Hence, from Fano’s lemma:

H(W̃s|Ws,Zn)≤ nβn
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Achievability of the Secrecy Capacity-VI

• Combining all these findings yields

1
n

I(Ws;Zn)≤ βn + γn

• Since βn,γn → 0 when n→ ∞, we have

lim
n→∞

1
n

I(Ws;Zn) = 0

i.e., perfect secrecy is achieved.

• Thus, Rs = I(X ;Y )− I(X ;Z) is an achievable perfect secrecy rate
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Achievability of the Entire Rate-Equivocation Region-I

• So far, we showed the achievability of

Rs = I(X ;Y )− I(X ;Z) R = I(X ;Y )− I(X ;Z)

• We will now show the achievability of

Rs = I(X ;Y )− I(X ;Z) R = I(X ;Y )

• In the perfect secrecy case, each secret message Ws is associated with many codewords

Xn(Ws,W̃s)

• Legitimate user decodes both Ws and W̃s

• There is a rate for W̃s which does not carry any information content

• W̃s can be replaced with some information on which there is no secrecy constraint, i.e., it does
not need to be confidential:

– Rate-equivocation region
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Achievability of the Entire Rate-Equivocation Region-II

• Each message W is divided into two parts:

– Secret message Ws

– Public message Wp

• We have doubly indexed codewords

Xn(Ws,Wp)

• We need to show

– Rate R = Rs +Rp can be delivered to Bob

– Rate Rs can be kept hidden from Eve
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Achievability of the Entire Rate-Equivocation Region-III

• Codebook used to show achievability
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Achievability of the Entire Rate-Equivocation Region-IV

• R = Rs +Rp can be delivered to Bob as long as

Rs +Rp ≤ I(X ;Y )

• We set Rp as

Rp = I(X ;Z)

• Equivocation calculation:

H(W |Zn) = H(Ws,Wp|Zn)

= H(Ws,Wp)− I(Ws,Wp;Zn)

≥ H(Ws,Wp)− I(Xn;Zn)

= H(Ws)+H(Wp)− I(Xn;Zn)

• As n→ ∞, (Xn(ws,wp),Zn) will be jointly typical with high probability:

I(Xn;Zn)≤ nI(X ;Z)+nγn
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Achievability of the Entire Rate-Equivocation Region-V

• Equivocation computation proceeds as follows

H(W |Zn)≥ H(Ws)+H(Wp)−nI(X ;Z)−nγn

= H(Ws)−nγn

= n [I(X ;Y )− I(X ;Z)]−nγn

• Thus, we have

lim
n→∞

1
n

H(W |Zn)≥ I(X ;Y )− I(X ;Z)

i.e., I(X ;Y )− I(X ;Z) is an achievable equivocation rate.

• Therefore, rate R = I(X ;Y ) can be achieved with equivocation Re = I(X ;Y )− I(X ;Z).
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Stochastic Encoding: 64-QAM Example-I

Bob’s Noise Eve’s Noise

Bob’s Constellation Eve’s Constellation

2log 64 6 b/s
B

C 2log 16 4 b/s
E

C

2 b/s
s B E

C C C
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Stochastic Encoding: 64-QAM Example-II

Message 1

Message 2

Message 3

Message 4
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Stochastic Encoding: 64-QAM Example-III

Message 1

Message 2

Message 3

Message 4
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Stochastic Encoding: 64-QAM Example-IV

Message 1

Message 2

Message 3

Message 4
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Stochastic Encoding: 64-QAM Example-V

Message 1

Message 2

Message 3

Message 4
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General Wiretap Channel

• Csiszar and Korner considered the general wiretap channel in 1978.

• They extended Wyner’s model in two ways

– Eve’s signal is not necessarily a degraded version of Bob’s signal.

– There is a common message for both Eve and Bob

Bob

Alice

X

Y

Z

Ŵ

|
n

H W Z

VW

Eve
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General Wiretap Channel: Capacity-Equivocation Region

• Capacity-equivocation region is obtained as union of rate triples (R0,R1,Re) satisfying

R0 ≤min{I(U ;Y ), I(U ;Z)}
R0 +R1 ≤ I(V ;Y |U)+min{I(U ;Y ), I(U ;Z)}

Re ≤ I(V ;Y |U)− I(V ;Z|U)

for some (U,V ) such that

U →V → X → Y → Z

• New ingredients in the achievable scheme:

– Superposition coding to accommodate the common message

– Channel prefixing
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Outline of Achievability

• Achievability of the following region is shown

R0 ≤min{I(U ;Y ), I(U ;Z)}
R0 +R1 ≤ I(X ;Y |U)+min{I(U ;Y ), I(U ;Z)}

Re ≤ I(X ;Y |U)− I(X ;Z|U)

for some (U,X) such that

U → X → Y → Z

• Channel prefixing, i.e., introduction of a hypothetical channel between U and X by means of
V , gives the capacity region
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General Capacity-Equivocation Region (for R0 = 0)

• When there is no common message, capacity-equivocation region

R≤ I(V ;Y )

Re ≤ I(V ;Y |U)− I(V ;Z|U)

for some (U,V ) such that

U →V → X → Y → Z

• Even if common message is not present, we still need two auxiliary rv.s

– V : channel prefixing

– U : rate splitting

• In other words, we still need superposition coding
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General Capacity-Equivocation Region (for R0 = 0): Achievability

• Divide message W into three parts: W ′
p,W

′′
p ,Ws

• W ′
p,W

′′
p are public messages on which there is no secrecy constraint

• Ws is the confidential part which needs to be transmitted in perfect secrecy

• W ′
p is transmitted by the first layer, i.e., U

• W ′′
p ,Ws are transmitted by the second layer, i.e., V

• Similar to Wyner’s scheme, W ′′
p has two roles

– Carries part of the public information on which there is no secrecy constraint

– Provides protection for Ws
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Secrecy Capacity for General Wiretap Channel

• Secrecy capacity is

Cs = max
U→V→X→(Y,Z)

I(V ;Y |U)− I(V ;Z|U)

= max
U→V→X→(Y,Z)

∑
u

pU (u)I(V ;Y |U = u)− I(V ;Z|U = u)

= max
V→X→(Y,Z)

I(V ;Y )− I(V ;Z)

Bob

Alice

X

Y

Z

Ŵ

|
n

H W Z

VW

Eve
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Secrecy Capacity for General Wiretap Channel: Channel Prefixing

• The secrecy capacity:

Cs = max
V→X→Y Z

I(V ;Y )− I(V ;Z)

• The new ingredient: channel prefixing through the introduction of V .

• No channel prefixing is a special case of channel prefixing by choosing V = X .
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Channel Prefixing

• A virtual channel from V to X .

• Additional stochastic mapping from the message to the channel input: W →V → X .

• Real channel: X → Y and X → Z. Constructed channel: V → Y and V → Z.

Bob

W X

Y

Z

Ŵ

|
n

H W Z

V

Alice

Eve• With channel prefixing: V → X → Y,Z.

• From DPI, both mutual informations decrease, but the difference may increase.

• The secrecy capacity:

Cs = max
V→X→Y Z

I(V ;Y )− I(V ;Z)
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Converse-I

• Csiszar sum lemma is crucial:

Lemma 1 Let T n,Un be length-n random vectors, and G be a random variable. We have

n

∑
i=1

I(Un
i+1;Ti|G,T i−1) =

n

∑
i=1

I(T i−1;Ui|G,Un
i+1)

• Due to secrecy condition, we have

I(Ws;Zn)≤ nγn

where γn → 0 as n→ ∞.

• Fano’s lemma implies

H(Ws|Y n)≤ nεn

where εn → 0 as n→ ∞.
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Converse-II

• Thus, we have

nRs = H(Ws)

≤ I(Ws;Y n)+nεn

≤ I(Ws;Y n)− I(Ws;Zn)+n(εn + γn)

=
n

∑
i=1

I(Ws;Yi|Y i−1)− I(Ws;Zi|Zn
i+1)+n(εn + γn)

=
n

∑
i=1

I(Ws;Yi|Y i−1)− I(Ws;Zi|Zn
i+1)+ I(Zn

i+1;Yi|Ws,Y i−1)− I(Y i−1;Zi|Ws,Zn
i+1)+n(εn + γn)

=
n

∑
i=1

I(Ws,Zn
i+1;Yi|Y i−1)− I(Ws,Y i−1;Zi|Zn

i+1)+n(εn + γn)

=
n

∑
i=1

I(Ws;Yi|Y i−1,Zn
i+1)− I(Ws;Zi|Zn

i+1,Y
i−1)+ I(Zn

i+1;Yi|Y i−1)− I(Y i−1;Zi|Zn
i+1)+n(εn + γn)

=
n

∑
i=1

I(Ws;Yi|Y i−1,Zn
i+1)− I(Ws;Zi|Zn

i+1,Y
i−1)+n(εn + γn)

where the underlined terms are equal due to Csiszar sum lemma.
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Converse-III

• We define

Ui = Y i−1Zn
i+1

Vi = WsUi

which satisfy

Ui →Vi → Xi → Yi,Zi

• Thus, we have

nRs ≤
n

∑
i=1

I(Vi;Yi|Ui)− I(Vi;Zi|Ui)+n(εn + γn)

• After single-letterization

Rs ≤ I(V ;Y |U)− I(V ;Z|U)

• Thus, we have

Cs ≤ max
U→V→X→Y,Z

I(V ;Y |U)− I(V ;Z|U)

= max
V→X→Y,Z

I(V ;Y )− I(V ;Z)
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Reduction to the Degraded Case

• If the channel is degraded, i.e.,

X → Y → Z

we have

I(X ;Y |V )− I(X ;Z|V ) = I(X ;Y,Z|V )− I(X ;Z|V )

= I(X ;Y |V,Z)

≥ 0

where V is such that V → X → Y → Z.

• Hence, for degraded wiretap channel, we have

Cs = max
V→X→Y,Z

I(V ;Y )− I(V ;Z)

≤ max
V→X→Y,Z

I(V ;Y )− I(V ;Z)+ I(X ;Y |V )− I(X ;Z|V )

= max
V→X→Y,Z

I(V,X ;Y )− I(V,X ;Z)

= max
V→X→Y,Z

I(X ;Y )− I(X ;Z)+ I(V ;Y |X)− I(V ;Z|X)

≤ max
X→Y,Z

I(X ;Y )− I(X ;Z)
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Gaussian Wiretap Channel

• Leung-Yang-Cheong and Hellman considered the Gaussian wire-tap channel in 1978.

Y = X +NY

Z = X +NZ

Bob

Alice

X

Y

Z

Ŵ

|
n

H W Z

W

Eve

• Key observation: Capacity-equivocation region depends on the marginal distributions p(y|x)
and p(z|x), but not the joint distribution p(y,z|x)

• Gaussian case: Capacity-equivocation region does not depend on the correlation between NY

and NZ
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Gaussian Wiretap Channel is Degraded

• Eve’s signal is Bob’s signal plus Gaussian noise, or vice versa: a degraded wiretap channel:

– If σ2
Y ≥ σ2

Z , Y = Z + Ñ

X → Z → Y

– If σ2
Z ≥ σ2

Y , Z = Y + Ñ

X → Y → Z

• No channel prefixing is necessary and Gaussian signalling is optimal.

• The secrecy capacity:

Cs = max
X→Y→Z

I(X ;Y )− I(X ;Z) (1)

• We know that Gaussian X maximizes both I(X ;Y ) and I(X ;Z).

• What maximizes the difference?
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Gaussian Wiretap Channel – Secrecy Capacity

• Secrecy capacity can be obtained in three ways:

– Entropy-power inequality

e2h(U+V ) ≥ e2h(U) + e2h(V )

– I-MMSE formula

I(X ;
√

snrX +N) =
1
2

∫ snr

0
mmse(X/

√
tX +N)dt

– Conditional maximum entropy theorem

h(V |U)≤ h(V G|UG)
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Gaussian Wiretap Channel Secrecy Capacity via EPI

• Using entropy-power inequality:

I(X ;Y )− I(X ;Z) = I(X ;Y )− I(X ;Y + Ñ)

= h(Y )−h(Y + Ñ)− 1
2

log
σ2

Y

σ2
Z

≤ h(Y )− 1
2

log(e2h(Y ) +2πe(σ2
Z −σ2

Y ))− 1
2

log
σ2

Y

σ2
Z

≤ 1
2

log(2πe)(P+σ2
Y )− 1

2
log((2πe)(P+σ2

Y )+(2πe)(σ2
Z −σ2

Y ))− 1
2

log
σ2

Y

σ2
Z

=
1
2

log
(

1+
P

σ2
Y

)
− 1

2
log

(
1+

P
σ2

Z

)

= CB−CE

which can be achieved by Gaussian X .

• The secrecy capacity:

Cs = max
X→Y→Z

I(X ;Y )− I(X ;Z) = [CB−CE ]+

i.e., the difference of two capacities.
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Caveat: Need Channel Advantage

The secrecy capacity: Cs = [CB−CE ]+

Bob’s channel is better Eve’s channel is better

Bob

Alice

X

Y

Z

Ŵ

|
n

H W Z

W

Eve

Bob

Alice

X

Y

Z

Ŵ

|
n

H W Z

W

Eve

positive secrecy no secrecy

Cs = CB−CE Cs = 0
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Outlook at the End of 1970s and Transition into 2000s

• Information theoretic secrecy is extremely powerful:

– no limitation on Eve’s computational power

– no limitation on Eve’s available information

– yet, we are able to provide secrecy to the legitimate user

– unbreakable, provable, and quantifiable (in bits/sec/hertz) secrecy

• We seem to be at the mercy of the nature:

– if Bob’s channel is stronger, positive perfect secrecy rate

– if Eve’s channel is stronger, no secrecy

• We need channel advantage. Can we create channel advantage?

• Wireless channel provides many options:

– time, frequency, multi-user diversity

– cooperation via overheard signals

– use of multiple antennas

– signal alignment
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Fading Wiretap Channel

• In the Gaussian wiretap channel, secrecy is not possible if

CB ≤CE

• Fading provides time-diversity: Can it be used to obtain/improve secrecy?
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MIMO Wiretap Channel

• In SISO Gaussian wiretap channel, secrecy is not possible if

CB ≤CE

• Multiple antennas improve reliability and rates. How about secrecy?
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Broadcast (Downlink) Channel

• In cellular communications: base station to end-users channel can be eavesdropped.

• This channel can be modelled as a broadcast channel with an external eavesdropper.
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Internal Security within a System

• Legitimate users may have different security clearances.

• Some legitimate users may have paid for some content, some may not have.

• Broadcast channel with two confidential messages.
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Multiple Access (Uplink) Channel

• In cellular communications: end-user to the base station channel can be eavesdropped.

• This channel can be modelled as a multiple access channel with an external eavesdropper.
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Cooperative Channels

• Overheard information at communicating parties:

– Forms the basis for cooperation

– Results in loss of confidentiality

• How do cooperation and secrecy interact?

• Simplest model to investigate this interaction: relay channel with secrecy constraints.

– Can Charles help without learning the messages going to Bob?

Charles\Eve
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Fading Wiretap Channel-I

• In the Gaussian wiretap channel, secrecy is not possible if

CB ≤CE

• Fading provides a time-diversity: It can be used to obtain/improve secrecy.
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• Two scenarios for the ergodic secrecy capacity:

– CSIT of both Bob and Eve: Liang-Poor-Shamai, Li-Yates-Trappe, Gopala-Lai-El Gamal.

– CSIT of Bob only: Khisti-Tchamkerten-Wornell, Li-Yates-Trappe, Gopala-Lai-El Gamal.
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Fading (i.e., Parallel) Wiretap Channel-II

• Fading channel model:

Y = hY X +NY

Z = hZX +NZ

• Assume full CSIT and CSIR.

• Parallel wiretap channel provides the framework to analyze the fading wiretap channel
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Fading Wiretap Channel-III

• Secrecy capacity of the parallel wiretap channel can be obtained as follows
[Liang-Poor-Shamai, 2008]

Cs = max
V→XL→(Y L,ZL)

I(V ;Y1, . . . ,YL)− I(V ;Z1, . . . ,ZL)

= max
V→XL→(Y L,ZL)

L

∑
l=1

I(V ;Yl |Y l−1)− I(V ;Zl |ZL
l+1)

= max
V→XL→(Y L,ZL)

L

∑
l=1

I(V,ZL
l+1;Yl |Y l−1)− I(V,Y l−1;Zl |ZL

l+1)+ I(ZL
l+1;Yl |Y l−1,V )

− I(Y l−1;Zl |ZL
l+1,V )

= max
V→XL→(Y L,ZL)

L

∑
l=1

I(V,ZL
l+1;Yl |Y l−1)− I(V,Y l−1;Zl |ZL

l+1)

where underlined terms are identical due to Csiszar sum lemma.
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Fading Wiretap Channel-IV

Cs = max
V→XL→(Y L,ZL)

L

∑
l=1

I(V,ZL
l+1;Yl |Y l−1)− I(V,Y l−1;Zl |ZL

l+1)

= max
V→XL→(Y L,ZL)

L

∑
l=1

I(V ;Yl |Y l−1,ZL
l+1)− I(V ;Zl |ZL

l+1,Y
l−1)+ I(ZL

l+1;Yl |Y l−1)− I(Y l−1;Zl |ZL
l+1)

= max
V→XL→(Y L,ZL)

L

∑
l=1

I(V ;Yl |Y l−1,ZL
l+1)− I(V ;Zl |ZL

l+1,Y
l−1)

= max
V→XL→(Y L,ZL)

L

∑
l=1

I(V,Y l−1,ZL
l+1;Yl |Y l−1,ZL

l+1)− I(V,Y l−1,ZL
l+1;Zl |ZL

l+1,Y
l−1)

= max
{Ql→Vl→Xl→(Yl ,Zl)}L

l=1

L

∑
l=1

I(Vl ;Yl |Ql)− I(Vl ;Zl |Ql)

=
L

∑
l=1

max
Ql→Vl→Xl→(Yl ,Zl)

I(Vl ;Yl |Ql)− I(Vl ;Zl |Ql)

=
L

∑
l=1

max
Vl→Xl→(Yl ,Zl)

I(Vl ;Yl)− I(Vl ;Zl)

(
=

L

∑
l=1

Csl

)
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Fading Wiretap Channel-V

• Each realization of (hY ,hZ) can be viewed as a sub-channel occurring with some probability

• Averaging over all possible channel realizations gives the ergodic secrecy capacity

Cs = max E
[

1
2

log
(

1+
h2

Y P(hY ,hZ)
σ2

Y

)
− 1

2
log

(
1+

h2
ZP(hY ,hZ)

σ2
Z

)]

where the maximization is over all power allocation schemes P(hY ,hZ) satisfying constraint

E [P(hY ,hZ)]≤ P

• If h2
Y

σ2
Y
≤ h2

Z
σ2

Z
, term inside the expectation is negative:

P(hY ,hZ) = 0 if
h2

Y

σ2
Y
≤ h2

Z

σ2
Z

• Optimal power allocation is water-filling over the states (hY ,hZ) satisfying

h2
Y

σ2
Y
≥ h2

Z

σ2
Z
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Gaussian MIMO Wiretap Channel-I

• Gaussian MIMO wiretap channel:

Y = HY X+NY

Z = HZX+NZ

Bob
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• As opposed to the SISO case, MIMO channel is not necessarily degraded

• As opposed to fading SISO, it cannot be expressed as a parallel channel
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Gaussian MIMO Wiretap Channel-II

• Secrecy capacity [Shafiee-Liu-Ulukus, Khisti-Wornell, Oggier-Hassibi, Liu-Shamai]:

CS = max
V→X→Y,Z

I(V ;Y)− I(V ;Z)

= max
K:tr(K)≤P

1
2

log
∣∣∣HMKH>

M + I
∣∣∣− 1

2
log

∣∣∣HEKH>
E + I

∣∣∣

• No channel prefixing is necessary and Gaussian signalling is optimal.

• As opposed to the SISO case, CS 6= CB−CE .

• Multiple antennas improve reliability and rates. They improve secrecy as well.
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Gaussian MIMO Wiretap Channel – Finding the Capacity

• Secrecy capacity of any wiretap channel is known as an optimization problem:

Cs = max
(V,X)

I(V ;Y)− I(V ;Z)

• MIMO wiretap channel is not degraded in general.

– Therefore, V = X is potentially suboptimal.

• There is no general methodology to solve this optimization problem, i.e., find optimal (V,X).

• The approach used by [Shafiee-Liu-Ulukus, Khisti-Wornell, Oggier-Hassibi]:

– Compute an achievable secrecy rate by using a potentially suboptimal (V,X):

∗ Jointly Gaussian (V,X) is a natural candidate.

– Find a computable outer bound.

– Show that these two expressions (achievable rate and outer bound) match.
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Gaussian MIMO Wiretap Channel – Finding the Capacity (Outer Bound)

• Using Sato’s approach, a computable outer bound can be found:

– Consider the enhanced Bob with observation Ỹ = (Y,Z)

– This new channel is degraded, no need for channel prefixing:

max
X

I(X; Ỹ)− I(X;Z) = max
X

I(X;Y|Z)

– And, optimal X is Gaussian.

• This outer bound can be tightened:

– The secrecy capacity is the same for channels having the same marginal distributions

– We can correlate the receiver noises.

• The tightened outer bound is:

min max
X

I(X;Y|Z)

where the minimization is over all noise correlations.

• The outer bound so developed matches the achievable rate.
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Insights from the Outer Bound

• Sato-type outer bound is tight

• This outer bound constructs a degraded wiretap channel from the original non-degraded one

• Secrecy capacity of the constructed degraded channel is potentially larger than the original
non-degraded one

• However, they turn out to be the same

• Indeed, these observations are a manifestation of channel enhancement:

– Liu-Shamai provide an alternative proof for secrecy capacity via channel enhancement
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Secrecy Capacity via Channel Enhancement

• Aligned Gaussian MIMO wiretap channel

Y = X+NY

Z = X+NZ

where NY ∼N (0,ΣY ), NZ ∼N (0,ΣZ).

• Channel input X is subject to a covariance constraint

E
[
XX>

]
¹ S

• Covariance constraint has advantages

– A rather general constraint including total power and per-antenna power constraints as
special cases

– Yields an easier analysis
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Secrecy Capacity of Degraded Gaussian MIMO Wiretap Channel

• Channel is degraded if it satisfies

X→ Y→ Z

which is equivalent to have ΣY ¹ΣZ

• In other words, we have NZ = NY + Ñ where Ñ is Gaussian with covariance matrix ΣZ −ΣY

• Corresponding secrecy capacity

Cs = max
p(x)

I(X;Y)− I(X;Z)

= max
p(x)

h(Y)−h(Z)− 1
2

log
|ΣY |
|ΣZ |

= max
p(x)

h(Y)−h(Y+ Ñ)− 1
2

log
|ΣY |
|ΣZ |

= max
p(x)

−I(Ñ;Y+ Ñ)− 1
2

log
|ΣY |
|ΣZ |

= max
0¹K¹S

1
2

log
|K+ΣY |
|K+ΣZ | −

1
2

log
|ΣY |
|ΣZ |

=
1
2

log
|S+ΣY |
|ΣY | − 1

2
log

|S+ΣZ |
|ΣZ |
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Secrecy Capacity via Channel Enhancement-I

• The following secrecy rate is achievable

Cs ≥ max
0¹K¹S

1
2

log
|K+ΣY |
|ΣY | − 1

2
log

|K+ΣZ |
|ΣZ |

• Optimal covariance matrix K∗ needs to satisfy

(K∗+ΣY )−1 +M = (K∗+ΣZ)−1 +MS

K∗M = MK∗ = 0

(S−K∗)MS = MS(S−K∗) = 0

• We enhance the legitimate user as follows
(
K∗+ Σ̃Y

)−1 = (K∗+ΣY )−1 +M

which also implies
(
K∗+ Σ̃Y

)−1 = (K∗+ΣZ)−1 +MS

• Thus, Σ̃Y satisfies

Σ̃Y ¹ΣY and Σ̃Y ¹ΣZ
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Secrecy Capacity via Channel Enhancement-II

• Enhanced channel:

Bob

Y

Z

Ŵ

|
n

H W Z

Alice

W

Enhanced Bob

X Y

Eve
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Secrecy Capacity via Channel Enhancement-III

• Enhanced wiretap channel

Ỹ = X+ ÑY

Z = X+NZ

where ÑY ∼N (0,Σ̃Y ).

• Since Σ̃Y ¹ {ΣY ,ΣZ}, we have

X→ Ỹ→{Y,Z}

• Thus, the enhanced channel is degraded and C̃s ≥Cs

C̃s =
1
2

log
|S+ Σ̃Y |
|Σ̃Y |

− 1
2

log
|S+ΣZ |
|ΣZ |
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Secrecy Capacity via Channel Enhancement-IV

• Although secrecy capacity is potentially improved through the enhancement, indeed, there is
a rate preservation

(K∗+ Σ̃Y )−1(S+ Σ̃Y ) = (K∗+ΣZ)−1(S+ΣZ)

(K∗+ Σ̃Y )−1Σ̃Y = (K∗+ΣY )−1ΣY

• These identities imply

1
2

log
|K∗+ΣY |
|ΣY | − 1

2
log

|K∗+ΣZ |
|ΣZ | =

1
2

log
|K∗+ Σ̃Y |
|Σ̃Y |

− 1
2

log
|K∗+ΣZ |
|ΣZ |

=
1
2

log
|S+ Σ̃Y |
|Σ̃Y |

− 1
2

log
|S+ΣZ |
|ΣZ |
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Secrecy Capacity via Channel Enhancement-V

• We can obtain the secrecy capacity of the original channel as follows [Liu-Shamai, 2009]

Cs ≤ C̃s

= max
X→Ỹ,Z

E[XX>]¹S

I(X; Ỹ)− I(X;Z)

=
1
2

log
|S+ Σ̃Y |
|Σ̃Y |

− 1
2

log
|S+ΣZ |
|ΣZ |

=
1
2

log
|K∗+ Σ̃Y |
|Σ̃Y |

− 1
2

log
|K∗+ΣZ |
|ΣZ |

=
1
2

log
|K∗+ΣY |
|ΣY | − 1

2
log

|K∗+ΣZ |
|ΣZ |

= max
0¹K¹S

1
2

log
|K+ΣY |
|ΣY | − 1

2
log

|K+ΣZ |
|ΣZ |
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Multiple Access Wiretap Channel

• An external eavesdropper listens in on the communication from end-users to the base station.
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• Introduced by Tekin-Yener in 2005:

– Achievability of positive secrecy rates is shown.

– Cooperative jamming is discovered.

• Secrecy capacity is unknown in general
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An Achievable Rate Region for Multiple Access Wiretap Channel-I

• Introduce two independent auxiliary random variables V1 and V2.
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• An achievable secrecy rate region with channel pre-fixing:

R1 ≤I(V1;Y |V2)− I(V1;Z)

R2 ≤I(V2;Y |V1)− I(V2;Z)

R1 +R2 ≤I(V1,V2;Y )− I(V1,V2;Z)

where p(v1,v2,x1,x2,y,z) factors as p(v1)p(v2)p(x1|v1)p(x2|v2)p(y,z|x1,x2).
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An Achievable Rate Region for Multiple Access Wiretap Channel-II
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An Achievable Rate Region for Multiple Access Wiretap Channel-III

• Achievability can be shown in two steps.

• Show that the following region is achievable:

R1 ≤I(X1;Y |X2)− I(X1;Z)

R2 ≤I(X2;Y |X1)− I(X2;Z)

R1 +R2 ≤I(X1,X2;Y )− I(X1,X2;Z)

where p(x1,x2,y,z) = p(x1)p(x2)p(y|x1)p(z|x2).

• Use channel prefixing at both users:

V1 → X1

V2 → X2

78



An Achievable Rate Region for Multiple Access Wiretap Channel-IV

• Each user generates a codebook independently and uses stochastic encoding:

Xn
j (w j, w̃ j), j = 1,2

where

– w j is the jth message with rate R j

– w̃ j is the confusion message with rate R̃ j.

• Total rate sent through by the jth user is R j + R̃ j

• Legitimate transmitter decodes both w j and w̃ j for both j:

R1 + R̃1 ≤I(X1;Y |X2)

R2 + R̃2 ≤I(X2;Y |X1)

R1 +R2 + R̃1 + R̃2 ≤I(X1,X2;Y )
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An Achievable Rate Region for Multiple Access Wiretap Channel-V

• W1 and W2 should be transmitted in perfect security:

lim
n→∞

1
n

I(W1,W2;Zn) = 0

which is ensured if R̃1 and R̃2 satisfy

R̃1 ≤ I(X1;Z|X2)

R̃2 ≤ I(X2;Z|X1)

R̃1 + R̃2 = I(X1,X2;Z)

• Total rate of confusion messages is equal to the decoding capability of eavesdropper

• Individual rates can vary as long as total rate is fixed
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An Achievable Rate Region for Multiple Access Wiretap Channel-VI

• Hence, the following rate region is achievable

R1 + R̃1 ≤ I(X1;Y |X2)

R2 + R̃2 ≤ I(X2;Y |X1)

R1 +R2 + R̃1 + R̃2 ≤ I(X1,X2;Y )

R̃1 ≤ I(X1;Z|X2)

R̃2 ≤ I(X2;Z|X1)

R̃1 + R̃2 = I(X1,X2;Z)

• Eliminate R̃1 and R̃2 by Fourier-Moztkin elimination

• Use channel prefixing at each user
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Gaussian Multiple Access Wiretap Channel: Gaussian Signalling

• Tekin-Yener 2005: Gaussian multiple access wiretap channel
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• Achievable secrecy region with no channel prefixing, X1 = V1, X2 = V2, Gaussian signals:

R1 ≤1
2

log(1+h1P1)− 1
2

log
(

1+
g1P1

1+g2P2

)

R2 ≤1
2

log(1+h2P2)− 1
2

log
(

1+
g2P2

1+g1P1

)

R1 +R2 ≤1
2

log(1+h1P1 +h2P2)− 1
2

log(1+g1P1 +g2P2)
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Cooperative Jamming

• Tekin-Yener, 2006: cooperative jamming technique.

• Cooperative jamming is a form of channel pre-fixing:

X1 = V1 +U1 and X2 = V2 +U2

where V1 and V2 carry messages and U1 and U2 are jamming signals.

• Achievable secrecy rate region with cooperative jamming:

R1 ≤1
2

log
(

1+
h1P1

1+h1Q1 +h2Q2

)
− 1

2
log

(
1+

g1P1

1+g1Q1 +g2(P2 +Q2)

)

R2 ≤1
2

log
(

1+
h2P2

1+h1Q1 +h2Q2

)
− 1

2
log

(
1+

g2P2

1+g1(P1 +Q1)+g2Q2

)

R1 +R2 ≤1
2

log
(

1+
h1P1 +h2P2

1+h1Q1 +h2Q2

)
− 1

2
log

(
1+

g1P1 +g2P2

1+g1Q1 +g2Q2

)

where P1 and P2 are the powers of V1 and V2 and Q1 and Q2 are the powers of U1 and U2.
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Weak Eavesdropper Multiple Access Wiretap Channel

• For the weak eavesdropper case, Gaussian signalling is nearly optimal [Ekrem-Ulukus].

R2

R1

R2

R1

Cases II, IIICase I

R1

R2

Case IV

≤ 0.5 bits/use
≤ 0.5 bits/use

≤ 0.5 bits/use

≤ 0.5 bits/use

• In general, Gaussian signalling is not optimal:

– He-Yener showed that structured codes (e.g., lattice codes) outperform Gaussian codes.

– Structured codes can provide secrecy rates that scale with logSNR.

• The secrecy capacity of the multiple access wiretap channel is still open.
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Fading Multiple Access Wiretap Channel-I

• Introduced by Tekin-Yener in 2007.

• They provide achievable secrecy rates based on Gaussian signalling.

• Main assumption: channel state information is known at all nodes.
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Fading Multiple Access Wiretap Channel-II

• Achievable rates without cooperative jamming:

R1 ≤1
2

Eh,g

[
log(1+h1P1)− 1

2
log

(
1+

g1P1

1+g2P2

)]

R2 ≤1
2

Eh,g

[
log(1+h2P2)− 1

2
log

(
1+

g2P2

1+g1P1

)]

R1 +R2 ≤1
2

Eh,g

[
log(1+h1P1 +h2P2)− 1

2
log(1+g1P1 +g2P2)

]

• Achievable rates with cooperative jamming:

R1 ≤1
2

Eh,g

[
log

(
1+

h1P1

1+h1Q1 +h2Q2

)
− 1

2
log

(
1+

g1P1

1+g1Q1 +g2(P2 +Q2)

)]

R2 ≤1
2

Eh,g

[
log

(
1+

h2P2

1+h1Q1 +h2Q2

)
− 1

2
log

(
1+

g2P2

1+g1(P1 +Q1)+g2Q2

)]

R1 +R2 ≤1
2

Eh,g

[
log

(
1+

h1P1 +h2P2

1+h1Q1 +h2Q2

)
− 1

2
log

(
1+

g1P1 +g2P2

1+g1Q1 +g2Q2

)]

• In both cases: No scaling with SNR.

86



Scaling Based Alignment (SBA) – Introduction
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Y = h1X1 +h2X2 +N

Z = g1X1 +g2X2 +N′
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Scaling Based Alignment (SBA) – Introduction

• Scaling at the transmitter:

– Alice multiplies her channel input by the channel gain of Charles to Eve.

– Charles multiplies his channel input by the channel gain of Alice to Eve.
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Scaling Based Alignment (SBA) – Introduction

• Scaling at the transmitter:

– Alice multiplies her channel input by the channel gain of Charles to Eve.

– Charles multiplies his channel input by the channel gain of Alice to Eve.
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Z = g1g2X1 +g2g1X2 +N′
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Scaling Based Alignment (SBA) – Introduction

• Scaling at the transmitter:

– Alice multiplies her channel input by the channel gain of Charles to Eve.

– Charles multiplies his channel input by the channel gain of Alice to Eve.

Alice

Bob

1
W

12
g X

Y

Z

1 2
ˆ ˆ,W W

1 2
, |

n
H W W Z

Charles

2
W 21

g X

1
h

2
h

1
g

2
g

Eve

Y = h1g2X1 +h2g1X2 +N

Z = g1g2X1 +g2g1X2 +N′

• Repetition: Both Alice and Charles repeat their symbols in two consecutive intervals.
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Scaling Based Alignment (SBA) – Analysis

• Received signal at Bob (odd and even time indices):

Yo = h1og2oX1 +h2og1oX2 +No

Ye = h1eg2eX1 +h2eg1eX2 +Ne

• Received signal at Eve (odd and even time indices):

Zo = g1og2oX1 +g2og1oX2 +N′
o

Ze = g1eg2eX1 +g2eg1eX2 +N′
e

• At high SNR (imagine negligible noise):

– Bob has two independent equations.

– Eve has one equation.

to solve for X1 and X2.
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Scaling Based Alignment (SBA) – Analysis

• Received signal at Bob (odd and even time indices):

Yo = h1og2oX1 +h2og1oX2

Ye = h1eg2eX1 +h2eg1eX2

• Received signal at Eve (odd and even time indices):

Zo = g1og2oX1 +g2og1oX2

Ze = g1eg2eX1 +g2eg1eX2

• At high SNR (imagine negligible noise):

– Bob has two independent equations.

– Eve has one equation.

to solve for X1 and X2.
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Scaling Based Alignment (SBA) – Achievable Rates

• Following rates are achievable:

R1 ≤ 1
2

Eh,g

{
log

(
1+(|h1og2o|2 + |h1eg2e|2)P1

)− log
(

1+
(|g1og2o|2 + |g1eg2e|2)P1

1+(|g1og2o|2 + |g1eg2e|2)P2

)}

R2 ≤ 1
2

Eh,g

{
log

(
1+(|h2og1o|2 + |h2eg1e|2)P2

)− log
(

1+
(|g1og2o|2 + |g1eg2e|2)P2

1+(|g1og2o|2 + |g1eg2e|2)P1

)}

R1 +R2 ≤ 1
2

Eh,g

{
log

(
1+

(|h1og2o|2 + |h1eg2e|2
)

P1 +
(|h2og1o|2 + |h2eg1e|2

)
P2

+ |h1eh2og1og2e−h1oh2eg1eg2o|2P1P2

)

− log
(

1+
(|g1og2o|2 + |g1eg2e|2

)
(P1 +P2)

)}

where

E
[(|g2o|2 + |g2e|2

)
P1

]≤ P̄1

E
[(|g1o|2 + |g1e|2

)
P2

]≤ P̄2

• P1 and P2 should be understood as P1(h,g) and P2(h,g).
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Scaling Based Alignment (SBA) – Scaling with SNR and Secure DoF

• Secrecy sum rate achievable by the SBA scheme:

Rs =
1
2

Eh,g

{
log

(
1+

(|h1og2o|2 + |h1eg2e|2
)

P1 +
(|h2og1o|2 + |h2eg1e|2

)
P2

+ |h1eh2og1og2e−h1oh2eg1eg2o|2P1P2

)

− log
(

1+
(|g1og2o|2 + |g1eg2e|2

)
(P1 +P2)

)}

• A total of 1
2 secure DoF is achievable.
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Ergodic Secret Alignment (ESA)

• Instead of repeating at two consecutive time instances, repeat at well-chosen time instances.

• Akin to [Nazer-Gastpar-Jafar-Vishwanath, 2009] ergodic interference alignment.

• At any given instant t1, received signal at Bob and Eve is,

 Yt1

Zt1


 =


 h1 h2

g1 g2





 X1

X2


+


 Nt1

N′
t1




• Repeat at time instance t2, and the received signal at Bob and Eve is,

 Yt2

Zt2


 =


 h1 −h2

g1 g2





 X1

X2


+


 Nt2

N′
t2




• This creates orthogonal MAC to Bob, but a scalar MAC to Eve.
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Ergodic Secret Alignment (ESA) – Achievable Rates

• Following rates are achievable:

R1 ≤ 1
2

Eh,g

{
log

(
1+2|h1|2P1

)− log
(

1+
2|g1|2P1

1+2|g2|2P2

)}

R2 ≤ 1
2

Eh,g

{
log

(
1+2|h2|2P2

)− log
(

1+
2|g2|2P2

1+2|g1|2P1

)}

R1 +R2 ≤ 1
2

Eh,g

{
log

(
1+2|h1|2P1

)
+ log

(
1+2|h2|2P2

)

− log
(
1+2(|g1|2P1 + |g2|2P2)

)}

where E[P1]≤ P̄1 and E[P2]≤ P̄2.

• P1 and P2 should be understood as P1(h,g) and P2(h,g).

• Rates scale with SNR as in the SBA scheme: A total of 1
2 secure DoF is achievable.

• Rates achieved here are larger than those with our first scheme.

• Using cooperative jamming on the top of the ESA scheme achieves even larger secrecy rates.
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Fading Multiple Access Wiretap Channel – Achievable Rates
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• Rates with Gaussian signalling (with or without cooperative jamming) do not scale.

• Rates with scaling based alignment (SBA) and ergodic secret alignment (ESA) scale.

• ESA performs better than SBA.
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Broadcast Channel with an External Eavesdropper

• In cellular communications: base station to end-users channel can be eavesdropped.

• This channel can be modelled as a broadcast channel with an external eavesdropper

• In general, the problem is intractable for now.

• Even without an eavesdropper, optimal transmission scheme is unknown.

Alice
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Eve

1 2
,W W

X
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Y
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Bob 1

1
Y

1
Ŵ

2
Ŵ

1 2
, |

n
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Degraded Broadcast Channel with an External Eavesdropper-I

• Observations of receivers and the eavesdropper satisfy a certain order.

• This generalizes Wyner’s model to a multi-receiver (broadcast) setting.

X 2
Y Z1

Y
1 2
,W W

1 2
, |

n
H W W Z

EveBob 1 Bob 2Alice

• Gaussian multi-receiver wiretap channel is an instance of this channel model.

• Plays a significant role in the Gaussian MIMO multi-receiver wiretap channel.

• The secrecy capacity region is obtained by Bagherikaram-Motahari-Khandani for K = 2 and
by Ekrem-Ulukus for arbitrary K.
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Degraded Broadcast Channel with an External Eavesdropper-II

• Capacity region for degraded broadcast channel:

R1 ≤ I(X ;Y1|U)

R2 ≤ I(U ;Y2)

where U → X → Y1,Y2

• Capacity region is achieved by superposition coding

• Using superposition coding with stochastic encoding, the secrecy capacity region of the
degraded broadcast channel with an external eavesdropper can be obtained:

R1 ≤ I(X ;Y1|U)− I(X ;Z|U)

R2 ≤ I(U ;Y2)− I(U ;Z)

where U → X → Y1,Y2,Z
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Degraded Broadcast Channel with an External Eavesdropper-III

(l, k)

(1, 1) . . . (1, j)
(

1, 2nR̃2

)

. . .

(i, 1) . . . (i, j)
(

i, 2nR̃2

)

. . .

(2nR2 , 1) . . . (2R1 , j)
(

2nR2 , 2nR̃2

)

. . .

...

...

...

...

...

...

...

...

...

...

2
nR2

2
nR̃2

(1, 1) . . . (1, k)
(

1, 2nR̃1

)

. . .

(l, 1) . . .

(

l, 2nR̃1

)

. . .

(2nR1 , 1) . . . (2R1 , k)
(

2nR1 , 2nR̃1

)

. . .

...

...

...

...

...

...

...

...

...

...

2
nR1

2
nR̃1

Un sequences Xn sequences for a given Un sequence

...

• Un(w2, w̃2) and Xn(w1, w̃1,w2, w̃2):

R1 + R̃1 ≤ I(X ;Y1|U)

R2 + R̃2 ≤ I(U ;Y2)

and

I(U ;Z)≤ R̃2

I(X ;Z|U)≤ R̃1

101



Gaussian Broadcast Channel with an External Eavesdropper-I

• Channel model:

Y1 = X +N1

Y2 = X +N2

Z = X +NZ

where E[X2]≤ P and

σ2
1 ≤ σ2

2 ≤ σ2
Z

which is equivalent to

X → Y1 → Y2 → Z

• Since channel is degraded, secrecy capacity region is given in the following single-letter form:

R1 ≤ I(X ;Y1|U)− I(X ;Z|U)

R2 ≤ I(U ;Y2)− I(U ;Z)

where E[X2]≤ P.
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Gaussian Broadcast Channel with an External Eavesdropper-I

• Channel model:

Y1 = X +N1

Y2 = X +N2

Z = X +NZ

where E[X2]≤ P and

σ2
1 ≤ σ2

2 ≤ σ2
Z

which is equivalent to

X → Y1 → Y2 → Z

• Since channel is degraded, secrecy capacity region is given in the following single-letter form:

R1 ≤ I(X ;Y1|U)− I(X ;Z|U)

R2 ≤ I(U ;Y2)− I(U ;Z)

where E[X2]≤ P.
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Gaussian Broadcast Channel with an External Eavesdropper-II

• Using jointly Gaussian (U,X) in the single-letter description, we obtain

R1 ≤ 1
2

log
αP+σ2

1

σ2
1

− 1
2

log
αP+σ2

Z

σ2
Z

R2 ≤ 1
2

log
P+σ2

2

αP+σ2
2
− 1

2
log

P+σ2
Z

αP+σ2
Z

• Indeed, this is the secrecy capacity region
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Gaussian Broadcast Channel with an External Eavesdropper-III

• Secrecy rate of the second user:

R2 ≤ I(X ;Y2|U)− I(X ;Z|U)

=
[
h(Y2)−h(Z)

]− [
h(Y2|U)−h(Z|U)

]

where red term can be bounded as

h(Y2)−h(Z)≤ 1
2

log
P+σ2

2

P+σ2
Z

as we did for the single-user Gaussian wiretap channel.

• Due to the degradedness,

h(Y2|U)−h(Z|U) = h(Y2 + Ñ2|U, Ñ2)−h(Y2 + Ñ2|U) =−I(Ñ2;Y2 + Ñ2|U)

which is bounded as

1
2

log
σ2

2

σ2
Z
≤ h(Y2|U)−h(Z|U)≤ 1

2
log

P+σ2
2

P+σ2
Z
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Gaussian Broadcast Channel with an External Eavesdropper-IV

• Hence, there exists α ∈ [0,1] such that

h(Y2|U)−h(Z|U) =
1
2

log
αP+σ2

2

αP+σ2
Z

which implies

R2 ≤ 1
2

log
P+σ2

2

αP+σ2
2
− 1

2
log

P+σ2
Z

αP+σ2
Z

• Next, we bound the first user’s secrecy rate

R1 ≤ I(X ;Y1|U)− I(X ;Z|U)

= h(Y1|U)−h(Z|U)− 1
2

log
σ2

1

σ2
Z

subject to the constraint

h(Y2|U)−h(Z|U) =
1
2

log
αP+σ2

2

αP+σ2
Z
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Gaussian Broadcast Channel with an External Eavesdropper-V

• We use Costa’s entropy-power inequality

• Due to degradedness, we have

Y2 = Y1 +
√

t∗(Ñ1 + Ñ2)

where

t∗ =
σ2

2−σ2
1

σ2
Z −σ2

1

• Hence,

e2
[

h(Y2|U)−h(Z|U)
]

= e2
[

h(Y1+
√

t∗(Ñ1+Ñ2)|U)−h(Z|U)
]

≥ t∗+(1− t∗)2
[

h(Y1|U)−h(Z|U)
]

• Using the values of t∗ and h(Y2|U)−h(Z|U), we have

h(Y1|U)−h(Z|U)≤ 1
2

log
αP+σ2

1

αP+σ2
Z

which implies

R1 ≤ 1
2

log
αP+σ2

1

σ2
1

− 1
2

log
αP+σ2

Z

σ2
Z
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Broadcast Channel with an External Eavesdropper-General Case

• Superposition coding with stochastic encoding is not optimal

• An achievable rate region can be obtained by using Marton’s inner bound in conjunction with
stochastic encoding

• Marton’s inner bound without secrecy constraints:

R1 ≤ I(V1;Y1)

R2 ≤ I(V2;Y2)

R1 +R2 ≤ I(V1;Y1)+ I(V2;Y2)− I(V1;V2)

for some V1,V2 satisfying V1,V2 → X → Y1,Y2.

• One corner point:

R′1 = I(V1;Y1)

R′2 = I(V2;Y2)− I(V2;V1)

• Encode W1 by using V n
1 (w1)

• V n
1 is a non-causally known interference for the second user: Gelfand-Pinsker setting

• Encode W2 by using V n
2 (w2, l2) where l2 is for binning
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Broadcast Channel with an External Eavesdropper-General Case

• This achievable scheme can be combined with stochastic encoding (random binning) to
obtain an inner bound for broadcast channel with an external eavesdropper:

R in = conv
(

R in
12 ∪R in

21

)

where R in
12 is

R1 ≤ I(V1;Y1)− I(V1;Z)

R2 ≤ I(V2;Y2)− I(V2;V1,Z)

for some V1,V2 such that V1,V2 → X → Y1,Y2,Z

• This inner bound is tight for Gaussian MIMO case
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Broadcast Channel with an External Eavesdropper-General Case

• Encode W1 by using V n
1 (w1, w̃1)

• Gelfand-Pinsker setting for the second user

• Encode W2 by using V n
2 (w2, w̃2, l2)

• We have

R1 + R̃1 ≤ I(V1;Y1)

R2 + R̃2 +L2 ≤ I(V2;Y2)

R̃1 = I(V1;Z)

R̃2 = I(V2;Z|V1)

L2 = I(V1;V2)

which gives R in
12 .

• Changing encoder order gives R in
21
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Gaussian MIMO Multi-receiver Wiretap Channel-I

• Channel model:

Yk = HkX+Nk, k = 1, . . . ,K

Z = HZX+NZ

Bob 1

Alice
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1
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Z

2
Y

Eve

Bob 2

1
Ŵ

2
Ŵ

1 2
, |

n
H W W Z

.

.

.

.

.

.

.

.

.

1 2
,W W

• The secrecy capacity region is established by [Ekrem-Ulukus].
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Gaussian MIMO Multi-receiver Wiretap Channel-II

• Secrecy capacity region is obtained in three steps

• As the first step, the degraded channel is considered

Y1 = X+N1

Y2 = X+N2

Z = X+NZ

where the noise covariance matrices satisfy

Σ1 ¹Σ2 ¹ΣZ

• Since the secrecy capacity region depends on the marginal distributions, but not the entire
joint distribution, this order is equivalent to

X→ Y1 → Y2 → Z
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Gaussian MIMO Multi-receiver Wiretap Channel-III

• To obtain the secrecy capacity region of the degraded MIMO channel is tantamount to
evaluating the region

R1 ≤ I(X;Y1|U)− I(X;Z|U)

R2 ≤ I(U ;Y2)− I(U ;Z)

• We show that jointly Gaussian (U,X) is sufficient to evaluate this region

• Thus, the secrecy capacity region of the degraded MIMO channel:

R1 ≤ 1
2

log
|K+Σ1|
|Σ1| − 1

2
log

|K+ΣZ |
|ΣZ |

R2 ≤ 1
2

log
|S+Σ2|
|K+Σ2| −

1
2

log
|S+ΣZ |
|K+ΣZ |

where 0¹K¹ S.
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Gaussian MIMO Multi-receiver Wiretap Channel-IV

• As the second step, the aligned non-degraded channel is considered

Y1 = X+N1

Y2 = X+N2

Z = X+NZ

where the noise covariance matrices does not satisfy any order

• There is no single-letter formula for the secrecy capacity region

• An achievable secrecy rate region is obtained by using dirty-paper coding in the Marton-type
achievable scheme:

R in = conv
(

R in
12 ∪R in

21

)

where R in
12 is

R1 ≤ I(V1;Y1)− I(V1;Z)

R2 ≤ I(V2;Y2)− I(V2;V1,Z)

for some V1,V2 such that V1,V2 → X → Y1,Y2,Z
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Gaussian MIMO Multi-receiver Wiretap Channel-V

• The resulting achievable secrecy rate region is

R in(S) = conv
(

R in
12(S)∪R in

21(S)
)

where R in
12(S) is

R1 ≤ 1
2

log
|S+Σ1|
|K+Σ1| −

1
2

log
|S+ΣZ |
|K+ΣZ |

R2 ≤ 1
2

log
|K+Σ2|
|Σ2| − 1

2
log

|K+ΣZ |
|ΣZ |

where 0¹K¹ S.

• This inner bound is shown to be tight by using channel enhancement
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Gaussian MIMO Multi-receiver Wiretap Channel-VI

• For each point on the boundary of R in(S), we construct an enhanced channel

• Enhanced channel is degraded, i.e., its secrecy capacity region is known

• Secrecy capacity region of the enhanced channel includes that of the original channel

• The point on R in(S) for which enhanced channel is constructed is also on the boundary of the
secrecy capacity region of the enhanced channel

• Thus, this point is on the boundary of the secrecy capacity region of the original channel

• R in(S) is the secrecy capacity region of the original channel
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Gaussian MIMO Multi-receiver Wiretap Channel-VII

• The most general case:

Y1 = H1X+N1

Y2 = H2X+N2

Z = HZX+NZ

• The secrecy capacity region for the most general case is obtained by using some limiting
arguments in conjunction with the capacity result for the aligned case
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Broadcast Channels with Confidential Messages-I

• Each user eavesdrops the other user:

X

2
Y

Bob\Eve 1

1
Y

1 2 1
ˆ , ( | )

n
W H W Y

2 1 2
ˆ , ( | )

n
W H W Y

1 2
,W W

Alice

Bob\Eve 2

• In general, problem is intractable for now

• Even without secrecy concerns, optimal transmission scheme is unknown
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Broadcast Channels with Confidential Messages-II

• Using Marton’s inner bound in conjunction with stochastic encoding, we can obtain an
achievable rate region:

R1 ≤ I(V1;Y1)− I(V1;Y2,V2)

R2 ≤ I(V2;Y2)− I(V2;Y1,V1)

where V1,V2 → X → Y1,Y2.

• Encode W1 by using V n
1 (w1, w̃1, l1)

• Encode W2 by using V n
2 (w2, w̃2, l2)

• w̃1 and w̃2 are confusion messages

• l1 and l2 are for binning
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Broadcast Channels with Confidential Messages-III

• We have

R1 + R̃1 +L1 ≤ I(V1;Y1)

R2 + R̃2 +L2 ≤ I(V2;Y2)

R̃1 +L1 = I(V1;Y2,V2)

R̃2 +L2 = I(V2;Y1,V1)

I(V1;V2)≤ L1 +L2

which gives us the achievable rate region:

R1 ≤ I(V1;Y1)− I(V1;Y2,V2)

R2 ≤ I(V2;Y2)− I(V2;Y1,V1)

• This inner bound is tight for Gaussian MIMO channel
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Gaussian MIMO Broadcast Channel with Confidential Messages

• Each user eavesdrops the other user:

Alice
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1 2
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Bob\Eve 2

• In SISO case, only one user can have positive secrecy rate.

• In MIMO case also, both users can enjoy positive secrecy rates [Liu-Liu-Poor-Shamai].
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Cooperative Channels and Secrecy

• How do cooperation and secrecy interact?

• Is there a trade-off or a synergy?

Charles\Eve

1
|

n
H W Y

W
1

X Y

1
Y

2
X

Ŵ

BobAlice

• Relay channel [He-Yener].

• Cooperative broadcast and cooperative multiple access channels [Ekrem-Ulukus].
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Interactions of Cooperation and Secrecy

• Existing cooperation strategies:

– Decode-and-forward (DAF)

– Compress-and-forward (CAF)

• Decode-and-forward:

– Relay decodes (learns) the message.

– No secrecy is possible.

• Compress-and-forward:

– Relay does not need to decode the message.

– Can it be useful for secrecy?

• Achievable secrecy rate when relay uses CAF:

I(X1;Y1,Ŷ1|X2)− I(X1;Y2|X2) = I(X1;Y1|X2)− I(X1;Y2|X2)︸ ︷︷ ︸+ I(X1;Ŷ1|X2,Y1)︸ ︷︷ ︸
secrecy rate of the additional term

wiretap channel due to CAF
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Example: Gaussian Relay Broadcast Channel (Charles is Stronger)
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Joint jamming and relaying
Relaying

• Bob cannot have any positive secrecy rate without cooperation.

• Cooperation is beneficial for secrecy if CAF based relaying (cooperation) is employed.

• Charles can further improve his own secrecy by joint relaying and jamming.
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Multiple Access (Uplink) Channel with Cooperation

• Overheard information at users can be used to improve achievable rates.

• This overheard information results in loss of confidentiality.

• Should the users ignore it or can it be used to improve (obtain) secrecy?

– DAF cannot help.

– CAF may help.

– CAF may increase rate of a user beyond the decoding capability of the cooperating user.
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Example: Gaussian Multiple Access Channel with Cooperation

• Both inter-user links are stronger than the main link.

• Without cooperation, none of the users can get a positive secrecy rate.
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Two−sided cooperation

• Cooperation is beneficial for secrecy if CAF is employed.
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Going Back to where We have Started...

• Cryptography

– at higher layers of the protocol stack

– based on the assumption of limited computational power at Eve

– vulnerable to large-scale implementation of quantum computers

• Techniques like frequency hopping, CDMA

– at the physical layer

– based on the assumption of limited knowledge at Eve

– vulnerable to rogue or captured node events

• Information theoretic security

– at the physical layer

– no assumption on Eve’s computational power

– no assumption on Eve’s available information

– based on the assumption of limited ? ? ? ? at Eve

– unbreakable, provable, and quantifiable (in bits/sec/hertz)

– implementable by signal processing, communications, and coding techniques

• Combining all: multi-dimensional, multi-faceted, cross-layer security
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Two Recurring Themes

• Creating advantage for the legitimate users:

– computational advantage (cryptography)

– knowledge advantage (spread spectrum)

– channel advantage (information theoretic security)

• Exhausting capabilities of the illegitimate entities:

– exhausting computational power (cryptography)

– exhausting searching power (spread spectrum)

– exhausting decoding capability (information theoretic security)
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Conclusions

• Wireless communication is susceptible to eavesdropping and jamming attacks.

• Wireless medium also offers ways to neutralize the loss of confidentiality:

– time, frequency, multi-user diversity

– spatial diversity through multiple antennas

– cooperation via overheard signals

– signal alignment

• Information theory directs us to methods that can be used to achieve:

– unbreakable, provable, and quantifiable (in bits/sec/hertz) security

– irrespective of the adversary’s computation power or inside knowledge

• Resulting schemes implementable by signal processing, communications and coding tech.

• Many open problems...
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