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Goals
 Energy Efficiency: What it meant last 

decade; what it means today

 From a communication network design 

perspective what should we care about 

for energy efficient design of
 cellular/conventional wireless networks? (greenish)

 rechargeable (energy harvesting) networks? (green)
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Prerequisites

 Optimization (Basic)

 Communication Theory (Basic)

 Information Theory (Basic)

 Fairly self-contained otherwise
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Outline
 Morning Session 1; Yener: Energy Efficiency- Classical 

Networks Part 1  

 Morning Session 2; Ulukus: Energy Efficiency- Classical 

Networks Part 2

 Afternoon Session 1; Yener: Energy Efficiency-

Rechargeable Networks Part 1  

 Afternoon Session 1; Ulukus: Energy Efficiency-

Rechargeable Networks Part 2  
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“Classical” Networks

 Multiple User/shared

frequency resources

(interference limited)

 Battery powered mobile nodes

 Single charge
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Applications
 Cellular Networks (nG, n>1) including multi-tier 

(femto+macro) & network MIMO

 Sensor networks (shared bandwidth, single or 

multiple “sinks”

 Adhoc networks with “access” points

 Multimedia traffic, we will concentrate on the 

portion that is “energy hungry” = delay intolerant
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Performance Measure

Quality of Service (QoS)

 Delay sensitive applications (e.g. voice)

 Packet error rate – a maximum tolerable 

error rate guarantees a reliable 

connection
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Performance Measure

Packet Error Rate

Bit Error Rate

SNR / SIR
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Coding/Retransmission

Detection/Rcvr design
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Signal-to-Interference Ratio (SIR)

Performance Measure
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 From the communication theory (PHY) 

perspective = Transmission energy dominant

 Communication carried in sessions 

(consists of frames consists of packets)

 Energy spent= duration*power

(for whatever time scale you care to keep 

power constant)

Energy Efficiency?
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Mimimize total energy subject to QoS

requirement Minimize total power subject 

to minimum SIR req. for all users

Energy Efficient TX
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 The larger the interference a user 

experiences, the large transmit power it has 

to expend to overcome it.

 Bottomline: Minimizing transmit power amounts 

to managing interference.

Energy Efficient TX
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Interference Management 
for CDMA/SDMA systems

 Users have unique, but non-orthogonal

signatures (CDMA: temporal; SDMA: spatial)

 Near-far problem

7/27/2011Wireless Information Theory Summer School 
in Oulu, Finland

t

)(ts j

t

)(tsi

13



Near-Far Problem

 Strong user can 
destroy weak 
user’s 
communication
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 Prominent in CDMA/SDMA systems
(users share the same frequency and time)
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Near-Far Problem

CDMA
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Better user with close 
code s(t) interferes

Better user with close 
spatial position interferes
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Interference Management Techniques

 Power Control (any system)

 Multiuser Detection/Interference 

Cancellation (wideband)

 Receiver Beamforming/adaptive 

sectorization (multiantenna base station)

 MIMO (multiantenna terminals)
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Interference Management 
Techniques (1995-2001)
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 Power Control [Zander 93][Yates 95][Hanly 96]

 Multiuser Detection (Temporal Filtering) [Verdu 84, 89][Madhow, Honig 94]

 Beamforming (Spatial Filtering) [Naguib et. al. 95]

 Multiuser Detection and Beamforming [Yener et.al. 00]

 Power Control and Multiuser Detection [Ulukus, Yates 98]

 Power Control and Beamforming [Rashid-Farrokhi et. al. 98]

 Power Control, Multiuser Detection and Beamforming [Yener et al 01]

 Power Control and Adaptive Cell Sectorization [Saraydar et al 01]
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Power Control
[Yates, 1995]
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Find power vector p that meets SIR requirements  

I(p) for each user.  
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Power Control
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Interference Functions
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Fixed Assignment
 User j assigned to base aj .
 Assigned base fixed through iterations
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Interference Functions
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Minimum Power Assignment
 User j assigned to base with maximum SIRj

 Assigned base updated at each iteration
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Interference Functions
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Macro Diversity
 Received signals for user j at all base stations 

combined
 Assume interfering signals appear independent,
 Maximal ratio combining:
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Interference Functions
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Limited Diversity
 Received signals for user j at the best kj base 

stations combined

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Interference Functions
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Multiple Connection Reception
 User j is required to maintain acceptable SIR 

at dj distinct base stations.



jj  user for quirementre SIR:
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Interference Functions
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Standard Interference Function
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Definition [Yates 95]:

Positivity:

Monotonicity:

Scalability:

Interference function ( ) is standard if 
for all 0 the following properties are satisfied:

I p
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Standard Interference Function
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Positivity: implied by nonzero background noise

Monotonicity:

Scalability:
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Interference Functions
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Fixed Assignment
 User j assigned to base aj .
 Assigned base fixed through iterations
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Synchronous Iterative 
Power Control [Yates 95]

7/27/2011Wireless Information Theory Summer School 
in Oulu, Finland

Standard Power Control Algorithm

 

If ( )  is feasible (i.e., ( )  has a feasible solution)
then this iteration converges to the unique fixed point

                        

which is also the minimum total transmit power.
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Synchronous Iterative 
Power Control
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Theorem 1: If the standard power control algorithm 

has a fixed point, then the fixed point is unique.

Proof:

Monotonicity Scalability
Contradiction

Positivity:
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Synchronous Iterative 
Power Control
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Lemma 1:

Proof:
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Synchronous Iterative 
Power Control
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Lemma 2:

Proof:
.*)(

)(

pzI

zpI

 to converges that  sequence increasing monotone
 a produces algorithm control power standard the vector,
zero all the , from starting then feasible, is  If               

n

Monotonicity:

32



pppI
pzI

ppI

pIpIzIppz
pp

ppp

 any for     
                                 

           
                            

feasible) (since feasible be must                    
  s.t.  1 find can one  any for , Since          

n
n

n *)(lim
*)(lim

**)(lim

*)()()(*
**

*0



















 n
n

n

nnn

j j *p









Synchronous Iterative 
Power Control

7/27/2011Wireless Information Theory Summer School 
in Oulu, Finland

Theorem 2:

Proof:

Monotonicity:
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Scalability:
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Synchronous Iterative 
Power Control
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Summary: For any feasible interference function satisfying 

positivity, monotonicity and scalability, the standard 

iterative algorithm

converges to the unique fixed point

which corresponds to minimum total transmitted power  
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Asynchronous Power Control
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Totally asynchronous algorithm model 
“Parallel and Distributed Computation” 

Bertsekas and Tsiksitlis, Prentice Hall, 1989

Allows users to:

 Perform power adjustments faster

 Execute more iterations than others

 Use outdated information on interference
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Asynchronous Power Control
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Totally asynchronous algorithm model 

 

 
jtpt

t...,pt,ptpt

t...,pt,ptpt

tjtp

i
j

i

j
NN

jjj

N

j

 user to known is  which for time recent most :    
                  

using power ontransmissi its  adjusts  juser t, time At

                        
 time at  user of power dtransmitte :

)()(

))(()),(())(())((

)(),()()(

)(

2211

21



 



p

p

36



Asynchronous Power Control
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Totally Asynchronous 

Standard Power Control Algorithm
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Asynchronous Power Control
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Asynchronous Convergence Theorem
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Asynchronous Power Control
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Extensions to Framework
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Interference Alternatives (e.g. for network MIMO)

 min

Suppose user  is given a choice between ( ) and ( )
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Extensions to Framework
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Maximum and Minimum Power Constraints
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Conventional Power Control
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Temporal and Spatial Filtering
 Receivers can be designed to be “better” (in the 

sense of handling interference) and jointly 

optimized with transmit powers for improved EE.

 This necessitates looking into signal space 

dimensions of transmitted signals

 Assume we have temporal (CDMA) and spatial 

dimensions (multiple antennas at the base)



System Model:

 CDMA System with N users:

 processing gain G

 K array elements

 Temporal signature sequence of user j:

 Spatial signature sequence of user j:

Temporal-Spatial Filtering
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Linear Multiuser Detection
(Temporal Filtering)
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 User j has temporal signature sequence

 Received signal is chip-match filtered and sampled 

to get:

 MMSE combiner gives estimate of bit as

Linear Multiuser Detection
(Temporal Filtering)
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Beamforming
(Spatial Filtering)
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 User j has spatial signature sequence

 Received signal is temporal match filtered to get:

 MMSE combiner gives estimate of bit as
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Temporal and Spatial Filtering
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 User j has both temporal signature sequence

and spatial signature sequence

 Received signal at the output of each array element 

is chip-matched filtered and sampled to get:

 How to choose the linear matrix filter?

)(ta j

NasR 


T
jjj

N

j
jj bhp

1

Temporal and Spatial Filtering
)(ts j

 matrix  KG:R
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Linear filter:

 Single user:

 Single user – multiuser:

 Cascaded filter structures

Temporal and Spatial Filtering
[Yener et.al. 01]
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

 Resulting joint optimum filter has a closed form

 Requires KGxKG matrix inversion

Optimum Temporal-Spatial Filter (OTSF)

.iii by  and  between MSE minimum the  yieldsthat  Find X

]))([(minarg 2
i

H
i

MMSEO
i btrE  RXX

X



 Less complex filters with near-optimum performance

 Approach: Separable filters:

 Decision statistic for user i:

 Iterative algorithms to optimize one filter at a time
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Constrained Temporal-Spatial Filter (CTSF)
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OTSF vs CTSF Receiver 
(for user i)
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Power Control + Multiuser 
Detection + Beamforming
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Problem:

 The total transmitter power is minimized



Power Control and 
Temporal-Spatial Filtering 

that such   and  optimal Find ,, iXp ii 

*
iiSIRi  satisfies  user Each

 Power+filter optimization for both OTSF and OCTSF:
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Solution:

Power Control and 
Temporal-Spatial Filtering

:constraint 
 to moved be can onoptimizati               

SIR
iX



 MMSE temporal-spatial filters, OTSF and OCTSF 

maximize the output SIR of desired user.
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Solution:

Power Control and 
Temporal-Spatial Filtering

:constraint 
 to moved be can onoptimizati               

SIR
iX



 OTSF if joint domain filters are to be employed

 OCTSF if separable filters are to be employed

NiSIRgpts
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Iterative Power Control 
Algorithm

 Design an iterative power and temporal-spatial filter updating 

algorithm that converges to the optimum powers and 

corresponding filters.
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Iterative Power Control 
Algorithm
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Proof: Define

Positivity:
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Iterative Power Control 
Algorithm
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Monotonicity: 

7/27/2011Wireless Information Theory Summer School 
in Oulu, Finland 62

Iterative Power Control 
Algorithm
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Scalability: 
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Iterative Power Control 
Algorithm
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Summary
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Iterative Power Control 
Algorithm
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Numerical Results
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 9-cell CDMA system,

 Random temporal signatures, equispaced (λ/2) linear omni directional 

array

 Results are generated to compare:
 Contentional Power Control (C-PC)

 Power control and MMSE beamforming (BF-PC)

 Power control and MMSE multiuser detection (MMSE-PC)

 Power control with OCTSF(CTSF-PC). L=5 iterations of CTSF

 Power control with one step CTSF (c-w-PC). L=1

 Power control with OTSF (OTSF-PC)

)7(5*,10 dBG     



Numerical Results
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Numerical Results
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 Joint spatial 

temporal algorithms 

offer total transmit 

power savings

 Compared to C-PC, 

the savings are as 

high as 7.2dB.

Total transmitter power  2,10,12  KGN     



Simulation Results
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 Joint spatial 

temporal algorithms 

convert an otherwise 

infeasible system 

into a feasible one!

Total transmitter power  4,10,60  KGN     



Conclusions
 Energy efficiency for classical single 

charge networks is tantamount to power 

efficiency in transmission.

 Effective management of interference is 

possible by receiver design; jointly 

optimizing receivers with powers provides 

the most energy efficient option.
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Conclusions/Outlook
 For classical networks energy efficiency is not 

necessarily new, there are however topics less 

mature then others:

 Multi-tier network design: Can femtocells help us 

be more green?

 Green base stations? Need to care about

 downlink transmit energy (some existing work)

 processing energy (very little work)
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