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Outline of This Tutorial

= Introduction to energy harvesting (EH)

= Single-user offline power/rate optimization [Aylin’
= Single-user online power/rate optimization [Ayfer]
= Multi-user offline power optimization [Sennur]

= Multi-user online power optimization [Sennur]

= Energy cooperation (EC) and optimization [Sennur]

= Information theory of EH, infinite/zero/unit
battery [Aylin]

= Information theory w/ finite battery, connections
to online & offline optimization; IT of EC [Ayfer]
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Prerequisites for the Tutorial

Basic command of

= Optimization

= Communication Theory
Reasonable fluency in

= Shannon Theory

Fairly self-contained otherwise
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Outline - Aylin- Part I -

= Introduction to energy harvesting (EH)

= Communication theory of EH - the optimization set up

= Short term throughput maximization for single link with finite battery
= Transmission completion time minimization with finite battery

= Extension to fading channels

= Transmission policies for nodes with inefficient energy storage
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Introduction
Wireless
Communications
Ubiquitous
Mobile / Remote
Energy-limited
Green
Many sources ®
@
Abundant
energy
Energy Harvesting
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Energy Harvesting Networks

= Wireless networking with rechargeable (energy

harvesting) nodes:
= Green, self-sufficient nodes,
= Extended network lifetime,

= Smaller nodes with smaller batteries.
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Energy Harvesting Applications o

= Communications satellites
= Space communications

= Deep space exploration
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Wireless Energy Cooperation
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Energy Harvesting Applications

Body area networks

Heart sensor Personal

access point

Wearable é

)

Motion sensor
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Energy Harvesting Applications —

Solar charged Textile electrode
textile battery

KAIST's Solar charged
Slecirods « textile battery

composite

MC10's biostamps

for medical monitoring,

powered wirelessly

Image Credits: (top) http://pubs.acs.org/doi/abs/10.1021/n1403860k#affl (bottom) )
http://www.dailymail.co.uk/sciencetech/article-2333203/Moto-X-Motorola-reveals-plans-ink-pills-replace-ALL-passwords.html
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Energy Harvesting Applications

Fujitsu's hybrid device
utilizing heat or light. »

PPG Front-End
System-on-Chip

Health tracker built at at the
ASSIST Center at North
« Carolina State University,

Charge Management u"'iIiZing SOIar' Ce"S

Board

Flexible

Image Credits: (top) http://www.fujitsu.com/global/news/pr/archives/month/2010/20101209-01.html
(bottom) https://assist.ncsu.edu/research/
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Energy Harvesting Applications

« In-body (intravascular) wireless devices

Proteus Biomedical pills,
powered by stomach acids

Image Credits: (top) http://www.extremetech.com/extreme/119477-stanford-creates-wireless-implantable-innerspace-medical-device
(middle) http://www.imedicalapps.com/2012/03/robotic-medical-devices-controlled-wireless-technology-nanotechnology/
(bottom) http://scitechdaily.com/smart-pills-will-track-patients-from-the-inside-out/
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What is in it for us? —

= New: communication theory of EH nodes
= New: information theory of EH nodes

Key new ingredient:
A set of energy feasibility constraints based

on harvests govern the communication
resources.

7/10/2016
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Communications

= New Wireless Network Design Challenge:

A set of energy feasibility constraints based
on harvests govern the communication
resources.

= Design question:
When and at what rate/power should a
"rechargeable” (energy harvesting) node
transmit?

= Optimality? Throughput; Delivery Delay

= Outcome: Optimal Transmission Schedules

7/10/2016
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Two main metrics

= Short-Term Throughput Maximization (STTM):

Given a deadline, maximize the number of bits sent

before the end of transmission.
= Transmission Completion Time Minimization (TCTM):

Given a number of bits to send, minimize the time at
which all bits have departed the transmitter.

7/10/2016
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ST Throughput Maximization —
[Tutuncuoglu-Yener'12]

= One Energy harvesting transmitter.

= Find optimal power allocation/transmission
policy that departs maximum number of bits in
a given duration T.

= Energy available intermittently.

= Up to a certain amount of energy can be stored
by the transmitter & BATTERY CAPACITY.

7/10/2016
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System Model —

= Energy harvesting transmitter:

|5
Epe ] #
Energy queue
Data queue
O >
transmitter receiver
= Transmitter has to send by deadline T

= Energy arrives intermittently from harvester
= Stored in a finite battery of capacity E,..

7/10/2016
IEEE ISIT 2016, Barcelona, Spain 20



0 Wirel c Icatl
"‘o,’ PennState & Networking Laboratory

System Model —

* Energy arrivals of energy L; at times s,

E, E, E,
| | T

= Arrivals known non-causally by transmitter,
= Desigh parameter: power — rate r(p).

7/10/2016
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Power-Rate Function

= Transmission with power p yields a rate of r(p)

= Assumptions on r(p):

i. r(0)=0,r(p) — oasp— ©

Rate

ii. increases monotonically in p
iii. strictly concave

iv. r(p) continuously differentiable

Power

P

|
Example: AWGN Channel, 7(P) = Elog(l + ﬁj

7/10/2016
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Notations and Assumptions

= Power allocation function: p (1)
= Energy consumed: jOT p(t)dt
= Short-term throughput: IOT r(p(t))dt

Concave rate in power >Given a fixed energy, a longer
transmission with lower power departs more bits.

7/10/2016
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Energy Constraints
(Energy arrivals of E; at times s,)
= Energy Causality: Z_:E,- - J:p(f)df >0 Spq ST,
i=0
= Battery Capacity: iE — J'Ot p(t)dt<E__ s St'<s,
i=0

= Set of energy-feasible power allocations

n—l1 £
B = {p(t) ‘ 0< ZEZ. —IO p@)dt<E__,Vn>0,s  <t'< Sn}
i=0

7/10/2016
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1) "
Energy "Tunnel
E 4
Energy Causality )
E, ,
/ > [ max
/
7/
7
E - ’
1 -
- C
L, Pria ’FeaS\b\e PO\‘ Y
-
L7 S~ Battery Capacity
P 7’
7’
“ >
Sy S5 [
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Optimization Problem

= Maximize total number of transmitted bits by deadline T

max jOT F(p()dt, st p(t)eP

p(t)

n—1 '
T :{p(t) ‘ 0< ZEZ. —JZ p)dt<E_ ,Vn>0,s  <t'< Sn}
=0

= Convex constraint set, concave maximization problem

7/10/2016
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Necessary conditions for —
optimality of a transmission policy

= Property 1: Transmission power remains constant
between energy arrivals.
= Let the total consumed energy in epoch [s;,s,, 1be £, .

which is available at ¢ = .. Then the power policy

E
p — total , { e [Sl'a Si+1]

is feasible and better than a variable power transmission;

shown easily using concavity of r(p)

7/10/2016
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Necessary conditions for optimality ——

= Property 2: Battery never overflows.

Proof:

Assume an energy of A overflows at time ¢

( A

A
= — 5,
Define p'(t) =+ plt)+ o L7 7 -

| p(?) else

Then j r(p'(t))dt > j r(p(1))dt since r(p) is increasing in p

0

7/10/2016
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Necessary conditions for
optimality of a transmission policy

= Property 3: Power level increases at an energy arrival instant

only if battery is depleted. Conversely, power level decreases

at an energy arrival instant only if battery is full.

[rw'@yde>[rpw)d

p(t) .-~
_- P(t) —

p(t)

Policy can be improved Policy cannot be improved

7/10/2016
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Necessary conditions for
optimality of a transmission policy

= Property 3: Power level increases at an energy arrival instant

only if battery is depleted. Conversely, power level decreases

at an energy arrival instant only if battery is full.

p(t) -z

P

[rw'@yde> [rpw)dt

Policy can be improved

p*(t)

e

Policy cannot be improved

7/10/2016
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Necessary conditions for
optimality of a transmission policy

= Property 4: Battery is depleted at the end of transmission.

Proof: Assume an energy of A remains after p(t)

N

’ A
— T-o,T
Define p'(¢) = P+ o [ ]>

p(t) else

T

Then jr(p’(t))dt > jr(p(t)) dt since r(p) is increasing

7/10/2016
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Implications of the properties ———
[ Tutuncuoglu-Yener12]

= Structure of optimal policy is piece-wise linear.

) D, I <t<i Ceis) ant
= , I €S}, p,constan
P 0 t>T P

= For power to increase or decrease, policy must meet the

upper or lower boundary of the tunnel respectively.
= At termination step, battery is depleted.

= Uftilizing this structure, a recursive algorithm emerges to

find the unique optimum policy [Tutuncuoglu-Yener'12].
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Energy "Tunnel”

Energy Causality

>

max

Battery Capacity

>
Sy S5 [
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Shortest Path Interpretation

= Optimal policy is identical for any concave power-rate function!

= Let r(p)=—p*+1,then the problem solved becomes:

max jOT — \/p2 (t)+1 dt st. p(t)eP

p(?)

~ min jOT Jp2(0)+1 dt st. p(f)eP

p(1)

length of policy path in energy tunnel

—> The throughput maximizing policy yields
the shortest path through the energy tunnel for
any concave power-rate function.

7/10/2016
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Shortest Path Interpretation

= Property 1: Constant power is better than any other alternative

= Shortest path between two points is a line (constant slope)
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Alternative Solution —
(Using Property 1)
= Transmission power is constant within each epoch:

p(t):{pi,tEQPOCh l, i=1,,,,,N} (N: Number of

arrivals within [0,T])

N (L;: length of epoch i)
m]?X Z L.r(p;)
L=l

st. 0SY E -Lp,<E, n=L.,N

i=1

= KKT conditions > optimum power policy.

7/10/2016
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Solution
= Complementary Slackness zn(ZH:L,. p.—E |=0 Vn
Conditions: ﬂn(iE,- Lp-E |0 v

A,'s are positive only when battery is empty (ZLipl. —El.j =0
i=l1

w1, s only positive only when battery is full (ZE —L.p, —Emaxj =0

i=1

1+
. 1 increases with positive A
Pn = W y) - decreases with positive

7/10/2016
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Directional Water-Filling

= [Ozel, Tutuncuoglu, Ulukus, Yener11]

= Harvested energies filled into epochs individually

_ Water levels (v;)

G ) H >
0 t

7/10/2016
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Directional Water-Filling
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= Harvested energies filled into epochs individually

= Constraints:

= Energy Causality: water-flow only forward in time =)

E, E, L,
“e “e -
______ _ Water levels (v)
L,
G B ) >
0 t

7/10/2016
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Directional Water-Filling

= Harvested energies filled into epochs individually

= Constraints:
= Energy Causality: water-flow only forward in time
= Battery Capacity: water-flow limited to E,,,. by taps @&
E, E, E,

G 5 H >
0 t

7/10/2016
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Examp I e WCAN@PSU

lEozz max
| E=5 | E=1 | E=9 | E=T7

A

’ @ @ S &

v
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Directional Water-Filling

N ES
E -
By = Energy tunnel
E, —
E and directional
E__° -
Fop—t . water-filling
0 t
; approaches
\é\@\é’@\é \,é yield the same
policy
o° —66-6 &=
7/10/2016
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Directional Water-Filling

E N /jl—;—.
L7 = Energy tunnel
J/ and directional
7 |
e | ine
-~ i . water-filling

approaches

yield the same

policy

. — — — 1 __ _ __

7/10/2016
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Simulation

Results
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14000 | | .
—+— Optimal offline algorithm
&— On-off algorithm

12000 ------- Upper bound with no energy constraints .
§ ) _/./”
@ A
5 10000} ]
o A
2 , -
‘e 8000f A .
73] E yd .
g oA
£ 6000 R 1
5 T e
2 A
Lg 4000+ S .
o w2

G. ; g | | 1 |
0 2000 4000 6000 8000 10000
Time (sec)

= Improvement of optimal algorithm over an on-off transmitter in
a simulation with truncated Gaussian arrivals.

IEEE ISIT 2016, Barcelona, Spain
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i """ Fading Channels e ——
[Ozel-Tutuncuoglu-Ulukus-Yener'11]

hs
h,=h,=h —

Fading 7 it hs=hs
levels | 2

E, E, E, E, E. E s = 0

S T S A T S
0 ; t
L, L, L,
1
= AWGN Channel with fading 2. r(p,h) = Elog(l + hp)

= Each "epoch” defined as the interval between two "events”.

7/10/2016
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Directional Water-Filling for Fading Channels

= Same directional water filling with base levels adjusted
according to channel quality.

= Directional water flow (Energy causality)

= Limited water flow (Battery capacity)

E, E, E,
e - .
_______ __ __ Water levels (v)
_ - Fading levels (1/h))
O—x¢ & ¢ &S >
0 t

7/10/2016
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Transmission Completion Time —
Minimization (TCTM)
[Yang-Ulukus'12]

= Given the total number of bits to send as B,
complete transmission in the shortest time

possible.

min T s, B—jOT r(p(t)dt <0, p(t)eP

p (1)

n—1 "
B :{p(t)‘ 0< ZEk —J:) p)dt<E_ ,Vn>0,s  <t'< Sn}
k=0

7/10/2016
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Relationship of STTM and TCTM

= Lagrangian dual of TCTM problem becomes:

max( min T+u(B—jOT r(p(t))dtj)

u>0 \ p(t)e¥,T

:max[min(T+uB—u.maX ' r(p(t))dt)lj

u>0 T p()eB 40

STTM problem for deadline 7

7/10/2016
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Relationship of STTM and TCTM

= Optimal allocations are identical:

STTM's solution TCTM's solution
for deadline T — for departing B
departing B bits bits in time T

= STTM solution can be used to solve the
TCTM problem

7/10/2016
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Maximum Service Curve

s(7T) = max IOT r(p(t))dt, st p(t)e B

p(t)

A
¢(M)

D) = Maximum number of bits
® that can be sent in time
g i T.
: i
E i | = Each point calculated by
£ : | solving the
g . | | corresponding STTM

| | ! problem.

>
A\ S, S Deadline (T)

7/10/2016
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Maximum Service Curve

= Continuous, monotone increasing, invertible

¢(M)

o = Optimal allocation
7'57 . for TCTM with B,
§ : bits
8 i =
- 1
g Optimal allocation
g o for STTM with

: : N deadline T,

A\ S T, S Deadline (T)

7/10/2016
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Maximum Service Curve: Fading

A

= Continuous, non-decreasing

)
© (flat regions when fading is severe)
-]
. = Tnverse can be considered
£ as the smallest 7 that
X .
= achieves B,
; ! | ;! | >
o Til i i i | ' Deadline (T)
A T
| | _'_|_
B H—H-O—HH—H—>
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Transmission Policies with
Inefficient Energy Storage

= Energy stored in a battery, supercapacitor, . ..

= “Real life"” issues:

V-

_____ N w
; Degradation
Retrieval
Loss

= [Devillers-Gunduz '12]: Leakage and Degradation

= [Tutuncuoglu-Yener-Ulukus '15]: Storage and Retrieval Losses

7/10/2016
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Battery Degradation —

= [Devillers-Gunduz '12] it

— — — — ﬁ
Degradation

= Optimal Policy: Shortest path within narrowing tunnel

s \

7/10/2016
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Battery Leakage

= [Devillers-Gunduz '12]
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Leakage

= Optimal Policy: When total energy in an epoch is low, deplete

energy earlier to reduce leakage.

yi)

N

~

7

t

IEEE ISIT 2016, Barcelona, Spain
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Storage/Recovery Losses —

= [Tutuncuoglu-Yener-Ulukus 15]

l..}‘
w "
4~ —~
= Main Tension: Storage Recovery
Loss Loss
Concavity of r(p): \ Battery inefficiency:
Use battery to - Storing energy in
maintain a constant / battery causes energy
power transmission loss
7/10/2016
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Time slotted model —

E, E, E; Ey,

l =1 l =2 l l 1=NI

G - - - —>
0 T 2r ... (N-Dr Nr

= Time slots of duration 7 =13

= Energy harvests: Size E; at the beginning of time slot i

All arrivals known by transmitter beforehand.

7/10/2016
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System Model —

Energy storage (ESD) = h;: Harvested power

E = s, Stored power

max I

= u; Retrieved (used) power
n u; = p;: Transmit power
Si Rate: r(p(1)
hy, —s O O
Transmitter Di= hi —9; + u; Receiver

= ESD has finite capacity E,, ., and storage efficiency .

= Energy Causality: Z’?Sn —u, 20, i=1,...,.N

n=1

<E

= Storage Capacity: Z_;’?Sn —u, <Lk, 1=L.,N

7/10/2016
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Throughput Maximization

= Find optimal energy storage policy that maximizes
the average throughput of an energy harvesting
transmitter within a deadline of N time slots.

N
1{na>}( Zr(El. —s,+u,)
Silif o

st. OSE +> (ns,—u)<E
n=1

max ?

E —-s +u 20,s 20, u,20, i=1...,N.

7/10/2016
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Throughput Maximization
max Y r(E —s,+u,)
Old problem: tspi} 2:1: |
/ N \ s.t. OSZZ:(nSi—ui)SEmaX, i=1,...,N,
max ) r(p,) n=1
G E —s,+u 20,520, u;, 20, i=1,...,N.

si. 0<Y (E,—p)<E,,., i=1..,N,

n=1

p: =0, i=1,...,N.
< >

7/10/2016
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Optimal Power Policy -

& Structure of optimal policy:\

r[ps,i ]+ E 2 Py
pi=y £ p,SE=<p, Pi 4

K / ps,i

pu,i

"Double Threshold Policy”

7/10/2016
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Optimal Power Policy

P

Wireless Communications
& Networking Laboratory

WCAN@PSU

[=35

A

IEEE ISIT 2016, Barcelona, Spain
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Optimal Power Policy
(Fading channel)

N

P;

7/10/2016
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Simulations

N =10" time slots

=10 ms

E_ =1lmJ

E,=0

E~iid U[0,200]wu]
h=-100 dB
B=1MHz

N,=10" W/Hz

Throughput per Hz (Bits/s/Hz)

Wireless Communications
& Networking Laboratory

WCAN@PSU

1.7h

1.65

1.5

1.45

—— Optimal offline policy
—*— Efficiency-adaptive DWF
—<— Directional water-filling

1.4

0.2

0.4 0.6 0.8 1
Storage efficiency, n
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Offline Power Control for Energy Harvesting Nodes

An Alternative Formulation

E;: i.i.d. energy harvesting process, can be continuous or discrete, its
realization is known ahead of time.

Power Control Problem:

9

1
T =supliminf —E

g n—oo N

"1
> 5 loa(1+ g
t=1

where g : E" - R4, t=1,...nis a power control policy that satisfies :
0<g:t<bt
bty1 = min(br — g¢ + €11, Emax)
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Offline Setting

[ T S /"

Optimal Solution:
@ Ensure battery never overflows.

@ Allocate energy as equally as possible over time.

Ayfer éngr Online Power Control July'16 3/23



Online Setting

Energy arrivals are known causally:
g:E' =Ry, t=1,...n

Easy to observe that this a Markov Decision Process:

state b; state space [0, Emax]
action gt action space [0, bt
disturbance E; disturbance distribution  p(e) or f(e)

state evolution b1 = min(b: — gt + €41, Emax)

stage reward % log(1 + vgt)

Ayfer ézgﬂr Online Power Control July'16 4/23



Markov Decision Processes

St+1 = f(St, Ug, We) J
state St state space S
action us action space U(st)
disturbance  w; disturbance distribution  p(w|s, u)
history  hy = (s1, wi, wo, ..., W_1)

policy m={p1,p2,...}, ur= pe(he)

reward  g(s¢, ut)

Goal: maximize average reward

J =supliminf = ZE 5ta#t Ht))]

r n—oo n
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A dynamic programming approach

Bellman Equation

If there exists a scalar A € R and a bounded function h: [0, Epax] — Ry
that satisfy

A+ h(b) = Ozug { log(1 +~vg) + E[h(min{b — g + E;, max})]}

for all 0 < b < Ejnax, then the optimal policy is given by
gi(E") = g*(b:(E")).

Limitations:
@ can be computationally demanding;
@ solution depends on the exact statistical model of energy arrivals;

@ no insight on the structure of the optimal policy and the qualitative
behavior of the resultant throughput;

Ayfer Ozgﬂr Online Power Control July'16 6 /23



Heuristic Online Policies

o Either no or only asymptotic guarantees on performance.
@ Two natural heuristics widely considered: greedy policy and constant
policy.

Greedy policy:
@ instantenously uses all the incoming energy;
@ ensures no battery overflow;

@ becomes optimal when SNR— 0:

= Z log(1 +gt) = ——th

Ayfer ézgﬂr Online Power Control July'16 7/23



Constant Policy

@ keep power allocation as constant as possible over time;

{u = E[E] if be>p

bt if bt < W

@ becomes optimal when Ej,;x — oc:

1
T = 5 log(1 + vu).

Ayfer éngr Online Power Control July'16 8 /23



For finite parameter values

@ these schemes can be arbitrarily away from optimality.
@ asymptotic results provide no insights about the gap to optimality.

@ which of the previous two policies is a better choice for a given
problem?

Ayfer ézgﬂr Online Power Control July'16 9 /23



A constant gap approach

Look for policies that are provably close to optimal across all parameter
regimes and any distribution of the energy arrivals.

Universal near-optimal policies:
@ have minimal dependence on the distribution of the energy arrivals,
e.g depend only on the mean.
@ achieve the optimal throughput simultaneously within a constant
additive and multiplicative gap for all parameter values and
distributions of energy arrivals.

Ayfer Ozgﬂr Online Power Control July'16 10 / 23



Wireless information theory over the last 15 years

Degrees of Freedom

4

Generalized Degrees of Freedom

4

Constant Gap Approximations
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Starting Point: Bernoulli Arrivals

E;

Enax Ni ~ N(O, 1)

Battery

X Y;
N Receiver

Transmitter
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Starting Point: Bernoulli Arrivals

Ey

Emaz Nt ~ N(O, 1)

Battery

Xy Y;
N Receiver

First, we focus on i.i.d. Bernoulli energy arrival process:

Et:{ Emax W.p. p

Transmitter

0 w.p. 1—p,

Ayfer Ozgiir Online Power Control July'16 12 /23



Bernoulli Battery Recharges

Law of large numbers for regenerative processes:

1| =1
supliminf=E [Z > log(1 + g(t))] = sup —]E

g n—oo n

L
> 3log(l+1g bt))]

t=1 t=1
= max Z p(1 Iog(l + &)

{&3%:

Ei>0 Vi -

,'021 giSEmax

The optimal power control policy:

i ,i>N

where N is the smallest positive integer satisfying
1> (1= p)"[1+ p(Emax + N)].
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Bernoulli Battery Recharges

Law of large numbers for regenerative processes:

1| ~1
supliminf=E [Z > log(1 + g(t))] = sup —]E

g n—oo N

L
> Llog(1+vg br))]

t=1 t=1
= max p(1 Iog(l + &)

{gi}:f Z

Ei>0 Vi -

;'):01 Ei<Emax

The optimal power control policy:

o [EEER ) -1 i1 N
’ >N

where N is the smallest positive integer satisfying
1> (1= p)"[1+ p(Emax + N)].
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Exponentially decreasing power allocations

l Emazx Emazl lEmaa: lEmaa: lEmaz:
-—>
E[L]=1/p

@ Because rate is a concave function of energy/power, allocate the
energy as equally as possible across time.

@ Use p fraction of the available energy at each time slot:

gt = pB:

v

Ayfer ézgﬂr Online Power Control July'16 14 /23




Exponentially decreasing power allocations

lEmam Emazl lEmaa: lEma:l: lEmaz:
-—>
E[L]=1/p

@ Because rate is a concave function of energy/power, allocate the
energy as equally as possible across time.

@ Use p fraction of the available energy at each time slot:

gt = pB:
U

8t = P(]- - p)j Erax

where j =t —max{t' < t: Ey = Epmax}-
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Simplified policy for Bernoulli Arrivals

Fixed Fraction Policy:

gt = pBt

Theorem

Let E; be i.i.d Bernoulli(p, Emax) as before. The throughput Tgg achieved
by the constant fraction policy satisfies

1
TFF > 5 |°g(1 + PYpEmax) - 0'727

and

11
TFF > 55 Iog(l + ’YPEmax)-
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Simulation

5 : ,

T 4 . . .
—— Fixed Fraction g, = ¢b;
— Upper Bound 3 log(1 + y41) 35 ——Greedy g, = b; g
4 H— Fixed Fraction g, = gb; 4 Constant gy = p- 1{by > p}
—— Greedy ¢, = b; 3t ]
Constant g, = - 1{b, > p}
:5; 3l —— Optimal © g 25t ]
El g ol ]
g S 2
ol ]
= 151 1
1L 4
1t ]
0.5 1
0 ‘ ‘ ‘ 0 0 1 2 3
10° 10 10° 10° 10* 10 10 10 10
Enax Enax
E; is Bernoulli(0, Emax) with p = 0.1.
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Simulation

7 i T ,

0.5 T T T
—— Fixed Fraction g, = ¢b;
6 {—— Upper Bound % log(1 + yp) —— Greedy g; = by
—— Fixed Fraction g; = ¢b; 04t Constant gy = p- 1{by > p}
——Greedy g; = by )
57 Constant g, = - 1{b, > p} 1
= —— Optimal ©
é« 4 ] ~ 0.3 1
Ed <
E g
Z3 pc 0.2 ]
= .
2 ]
0.1 ]
1 ]
0 ‘ ‘ ‘ 0 1 2 4
10° 10° 102 108 10* 10° 10 10 10° 10
JoR Enax

E; is Bernoulli(0, Emax) with p = 0.9.
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General i.i.d. energy arrivals

Fixed Fraction Policy:
g = qBs, where g = pu/Epmax }

Theorem
The throughput Tgr achieved by the constant fraction policy satisfies

1
Ter 2 5 log(l +yu) = 0.72,

and

11
Trr 2 55 log(1 +vu)-
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Proof idea

Theorem

Bernoulli(0, Epmax) is the worst case among all distributions with the same
mean.

Previous heuristics: the greedy policy and the constant policy

@ build on the insights from the best case scenario: E; =
deterministically.

The fixed fraction policy

@ builds on the insights from the worst case scenario: Bernoulli arrivals.
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Simulation

5 T T T 0.5 - - T
——Fixed Fraction g, = qb,
— Upper Bound § log(1 + ) ——Greedy g; = b
4 H— Fixed Fraction g, = gb; B 04t Constant g; = - 1{b; > p} |
——Greedy g; = by . “—
Constant g, = - 1{b, > p}
= —— Optimal
53 (| Optimal © ] 03
® =
g <]
Zof 1 0.2
= .
1r 1 0.1
0 L L I 0 . . .
100 10° 102 10° 104 10° 10’ 10° 10° 10*
Epax Enax
E; is Exponential(1/0.1 Epayx)-
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Open Questions and Directions

Is Bernoulli the worst case for the optimal policy?
Non i.i.d. energy arrivals.

Fading Channels.

Battery Imperfections.

Multi-user Settings (to be discussed in the next part).
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So Far, We Learned... I

Wireless nodes harvesting energy from nature.

Single-user communication with an energy harvesting transmitter.

Energy arrives (is harvested) during the communication session.

A from the conventional battery powered systems.

Transmission policy is adapted to energy arrivals.

Objective: maximize throughput, minimize delay.

E;

i

1l O

data queue Tx

Rx



Single-User Optimal Policy for E,,,, = o

EO El E2 Eg E4 E5
' ! LU N !
O N A A N Ny -

cumulative energy arrivals
— ‘ 23:1 L

——= Optimal power level

T ot

e Find the tightest curve under the cumulative energy arrival staircase.

3



Single-User Optimal Policy for E,,,, < o I

EO El E2 Eg E4 E5
4 ! L | !
O N A A N Ny -
A
cumulative energy arrivals
— ‘23:1 L
iEmax
> |
T t

e Find the tightest curve in the energy feasibility tunnel.

4



Equivalence of Feasibility Tunnel and Directional Water-filling

Ey E; Ey Es E, E Es
S U U S ;
T
—l—I
I e
fl—li
T

OFF OFF OFF OFF OFF OFF  OFF

O OO0 © ©




Equivalence of Feasibility Tunnel and Directional Water-filling I

Ey E; Ey Es Ey E Es
S W N S B ;
T
e
—_ tightest
curve
T
ON ON ON ON ON ON ON
= & ® ~ O = &
f ' T

causality no overflow



Optimal Packet Scheduling: Broadcast Channel I

%

T

data queue 1 O
o =
\

Tx

N\

data queue Roco

Energy arrives (is harvested) during the communication session
Assume battery has infinite storage capacity: Ej,;;, = o
Broadcasting data to two users by adapting to energy arrivals

Objective: maximize the data departure region



Broadcast Channel Model: E,,,, = o

%

T

data queue 1 O
o =
\

Tx

N\

data queue Roco

o AWGN broadcast channel:
YI=X+N;, H=X+N,

where N| ~ N(0,67), N2 ~ N(0,063)

e 05 > 07: 2nd user is degraded; we call 1st user stronger and 2nd user weaker



Broadcast Channel Model I

Ry

Cy

Cl R1

e Broadcast capacity region:

1 oP 1 (1—o)P
r1 < =lo 1+— |, < -1lo 14+ —
1S5 gz( G%> ’”2_2 gz( OCP—l—G%)

e We work in the (r{,r;) domain:

P=0122 ) 4 (63012 a3 2 gl

e g(r1,ry) is the minimum power required to send at rates (ry,7>)



Finding the Maximum Departure Region I

e The maximum departure region D(7'): union of (B, B) pairs achievable by some rate

allocation policy that satisfies the energy causality constraint.

I<—> > +—> <—>I

0 0y In IN 41
(ri1,721) (ri2,722) (rin,7m2en) (Pin+1), T2(N+1))

e, o o o o o
A= A= o o A=

| | | |

| | | |

| | | |

e Transmission rates, and power, remain constant between energy harvests

e The energy causality constraint reduces to constraints on (ry;,r;):

k k-1
g(rii,ri)li < Y Ej, k=1,...,N+1
=1 =0

4

4

10



Finding the Maximum Departure Region I

e D(T) is a strictly convex region.

e Characterize D(T) by solving optimization problems for all uy, > > 0:

N+1 N+1
max py Y rili+u Y ril;
i—1 =1

ry,rn

i
k k—1

S.t. Zg(rli,rzi)ﬁig ZE,', k=1,.... N+1
i=1 i=0

Bs

(/1'17 MQ)

11



Structure of the Optimal Policy

Total transmit power is the same as the single-user case.
The power shares follow a cut-off structure.

Cut-off level P.

2 2\ T
P = (“162 _#2(51>
H2 — U

If total power is below P, then, only transmit to the stronger user.

Otherwise, stronger user’s power share is F.,.

12



The Structure of the Optimal Policy for E,,,, = o I

B o

Q=

'

E,

:

&

Q=

I

Q=

13




The Structure of the Optimal Policy for £, < o I

E() E1 E2 E3 E4 Eo EG
vy ' ' ' ' ' l
G © © © © O © {
T
ETTMI,T ETH,II,,T E?'n(lﬂf E?TLG.T E7TLG.T Eﬂ’l(lﬂ? Eﬂ’l(l.’]?
o e © © @ CHNC
EO E1 E2 E3 E4 E5 E6
T
P
F.
T
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Conclusions for the Offline Broadcasting Scenario I

e Energy harvesting transmitter with infinite and capacity battery
e Maximize the departure region.

e (Obtain the structure of the solution, such as:
— the monotonicity of the transmit power

— the cut-off power property

15



Optimal Packet Scheduling: Multiple Access Channel

e AWGN MAC channel Y =X, +X,+Z,Z ~ N(0,1).

e The capacity region is a pentagon denoted as C(Py,P»):
R < f(P1), Ra<f(P), Ri+R<f(P+P)

where f(p) = %log(l +p).

By

Ry

MmO “I

data queue Tx1
Co |
Eo;

O

_ EO

data queue Tx2 Cy

16
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Problem Formulation '

e Maximize the departure region D (7T ) by time 7.

Eynw  En Eis Eik-1
. ; ; ! ;
G >
to 81 S2 83 54 SK-1 SK T
Eoy Eos Eoy For
Iy | | ! ! |
o >
to 51 So 53 Sy SK—1 SK T
BoA
b
\\<
\- -
b B4

e Each feasible policy gives a pentagon.

e Union of all feasible policies gives D(T).

17



Characterizing D(T)

e Transmission rate remains constant between energy harvests.

e For any feasible transmit power sequences pp, p2, the departure region is a pentagon

B < Zf pln
N
B, < Z p2n
v
By + B> SZ f(P1n~+ p2n)ln

e D(T) is a union of (By,B,) and convex.

e The boundary points maximize uy B + ux B, for some uy,ur > 0.

18



Point a '

e Single-user power allocation.

ro A

P1

max Y F(pin)ln

J J—1
st. Y piulh <Y Eny, Vji:0<j<N
n=1 n=0

19



Point b '

e User 2 power is fixed to its single-user power allocation.

ro A

n},?x Zf(p1n+p§n)ln
n

J J—1
st. Y piulh <Y Enn, Vji:0<j<N
n=1 n=0

20



Sum-rate: Points between ¢ and d

e Maximize the sum-rate of the users.

f T1
max Zf(p1n+p2n)ln
P1,P2 n
J j—1
s.t. Zplnlné ZElna V]O<]§N
n=1 n=0
J j—1

Y pouln < Y Esy Vj:i0<j<N



Sum-Rate: Points between c and d, Equivalent Problem

e Equivalent problem:

[

J Jj—1
s.t. Zplnln+p2nln S ZEln ‘|‘E2na VJO<]§N
n=1 n=0

e Power can be divided back to py,p> in infinite number of ways.

ro A

b

O G e

22



Points between b and c: Arbitrary u, u

e Each boundary point corresponds to a corner point of some pentagon.

e 1 > u; = achieving points between point b and point c:

T2 A

max (o —1y) Zf(pZn)ln + Zf(Pln + p2n)ln

P1,P2 -
J J—1

st. Y pula < Y Epn, Vj:0<j<N
n=1 n=0

J J—1
ZPannSZEbla V]O<JSN
n=1 n=0

23



Generalized Iterative Backward Waterfilling I

Solve the problem via generalized iterative backward waterfilling:

Given p7, solve for pa:

N N
HII)EZIX ,U2 — U1 Z p2n n+ M Z f(an+p2n)ln

—1
S.t. sznl < ZEQn, 0<j<N

n—
Once p5 is obtained, we do a backward waterfilling for the second user.
We perform the optimization for both users in an alternating way.

The iterative algorithm converges to the global optimal solution.

24



Conclusions for the Offline Multiple Access Scenario I

e Lnergy harvesting transmitters sending messages to a single access point.
e The problem: maximization of the departure region.

e Obtain the structure using generalized iterative waterfilling.

25



So Far, We Learned... I

I I

Qe
P— O

only causally known «———

cumulative energy arrivals

|

cumulative energy expenditure
I

t/

e So far, mostly: dynamic programming, learning algorithms, heuristics.

26
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e Steps of the approach:

A Unique Approach: Online Power Scheduling I

e Feel the Bernoulli.

— Study Bernoulli energy arrivals with {0, B} support.

— Propose a

policy for Bernoulli arrivals.

— Bound its performance.

— Extend this sub-optimal policy for general energy arrivals.

— Bernoulli is the worst energy arrival for the proposed algorithm.

— Obtain a near-optimal online power policy.

data queue Tx

27

O

Rx

rate A

general-FFP

general—opti{nal

upper bound

0.72

"~ /-~Bernoulli-optimal

Y Bernoulli-FFP

>
B



Online Policy for the Single-User Channel I

e Bernoulli energy arrivals:

data queue Tx Rx

e PIE;=B]=1-P[E;=0]=p

e When an energy arrives, a renewal occurs.

28



Long-Term Average Throughput Using Renewal Theory I

e [ong-term average throughput, under Bernoulli energy arrivals:

L

1
Y -log(1+F)
=12

1
:m]E

gk

k
&
=pY p(1=p) 'Y Slog(1+P)
i=1

k

I
i

41
p*(1=p)'Jlog(1+P)

I
™
gk

I
i
i

i

11
p(1—p) " log(1+P)

™

-~
I
p—

e L is inter-energy arrival time, geometric with E[L] = %.
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Resulting Optimization Problem I

e To characterize {P;} which achieves the maximum, we solve

max Zp(l —p)l_lilog(l +P;)

1 -
S.t. iPigB
=1
;’,>O, Vi
e Solution:
Pi—p(l_xp)ll—l, i=1,....N

e Decreasing power for a finite duration N that depends on B.

30



Online Policy for the Single-User Channel I

e Bernoulli energy arrivals:

— Optimal power allocation with N = 4:

.’

E;
o |
H ......... B
— ———— —— E
___________ —— [
data queue Tx Rx

— Sub-optimal fractional power allocation, P; = Bp(1 — p)'~!:

E;

o T é
......... O O
data queue Tx Rx

31



Bounds on the Online Policies I

e Upper bound from offline policy:
1
r< 5 log (1+u)
e [ower bound algebraically for Bernoulli arrivals:

1
r> ilog(l—l—,u) —0.72

Sketch of the proof:
1 &1 i—1
r:m izziilog(l—kBp(l—p) )]
1 [& 1 . 1
> m]E l; Elog(l—l—Bp)—l— Elog((l _p)ll)] > 510g(1+y) —0.72

e Bernoulli is the worst energy arrival for the fractional policy:

Tupper_0-72 < Tgern < Tany

IA

Tup per

32



Online Policies for the Broadcast Channel I

e Bernoulli energy arrivals:

B o o

.
.
.

data diieue 1

L?OD]]]]}—@

g
\

DO

data queue

=Y
4

° P[ELZB]:l—P[El:O]:p

e When an energy arrives, a renewal occurs.



Long-Term Weighted Average Throughput I

e [ong-term weighted average throughput, under Bernoulli energy arrivals:

lim E

n—soo

127 L
;Z p1rii+ pHari) Z H1r1i+ pHari)

i=1

I
<
et
y—A

|

k
Z M1 —|—/12r21

I
o
s L

o~
I
[E—
P
1

p>(1=p)" N uyry; +wor)

p) (i + o)

I
™
S
—
|

~
I
i
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Resulting Optimization Problem for the Broadcast Channel I

e Problem becomes

max Zp(l — p)i_l(uﬂ’li +,U27’2i)
{riri}t 2
st. Y g(ri,ri) <B

~
I
[SRN

ri, i >0, Vi

where

2 2(ry; ; 2 2\ 2ry; 2 A
Pl‘ = Gle (r1itr2i) + (02 —Gl)e "2i —62 = g(l’li,I’Zi)

e Modified offline problem:
— One energy arrival.

— Generalized fading due to p(1 — p)~!

35



Structure of the Optimal Online Policy I

Fia
'll‘ user 1
Y |:| user 2
A
P Py
PC A
)2
/ 3
/ / %
\/ ‘ \/ ‘ \/ ‘ /4;7 /}94 1 -
0 1 2 3 4 5 é slots (i)
M N

e User 1 is served for a time no shorter than user 2.
e Both users’ powers are decreasing.

o Cut-off level P,:

2 2\ T
EZ(M%-MQ)
H2 — U

36



Proposed Sub-optimal Policy for Bernoulli Energy Arrivals I

P, = pbi

'll‘ user 1
E user 2
A
Py
PC lel
P ooV
/ % /%V |
\/ \/ | | >
0 1 9 3 4 5 6 slots (i)

e Sub-optimal fractional total power policy:

— Total power per slot:
P, = Pij+ Py = pb;=Bp(1—p)"!
— Optimally divided power according to cut-off:

Pi; = min{P.,Bp(1—p)~ '}
Py, =Bp(1—p)~'— P

37



Proposed Sub-optimal Policy for General Energy Arrivals I

P = qbiA /] user 1
E user 2
A
A A
Py P, A
P
s AN N N L A
P,
v f L/ f f f f ‘ >

e Defining g = u/B.

e Total power per slot:
P; = gb,
e Optimally divided power according to cut-off:

Pi; = min{ P, gb;}
Py = gb; — Py;
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Bounds on the Online Policies I

e Bernoulli energy arrivals gives a lower bound for general energy arrivals.

e [.ower bound:

o
ri > —log <1—|——'§l> —0.72
S
1 I —o
r > —log(l—i—( )5’) ~0.99
ol + o5

e Upper bound:

1 oL
<—1 1+ —
ri =5 og( +G%>

U—ap)

1
rp<<log| 1+
) g( o + 3

for some o € [0, 1], where u = E|E;] is the average recharge rate.
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Illustration of Bounds I

upper bound

7”2‘

| optimal policy

=1.22
<1.22

fractional policy

(FPCC)

lower bound

>
(A

e Distance between any two points with the same o on the upper and lower bounds is equal to:

v/0.7224+0.992 = 1.22
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Conclusions for the Online Broadcasting Scenario I

Energy harvesting transmitter with capacity battery
Maximize the departure region.

Obtain the structure of the solution, such as:
— the monotonicity of the transmit power

— the cut-off power property

Near-optimal policy.
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Multiple Access Channel with Common Source I

e Bernoulli energy arrivals:

1

LI ;

- data gueue Tx1

common
energy PR E; O
source
| | | | | | % { ..BQ

data queue Tx2

e P|E; =B|=1—P[E; =0] = p, where B> max{B1,B:}.
e Average admitted energies at the two users are not the same.

e When an energy arrives, a renewal occurs.
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Long-Term Weighted Average Throughput I

e [ong-term weighted average throughput, under Bernoulli energy arrivals:

lim E

n—soo

127 L
;Z p1rii+ pHari) Z H1r1i+ pHari)

i=1

I
<
et
y—A

|

k
Z M1 —|—/12r21

I
o
s L

o~
I
[E—
P
1

p>(1=p)" N uyry; +wor)

p) (i + o)

I
™
S
—
|

~
I
i
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Online Policies for the Multiple Access Channel with Common Source I

e For Bernoulli energy arrivals:
max p(1—p) = (wry;+ para)
{Pr1i,P2i } ; l l

s.t.  (rii,ri) € C(Pyi, Poj)

Y Pii<Bi, ) Pi<B;
=1 i=1

where C(Py;, P»;) of this channel in slot i is:

1 P
ri; < <log (1+ h)

2

1 Po;
i S ElOg (1 + (5_2l>

1 P+ P,
I’1i+l’2i§§10g<1+ 1l+2 2l>

e Modified offline problem:
— One energy arrival.

— Generalized fading due to p(1 — p)~!
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Online Policies for the Multiple Access Channel with Common Source

e Achievable rate region

7“2‘

b

ao—o\

e Each feasible policy achieves a pentagon
e Rate region is the union of all such pentagons

e Points a and f are single-user rates
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Online Policies for the Multiple Access Channel with Common Source

e Achievable rate region

7“2‘

e Each feasible policy achieves a pentagon
e Rate region is the union of all such pentagons

e Points a and f are single-user rates
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Point b I

User 2 power is fixed to:
p(l-p)""' : Y

P;i - 7&2

Optimization problem becomes:

The optimal power:

At point b, user 1 transmits for a duration no shorter than user 2.

Power of both users are monotonically decreasing.
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Sum-Rate I

N
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m = =1

The optimization problem becomes:

Sum-Rate I

{2}’2}%} %i{p(l p)og (1+P11—|-2P2i>
s.t. iPll < Bj, ile <B;
i=1 i=1
A relaxed problem:
I & P —I—Pzz
L Gy
s.t. i Pii+ P < B+ B

Equivalent problems.

— Use Pj; = (sz +PZz)Bl+Bz

Hence, solve a single-user problem for (Py; + Py;).

49



Sum-Rate I

o (P; + Py;)" is positive for a duration Ny > max{N,N,}

e [t is sufficient to show that:

(P +Py) —P5; >0

e Implies that the single-user power allocation is feasible

a

T2 A /
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Online Policies for the Multiple Access Channel with Common Source

e Optimal capacity region with Bernoulli arrivals is a single pentagon

T2 A

L

e Distributed sub-optimal policy, let g B_—i:

— For Bernoulli energy arrivals:

Pi;=Bip(1—p)~!
Py = Byp(1—p)~!

— For general energy arrivals:

Pii = q1by;
Poi = q2by;
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Bounds for the Multiple Access Channel with Common Source I

e Bernoulli energy arrivals gives a lower bound for general energy arrivals.

e [.ower bound:

e Upper bound
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Multiple Access Channel with General (Arbitrarily Correlated) Arrivals I

e Bounds are the same for any arbitrary energy arrivals.
Ey;

é
~__HO

data queue Txi

- O

data queue Tx2

<

— Using g = %, the lower bound is:
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T2

<0.72

Ilustration of Bounds for the Multiple Access Channel I

A

upper bound

l

optimal policy

< 0.72

lower bound

.fractional policy
- (DFP)

< 0.72
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Multiple Access Channel with Arbitrary Number of Users

e Bounds are the same for any arbitrary number of users.

data queuel i
— Using g; = B—" the lower bound is:
Zr,_—log(1+ LK}
icS
— Upper bound:
Zr,_—log(l—l— K}
icS
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Multiple Access Channel with Large Number of Users

e Sum-rate approaches the capacity for very large number of users.

— Upper bound:




Conclusions for the Online Multiple Access Scenario I

Energy harvesting transmitters sending messages to a single access point.
The problem: maximization of the departure region.

Obtain the structure of the solution, such as:
— Monotonicity of the power.

- capacity region is a pentagon.

Near-optimal policy.
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Wireless Energy Transfer I

e Newly emerging technologies have enabled us to perform wireless energy transfer efficiently.

e Inductive coupling can be used to wirelessly transfer energy.

SOURCE

RECEIVING,
COILS ™
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Energy Cooperation in Multi-user Energy Harvesting Communications I

e Wireless energy transfer is a new cooperation paradigm.

..............

e Energy cooperation: Nodes share their energy as well as their information.
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Gaussian Two-Hop Relay Channel with Energy Cooperation I

0; _
energy
queue
AWGN AWGN
. ‘ Channel I ‘ Channel ‘
data queue S data queue D

e Energy harvesting source and relay with deterministic energy arrivals E;, E;.

e Wireless energy transfer unit that allows the source to transfer some of its energy to the relay
(with 0 < a0 < 1 efficiency).

e Unlimited data and energy buffers at the source and the relay.
e New energy arrivals atevery sloti, 1 <i < T.
e The source transfers 0; energy to the relay at slot i.

e Relay receives ad; of this transferred energy at the next slot.
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Two Hop Relay Channel without Energy Cooperation I

l l

energy
queue

AWGN AWGN
_>:- ._> Channel _:- . ~ " | Channel| ~— ‘

S

data queue data queue

e Optimal source/relay profile is a separable policy.
e Source performs single-user throughput maximization with respect to its own energy arrivals.

e Relay forwards as many of the received bits as possible, satisfying data causality and energy

causality.
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Two Hop Relay Channel without Energy Cooperation I

Tﬁ

energy

data queue

— log(1+7)=3

AWGN
Channel

_»

data queue

® -

R

e Separable policy, source maximizes its own throughput.
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Two Hop Relay Channel without Energy Cooperation I

energy
queue

_»

data queue

Tﬁ

@ -

S

AWGN
Channel

- me -
data queue R

e Separable policy, source maximizes its own throughput.

e Relay tries to send as much as it can.
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Two Hop Relay Channel without Energy Cooperation I

energy
queue

— AWGN AWGN
- ._> Channel —:- ‘ — " | Channel| — ‘

S R

data queue data queue

Separable policy, source maximizes its own throughput.
Relay tries to send as much as it can.
1 bit sent to destination, 2 bits remaining at the relay.

End-to-end throughput is 1 bit.
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Two Hop Relay Channel with Energy Cooperation I

energy
queue

-
— e

data queue

S

4x0.5=2

log(1+3) =2

AWGN
Channel

_»

_»

data queue

R

e Source sends less data, but some energy to assist the relay.
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Two Hop Relay Channel with Energy Cooperation I

energy
queue
log(1+3) =2

AWGCN AWGN
_’:. ._’ Channel| — ‘ Channel| — ‘
R

data queue da$alqueue

e Source sends less data, but some energy to assist the relay.

e Relay uses this extra energy to forward more data.
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Two Hop Relay Channel with Energy Cooperation I

Tﬁ

energy
queue

— B @ |
S

data queue

R

data queue

Source sends less data, but some energy to assist the relay.

Relay uses this extra energy to forward more data.

2 bits sent to destination, O bits remaining at the relay.

End-to-end throughput is 2 bits.
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End-to-end Throughput Maximization I

e Maximize end-to-end throughput

T
1
max —log (1+P;
i§:1'2 g( l)

k k

Y Pi<) (Ei+od;), Vk

i=1 i=1

k1 I |
Zilog(l—l—Pl)Szilog(l—l—Pl), Vk

-~
I
p—
-~
I
p—

subject to:
— Data causality at the relay node
— Energy causality at both nodes

— (Possibly) non-zero energy transfers
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Gaussian Two Way Channel with Energy Cooperation I

e Energy harvesting users with deterministic energy arrivals E;, E;

e One-way wireless energy transfer with efficiency 0 < a0 < 1.

E; 0; E;
energy energy
queue queue

-
. -
-

User 1 User 2 data queue

data queue

e Physical layer is a Gaussian two-way channel:

i =X1+X2 +MN;
L=Xi1+X2+N;

Ni, N, are Gaussian noises with zero mean and unit power.
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Capacity Region I

Ry

e Convex region, boundary is characterized by solving

I)i,Pl',Si i

T
1 1 _
max 91510g(1‘|‘Pi)+92§10g(1+Pi)
i=1
s.t. (6,P,P) e F

e Point 1 is achieved by 6 = 0: no energy transfer.
e Point 3 is achieved by 6 = E: full energy transfer.
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Water-filling Approach I

Generalized two-dimensional directional water-filling algorithm.
Transfer energy from one user to another while maintaining optimal allocation in time.
Spread the energy as much as possible in time and user dimensions.

Now we give a numerical example for 81 = 0, and o0 = 1.
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Numerical Example I

E =1[0,12,0] mJ E = [6,6,0] mJ

OFF OFF
12
A
User 1 :
|
|
|
|
|
v )
Q@ @
OFF OFF
User 2
6 6
T
| |
| |
Y Y
0 1 2 3
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Numerical Example I

E =1[0,12,0] mJ E =[6,6,0] mJ

ON ON
12
A
User 1 :
|
|
|
|
|
Y

@ @ @
ON ON
0 0
— —
User 2
6 6
T
| |
| |
Y Y
0 1 2 3
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Numerical Example I

E=10,12,0] mJ E = [6,6,0] m]

ON ON

User 1
6 6
1
| |
| |
Y Y
0 T OFF 2
OFF. . ‘ OFF
ON ON
2 4
— —
User 2
4 4 4
A A A
Y Y Y
0 1 )
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Numerical Example I

ON ON

E =[0,12,0] mJ E = [6,6,0] mJ

User 1
6 6
A A
| |
I |
Y Y
0 T OFF 2
OFF’ ’ ‘ON
ON ON
User 2
4 4 4
A A A
Y Y ¥
0 i 7

75



Numerical Example I
E =1[0,12,0] mJ E = [6,6,0] mJ

ON ON

User 1
5.1 5.1
T
| |
{ P
0 T OrF 2 g
@ @ @
ON ON
— —
User 2
4.6 4.6 4.6
S
| | |
Y Y Y
1 2
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Numerical Example

E = [0,12,0] mJ E = [6,6,0] mJ

ON ON

> &

User 1

User 2
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Numerical Example

E =[0,12,0] mJ E = [6,6,0] mJ

ON ON

User 1

User 2

~— =,

| — — >
| — — [~
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Numerical Example

E =[0,12,0] mJ E = [6,6,0] mJ

ON ON

User 1

User 2

~— =,

| — — >
| — — [~
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Conclusions for Offline Energy Cooperation Scenarios I

Energy harvesting users with infinite capacity batteries.

Energy transfer capability in an orthogonal channel in one way.

Energy transfer provides a new degree of freedom to smooth out the energy profiles.
Optimal policies identified for Gaussian two-hop relay and two-way channels.
End-to-end throughput maximization for the two-hop relay channel.

Capacity regions for two-way channels.
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O Wireless Communications
’ ",’ PennState & Networking Laboratory

Outline - Aylin- Part II -

Information theory of energy harvesting transmitters
= Energy harvesting AWGN channel with infinite battery
= Energy harvesting AWGN channel with no battery

= Binary noiseless energy harvesting channel

= State amplification and state masking

7/10/2016
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. WCAN@PSU
Information Theory of
EH Transmitters
E_ N
So far, we have assumed | rl
sufficiently long time slots and l >
utilized the known rate Ei Eia 233
Tx > Rx
expressions. Rate: r(p)
What if energy harvesting is ! l
: | I
at the symbol level, i.e., each >
input symbol is individually l 100 0n
limited by EH constraints? ENC > DEC

IEEE ISIT 2016, Barcelona, Spain
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Energy Harvesting (EH) Channel —

[ Tutuncuoglu-Ozel-Ulukus-Yener'13]

= The channel input is restricted by an E
|
external energy harvesting process. l
= State: available energy :
= Has memory (due to energy storage) W X

|
—> ENCODER ——>
= Depends on channel input

= Causally known to Tx (causal CSIT)

7/10/2016
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Energy Harvesting (EH) Channel —

X. <S
(Ch. input constrained by state)
E Sy =min{S; - X;+E,E_ 1

1 Tmax
! | (State has memory)

l max

(State evolves based on ch. input)

'
X, Y

I laY
W ——> ENCODER ——> CHANNEL ——> DECODER —> \\/

PY|X

7/10/2016
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Energy Harvesting AWGN Channel

Ei
l E_ =©

! N‘l
- o

X.

Y.

W ——> ENCODER

[Ozel-Ulukus '12]

= Battery capacity En. is infinite.

» Average recharge rate: P =E[E|]

= Capacity without energy harvesting: C=

Wireless Communications
& Networking Laboratory

WCAN@PSU

1
2

> DECODER ——> \W\/

—log(1+P)

IEEE ISIT 2016, Barcelona, Spain

7/10/2016
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Energy Harvesting AWGN Channel —

= Code symbols are constrained by the energy in the
battery at each channel use, i.e.,

Zkle < Zk: E, k=L12,...n
=1 =1

= Conversely, the average power constraint for a non-EH
AWGN channel would be a single constraint:

%Zn: X; S%Zn: E —>P.
1=1 1=1

> C= %log(1+ P) is an upper bound on the capacity of

the energy harvesting AWGN channel.

7/10/2016
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Achievability —

= This upper bound is achievable.

= Two sources of error:
1. Decoding error,
2. Energy shortage.

= Tdea: Design the codebook as if the channel is non-EH
and show that energy shortages are insignificant.

= Two achievable schemes:
1. Save-and-Transmit,
2. Best-Effort-Transmit.

7/10/2016
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Save-and-Transmit

» Suppose h(n)eo(n), i.e., h(n)/n— 0.

= Save energy for the first h(n) channel uses, do not
transmit.

= Transmit i.i.d. Gaussian signals in the remaining
n—h(n) channel uses.

* The energy saved during the first h(n) channel uses is
sufficient to guarantee no energy shortages occur in
the remaining N —h(n) channel uses.

7/10/2016
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Save-and-Transmit

harvested
energy

expended

4"/,/”"——7 energy

= Since h(n)/n — 0, there is no loss in rate.

= Rates <%log(1+ P) are achievable.

7/10/2016
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Best-Effort-Transmit

= Codewords are i.i.d. Gaussian with variance P —¢.

= S, : the energy in the battery, i.e., the battery state in
the ith channel use.

= If S, > X’ ie., there is enough energy in the battery,
send X.. Otherwise, send nothing.

= The battery state updates according to
S, =S, +E, - X21(S, = X?)

7/10/2016
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Best-Effort-Transmit

- With E|X?|=P-¢ and E[E,]=P, it is shown by SLLN
that, finitely many energy shortages occur.

= Finitely many symbols are infeasible, i.e., the
transmitter puts O to the channel instead of the
desired code symbol finitely many times.

= Finitely many mismatches are insignificant for joint
typical decoding.

1
= Rates < Elog(l + P) are achievable.

7/10/2016
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EH AWGN Channel with No Battery —

|- "
-

X.
> DECODER —> \\/

W ——> ENCODER

[Ozel-Ulukus '11]

= There is no battery at the transmitter, ie., E ,, =0.
= The code symbols are amplitude constrained:

X <E, i=12,...,n

7/10/2016
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EH AWGN Channel with No Battery —

= The transmitter has causal information of energy arrivals.
The receiver does not know the energy arrivals.

= The harvested energy amount is one of finitely many
possibilities. For simplicity, assume binary {E E_}

= Background:
1. Static amplitude constrained AWGN channel [Smith'71]

2. State dependent channel with causal state information at
the transmitter [Shannon'b58]

7/10/2016
IEEE ISIT 2016, Barcelona, Spain 78



0 Wirel C Icatl
"‘o,’ PennState & Networking Laboratory

Static Amplitude Constrained —
AWGN Channel [Smith'71]

= At each channel use, the code symbol is amplitude
constrained by A.

= The channel capacity under this constraint is

C.(A)=max1(X;Y)

| X|<A

which is a convex program.

= The capacity achieving distribution was shown to have
finitely many mass points.
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State Dependent Channel with Causal —
State Information at the Tx [Shannon'58]

Channel model: p(y|X,s)

State s e S is causally available at the transmitter only.

The channel capacity is
C, =max I(T;Y)

prt
= T=[T,T,,....,T5 /] is an extended channel input satisfying
S| 1 Uty

pY\T(YIt)=ZP(s = Si)ﬁe 2

=1

7/10/2016
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Capacity of the EH AWGN —
Channel with No Battery

Ela Wp pl

= Suppose the harvested energy is { :
E,, wp. p,=1-p,

= Apply Shannon's result with T =[T,,T,] and
(y-t,)* (y-t,)*

oyl )= P v B

o J/ o J/
4 Vo

ti<E, ty<E,

= The capacity achieving distribution is observed to have
finitely many mass points.
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Mass Points
= Symmetric about the origin
= Constrained to the blue line
t2 A
hemteyyary \/F
: J% ------- o
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WCAN@PSU
Numerical Results

1 T T T T

09
_._Emax = OO

0.8 — Csi@bot h

el ('
07

06
05k quaternary

045

Capacity (nats / ch. use)

0.3

0.2

o1 &

> ternary qudicinary

0 2 4 B 8 10 12
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Binary Noiseless EH Channel —

Si € {0,1} E Emax =1

W ——> ENCODER > DECODER ——> W
X; € {0,1}

[Tutuncuoglu-Ozel-Ulukus-Yener'13]

= Transmitting X; € {0,1} requires X; units of energy
= Unit battery, E_, =1

= Binary noiseless channel, Y; =X,

7/10/2016
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Energy Model —

= Inchannel use i, the transmitter first puts input symbol X
to the channel, and then harvests energy E;:

One channel use

@01, @

Channel input Energy harvest

= At the beginning of channel use i, battery state is S,

= State evolution: Si " :min{Si - Xi T EDI} g:;ds;ra:: input)

* Energy harvest: E; are i.i.d. Bernoulli with Pr[E. =1]=q,

7/10/2016
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Timing Channel

WCAN@PSU
= A representation that simplifies the problem.

X, 000000O00O10O0O0O0O0OO0OO0OO0OO0O0O0O0O0T1O0TQO0O..

E. 000O0O0100O0O0O0OO0O1O0O0O0OO0O0OO0OO0O0OO0O0O..

AN N N N 7o Y T T T N N A O T N
N A e e ey A% s I I N BN I N FANAY B B N

N T

St

LY Y

T, =9 ! T, =12

« Z,€{0,1,...} : # of channel uses spent waiting for energy, ~ Geometric (q,), i.i.d.

=V, €{1,2,...} : # of channel uses the energy is kept in storage
* T. € {1,2,...} : # of channel uses between Is at the receiver side
Ti =Vi + Zi Memoryless!
7/10/2016
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Timing Channel —

= The two sets of variables, V",Z",T"™) and (X",E",Y") are
alternative representations of the same sequences.

X" =10,0,0,1,0,0,1,0,1,0,0,0,0,0,1,0} V™ =1{1,22,2}
Y"={0,0,0,1,0,0,1,0,1,0,0,0,0,0,,0} <>  T"={4326}
E" ={0,0,1,0,1,0,1,0,0,0,0,0,1,0,1,0} Z™ ={3,1,0,4}

= Lemma: The timing channel capacity with additive causally
known state C; and the originally formulated binary EH

channel capacity C are equal, i.e., C=C;.
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Capacity of the Timing Channel —

"« [Shannon 1958] )

Capacity of a memoryless channel with causal CSIT:

C.or = max |(U;T
\_ CSIT D(U).v(U.2) ( ) /

= [Anantharam-Verdu 1996]

Capacity of the timing channel: C; =max 1(XT)
p(x) E[T]

= Capacity of the timing channel with causal CSIT
|U;T) _

~— “~BEHC

C; = max
pwwuz)  E[T]

= Main challenge: selection of auxiliary variable U
ZV|so = Ulsw,  v:iU,Z)-V

b
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Modulo Encoding —

" Ue{0L..,N-1}, U~pyu), V :(U —ZmodN)+1
= Binary encoding interpretation: The encoder indexes channel
uses in mod N, and sends U; by transmitting a 1 at the earliest

feasible channel use with index U..
1(U;T) HU)

=max

rw) B[V+Z] »w E[V]+E[Z]

= Achievable rate: R{" =max

» Example: N =5 U ={213,..}, Z =1{31,..]
U =2 U, =1
1 2 U3=3
| L/ | | L | | | | L/ | | | S
I A I I AN I I I [ I I I -
01 @O » 4 a B 2 3 » 1 2 8
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Extended Modulo Encoding
. ) u-z+1 U>Z
Choose V_{ U-7 mod N)+1 U<z Ue{0l,..}

(U mod N decoded
without error)

= Decoder: T'=T-1mod N=U mod N

= Achievable Rate: R =maxmax ACHD
N pw) B[V +Z]
U =2 U,=6 or U,=1 N =35
l L ] | | L/ | | | | | | | | S
I [N I I A I I I I I I I 7
o1 ® 0 1 2 3 4 5 ® 7 8 9 10
0o 1 2 3 4 0 @O 2 3 4 0 T-lmodN
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Genie Upper Bound —

= Provide channel state Z. as side information at the decoder.

ce = mac V1D HY)
p(V) E[V-|-Z] p(V) E[V]+E[Z]

= max ! max H(V)
w20 4+ B[Z]EVIsn

* The entropy maximizing distribution on V ¢ {1,2,_,,} with
E[V]= u is Geometric(1/u).

CSeBnie — max qhH (qu)
welol q, +q,(1-0q,)

7/10/2016
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WCAN@PSU
Asymptotic Optimality
= Modulo Encoding: Genie Upper bound:
Fzguxlzzlila)( l_i(LJ) (:gg?m — max (1hk1(kqu)
aN E[V]+E[Z] weloll g, +q,(1-0,)

|
= Choose N:(*l U ~Unif ({0,1,...,N —1})

u

Cgenie
= hm %od = 1
"0 Ry for low harvesting rates

Modulo encoding is asymptotically optimal

7/10/2016
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Leakage U e'er' Bound WCANGPSU
[Tutuncuoglu-Ozel-Yener-Ulukus'14]

= Timing Channel Capacity: C. = max '%J[_;rg)
p(u)v(u.2)

" 1U;T)= H(T){ 1(Z;T |U) } (Mutual dependence of Z and T given U)

0 (Entropy of Z upon observing
= 1ZTIW =YY puH@) LHEZ|T =tU =u)]

=1 T=t and decoding U=u)
Lemma: H(Z|T=t,U=u)<H(Z,)
0n(1-Gy)° -
, If z<t T
where pzt(z):< 1_(1_qh)t ( runcated
0, otherwise geomeftric)
7/10/2016
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Leakage Upper Bound —

C; = max 15T
pavz) E[T]
H(M)-1(£T V)
p(u).v(u.2) E[T]

- HT-Y POIH@)-HEZ)
C; £ max
p(t) E[T]
\_ Leakage Upper Bound )

= Easier to evaluate than C. since the maximization is

over p(t) instead of p(u),v(u,z)

7/10/2016
IEEE ISIT 2016, Barcelona, Spain 94



Wireless Communications

Lo 3 PennState & Networking Laboratory

Computing the Leakage —
Upper Bound

H(T)-2 " pOH(Z)-H(Z)]
C; £ max
p(t) E[T]
1 ©
) Hﬂlaxﬁ P(tr)%e[?(]sﬂ H(T)_thlAtp(t) (Inner problem is convex)

= KKT optimality conditions give
t 1
o(t) = Aexp( _t—A, —anly/n) A= (37 —st-a -3 5

= Calculate UB by exhaustive search over y for each

7/10/2016
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Interpretation of the UB

C, £ max A {Ztﬂ POLH(Z)—H(Z)] J
p(t) E[T]

IT..Ooo00000O0O100O0100O0O0OO0OO0O0O0O0O0O0OTIO0O..

v

Y
A4
V____._

Revealed: Z <8 Z,<4 Z,<10

L We inadvertently "waste” part of the potential rate of the channel J
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N ical Result —
1 T T — T T —
e - f
/ ~
0.9f ) » A
/ P /
— 0.8 B / P - / 1
3 / e , :
2 _ , Achievable
< 0.7f 7 - / .
Upper = / 7 Y rates
bounds S 06} ' . , i
O .
o /
) ,
2 05 ~ L7 7 ]
® / / e
[0 /' / . -
-— B ) Y N
£ 04 / / -~ — Capacity with infinite storage (C ;)
. = / Z : i
Asymptotic § 03fF ) y — — — Genie upper bound (CgeB”'e) i
op'l'imqli'l'y of 3 oy P Leakage upper bound (C, )
timing-based 0.2, // T Extended encoding rate (RZXt)
encoding 1 le s - Modulo encoding rate (RZ"Od) |
e S Capacity with zero storage (CZS)
I -
0 - 1 L 1 1
0 0.2 04 0.6 0.8 1
Energy harvest probability (qh)
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N ical Result —
1 Leakage upper bound (C'Sgkage)
Extended encoding rate (RZXt)
0.9H Modulo encoding rate (Rz"d) 7
— — — 2nd order Markov Shannon strategy rate (RMZ)
0811 _ _ _ 1st order Markov Shannon strategy rate (R .) ~ | .
o7l Optimal i.i.d. Shannon strategy rate (RO”D) 7 | CGPGCITY

., Within 0.03
/,t bits/ch.use

3

o
(e}
T

Rate (bits/ch. use)
o
(@)]
T

%
0.4} y
7
0.3f
7 0.6
0.2t
01}
0.57 ‘
. | | 047 | 051 | 055

1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Energy harvest probability (qh)
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Binary Symmetric EH Channel
Ei
v
E s l Si

v
X, CHANNEL Y -
W —> ENCODER > o > DECODER —> W
Binary symmetric channel: PrlY, = X;]=p, €[0,2]  X,.Y; e{0,1}

The energy arrivals are i.i.d. Bernoulli, E; ~ Bernoulli(q).

Two sources of errors:

Energy shortage: Without energy, the encoder must send a zero.

Any bit sent can be flipped by the channel.
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Binary Symmetric EH Channel —

= Observing Y", decoder also obtains information about E"

= Rate of this information flow can be quantified by

A:%[ H(E™) — H(E"|Y") |= %I(E”;Y”).

Y Y

Randomness of energy =~ Randomness remaining after
arrival process  channel output is observed

The encoder may wish to [Tutuncuoglu-Ozel-Yener-Ulukus'14ITW]:

= Maximize entropy reduction rate A: State Amplification
(Cooperative scenario) [Kim et al. '08]

= Minimize entropy reduction rate A: State Masking

(Privacy or stealth scenario) [Merhav-Shamai '07]
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No Battery Case —
[Tutuncuoglu-Ozel-Yener-Ulukus'14ITW]

= The encoder can send X; =1 only when E, =1.

= For i.id. arrivals, this is a memoryless channel with
CSIT.

= Capacity achieved using Shannon strategies:

Ue{0l", U =Bern(p), X, =

N
Shorthand for U =(0,0) and U =(0,1) .

1 E =1LU, =1
0 else

7/10/2016
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No Battery Case —

= State Amplification

R<H(pg*p,)—pH(@*p,)-1-p)H(p,)
A<H(Q)

R+A<H(pg=*p,)-H(p,)
= State Masking

R<H(pg*p,)-pH(@*p,)— (- p)H(p,)
A>pH(g*p,)—pH(P,)

where p*g=p(l-q)+d-p)g
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Infinite Battery Case —
[Tutuncuoglu-Ozel-Yener-Ulukus'14ITW]

= Capacity achieved via extending the save-and-transmit
scheme [Ozel-Ulukus '12].

* Channel input constrained as E[X]<q

H(q* pe)_H(pe) qS%

C=C... =
o { 1-H(p,) q>1
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State Amplification

Lemma: The (R, A) region is given by

Wireless Communications
& Networking Laboratory

WCAN@PSU

R+A<C.., O0<A<H(Q)

= Achievability: Compress part of E" and send as a part

of the message, i.e., decoder obtains W = (W', E")

= Converse: Using the Markov Chain (W,E")— X" -Y"

(XY™ > 1(E",W;Y")

>1I(E"; Y)Y+ HW)—H(g)—¢log(nR)

=NA+nR —[H (¢)—¢log(nR)

— 0

as ¢ >0 J

IEEE ISIT 2016, Barcelona, Spain
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State Masking —

For E__ = o0, perfect state masking is possible, i.e.,

(R,A) =(Cggc,0) is achievable

= In the save-and-transmit scheme, channel input X" is

independent of harvested energy E"
= Any rate R<Cgy isalso achievable.

= Due to converse proof, no better rate can be achieved
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Unit-sized Battery Case —

= Capacity of this channel is open as we have just seen.

= Some achievable rates proposed: [Tutuncuoglu-Ozel-Y .-
Ulukus'13][Mao-Hassibi '13].

* [Mao-Hassibi '13]: Two strategies, U. {0,1}

1 S =LU, =1

= Ch | i t. Xi —
annel inpu { 0 else
1
R, =lim—1U"Y")
n—o N
If S, was memoryless, this would be capacity achieving.
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Numerical Results

State

Amplification

= Noiseless

channel

(p.=0)

N |—

(1/m)I(E";Y"™) (State entropy reduction rate)

A=

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Perfect state

Wireless Communications
& Networking Laboratory
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R amplification [ —E ==

i with zero ——a—E__ =0 }

i message rate E__ =1 with iid Shannon enc. |
E\i . ——E__ =1 with timing enc.

i Better state amplification

with instantaneous Shannon

i strategies

0.2 0.4 0.6 0.8 1

R (Message rate)
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Numerical Results

04 I I [ [
—s—E =
| max
51'01'8 -é‘- 035 - I' — =7 Emax=u n
o 0 PR
Maskmg c ; Emax_1 Wfth ”.d ‘Iahannon enc.
g 03F ' e Emax=1 with timing enc. .
3
E |
§ 0.25F III .
= Noiseless €
o 02 Better state masking | ]
channel & with timing encoding |
_ O e 0.15+ -
pe — E?."n i A
= 01f Ju /1 Perfect masking
= K for infinite-
1 4 005k A # sized battery
. =41 o vy
2 /"‘; . = »
E'/ P —\»=-.—‘.-cf"\ Hy f‘ﬁx PN e R N N N S N .
(II.JA_%_} 'x"-._) et ) e L N L bt e L L L L L) L L L L \_::I
0 0.2 0.4 0.6 0.8 1

R (Message rate)
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Conclusion

= New wireless communications paradigm: energy
harvesting nodes

= New design insights arising from
= new energy constraints
= energy storage limitations and inefficiencies
= interaction of multiple EH transmitters
= energy cooperation
= New problems in the information theory domain

= Lots of open problems related to all layers of the
network design: e.g. Signal processing/PHY design;
MAC protocol design; channel capacity...
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Model

Ey

Ernas N, ~ N(0,1)

Battery

X Y; - .
! N ! Receiver

Transmitter

1X:|? < By
Bt+1 = min (Bt — |Xt|2 + Et+1, Emax) .

E;: i.i.d. energy harvesting process known causally at the transmitter and
not at the receiver.
State-dependent channel:

@ State process has memory and is input dependent.

@ State is known causally at the transmitter but not at the receiver.
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Enax = oo: Capacity equal to that of a classical AWGN channel with
P=E [Et]:

C = log (1 + E[E]) ]

First-order questions:

@ How does the capacity of the energy harvesting AWGN channel
depend on system parameters such as Ep,.x and E;?
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A channel with random battery recharges

Ey

Eras N, ~ N(0,1)
Battery
X, Y: I
Transmitter ‘ N : Receiver
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A channel with random battery recharges

Ey

Eras N, ~ N(0,1)
Battery
X, Y: I
Transmitter ‘ N : Receiver

|X:|? < By
Ber1 = min (B; + Eri1 — [ Xe[?, Emax)
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A channel with random battery recharges

Ey

Eras N, ~ N(0,1)
Battery
X, Y I
Transmitter ‘ N : Receiver

|X:|? < By
Ber1 = min (B; + Eey1 — |Xe[?, Emax)

We focus on i.i.d. Bernoulli energy arrival process:

E — Emax  w.p. p
t 0 wp. 1—p,
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A channel with random battery recharges

E,

Ernaa N, ~ N(0,1)
Battery
X, Y I
Transmitter ‘ N : Receiver

|X:|? < By
Ber1 = min (B; + Eey1 — |Xe[?, Emax)

We focus on i.i.d. Bernoulli energy arrival process:

E — Emax  w.p. p
t 0 wp. 1—p,

@ The energy arrival process {E;} is causally known both at the transmitter

and the receiver.
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July'16

4/31



Results for this model

@ n-letter expression for capacity:

C= Ilim max k Lixk, xk 4 zk
N—oo p(XN); le ( )
X2 < Epmax

@ Connection to online power control:
T—-105<C<T.
@ Bounded gap to AWGN capacity:

log(1 + pEmax) — 1.77 < C < log(1 4 pEmax)-
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Clipping Channel

XNt Y g _ Xl[t] + Z.I[t] aj S L[t]
' JM E vitel = {0 J > L[t]

where L[t] are i.i.d. Geometric(p)
and || X[t]||> < Emax-

Theorem J

Cen=p- Cepp
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Capacity of the Clipping Channel

Cap = Jim ~ max 1(X"; YL
||XN||2§Emax

— k 1 k. yk k
= Nll_r)nOO r?z;\\?; Zp(l I(X* X5+ Z%)
X< o
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Bounding Cgy

N

Cen = lim max 2(1 — p)k (XK Xk 4 ZK

EH [TRUSI ;P( P) ( )
X2 < Emax ©
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Bounding Cgy

= | k ll Xk Xk Zk
Cen = lim max Z P ( + 275
||X’V||2§E,,,ax

N k
< lim max Z p?(1—p)kt Z 1(Xi; Xi + Zj)

N— Ny.
| (g Ly i—1
EJIXV |2 Ean
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Bounding Cgy

= i p)< (X XK+ ZK
Cen = lim max Zp ( + 275
||XN||2SEma><

N—oo p(xM):

N k
< lim max Z p?(1—p)kt Z 1(Xi; Xi + Zj)
B XV <Emse ™ =

o I 1
= lim_ max Zp(l I(Xi; X; + Z))
]E||X"’||2<E,,,ax
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Bounding Cgy

= i p)< (X XK+ ZK
Cen = lim max Zp ( + 275
||XN||2SEma><

N k
< lim max Z p?(1—p)kt Z 1(Xi; Xi + Zj)
i=1

N—oo p(xM):
N2 k=
B X|° < Emax

= lim max Zp(l —p) " H(Xi; X; + Z)

N—oo p(x

B XV e =
N 1
= |im max 1—p) 1 log(1+ &
dm, o me Z}p( p)' !5 log(1+ &)
Exovi T
,I'\IzlgiSEmax
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Bounding Cgy

N
.1
Cen < i 1—p)tlog(l+¢&;
s fim - max ;p( p)' !5 log(1 + &)
g>0vi T
,,‘V:lgiSEmax
N .
Cen > lim max 1—p) ™t max I(X:Xi+ Z
N=voo (g3 ;p( PY™ g, (i Xi 21
E>0 Vi -
Z,{V:1gi§Emax
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Bounding Cgy

N
.1
Cen < i 1—p)tlog(l+¢&;
s fim - max ;p( p)' !5 log(1 + &)
g>0vi T
,,‘V:lgiSEmax
N .
Cen > lim max 1—p) ™t max I(X:Xi+ Z
N=voo (g3 ;p( PY™ g, (i Xi 21
E>0 Vi -
Z,{V:1gi§Emax
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Bounding Cgy

N
Cen < lim max
=1 i=1
Ei>0 Vi
,‘N:lgiSEmax
N
Cen > lim max Z 1
~ N—oo {5,‘}!\’ : y p(
=1 =1
Ei>0 Vi
25\1:1 Ei<Emax

We can show

max_[(X;; Xi + Z;) >
IXi|<VE

Ayfer ézgﬂr Information-Theoretic Capacity

N =

S p(1—p) S log(1 + &)

—p) 7 max I(Xi; Xi + Z))

IXi|<VE

log(1 + £) — 1.05.

July'16

9/31



Bounding Cgy

N
Cen < lim max
N—oo  (gaN . “
Hi=1 i=1
E>0 Vi
,‘N:l giSEmax
N
Ceq > lim max Zp(l -
N—oco {gi}l!\’:l; ]
E>0vi T
25\1:1 Ei<Emax
We can show
1
max_I(X; Xi+ Z;) > =
|Xi|<VE 2
N
Cen > lim max Zp(l
N—oo {gi};\’zl ]
Ei>0 Vi -
Ef\L1 Ei<Emax
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Bounding Cgy

N
.1
. o i—1- .
Cen < lim {sm,-}?ﬁ: Ep(l P) 2|0g(1+5/)

g>0vi =1
Z,{V:l giSEmax
N
Cen > lim max Zp(l —p)t max_ I(Xi; Xi + Z))
N—o0 {Si},!vzl: i=1 IXI|S\/Z
E>0Vi T
Zl{vzl Ei<Emax

We can show

max_[(X;; Xi + Z;) >

log(1+ &) — 1.05.
|Xi|<VE Bl )

N =

N
1
Ceq > lim max 1—p) 1 log(l+ &) — 1.05.
B NS gy ;p( pY 7 loe(L &)
s>o0vi T
Z,'NzlgigEmax
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@ Connection to the online throughput:
T—-106<C<T.
@ Bounded gap to AWGN capacity:

Iog(l + pEmaX) —1.77 < Crpx < |0g(1 + pEmaX).
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Bounding Cgy

Bounds for p = 0.1

4
........ %_bg(l + PBoaz)
35H|--C ]
—— Smith capacity lower bound
3F|=---C—-1.05 R

10° 10 10° 10°
Battery Size (Epaz)
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Capacity Improvement due to CSIR

Proposition

In a general channel (not necessarily stationary memoryless), capacity
improvement due to receiver side information is bounded by the entropy
rate of the side information itself.

For the Bernoulli case, capacity improvement is bounded by H(p) < 1.

Capacity with no receiver energy arrival information:

log(1 4 pEmax) — 2.77 < Crx < log(1 + pEmax)-
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Capacity

Theorem

The capacity of the energy harvesting channel with i.i.d. energy arrivals is

given by
1
g = lim = sup (U™ Y"),
N—=00 N pn e Py(b)
1
CEpe' = lim = sup I(U™ Y"|E"),
N0 N pynePa(b)
1
Ciome»el = lim = sup (X" Y"|E),
e m=e2 i) PxnlEnE.Fn(b)
where

Fn(b) = {PXn|En s.t.Ve" e &", as. fort=1,...,n:

X2 < B, By = b, B = min{B-1 — [Xe-1[” + e, Emax} |-
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Capacity

Theorem

The capacity of the energy harvesting channel with i.i.d. energy arrivals is
given by

1
Ccausa/: lim = sup I(Un; Yn), (1)
Tx n—oo N Pyn€Pn(b)
1
CEpe' = lim = sup I(U™ Y"|E"), @)
n—oo n PUnGPn(b)
1
CnoncausaI: lim = sup /(Xn; Yn|En)7 (3)
TxRx n—oo N Pxn|gn€Fn(b)

where

Pn(b) = {PUn st. U et - X fort=1,...,nandVe" € £"as. :

\Up(et)[2 < By, By = b, By = min{Be_1 — |Up_1(et )2 + e, Emax}}.
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Connection to the Energy Allocation Problem

Theorem

The capacities of the energy harvesting channel with various levels of
energy arrival information can be bounded by

Tonline —1.05— H(gt(Et)) < C_clr_iusal < Tonline7
Tonline —~1.05< C%itll?sjl < Tonline’
-,—offline —1.05< Cnoncausa/

offline
TxRx S T

where H(g:(E:)) is the entropy rate of the power control process.
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Connection to the Energy Allocation Problem

Theorem

The capacities of the energy harvesting channel with various levels of
energy arrival information can be bounded by

Tonline —1.05— H(gt(Et)) < C_clr_iusal < Tonline7
Tonline —1.05< C7c_al."l?sal < Tanline
Y= xRx = ’

-,—offline —1.05< C_I;_ogcausa/ < Toff/ine
VY = xRx =

where H(g:(E:)) is the entropy rate of the power control process. Also for
n > 0.7473,

n Tonline _ H(gt(Et)) < C%a(usal < Tonline’

online causal online
n T S CTXRX S T )

n Toffline < C?_olr{’causal < Toffline
= xRx = o
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Approximate Capacity for General i.i.d. Processes

Theorem:
The capacity of the energy harvesting channel can be approximated as

1 1
5 1og(1 + 1) —3.85 < Ceausal < 5 log(1+ 1),

1 1
5 108 (1 + 1) — 1.77 < GERE' < Slog(1 + ),

1 1
5log(1+p) = 1.77 < cmemeEE 2 5 log(1+ p1).

Proof: For the case where the the receiver does not have side information
devise a new online power control policy which is universally near-optimal

and at the same time has low entropy rate:
gt = (1 — q) Emax,
where j =t —max{t' < t: By = Emax} and q = p/Emax.
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Insights

C~ % log(1 + E[min{ E¢, Emax}])

fe(x)

E EmaX
Epax > E

1
C~ 3 log(1 + E[E;])
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Insights

C~ % log(1 + E[min{ E¢, Emax}])

fe(x) fe(x)
0 E En o g, )
Emax > E Emax < E
1 1 .
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Home loT

Ayfer Ozgiir

Speakers

Aircon

Window Shades

Exterior Lighting

Garage Door

Sprinkler
System

Computers

&
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A0
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Wifi Router

0
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]

Smoke Alarm

Lights

Video Surveillance

Power meter

Refrigerator

Door Locks

pover B

power é

]
@
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Two topologies for home loT

information —
ﬁ P
5 ®
= s power § "
@

Current practice:
@ Transfer energy at a constant rate.

@ Periodically charge transmitter’s battery.
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Exploit Side Information

Charger observes the output of the Charger observes the input to the
channel. channel.
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Binary Example

Charger

E,
M—{ Transmitter |——-—— Receiver | — A1
t

Yt - Xt Xt € {0, 1} Et € {O, 1}

@ Charger has no side information:
» E. =1, Vt: Gy =1 bits/channel use, [ = 1 unit/channel use.
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Binary Example

Charger

E;

Transmitter Receiver

Xy

Yt - Xt Xt € {O, 1} Et € {O, 1}

@ Charger has no side information:
» E. =1, Vt: Gy =1 bits/channel use, [ = 1 unit/channel use.
@ Charger knows the message:
» Charge when the transmitter intends to send a 1:
Cy = 1 bits/channel use, ' = 1/2 units/channel use.
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Binary Example

E;

M—{Transmitter | ———— Receiver | — 1
t
Yt - Xt Xt € {0, 1} Et € {O, 1}

@ Charger has no side information:
» E. =1, Vt: Gy =1 bits/channel use, [ = 1 unit/channel use.
@ Charger knows the message:
» Charge when the transmitter intends to send a 1:
Cy = 1 bits/channel use, ' = 1/2 units/channel use.
@ Charger can observe the transmitted signal X~1:
» Charge when battery is empty:
Cx =1 bits/channel use, ' = 1/2 units/channel use.
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Charger Side Information

E:

E max

I\/I—>{‘ Transmitter X PY\X v Receiver'—*l\%
t

Cy: Generic Charger; fC: 0 — &
Cp: Charger and Tx connected through a backhaul link; € : M — &
Cx: Charger observes the transmitted signal; £fC: X1 — £.

Cy: Receiver charges the transmitter; £C : Y71 — &
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Remotely Powered Communications

E:

Emax

- [Tarsmiter]— - Prix ] {Recever}
t

t

@ Charger: Dynamically decide how much energy to transfer to the
receiver based on its side information regarding the transmission
(subject to an average power constraint I).

@ Transmitter: Dynamically adapt its transmission scheme based on its
instantaneous battery level.

Exploiting side information at the charger can enable performance close to
the centralized case.
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Receiver powering transmitter

E. yt—l
E.x | Battery a ) ‘

X Y
‘ Transmitter }—t){ Channel }—t){ Receiver‘

Receiver can convey both feedback information and energy with its
charging actions.
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Simultaneous Information and Energy Transfer

I\/l—>{ Transmitter X Py x v Receiver'—ﬁ\?]

t

Maximize information rate under a minimum received power constraint.

C(P)= max 1(X;Y).
p(X):E[b(Y)]>P

For a BSC(«),

1 — hy(e), 0<P
cP)= { ha(P) — ha(p), 172 <
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Can feedback increase capacity?

E:

t

Y:
‘ Transmitter H Channel Receiver
‘ |

________________________

Yi1
Et: ’
11—« 0 ,teven
0 o 0
e 1 ,t odd
« . =
1—X;_1 ,teven
1 1
11—«
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A claim by Shannon

THE ZERO ERROR CAPACITY OF A NOISY CHANNEL

Claude E. Shannon
Bell Telephecne Laboratories, Murray Hill, New Jersey
Massachusetts Institute of Technology, Cambridge, Mass.

Theorem 6: In a memoryless discrete
channel with feedback, the forward capacity is
equel to the ordinary capacity C (without feed-
back). The average change in mutual information
Ivm between received sequence v and message m

for a letter of text is not greater than C.
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A claim by Shannon

THE ZERO ERROR CAPACITY OF A NOISY CHANNEL

Claude E. Shannon
Bell Telephecne Laboratories, Murray Hill, New Jersey
Massachusetts Institute of Technology, Cambridge, Mass.

Theorem 6: In a memoryless discrete
channel with feedback, the forward capacity is
equel to the ordinary capacity C (without feed-
back). The average change in mutual information
Ivm between received sequence v and message m

for a letter of text is not greater than C.

It i3 interesting that the first sentence
of Theorem 6 can be generalized readily to chan-
nels with memory provided they are of such a
nature that the internal state of the channel
can be calculated at the transmitting polint from
the initial state and the sequence of letters
that have been transmitted. If this is not the
case, the conclusion of the theorem will not
always be true, that is, there exist channels of
& more complex sort for which the forward
capacity with feedback exceeds that without feed-
back. We shall not, however, give the details of
these generalizations here.
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Feedback increases capacity

Capacity of the EH-BEC with and without feedback

T T

0.8

0.7F
06F A 1

05} AN :

03F 1
02F 1

0.1F 4
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Open Questions and Directions

@ Extension to more realistic energy harvesting and battery models.

Ayfer Ozgiir Information-Theoretic Capacity July'16 28 /31



Open Questions and Directions

@ Extension to more realistic energy harvesting and battery models.

@ Coding and modulation techniques.
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Open Questions and Directions

@ Extension to more realistic energy harvesting and battery models.
@ Coding and modulation techniques.

@ Networking and multi-user systems.
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