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Introduction

 Energy efficient communications for 

“regular” nodes

 Better signal processing techniques

 Power efficiency

 MIMO 

 New Paradigm: Communication with 

“rechargeable nodes”
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Introduction

 Wireless networking with rechargeable (energy 

harvesting) nodes:

 Green, self-sufficient nodes,

 Extended network lifetime,

 Smaller nodes with smaller batteries.

A relatively new field with increasing interest.
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Energy Harvesting

 Conventional energy supply requires:

 Electrical wiring

 Battery replacement

 Energy Harvesting:

 Generating electricity from surrounding environment

 light, vibration, heat, radio waves…
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Some Applications

Wireless sensor networks

Green communications
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Energy Harvesting

 Fujitsu’s hybrid device 

utilizing heat or light.
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Image Credits:
(above) http://www.fujitsu.com/global/news/pr/archives/month/2010/20101209-01.html
(below) http://www.zeitnews.org/nanotechnology/squeeze-power-first-practical-nanogenerator-developed.html

 Nanogenerators built at 

Georgia Tech, utilizing strain



Energy Harvesting

 Various practical 

applications
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Image Credits:
(left) http://inhabitat.com/shoe-generator-harvests-power-from-walking/
(right) http://www.wafermaneuver.com/nick/energyharvesting.html



Motivation
 New Wireless Network Design Challenge: 

A set of energy feasibility constraints based 
on harvests govern the communication 
resources.

 Design question:
When and at what rate/power should a 
“rechargeable” (energy harvesting) node 
transmit? 

 Optimality? Throughput; Delivery Delay
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Motivation

Many open problems related to all 
layers of the network design.
 Transmission scheduling 
 Signal processing/PHY design
 MAC protocol design 
 Channel capacity
 …
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Remainder of this lecture
 Optimal Scheduling Policies for one
Energy Harvesting Transmitter with the 
goal of maximizing throughput or 
minimizing transmission completion time 
for

1. Infinite energy storage
2. Finite Battery Capacity
3. Fading Channel
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 Single communication link, energy harvesting 
transmitter

 Energy and data arrivals to transmitter
 Transmitting with power p achieves rate r(p)

Optimal Scheduling [Yang, 
Ulukus 2010]
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Ei

Bi

transmitter receiver

Energy queue
Data queue

System Model:



 Energy harvests: Size Ei at time ti

 Data packet arrivals: Size Bi at time si

Optimal Packet Scheduling
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System Model:
E0

B0

t

T
E1 E2 E3

B1 B2 B3

t1 t2 t3

s1 s2 s3s0

All arrivals known by transmitter noncausally.



 Problem:
Find optimal transmission power/rate policy
that minimizes transmission time for a known 
amount of arriving packets. 

 What is the minimum T by which we can 
transmit all packets?: Transmission Completion 
Time Minimization (TCTM)

 Constraints:
Cannot use energy not harvested yet
Cannot transmit packets not received yet

Optimal Packet Scheduling (TCTM)
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Power-Rate Function

 Transmission with power p yields a rate of r(p)

 Assumptions on r(p):

i. r(0)=0, r(p) → ∞ as p → ∞ 
ii. increases monotonically in p
iii. strictly concave
iv. r(p) continuously differentiable

Example: AWGN Channel,                                
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Power-Rate Function

 r(p) strictly concave, increasing, r(0)=0 implies
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 Given a fixed energy, a longer
transmission with lower power 
departs more bits ( a la lazy 
scheduling)

 Also, r -1(p) exists and is 
strictly convex



 Transmission structure: Power pi for duration li

 Harvested Energy:

 Departed bits:
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Scenario I:
Packets Ready before Transmission
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 Problem Definition:
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Scenario I:
Packets Ready before Transmission
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 Lemma 1: The transmit powers increase 

monotonically, i.e.,

Proof: (by contradiction) assume not, i.e.,                for some i

Energy consumed in     and       is

Consider the following constant power policy:

which does not violate energy constraint since  
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Necessary conditions for optimality
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 Lemma 1: The transmit powers increase 

monotonically, i.e.,

Proof(cont’d): Transmitted bits then become

where inequality is due to strict concavity of r(p)

Therefore pi>pi+1 cannot be optimal
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Necessary conditions for optimality
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 Lemma 1: The transmit powers increase 

monotonically, i.e.,

Proof(cont’d):
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Necessary conditions for optimality
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Time-sharing between 

any two points is 

strictly suboptimal for 

concave r(p)



 Lemma 2: The transmission power remains constant 

between energy harvests

Proof: (by contradiction) assume not

Let total consumed energy in epoch               be         , which is 

available in energy queue at

Then a constant power transmission

is feasible and strictly better than a non-constant transmission
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Necessary conditions for optimality
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 Lemma 2: The transmission power remains constant 

between energy harvests
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Necessary conditions for optimality

Transmission power only changes on is



 Lemma 3: Whenever transmission rate changes, 

energy buffer is empty

Proof: (by contradiction) assume not, i.e.,                for some i

and energy buffer has      energy remaining at time of change.
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Necessary conditions for optimality
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 Lemma 3: Whenever transmission rate changes, 

energy buffer is empty
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Necessary conditions for optimality
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Summary:

 L1: Power only increases

 L2: Power constant between arrivals

 L3: At time of power change, energy buffer is empty

Conclusion:
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Necessary conditions for optimality

For optimal policy, compare and sort (L1) power levels 

that deplete energy buffer (L3) at arrival instances (L2).
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Optimal Policy for Scenario I

For a given B0 the optimal policy satisfies:

and has the form 
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Algorithm for Scenario I
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Illustration – Step 1
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Illustration – Step 2
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Illustration – Step 3
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Illustration – Step 4
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Scenario II:
Packets Arrive During Transmission

E0

B0

t

T
E1 E2 EK

B1 B2

t1 t2

s1 s2 sKs0

 Transmitter cannot depart packets not received yet!

 Additional packet constraints apply
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Scenario II:
Packets Arrive During Transmission

Harvested Energy:

Departed bits:

Problem Definition:
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 Lemma 4: Power only increases

 Lemma 5: Power constant between 2 arrivals of any kind

 Lemma 6: At time of power change

(Proofs are similar to Lemmas 1-3)
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Necessary conditions for optimality

empty is buffer packet arrival), (packet  if
empty is buffer energy arrival), (energy  if
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Optimal Policy for Scenario II

The optimal policy satisfies

and has the form
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 Maximize  the throughput of an energy 
harvesting transmitter by deadline T.

 Find optimal power allocation/transmission 
policy that departs maximum number of bits in 
a given duration.

 Up to a certain amount of energy can be stored 
by the transmitter  BATTERY CAPACITY

Short-term Throughput 
Maximization (STTM) 
[Tutuncuoglu-Yener 2010]
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 Energy arrivals of energy      at times     

 Arrivals known non-causally by transmitter,
 Stored in a finite battery of capacity       ,
 Design parameter: power     rate    .

System Model

iE is

maxE
)( pr
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Notations and Assumptions

 Power allocation function:

 Energy consumed: 

 Short-term throughput:

 Power-rate function r(p): Strictly concave in p
 Overflowing energy is lost (not optimal)
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 Battery Capacity:

Energy Constraints

(Energy arrivals of Ei at times si)

 Energy Causality: nn
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 Set of energy-feasible power allocations
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Energy “Tunnel”

cE
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Energy Causality

Battery Capacity
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Short-Term Throughput 
Maximization Problem

 Maximize total number of transmitted bits by deadline T

 Convex constraint set, concave maximization problem
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Necessary conditions for 
optimality of a transmission policy

 Property 1: Transmission power remains constant between 

arrivals.

 Property 2: Battery never overflows.

Proof:
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Necessary conditions for 
optimality of a transmission policy

 Property 3: Power level increases at an energy arrival instant 

only if battery is depleted. Conversely, power level decreases 

at an energy arrival instant only if battery is full.

Proof:
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Necessary conditions for 
optimality of a transmission policy

 Property 3: Power level increases at an energy arrival instant 

only if battery is depleted. Conversely, power level decreases 

at an energy arrival instant only if battery is full.
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Policy can be improved Policy cannot be improved

p(t)

p’(t)
p*(t)

  r(p(t))dt(t))dtpr(



Necessary conditions for 
optimality of a transmission policy

 Property 3: Power level increases at an energy arrival instant 

only if battery is depleted. Conversely, power level decreases 

at an energy arrival instant only if battery is full.

Proof:
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r(p)dtr(p(t))dt(t))pr(
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 of concavity strict to due        Then

full is battery
unless Feasible

        Define

  Let              
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Necessary conditions for 
optimality of a transmission policy

 Property 3: Power level increases at an energy arrival instant 

only if battery is depleted. Conversely, power level decreases 

at an energy arrival instant only if battery is full.
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Policy can be improved Policy cannot be improved

p(t)
p’(t)

  r(p(t))dt(t))dtpr(

p*(t)



Necessary conditions for 
optimality of a transmission policy

 Property 4: Battery is depleted at the end of transmission.

Proof:
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increasing is  since        Then
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Necessary Conditions for 
Optimality

Implications of Properties 1-4:

 Structure of optimal policy: (Property 1)

 For power to increase or decrease, policy must meet the upper 

or lower boundary of the tunnel respectively (Property 3)

 At termination step, battery is depleted (Property 4).
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Energy “Tunnel”

cE

t1s 2s

0E
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Energy Causality

Battery Capacity
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Shortest Path Interpretation

 Optimal policy is identical for any concave power-rate function!

 Let                       , then the problem solved becomes:

The throughput maximizing policy yields 
the shortest path through the energy tunnel for 
any concave power-rate function.
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Shortest Path Interpretation

 Property 1: Constant power is better than any other alternative

 Shortest path between two points is a line (constant slope)

E

t0
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Throughput Maximizing 
Algorithm (TMA)
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 Knowing the structure of the policy, we can construct an iterative 

algorithm to get the tightest string in the tunnel.

 Note: After a step             is determined, the rest of the policy is 

the solution to a shifted problem with shifted arrivals and deadline:

 Essentially, the algorithm compares and find the tightest segment 

that hits the upper or lower wall staying feasible all along.

),( 11 ip
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Throughput Maximizing 
Algorithm (TMA) 
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Throughput Maximizing 
Algorithm (TMA) 
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 The transmission 
power must change
before arrival nub+1 to 
stay in the feasible 
tunnel

nub=20E
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At or before nub, 
battery must be empty or 
full to allow the necessary 
change. (Prop. 3)



Upper bound for the 
duration of the first step
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1. Find        . If                   terminate with power

2. Determine relation between

3. Transmit based on the outcome of step 2 with:

4. Repeat for shifted problem with updated parameters:
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Throughput Maximizing Algorithm 
(TMA) 



Alternative Solution

 Transmission power constant within each epoch:

 STTM problem expressed with above notation
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(Li: length of epoch i)
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Water-filling approach

 Lagrangian function for STTM

 KKT 
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(Complementary slackness conditions)
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Water-filling approach
 Gradient for kth component
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Water-filling approach

 Complementary Slackness

Conditions:
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Directional Water-Filling

 Harvested energies filled into epochs individually

0 t
O O O

→

0E
→

1E
→

2E

Water levels (vi)
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Directional Water-Filling

 Harvested energies filled into epochs individually

 Constraints:

 Energy Causality: water-flow only forward in time

0 t
O O O

→

0E
→

1E
→

2E

Water levels (vi)
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Directional Water-Filling

 Harvested energies filled into epochs individually

 Constraints:

 Energy Causality: water-flow only forward in time

 Battery Capacity: water-flow limited to Emax by taps →

0 t
O O O

→

0E
→

1E
→

2E

Water levels (vi)
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Directional Water-Filling

 Energy tunnel 

and directional 

water-filling 

approaches 

yield the same 

policy

E
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Directional Water-Filling

 Energy tunnel 

and directional 

water-filling 

approaches 

yield the same 

policy

E

t0

0 tO O O

→

OO O

→ → → → →
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Simulation Results

 Improvement of optimal algorithm over an on-off transmitter in 
a simulation with truncated Gaussian arrivals.

7/27/2011Wireless Information Theory Summer School 
in Oulu, Finland



 Given the total number of bits to send as B, 
finalize the transmission in the shortest time 
possible.

Transmission Completion Time 
Minimization with Finite Battery 
[Tutuncuoglu, Yener 2010]
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 Lagrangian dual of TCTM problem becomes:

Relationship of
STTM and TCTM problems
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STTM problem for deadline T
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 Optimal allocations are identical:

 STTM solution can be used to solve the 
TCTM problem

Relationship of
STTM and TCTM problems

STTM’s solution 
for deadline T

departing B bits

TCTM’s solution 
for departing B
bits in time T
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Maximum Service Curve 

1S 2S Deadline (T)3S
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B
)  Maximum number of bits 

that can be sent in time 
T.

 Each point calculated by 
solving the 
corresponding STTM 
problem.
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Maximum Service Curve 

 Continuous, monotone increasing, invertible

 Optimal allocation 
for TCTM with B1
bits

Optimal allocation 
for STTM with 
deadline T1
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Extension to Fading Channels
[Ozel et al 2010]

 Find the short-term throughput maximizing 
and transmission completion time minimizing 
power allocations in a fading channel with non-
causally known channel states.
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System Model

 AWGN Channel with fading h :

 Each “epoch” defined as the interval between two “events”.

 Fading states and harvests known non-causally
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STTM Problem with Fading

 Transmission power constant within each epoch:

 Maximize total number of transmitted bits by a 

deadline T
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STTM Problem with Fading

 Lagrangian of the STTM problem
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(Complementary slackness conditions)

 Solution: constrained water-filling with 

fading levels: 
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(Water Filling)
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STTM Problem with Fading
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Directional Water-Filling

0 t
O O Ox

→

0E
→

2E
→

4E

Fading levels (1/hi)

Water levels (vi)

x

 Same directional water filling model with added 

fading levels.

 Directional water flow (Energy causality)

 Limited water flow (Battery capacity)
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Directional Water-Filling

 Same directional water filling model with added 

fading levels.

 Directional water flow (Energy causality)

 Limited water flow (Battery capacity)

0 t
O O Ox

→

0E
→

2E
→

4E

x

Water depth gives
transmission power pi
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Maximum Service Curve 

 Continuous, non-decreasing
(flat regions when fading is severe)

 Inverse can be considered 
as the smallest T that 
achieves B1
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Online Algorithms [Ozel et al 2010]
Optimal online policy can be found using dynamic 

programming
 States of the system: fade level: h, battery energy: e

 Quantizing time by δ,  g*(e,h,kδ) can be found by iteratively solving
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Online Algorithms
Constant Water Level

 A cutoff fading level h0 is determined by the average 
harvested power Pavg as:

 Transmitter uses the corresponding water-filling power 
if available, goes silent otherwise
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Online Algorithms
Energy Adaptive Water-Filling

 Cutoff fade level h0 determined from current energy as:

 Transmission power determined by water-filling expression:

 Sub-optimal, but requires only fading statistics.
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Online Algorithms
Time-Energy Adaptive Water-filling
 h0 determined by remaining energy scaled by remaining time as

Hybrid Adaptive Water-filling
 h0 determined similarly but by adding average received power
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Simulations

Performances of the 
policies w.r.t. energy 
arrival rates under:

 unit mean 
Rayleigh fading

 T = 10 sec

 Emax = 10 J.
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Conclusion

• New paradigm: Networking with energy 
harvesting nodes

 New design insights arising from new energy 
constraints

 Lots of open problems in this area! 

 In this presentation, we covered optimal  
scheduling policies for one EH transmitter.

 Next: Multiuser scenarios
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