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Goals
 Energy Efficiency: What it meant last 

decade; what it means today

 From a communication network design 

perspective what should we care about 

for energy efficient design of
 cellular/conventional wireless networks? (greenish)

 rechargeable (energy harvesting) networks? (green)
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Prerequisites

 Optimization (Basic)

 Communication Theory (Basic)

 Information Theory (Basic)

 Fairly self-contained otherwise
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Outline
 Morning Session 1; Yener: Energy Efficiency- Classical 

Networks Part 1  

 Morning Session 2; Ulukus: Energy Efficiency- Classical 

Networks Part 2

 Afternoon Session 1; Yener: Energy Efficiency-

Rechargeable Networks Part 1  

 Afternoon Session 1; Ulukus: Energy Efficiency-

Rechargeable Networks Part 2  
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“Classical” Networks

 Multiple User/shared

frequency resources

(interference limited)

 Battery powered mobile nodes

 Single charge
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Applications
 Cellular Networks (nG, n>1) including multi-tier 

(femto+macro) & network MIMO

 Sensor networks (shared bandwidth, single or 

multiple “sinks”

 Adhoc networks with “access” points

 Multimedia traffic, we will concentrate on the 

portion that is “energy hungry” = delay intolerant
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Performance Measure

Quality of Service (QoS)

 Delay sensitive applications (e.g. voice)

 Packet error rate – a maximum tolerable 

error rate guarantees a reliable 

connection
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Performance Measure

Packet Error Rate

Bit Error Rate

SNR / SIR
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Coding/Retransmission

Detection/Rcvr design
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Signal-to-Interference Ratio (SIR)

Performance Measure
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 From the communication theory (PHY) 

perspective = Transmission energy dominant

 Communication carried in sessions 

(consists of frames consists of packets)

 Energy spent= duration*power

(for whatever time scale you care to keep 

power constant)

Energy Efficiency?
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Mimimize total energy subject to QoS

requirement Minimize total power subject 

to minimum SIR req. for all users

Energy Efficient TX
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 The larger the interference a user 

experiences, the large transmit power it has 

to expend to overcome it.

 Bottomline: Minimizing transmit power amounts 

to managing interference.

Energy Efficient TX
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Interference Management 
for CDMA/SDMA systems

 Users have unique, but non-orthogonal

signatures (CDMA: temporal; SDMA: spatial)

 Near-far problem
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Near-Far Problem

 Strong user can 
destroy weak 
user’s 
communication
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 Prominent in CDMA/SDMA systems
(users share the same frequency and time)
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Near-Far Problem

CDMA
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Better user with close 
code s(t) interferes

Better user with close 
spatial position interferes
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Interference Management Techniques

 Power Control (any system)

 Multiuser Detection/Interference 

Cancellation (wideband)

 Receiver Beamforming/adaptive 

sectorization (multiantenna base station)

 MIMO (multiantenna terminals)
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Interference Management 
Techniques (1995-2001)
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 Power Control [Zander 93][Yates 95][Hanly 96]

 Multiuser Detection (Temporal Filtering) [Verdu 84, 89][Madhow, Honig 94]

 Beamforming (Spatial Filtering) [Naguib et. al. 95]

 Multiuser Detection and Beamforming [Yener et.al. 00]

 Power Control and Multiuser Detection [Ulukus, Yates 98]

 Power Control and Beamforming [Rashid-Farrokhi et. al. 98]

 Power Control, Multiuser Detection and Beamforming [Yener et al 01]

 Power Control and Adaptive Cell Sectorization [Saraydar et al 01]
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Power Control
[Yates, 1995]
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Find power vector p that meets SIR requirements  

I(p) for each user.  

)( pIp  Interference 

function

( )    i ip I i p
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Power Control
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 N users, M base stations
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Interference Functions

7/27/2011Wireless Information Theory Summer School 
in Oulu, Finland

Fixed Assignment
 User j assigned to base aj .
 Assigned base fixed through iterations
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Interference Functions

7/27/2011Wireless Information Theory Summer School 
in Oulu, Finland

Minimum Power Assignment
 User j assigned to base with maximum SIRj

 Assigned base updated at each iteration

jj  user for quirementre SIR:
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Interference Functions
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Macro Diversity
 Received signals for user j at all base stations 

combined
 Assume interfering signals appear independent,
 Maximal ratio combining:

jj  user for quirementre SIR:
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Interference Functions
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Limited Diversity
 Received signals for user j at the best kj base 

stations combined


jj  user for quirementre SIR:
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Interference Functions
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Multiple Connection Reception
 User j is required to maintain acceptable SIR 

at dj distinct base stations.



jj  user for quirementre SIR:
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Interference Functions
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jj  user for quirementre SIR:

Fixed Assignment

Minimum Power 
Assignment

Macro Diversity

Limited Diversity
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Standard Interference Function
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Definition [Yates 95]:

Positivity:

Monotonicity:

Scalability:

Interference function ( ) is standard if 
for all 0 the following properties are satisfied:

I p
p

0)( pI

)()( pIpI   then, If pp

)()(1 pIpI    , all For

 .components all in inequality strict:pp 
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Standard Interference Function
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Positivity: implied by nonzero background noise

Monotonicity:

Scalability:
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Interference Functions
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Fixed Assignment
 User j assigned to base aj .
 Assigned base fixed through iterations
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Synchronous Iterative 
Power Control [Yates 95]
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Standard Power Control Algorithm

 

If ( )  is feasible (i.e., ( )  has a feasible solution)
then this iteration converges to the unique fixed point

                        

which is also the minimum total transmit power.

* *
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Standard Interference 
Function
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Synchronous Iterative 
Power Control
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Theorem 1: If the standard power control algorithm 

has a fixed point, then the fixed point is unique.

Proof:

Monotonicity Scalability
Contradiction

Positivity:
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Synchronous Iterative 
Power Control
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Lemma 1:

Proof:
*
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p
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 point fixed unique to converging vectors power feasible
 of sequence decreasing monotone a is ,iterations of sequence

 the , then vector, power feasible a is  If               n

Monotonicity:
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Synchronous Iterative 
Power Control
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Lemma 2:

Proof:
.*)(
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 a produces algorithm control power standard the vector,
zero all the , from starting then feasible, is  If               

n

Monotonicity:
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Synchronous Iterative 
Power Control

7/27/2011Wireless Information Theory Summer School 
in Oulu, Finland

Theorem 2:

Proof:

Monotonicity:

.*

,)(

p

ppI

 point fixed
 unique a to converges algorithm control power standard the
  vector initial any for then feasible, is  If                   

Scalability:

(Lemma 1)

(Lemma 2)
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Synchronous Iterative 
Power Control
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Summary: For any feasible interference function satisfying 

positivity, monotonicity and scalability, the standard 

iterative algorithm

converges to the unique fixed point

which corresponds to minimum total transmitted power  

))(()1( tt pIp 
*)(* pIp 
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Asynchronous Power Control
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Totally asynchronous algorithm model 
“Parallel and Distributed Computation” 

Bertsekas and Tsiksitlis, Prentice Hall, 1989

Allows users to:

 Perform power adjustments faster

 Execute more iterations than others

 Use outdated information on interference
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Asynchronous Power Control

7/27/2011Wireless Information Theory Summer School 
in Oulu, Finland

Totally asynchronous algorithm model 
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Asynchronous Power Control
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Totally Asynchronous 

Standard Power Control Algorithm
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Asynchronous Power Control
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Asynchronous Convergence Theorem
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Asynchronous Power Control
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Extensions to Framework
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Interference Alternatives (e.g. for network MIMO)

 min

Suppose user  is given a choice between ( ) and ( )

(e.g. communicate with base  and  at different SIRs)
User may choose to satisfy  or  by satisfying:

( ) min ( ), ( )     
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Extensions to Framework
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Maximum and Minimum Power Constraints
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Conventional Power Control
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Temporal and Spatial Filtering
 Receivers can be designed to be “better” (in the 

sense of handling interference) and jointly 

optimized with transmit powers for improved EE.

 This necessitates looking into signal space 

dimensions of transmitted signals

 Assume we have temporal (CDMA) and spatial 

dimensions (multiple antennas at the base)



System Model:

 CDMA System with N users:

 processing gain G

 K array elements

 Temporal signature sequence of user j:

 Spatial signature sequence of user j:

Temporal-Spatial Filtering

7/27/2011Wireless Information Theory Summer School 
in Oulu, Finland 44

)(ts j

)(ta j



Linear Multiuser Detection
(Temporal Filtering)
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 User j has temporal signature sequence

 Received signal is chip-match filtered and sampled 

to get:

 MMSE combiner gives estimate of bit as

Linear Multiuser Detection
(Temporal Filtering)
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Beamforming
(Spatial Filtering)
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 User j has spatial signature sequence

 Received signal is temporal match filtered to get:

 MMSE combiner gives estimate of bit as
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Temporal and Spatial Filtering
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 User j has both temporal signature sequence

and spatial signature sequence

 Received signal at the output of each array element 

is chip-matched filtered and sampled to get:

 How to choose the linear matrix filter?
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Temporal and Spatial Filtering
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Linear filter:

 Single user:

 Single user – multiuser:

 Cascaded filter structures

Temporal and Spatial Filtering
[Yener et.al. 01]
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 Resulting joint optimum filter has a closed form

 Requires KGxKG matrix inversion

Optimum Temporal-Spatial Filter (OTSF)

.iii by  and  between MSE minimum the  yieldsthat  Find X

]))([(minarg 2
i

H
i

MMSEO
i btrE  RXX

X



 Less complex filters with near-optimum performance

 Approach: Separable filters:

 Decision statistic for user i:

 Iterative algorithms to optimize one filter at a time
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Constrained Temporal-Spatial Filter (CTSF)
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OTSF vs CTSF Receiver 
(for user i)
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Power Control + Multiuser 
Detection + Beamforming
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Problem:

 The total transmitter power is minimized



Power Control and 
Temporal-Spatial Filtering 

that such   and  optimal Find ,, iXp ii 
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 Power+filter optimization for both OTSF and OCTSF:

*
1

..
},{

min

ii

N

i
i

ii

SIRts

p
p






      
X

 pX  and  of function a is iiSIR



7/27/2011Wireless Information Theory Summer School 
in Oulu, Finland 57

Solution:

Power Control and 
Temporal-Spatial Filtering

:constraint 
 to moved be can onoptimizati               
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 MMSE temporal-spatial filters, OTSF and OCTSF 

maximize the output SIR of desired user.
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Solution:

Power Control and 
Temporal-Spatial Filtering

:constraint 
 to moved be can onoptimizati               

SIR
iX



 OTSF if joint domain filters are to be employed

 OCTSF if separable filters are to be employed
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Iterative Power Control 
Algorithm

 Design an iterative power and temporal-spatial filter updating 

algorithm that converges to the optimum powers and 

corresponding filters.
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Iterative Power Control 
Algorithm
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Proof: Define

Positivity:
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Iterative Power Control 
Algorithm
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Monotonicity: 
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Scalability: 
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Summary
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Numerical Results
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 9-cell CDMA system,

 Random temporal signatures, equispaced (λ/2) linear omni directional 

array

 Results are generated to compare:
 Contentional Power Control (C-PC)

 Power control and MMSE beamforming (BF-PC)

 Power control and MMSE multiuser detection (MMSE-PC)

 Power control with OCTSF(CTSF-PC). L=5 iterations of CTSF

 Power control with one step CTSF (c-w-PC). L=1

 Power control with OTSF (OTSF-PC)

)7(5*,10 dBG     



Numerical Results
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Numerical Results
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 Joint spatial 

temporal algorithms 

offer total transmit 

power savings

 Compared to C-PC, 

the savings are as 

high as 7.2dB.

Total transmitter power  2,10,12  KGN     



Simulation Results
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 Joint spatial 

temporal algorithms 

convert an otherwise 

infeasible system 

into a feasible one!

Total transmitter power  4,10,60  KGN     



Conclusions
 Energy efficiency for classical single 

charge networks is tantamount to power 

efficiency in transmission.

 Effective management of interference is 

possible by receiver design; jointly 

optimizing receivers with powers provides 

the most energy efficient option.
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Conclusions/Outlook
 For classical networks energy efficiency is not 

necessarily new, there are however topics less 

mature then others:

 Multi-tier network design: Can femtocells help us 

be more green?

 Green base stations? Need to care about

 downlink transmit energy (some existing work)

 processing energy (very little work)
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