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Outline of This Tutorial
 Introduction to energy harvesting (EH)
 Single-user offline power/rate optimization [Aylin]
 Single-user online power/rate optimization [Ayfer]
 Multi-user offline power optimization [Sennur]
 Multi-user online power optimization [Sennur]
 Energy cooperation (EC) and optimization [Sennur]
 Information theory of EH, infinite/zero/unit 

battery [Aylin]
 Information theory w/ finite battery, connections 

to online & offline optimization; IT of EC [Ayfer]
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Prerequisites for the Tutorial

Basic command of 
 Optimization 
 Communication Theory 
Reasonable fluency in 
 Shannon Theory 

Fairly self-contained otherwise
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Outline – Aylin- Part I

 Introduction to energy harvesting (EH)

 Communication theory of EH – the optimization set up

 Short term throughput maximization for single link with finite battery

 Transmission completion time minimization with finite battery

 Extension to fading channels

 Transmission policies for nodes with inefficient energy storage
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Introduction

Ubiquitous

Mobile / Remote

Energy-limited

7/10/2016

Many sources

Abundant 
energy

Green

Energy Harvesting

Wireless 
Communications

Energy 
Harvesting 
Wireless 
Networks
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Energy Harvesting Networks

 Wireless networking with rechargeable (energy 

harvesting) nodes:

 Green, self-sufficient nodes,

 Extended network lifetime,

 Smaller nodes with smaller batteries.
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What could EH bring to communications?
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Energy Harvesting Applications

 Communications satellites

 Space communications

 Deep space exploration
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Wireless Energy Cooperation

7/10/2016
IEEE ISIT 2016, Barcelona, Spain 11



7/10/2016
IEEE ISIT 2016, Barcelona, Spain

Personal 
access point

Motion sensor

Heart sensor

Wearable

Energy Harvesting Applications
Body area networks
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Energy Harvesting Applications

MC10’s biostamps

for medical monitoring,

powered wirelessly

Image Credits: (top) http://pubs.acs.org/doi/abs/10.1021/nl403860k#aff1 (bottom) ) 
http://www.dailymail.co.uk/sciencetech/article-2333203/Moto-X-Motorola-reveals-plans-ink-pills-replace-ALL-passwords.html 

KAIST’s Solar charged 
textile battery 
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Energy Harvesting Applications

Fujitsu’s hybrid device 

utilizing heat or light.

Image Credits: (top) http://www.fujitsu.com/global/news/pr/archives/month/2010/20101209-01.html
(bottom) https://assist.ncsu.edu/research/

Health tracker built at at the 

ASSIST Center at North 

Carolina State University, 

utilizing solar cells
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In-body (intravascular) wireless devices

Image Credits: (top) http://www.extremetech.com/extreme/119477-stanford-creates-wireless-implantable-innerspace-medical-device 
(middle) http://www.imedicalapps.com/2012/03/robotic-medical-devices-controlled-wireless-technology-nanotechnology/ 
(bottom) http://scitechdaily.com/smart-pills-will-track-patients-from-the-inside-out/

Energy Harvesting Applications

Proteus Biomedical pills,
powered by stomach acids
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What is in it for us?
 New: communication theory of EH nodes
 New: information theory of EH  nodes

Key new ingredient:
A set of energy feasibility constraints based 
on harvests govern the communication 
resources.
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Communications
 New Wireless Network Design Challenge: 

A set of energy feasibility constraints based 
on harvests govern the communication 
resources.

 Design question:
When and at what rate/power should a 
“rechargeable” (energy harvesting) node 
transmit? 

 Optimality? Throughput; Delivery Delay
 Outcome: Optimal Transmission Schedules

7/10/2016
IEEE ISIT 2016, Barcelona, Spain 17



Two main metrics
 Short-Term Throughput Maximization (STTM):

Given a deadline, maximize the number of bits sent 

before the end of transmission.

 Transmission Completion Time Minimization (TCTM):

Given a number of bits to send, minimize the time at 

which all bits have departed the transmitter.
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 One Energy harvesting transmitter.

 Find optimal power allocation/transmission 
policy that departs maximum number of bits in 
a given duration T.

 Energy available intermittently. 

 Up to a certain amount of energy can be stored 
by the transmitter  BATTERY CAPACITY.

ST Throughput Maximization
[Tutuncuoglu-Yener’12] 
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 Energy harvesting transmitter:

 Transmitter has backlogged data to send by deadline T
 Energy arrives intermittently from harvester
 Stored in a finite battery of capacity 

System Model

Ei

transmitter receiver

Energy queue
Data queue

Emax

Emax
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 Energy arrivals of energy      at times     

 Arrivals known non-causally by transmitter,
 Design parameter: power     rate    .

iE is

)( pr

E0

t

T
E1 E2 E3

s1 s2 s3s0

System Model

7/10/2016
IEEE ISIT 2016, Barcelona, Spain 21



Power-Rate Function

 Transmission with power p yields a rate of r(p)

 Assumptions on r(p):

i. r(0)=0, r(p) → ∞ as p → ∞ 
ii. increases monotonically in p
iii. strictly concave
iv. r(p) continuously differentiable

Example: AWGN Channel,                                

)( pr
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Notations and Assumptions

 Power allocation function:

 Energy consumed: 

 Short-term throughput: 
T

dttpr
0

))((

)(tp


T

dttp
0

)(

Concave rate in power Given a fixed energy, a longer 
transmission with lower power departs more bits.
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 Battery Capacity:

Energy Constraints

(Energy arrivals of Ei at times si)

 Energy Causality: nn
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Energy “Tunnel”

cE

t1s 2s

0E
1E

2E
maxE

Energy Causality

Battery Capacity
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Optimization Problem

 Maximize total number of transmitted bits by deadline T

 Convex constraint set, concave maximization problem

 
T
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Necessary conditions for 
optimality of a transmission policy

 Property 1: Transmission power remains constant

between energy arrivals.

 Let the total consumed energy in epoch be

which is available at          .Then the power policy

is feasible and better than a variable power transmission; 

shown easily using concavity of r(p)
7/10/2016
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 Property 2: Battery never overflows.

Proof:

pr(p)dtr(p(t))dt(t))pr(
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Necessary conditions for 
optimality of a transmission policy

 Property 3: Power level increases at an energy arrival instant 

only if battery is depleted. Conversely, power level decreases 

at an energy arrival instant only if battery is full.

Policy can be improved Policy cannot be improved

p(t)

p’(t)
p*(t)

  r(p(t))dt(t))dtpr(
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Necessary conditions for 
optimality of a transmission policy

 Property 3: Power level increases at an energy arrival instant 

only if battery is depleted. Conversely, power level decreases 

at an energy arrival instant only if battery is full.

Policy can be improved Policy cannot be improved

p(t)
p’(t)

  r(p(t))dt(t))dtpr(

p*(t)
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Necessary conditions for 
optimality of a transmission policy

 Property 4: Battery is depleted at the end of transmission.

Proof:

increasing is  since        Then

     
 

  Define
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Implications of the properties 
[Tutuncuoglu-Yener’12]

 Structure of optimal policy is piece-wise linear.

 For power to increase or decrease, policy must meet the 

upper or lower boundary of the tunnel respectively. 

 At termination step, battery is depleted.

 Utilizing this structure, a recursive algorithm emerges to 

find the unique optimum policy [Tutuncuoglu-Yener’12]. 
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Energy “Tunnel”

cE

t1s 2s

0E
1E

2E
maxE

Energy Causality

Battery Capacity

7/10/2016
IEEE ISIT 2016, Barcelona, Spain 33



Shortest Path Interpretation

 Optimal policy is identical for any concave power-rate function!

 Let                       , then the problem solved becomes:

The throughput maximizing policy yields 
the shortest path through the energy tunnel for 
any concave power-rate function.


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Shortest Path Interpretation

 Property 1: Constant power is better than any other alternative

 Shortest path between two points is a line (constant slope)

E

t0
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Alternative Solution
(Using Property 1)

 Transmission power is constant within each epoch:

 KKT conditions  optimum power policy.
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(Li: length of epoch i)
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arrivals within [0,T])
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Directional Water-Filling

 [Ozel, Tutuncuoglu, Ulukus, Yener’11]

 Harvested energies filled into epochs individually

0 t
O O O

0E 1E 2E

Water levels (vi)
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Directional Water-Filling

 Harvested energies filled into epochs individually

 Constraints:

 Energy Causality: water-flow only forward in time

0 t
O O O

0E 1E 2E

Water levels (vi)
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Directional Water-Filling

 Harvested energies filled into epochs individually

 Constraints:

 Energy Causality: water-flow only forward in time

 Battery Capacity: water-flow limited to Emax by taps

0 t
O O O

0E 1E 2E

Water levels (vi)
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Example

0

20 E
51 E

1s

p

12 E 93 E 74 E

2s 3s 4s

10max E
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Directional Water-Filling

 Energy tunnel 

and directional 

water-filling 

approaches 

yield the same 

policy

E

t0

0 tO O O

0E

OO O

0E

1E 2E 3E 4E 5E

1E 2E

3E
4E

5E
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Directional Water-Filling

 Energy tunnel 

and directional 

water-filling 

approaches 

yield the same 

policy

E

t0

0 tO O O OO O
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Simulation Results

 Improvement of optimal algorithm over an on-off transmitter in 
a simulation with truncated Gaussian arrivals.
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Fading Channels
[Ozel-Tutuncuoglu-Ulukus-Yener‘11]

 AWGN Channel with fading h :

 Each “epoch” defined as the interval between two “events”.

)1log(
2
1),( hphpr 

0E 2E 3E 6E 7E

0 t
x x x x

Fading 
levels

L1 L4 L7

h1
h2=h3=h4

h5
h6=h7

h8

0,..5,4,1 E

O O O O O

7/10/2016
IEEE ISIT 2016, Barcelona, Spain 45



Directional Water-Filling for Fading Channels

0 t
O O Ox

0E 2E 4E

Fading levels (1/hi)

Water levels (vi)

x

 Same directional water filling with base levels adjusted 

according to channel quality.

 Directional water flow (Energy causality)

 Limited water flow (Battery capacity)
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 Given the total number of bits to send as B, 
complete transmission in the shortest time 
possible.

Transmission Completion Time 
Minimization (TCTM) 
[Yang-Ulukus’12]
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 max
u0

min
T

T  uB  u.max
p(t )P

 r(p(t))dt
0

T

 





 Lagrangian dual of TCTM problem becomes:

Relationship of STTM and TCTM
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STTM problem for deadline T
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 Optimal allocations are identical:

 STTM solution can be used to solve the 
TCTM problem

STTM’s solution 
for deadline T

departing B bits

TCTM’s solution 
for departing B
bits in time T


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Maximum Service Curve 

1S 2S Deadline (T)3S

M
ax

im
um

 D
ep

ar
tu

re
 (

B
)  Maximum number of bits 

that can be sent in time 
T.

 Each point calculated by 
solving the 
corresponding STTM 
problem.

 
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Maximum Service Curve 

 Continuous, monotone increasing, invertible

 Optimal allocation 
for TCTM with B1
bits

Optimal allocation 
for STTM with 
deadline T1

1S 2S Deadline (T)3S

M
ax

im
um

 D
ep
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tu
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 (

B
)

T1

B1 
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Maximum Service Curve: Fading 

 Continuous, non-decreasing
(flat regions when fading is severe)

 Inverse can be considered 
as the smallest T that 
achieves B1

Deadline (T)

M
ax

im
um

 D
ep

ar
tu
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 (
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T1

B1

O x x x x x xO O O
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Transmission Policies with 
Inefficient Energy Storage

 Energy stored in a battery, supercapacitor, . . .

 “Real life” issues:

 [Devillers-Gunduz ‘12]: Leakage and Degradation

 [Tutuncuoglu-Yener-Ulukus ‘15]: Storage and Retrieval Losses

Storage 
Loss

Leakage
Degradation

Retrieval 
Loss
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Battery Degradation

 [Devillers-Gunduz ‘12]

 Optimal Policy: Shortest path within narrowing tunnel

Degradation

E

t0
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Battery Leakage

 [Devillers-Gunduz ‘12]

 Optimal Policy: When total energy in an epoch is low, deplete 

energy earlier to reduce leakage.

E

t0

Leakage
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Storage/Recovery Losses

 [Tutuncuoglu-Yener-Ulukus ’15]

 Main Tension: Storage 
Loss

Recovery 
Loss

Concavity of r(p): 
Use battery to 

maintain a constant 
power transmission

Battery inefficiency: 
Storing energy in 

battery causes energy 
loss
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 Time slots of duration

 Energy harvests: Size Ei at the beginning of time slot i

Time slotted model

All arrivals known by transmitter beforehand.

E1

t

E2 E3 EN-1

 2 )1( N0

1i 2i ... Ni 

N...

s1
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hi

Transmitter Receiver

Energy storage (ESD)

Emax

si

η ui

pi = hi – si + ui

System Model

Rate: r(p(t))

 hi: Harvested power
 si: Stored power
 ui: Retrieved (used) power
 pi: Transmit power

 ESD has finite capacity Emax and storage efficiency η.

 Energy Causality:

 Storage Capacity:

Ni,us
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n
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7/10/2016
IEEE ISIT 2016, Barcelona, Spain 58



 Find optimal energy storage policy that maximizes 
the average throughput of an energy harvesting 
transmitter within a deadline of N time slots.

Throughput Maximization

 
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Throughput Maximization
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Old problem:

7/10/2016
IEEE ISIT 2016, Barcelona, Spain 60



 Structure of optimal policy:
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Optimal Power Policy
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Optimal Power Policy
(Fading channel)
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Simulations
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Offline Power Control for Energy Harvesting Nodes
An Alternative Formulation

Transmitter Receiver

Emax

Battery

Nt ∼ N (0, 1)

Et

Xt Yt

Et : i.i.d. energy harvesting process, can be continuous or discrete, its
realization is known ahead of time.

Power Control Problem:

T = sup
g

lim inf
n→∞

1

n
E

[
n∑

t=1

1

2
log(1 + γgt)

]
,

where gt : En → R+, t = 1, . . . n is a power control policy that satisfies :

0 ≤ gt ≤ bt

bt+1 = min(bt − gt + et+1,Emax)
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Offline Setting

Optimal Solution:

Ensure battery never overflows.

Allocate energy as equally as possible over time.
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Online Setting

Energy arrivals are known causally:

gt : E t → R+, t = 1, . . . n

Easy to observe that this a Markov Decision Process:

state bt state space [0,Emax ]

action gt action space [0, bt ]

disturbance Et disturbance distribution p(e) or f (e)

state evolution bt+1 = min(bt − gt + et+1,Emax)

stage reward 1
2 log(1 + γgt)
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Markov Decision Processes

st+1 = f (st , ut ,wt)

state st state space S
action ut action space U(st)

disturbance wt disturbance distribution p(w |s, u)

history ht = (s1,w1,w2, . . . ,wt−1)

policy π = {µ1, µ2, . . .}, ut = µt(ht)

reward g(st , ut)

Goal: maximize average reward

J = sup
π

lim inf
n→∞

1

n

n∑
t=1

E
[
g
(
St , µt(Ht)

)]
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A dynamic programming approach

Bellman Equation

If there exists a scalar λ ∈ R+ and a bounded function h : [0,Emax ]→ R+

that satisfy

λ+ h(b) = sup
0≤g≤b

{
1
2 log(1 + γg) + E[h(min{b − g + Et ,Emax})]

}
for all 0 ≤ b ≤ Emax , then the optimal policy is given by
g?t (E t) = g?(bt(E

t)).

Limitations:

can be computationally demanding;

solution depends on the exact statistical model of energy arrivals;

no insight on the structure of the optimal policy and the qualitative
behavior of the resultant throughput;
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Heuristic Online Policies

Either no or only asymptotic guarantees on performance.

Two natural heuristics widely considered: greedy policy and constant
policy.

Greedy policy:

instantenously uses all the incoming energy;

ensures no battery overflow;

becomes optimal when SNR→ 0:

1

n

n∑
t=1

1

2
log(1 + γgt) ≈

γ

2

1

n

n∑
t=1

gt
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Constant Policy

keep power allocation as constant as possible over time;

gt =

{
µ = E [Et ] if bt ≥ µ
bt if bt < µ.

becomes optimal when Emax →∞:

T =
1

2
log(1 + γµ).
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For finite parameter values

these schemes can be arbitrarily away from optimality.

asymptotic results provide no insights about the gap to optimality.

which of the previous two policies is a better choice for a given
problem?
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A constant gap approach

Look for policies that are provably close to optimal across all parameter
regimes and any distribution of the energy arrivals.

Universal near-optimal policies:

have minimal dependence on the distribution of the energy arrivals,
e.g depend only on the mean.

achieve the optimal throughput simultaneously within a constant
additive and multiplicative gap for all parameter values and
distributions of energy arrivals.
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Wireless information theory over the last 15 years

Degrees of Freedom

⇓

Generalized Degrees of Freedom

⇓

Constant Gap Approximations
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Starting Point: Bernoulli Arrivals

Transmitter Receiver

Emax

Battery

Nt ∼ N (0, 1)

Et

Xt Yt

First, we focus on i.i.d. Bernoulli energy arrival process:

Et =

{
Emax w.p. p

0 w.p. 1− p,
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Bernoulli Battery Recharges
Law of large numbers for regenerative processes:

sup
g

lim inf
n→∞

1

n
E

[
n∑

t=1

1

2
log(1 + g(t))

]
= sup

g

1

EL
E

[
L∑

t=1

1
2 log(1 + γg(bt))

]

= max
{Ei}∞i=1:
Ei≥0 ∀i∑∞
i=1 Ei≤Emax

∞∑
i=1

p(1− p)i−1
1

2
log(1 + Ei )

The optimal power control policy:

Ei =

{
(N+Emax )
1−(1−p)N p(1− p)i−1 − 1 , i = 1, . . . ,N

0 , i > N

where N is the smallest positive integer satisfying

1 > (1− p)N [1 + p(Emax + N)].
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Exponentially decreasing power allocations

L

Because rate is a concave function of energy/power, allocate the
energy as equally as possible across time.

Use p fraction of the available energy at each time slot:

gt = pBt

⇓

gt = p(1− p)j Emax

where j = t −max{t ′ ≤ t : Et′ = Emax}.
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Simplified policy for Bernoulli Arrivals

Fixed Fraction Policy:

gt = pBt

Theorem

Let Et be i.i.d Bernoulli(p,Emax) as before. The throughput TFF achieved
by the constant fraction policy satisfies

TFF ≥
1

2
log(1 + γ pEmax)− 0.72,

and

TFF ≥
1

2

1

2
log(1 + γ pEmax).
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Simulation

10
0

10
1

10
2

10
3

10
4

Emax

0

1

2

3

4

5

T
h
ro
u
gh

p
u
t

Upper Bound 1
2
log(1 + γµ)
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Simulation
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General i.i.d. energy arrivals

Fixed Fraction Policy:

gt = qBt , where q = µ/Emax

Theorem

The throughput TFF achieved by the constant fraction policy satisfies

TFF ≥
1

2
log(1 + γµ)− 0.72,

and

TFF ≥
1

2

1

2
log(1 + γµ).
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Proof idea

Theorem

Bernoulli(0,Emax) is the worst case among all distributions with the same
mean.

Previous heuristics: the greedy policy and the constant policy

build on the insights from the best case scenario: Et = µ
deterministically.

The fixed fraction policy

builds on the insights from the worst case scenario: Bernoulli arrivals.
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Simulation
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Open Questions and Directions

Is Bernoulli the worst case for the optimal policy?

Non i.i.d. energy arrivals.

Fading Channels.

Battery Imperfections.

Multi-user Settings (to be discussed in the next part).
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So Far, We Learned...

• Wireless nodes harvesting energy from nature.

• Single-user communication with an energy harvesting transmitter.

• Energy arrives (is harvested) during the communication session.

• A non-trivial shift from the conventional battery powered systems.

• Transmission policy is adapted to energy arrivals.

• Objective: maximize throughput, minimize delay.

Txdata queue Rx

Ei

2



Single-User Optimal Policy for Emax = ∞

cumulative energy arrivals

Optimal power level

E5

∑i
j=1Ej

tT

E0 E1 E2 E3 E4

• Find the tightest curve under the cumulative energy arrival staircase.
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Single-User Optimal Policy for Emax < ∞

cumulative energy arrivals

T

∑i
j=1Ej

t

Emax

E0 E1 E2 E3 E4 E5

• Find the tightest curve in the energy feasibility tunnel.
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Equivalence of Feasibility Tunnel and Directional Water-filling

OFFOFF OFF OFF OFF OFF OFF

T

T

E1E0 E2 E3 E4 E5 E6

T
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Equivalence of Feasibility Tunnel and Directional Water-filling

tightest
  curve

ON ON ON ON ON ON ON

causality no overflow

T

T

E1E0 E2 E3 E4 E5 E6

T
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Optimal Packet Scheduling: Broadcast Channel

Ei

Tx

Rx1

Rx2
data queue 2

data queue 1

• Energy arrives (is harvested) during the communication session

• Assume battery has infinite storage capacity: Emax = ∞

• Broadcasting data to two users by adapting to energy arrivals

• Objective: maximize the data departure region
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Broadcast Channel Model: Emax = ∞

Ei

Tx

Rx1

Rx2
data queue 2

data queue 1

• AWGN broadcast channel:

Y1 = X +N1, Y2 = X +N2

where N1 ∼ N (0,σ2
1), N2 ∼ N (0,σ2

2)

• σ2
2 > σ2

1: 2nd user is degraded; we call 1st user stronger and 2nd user weaker
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Broadcast Channel Model

R2

C2

R1C1

• Broadcast capacity region:

r1 ≤
1

2
log2

(

1+
αP

σ2
1

)

, r2 ≤
1

2
log2

(

1+
(1−α)P

αP+σ2
2

)

• We work in the (r1,r2) domain:

P = σ2
122(r1+r2)+(σ2

2 −σ2
1)2

2r2 −σ2
2 , g(r1,r2)

• g(r1,r2) is the minimum power required to send at rates (r1,r2)
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Finding the Maximum Departure Region

• The maximum departure region D(T ): union of (B1,B2) pairs achievable by some rate

allocation policy that satisfies the energy causality constraint.

T0

ℓ1 ℓ2 ℓN ℓN+1

(r11, r21) (r12, r22) (r1N , r2N ) (r1(N+1), r2(N+1))

• Transmission rates, and power, remain constant between energy harvests

• The energy causality constraint reduces to constraints on (r1i,r2i):

k

∑
i=1

g(r1i,r2i)ℓi ≤
k−1

∑
i=0

Ei, k = 1, . . . ,N +1
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Finding the Maximum Departure Region

• D(T ) is a strictly convex region.

• Characterize D(T ) by solving optimization problems for all µ1,µ2 ≥ 0:

max
r1,r2

µ1

N+1

∑
i=1

r1iℓi +µ2

N+1

∑
i=1

r2iℓi

s.t.
k

∑
i=1

g(r1i,r2i)ℓi ≤
k−1

∑
i=0

Ei, k = 1, . . . ,N +1

B2

B1

D(T )

(µ1, µ2)
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Structure of the Optimal Policy

• Total transmit power is the same as the single-user case.

• The power shares follow a cut-off structure.

• Cut-off level Pc

Pc =

(

µ1σ2
2 −µ2σ2

1

µ2 −µ1

)+

• If total power is below Pc, then, only transmit to the stronger user.

• Otherwise, stronger user’s power share is Pc.

• Pc (share of the stronger user) decreases with µ2, the priority of the weaker user.
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The Structure of the Optimal Policy for Emax = ∞

T

T

T

E0 E3 E4 E5 E6E2E1

Pc

P

∑i
j=0 Ej
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The Structure of the Optimal Policy for Emax < ∞

T

T

T

EmaxEmax
Emax Emax Emax Emax Emax

E0 E3 E4 E5 E6E2E1

E1 E2 E3 E4 E5 E6E0

Pc

P
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Conclusions for the Offline Broadcasting Scenario

• Energy harvesting transmitter with infinite and finite capacity battery

• Maximize the departure region.

• Obtain the structure of the solution, such as:

– the monotonicity of the transmit power

– the cut-off power property
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Optimal Packet Scheduling: Multiple Access Channel

• AWGN MAC channel Y = X1 +X2 +Z, Z ∼ N(0,1).

• The capacity region is a pentagon denoted as C (P1,P2):

R1 ≤ f (P1), R2 ≤ f (P2), R1 +R2 ≤ f (P1 +P2)

where f (p) = 1
2

log(1+ p).

E1i

Tx1data queue

Rx

E2i

Tx2data queue Cs

Cs

R2

C2

R1C1
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Problem Formulation

• Maximize the departure region D(T ) by time T .

T

T

E10

E20

E11

. . .

E1(K−1)

E23 E24

E15

E2K

. . .

B2

B1

t0

t0

s1

s1

s2 s3 s4 sK−1 sK

s2 s3 s4 sK−1 sK

b

e

a

c

d

f

B2

B1

• Each feasible policy gives a pentagon.

• Union of all feasible policies gives D(T ).
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Characterizing D(T )

• Transmission rate remains constant between energy harvests.

• For any feasible transmit power sequences p1, p2, the departure region is a pentagon

B1 ≤
N

∑
n=1

f (p1n)ln

B2 ≤
N

∑
n=1

f (p2n)ln

B1 +B2 ≤
N

∑
n=1

f (p1n + p2n)ln

• D(T ) is a union of (B1,B2) and convex.

• The boundary points maximize µ1B1 +µ2B2 for some µ1,µ2 ≥ 0.
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Point a

• Single-user power allocation.

b

e

a

c

d

f

r2

r1

max
p1

∑
n

f (p1n)ln

s.t.
j

∑
n=1

p1nln ≤
j−1

∑
n=0

E1n, ∀ j : 0 < j ≤ N
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Point b

• User 2 power is fixed to its single-user power allocation.

b

e

a

c

d

f

r2

r1

max
p1

∑
n

f (p1n + p∗2n)ln

s.t.
j

∑
n=1

p1nln ≤
j−1

∑
n=0

E1n, ∀ j : 0 < j ≤ N
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Sum-rate: Points between c and d

• Maximize the sum-rate of the users.

b

e

a

c

d

f

r2

r1

max
p1,p2

∑
n

f (p1n + p2n)ln

s.t.
j

∑
n=1

p1nln ≤
j−1

∑
n=0

E1n, ∀ j : 0 < j ≤ N

j

∑
n=1

p2nln ≤
j−1

∑
n=0

E2n, ∀ j : 0 < j ≤ N
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Sum-Rate: Points between c and d, Equivalent Problem

• Equivalent problem:

max
p1+p2

∑
n

f (p1n + p2n)ln

s.t.
j

∑
n=1

p1nln + p2nln ≤
j−1

∑
n=0

E1n +E2n, ∀ j : 0 < j ≤ N

• Power can be divided back to p1,p2 in infinite number of ways.

b

e

a

c

d

f

r2

r1
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Points between b and c: Arbitrary µ1, µ2

• Each boundary point corresponds to a corner point of some pentagon.

• µ2 > µ1 ⇒ achieving points between point b and point c:

b

e

a

c

d

f

r2

r1

max
p1,p2

(µ2 −µ1)∑
n

f (p2n)ln +µ1 ∑
n

f (p1n + p2n)ln

s.t.

j

∑
n=1

p1nln ≤
j−1

∑
n=0

E1n, ∀ j : 0 < j ≤ N

j

∑
n=1

p2nln ≤
j−1

∑
n=0

E2n, ∀ j : 0 < j ≤ N
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Generalized Iterative Backward Waterfilling

• Solve the problem via generalized iterative backward waterfilling:

• Given p∗
1, solve for p2:

max
p2

(µ2 −µ1)
N

∑
n=1

f (p2n)ln +µ1

N

∑
n=1

f (p∗1n + p2n)ln

s.t.

j

∑
n=1

p2nln ≤
j−1

∑
n=0

E2n, 0 < j ≤ N

• Once p∗
2 is obtained, we do a backward waterfilling for the second user.

• We perform the optimization for both users in an alternating way.

• The iterative algorithm converges to the global optimal solution.
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Conclusions for the Offline Multiple Access Scenario

• Energy harvesting transmitters sending messages to a single access point.

• The problem: maximization of the departure region.

• Obtain the structure using generalized iterative waterfilling.
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So Far, We Learned...

E2E1

t
′

t

cumulative energy arrivals

cumulative energy expenditure

only causally known

E0 E3

• So far, mostly: dynamic programming, learning algorithms, heuristics.
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A Unique Approach: Online Power Scheduling

• Feel the Bernoulli.

• Steps of the approach:

– Study Bernoulli energy arrivals with {0,B} support.

– Propose a simple sub-optimal policy for Bernoulli arrivals.

– Bound its performance.

– Extend this sub-optimal policy for general energy arrivals.

– Bernoulli is the worst energy arrival for the proposed algorithm.

– Obtain a near-optimal online power policy.

Ei

B

Txdata queue Rx

B

B

rate

upper bound

lower bound

general-optimal

Bernoulli-FFP

Bernoulli-optimal

general-FFP

0.72
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Online Policy for the Single-User Channel

• Bernoulli energy arrivals:

Ei

B

Txdata queue Rx

B

• P[Ei = B] = 1−P[Ei = 0] = p

• When an energy arrives, a renewal occurs.
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Long-Term Average Throughput Using Renewal Theory

• Long-term average throughput, under Bernoulli energy arrivals:

lim
n→∞

E

[

1

n

n

∑
i=1

1

2
log(1+Pi)

]

=
1

E[L]
E

[

L

∑
i=1

1

2
log(1+Pi)

]

= p
∞

∑
k=1

p(1− p)k−1
k

∑
i=1

1

2
log(1+Pi)

=
∞

∑
i=1

∞

∑
k=i

p2(1− p)k−1 1

2
log(1+Pi)

=
∞

∑
i=1

p(1− p)i−1 1

2
log(1+Pi)

• L is inter-energy arrival time, geometric with E[L] = 1
p
.

29



Resulting Optimization Problem

• To characterize {Pi} which achieves the maximum, we solve

max
{Pi}

∞

∑
i=1

p(1− p)i−1 1

2
log(1+Pi)

s.t.
∞

∑
i=1

Pi ≤ B

Pi ≥ 0, ∀i

• Solution:

Pi =
p(1− p)i−1

λ
−1, i = 1, . . . , Ñ

• Decreasing power for a finite duration Ñ that depends on B.
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Online Policy for the Single-User Channel

• Bernoulli energy arrivals:

– Optimal power allocation with Ñ = 4:

Ei

B

Txdata queue Rx

B

– Sub-optimal fractional power allocation, Pi = Bp(1− p)i−1:

Ei

B

Txdata queue Rx

B
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Bounds on the Online Policies

• Upper bound from offline policy:

r ≤
1

2
log(1+µ)

• Lower bound algebraically for Bernoulli arrivals:

r ≥
1

2
log(1+µ)−0.72

Sketch of the proof:

r =
1

E[L]
E

[

L

∑
i=1

1

2
log

(

1+Bp(1− p)i−1
)

]

≥
1

E[L]
E

[

L

∑
i=1

1

2
log(1+Bp)+

1

2
log

(

(1− p)i−1
)

]

≥
1

2
log(1+µ)−0.72

• Bernoulli is the worst energy arrival for the fractional policy:

Tupper −0.72 ≤ TBern ≤ Tany ≤ Tupper
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Online Policies for the Broadcast Channel

• Bernoulli energy arrivals:

Ei

Tx

Rx1

Rx2

B

B

data queue 2

data queue 1

• P[Ei = B] = 1−P[Ei = 0] = p

• When an energy arrives, a renewal occurs.
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Long-Term Weighted Average Throughput

• Long-term weighted average throughput, under Bernoulli energy arrivals:

lim
n→∞

E

[

1

n

n

∑
i=1

(µ1r1i +µ2r2i)

]

=
1

E[L]
E

[

L

∑
i=1

(µ1r1i +µ2r2i)

]

= p
∞

∑
k=1

p(1− p)k−1
k

∑
i=1

(µ1r1i +µ2r2i)

=
∞

∑
i=1

∞

∑
k=i

p2(1− p)k−1 (µ1r1i +µ2r2i)

=
∞

∑
i=1

p(1− p)i−1(µ1r1i +µ2r2i)
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Resulting Optimization Problem for the Broadcast Channel

• Problem becomes

max
{r1i,r2i}

∞

∑
i=1

p(1− p)i−1(µ1r1i +µ2r2i)

s.t.
∞

∑
i=1

g(r1i,r2i)≤ B

r1i,r2i ≥ 0, ∀i

where

Pi = σ2
1e2(r1i+r2i)+(σ2

2 −σ2
1)e

2r2i −σ2
2 , g(r1i,r2i)

• Modified offline problem:

– One energy arrival.

– Generalized fading due to p(1− p)i−1
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Structure of the Optimal Online Policy

Pi

slots (i)

Pc

P1 P2

P3

P4

21 3 4 5 6

M̃ Ñ

0

P5

user 1

user 2

• User 1 is served for a time no shorter than user 2.

• Both users’ powers are decreasing.

• Cut-off level Pc:

Pc =

(

µ1σ2
2 −µ2σ2

1

µ2 −µ1

)+
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Proposed Sub-optimal Policy for Bernoulli Energy Arrivals

Pi = pbi

slots (i)

Pc

P1

P2

P3

P4

21 3 4 5 60

P5

user 1

user 2

• Sub-optimal fractional total power policy:

– Total power per slot:

Pi = P1i +P2i = pbi = Bp(1− p)i−1

– Optimally divided power according to cut-off:

P1i = min{Pc,Bp(1− p)i−1}

P2i = Bp(1− p)i−1−P1i
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Proposed Sub-optimal Policy for General Energy Arrivals

Pi = qbi

slots (i)

Pc

P1 P2

P3

P4

21 3 4 5 60

P5 P6

user 1

user 2

• Defining q = µ/B.

• Total power per slot:

Pi = qbi

• Optimally divided power according to cut-off:

P1i = min{Pc,qbi}

P2i = qbi −P1i
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Bounds on the Online Policies

• Bernoulli energy arrivals gives a lower bound for general energy arrivals.

• Lower bound:

r1 ≥
1

2
log

(

1+
αµ

σ2
1

)

−0.72

r2 ≥
1

2
log

(

1+
(1−α)µ

αµ+σ2
2

)

−0.99

• Upper bound:

r1 ≤
1

2
log

(

1+
αµ

σ2
1

)

r2 ≤
1

2
log

(

1+
(1−α)µ

αµ+σ2
2

)

for some α ∈ [0,1], where µ = E[Ei] is the average recharge rate.
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Illustration of Bounds

r2

r1

upper bound

lower bound

optimal policy

fractional policy
(FPCC)

≤1.22

a

b

=1.22

• Distance between any two points with the same α on the upper and lower bounds is equal to:

√

0.722 +0.992 = 1.22
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Conclusions for the Online Broadcasting Scenario

• Energy harvesting transmitter with finite capacity battery

• Maximize the departure region.

• Obtain the structure of the solution, such as:

– the monotonicity of the transmit power

– the cut-off power property

• Near-optimal policy.
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Multiple Access Channel with Common Source

• Bernoulli energy arrivals:

Ei

B1

Tx1

Rx

Ei

Tx2data queue

energy
source

common

data queue

B2

B

• P[Ei = B] = 1−P[Ei = 0] = p, where B ≥ max{B1,B2}.

• Average admitted energies at the two users are not the same.

• When an energy arrives, a renewal occurs.
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Long-Term Weighted Average Throughput

• Long-term weighted average throughput, under Bernoulli energy arrivals:

lim
n→∞

E

[

1

n

n

∑
i=1

(µ1r1i +µ2r2i)

]

=
1

E[L]
E

[

L

∑
i=1

(µ1r1i +µ2r2i)

]

= p
∞

∑
k=1

p(1− p)k−1
k

∑
i=1

(µ1r1i +µ2r2i)

=
∞

∑
i=1

∞

∑
k=i

p2(1− p)k−1 (µ1r1i +µ2r2i)

=
∞

∑
i=1

p(1− p)i−1(µ1r1i +µ2r2i)
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Online Policies for the Multiple Access Channel with Common Source

• For Bernoulli energy arrivals:

max
{P1i,P2i}

∞

∑
i=1

p(1− p)i−1 (µ1r1i +µ2r2i)

s.t. (r1i,r2i) ∈ C (P1i,P2i)

∞

∑
i=1

P1i ≤ B1,
∞

∑
i=1

P2i ≤ B2

where C (P1i,P2i) of this channel in slot i is:

r1i ≤
1

2
log

(

1+
P1i

σ2

)

r2i ≤
1

2
log

(

1+
P2i

σ2

)

r1i + r2i ≤
1

2
log

(

1+
P1i +P2i

σ2

)

• Modified offline problem:

– One energy arrival.

– Generalized fading due to p(1− p)i−1
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Online Policies for the Multiple Access Channel with Common Source

• Achievable rate region

b

e

a

c

d

f

r2

r1

• Each feasible policy achieves a pentagon

• Rate region is the union of all such pentagons

• Points a and f are single-user rates
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Online Policies for the Multiple Access Channel with Common Source

• Achievable rate region

b

e

a

c

d

f

r2

r1

• Each feasible policy achieves a pentagon

• Rate region is the union of all such pentagons

• Points a and f are single-user rates
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Point b

• User 2 power is fixed to:

P∗
2i =

p(1− p)i−1

λ2
−σ2, i = 1, . . . , Ñ2

• Optimization problem becomes:

max
{P1i}

∞

∑
i=1

p(1− p)i−1r1i

s.t. r1i ∈ C (P1i,P
∗
2i),

∞

∑
i=1

P1i ≤ B1

• The optimal power:

P1i =
p(1− p)i−1

λ1 −ν1i

−σ2 −P∗
2i

• At point b, user 1 transmits for a duration no shorter than user 2.

• Power of both users are monotonically decreasing.
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Sum-Rate

b

e

a

c

d

f

r2

r1
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Sum-Rate

• µ1 = µ2 = 1

• The optimization problem becomes:

max
{P1i,P2i}

1

2

∞

∑
i=1

p(1− p)i−1 log

(

1+
P1i +P2i

σ2

)

s.t.
∞

∑
i=1

P1i ≤ B1,
∞

∑
i=1

P2i ≤ B2

• A relaxed problem:

max
{P1i,P2i}

1

2

∞

∑
i=1

p(1− p)i−1 log

(

1+
P1i +P2i

σ2

)

s.t.
∞

∑
i=1

P1i +P2i ≤ B1 +B2

• Equivalent problems.

– Use P1i = (P∗
1i +P∗

2i)
B1

B1+B2

• Hence, solve a single-user problem for (P1i +P2i).
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Sum-Rate

• (P1i +P2i)
∗

is positive for a duration Ñs ≥ max{Ñ1, Ñ2}

• It is sufficient to show that:

(P1i +P2i)
∗−P∗

2i ≥ 0

• Implies that the single-user power allocation is feasible

b

e

a

c

d

f

r2

r1
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Online Policies for the Multiple Access Channel with Common Source

• Optimal capacity region with Bernoulli arrivals is a single pentagon

b, c

d, e

a

f

r2

r1

• Distributed sub-optimal policy, let qk ,
P̄k
Bk

:

– For Bernoulli energy arrivals:

P1i = B1 p(1− p)i−1

P2i = B2 p(1− p)i−1

– For general energy arrivals:

P1i = q1b1i

P2i = q2b2i
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Bounds for the Multiple Access Channel with Common Source

• Bernoulli energy arrivals gives a lower bound for general energy arrivals.

• Lower bound:

r1 ≥
1

2
log

(

1+
P̄1

σ2

)

−0.72

r2 ≥
1

2
log

(

1+
P̄2

σ2

)

−0.72

r1 + r2 ≥
1

2
log

(

1+
P̄1 + P̄2

σ2

)

−0.72

• Upper bound for any energy arrival:

r1 ≤
1

2
log

(

1+
P̄1

σ2

)

r2 ≤
1

2
log

(

1+
P̄2

σ2

)

r1 + r2 ≤
1

2
log

(

1+
P̄1 + P̄2

σ2

)
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Multiple Access Channel with General (Arbitrarily Correlated) Arrivals

• Bounds are the same for any arbitrary energy arrivals.
E1i

Tx1data queue

Rx

E2i

Tx2data queue

– Using qk =
P̄k
Bk

, the lower bound is:

r1 ≥
1

2
log

(

1+
P̄1

σ2

)

−0.72

r2 ≥
1

2
log

(

1+
P̄2

σ2

)

−0.72

r1 + r2 ≥
1

2
log

(

1+
P̄1 + P̄2

σ2

)

−0.72
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Illustration of Bounds for the Multiple Access Channel

r2

r1
≤ 0.72

≤ 0.72

upper bound

fractional policy

optimal policy

lower bound
(DFP)

≤ 0.72
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Multiple Access Channel with Arbitrary Number of Users

• Bounds are the same for any arbitrary number of users.
E1i

Tx1data queue

Rx

E2i

Tx2data queue

EKi

TxKdata queue

– Using qk =
P̄k
Bk

, the lower bound is:

∑
i∈S

ri ≥
1

2
log

(

1+
∑i∈S P̄i

σ2

)

−0.72, ∀S ⊂ {1, . . . ,K}

– Upper bound:

∑
i∈S

ri ≤
1

2
log

(

1+
∑i∈S P̄i

σ2

)

, ∀S ⊂ {1, . . . ,K}
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Multiple Access Channel with Large Number of Users

• Sum-rate approaches the capacity for very large number of users.
E1i

Tx1data queue

Rx

E2i

Tx2data queue

EKi

TxKdata queue

– Using qk =
P̄k
Bk

, the lower bound is:

K

∑
i=1

ri ≥
1

2
log

(

1+
∑

K
i=1 P̄i

σ2

)

−0.72

– Upper bound:

K

∑
i=1

ri ≤
1

2
log

(

1+
∑

K
i=1 P̄i

σ2

)
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Conclusions for the Online Multiple Access Scenario

• Energy harvesting transmitters sending messages to a single access point.

• The problem: maximization of the departure region.

• Obtain the structure of the solution, such as:

– Monotonicity of the power.

– Synchronous multiple access capacity region is a pentagon.

• Near-optimal policy.
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Wireless Energy Transfer

• Newly emerging technologies have enabled us to perform wireless energy transfer efficiently.

• Inductive coupling can be used to wirelessly transfer energy.
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Energy Cooperation in Multi-user Energy Harvesting Communications

• Wireless energy transfer is a new cooperation paradigm.

• Energy cooperation: Nodes share their energy as well as their information.

59



Gaussian Two-Hop Relay Channel with Energy Cooperation

queue

energy

data queue S

Ei

Channel
AWGN

Ēi

AWGN
Channel

Ddata queue

δi

R

• Energy harvesting source and relay with deterministic energy arrivals Ei, Ēi.

• Wireless energy transfer unit that allows the source to transfer some of its energy to the relay

(with 0 ≤ α ≤ 1 efficiency).

• Unlimited data and energy buffers at the source and the relay.

• New energy arrivals at every slot i, 1 ≤ i ≤ T .

• The source transfers δi energy to the relay at slot i.

• Relay receives αδi of this transferred energy at the next slot.
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Two Hop Relay Channel without Energy Cooperation

Ēi

energy

data queue S

Ei

Channel
AWGN

R

AWGN
Channel

Ddata queue

queue

• Optimal source/relay profile is a separable policy.

• Source performs single-user throughput maximization with respect to its own energy arrivals.

• Relay forwards as many of the received bits as possible, satisfying data causality and energy

causality.
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Two Hop Relay Channel without Energy Cooperation

log(1 + 7) = 3

Channel

energy

data queue

Ei Ēi

data queue S
Channel
AWGN

R

AWGN

queue

D

• Separable policy, source maximizes its own throughput.

• Relay tries to send as much as it can.

• 1 bit sent to destination, 2 bits remaining at the relay.

• End-to-end throughput is 1 bit.
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Two Hop Relay Channel without Energy Cooperation

log(1 + 1) = 1

queue

energy

data queue

Ei Ēi

data queue S
Channel
AWGN

R

AWGN
Channel

D

• Separable policy, source maximizes its own throughput.

• Relay tries to send as much as it can.

• 1 bit sent to destination, 2 bits remaining at the relay.

• End-to-end throughput is 1 bit.
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Two Hop Relay Channel without Energy Cooperation

Ēi

energy

Ei

queue

data queue S
Channel
AWGN

R

AWGN
Channel

Ddata queue

• Separable policy, source maximizes its own throughput.

• Relay tries to send as much as it can.

• 1 bit sent to destination, 2 bits remaining at the relay.

• End-to-end throughput is 1 bit.
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Two Hop Relay Channel with Energy Cooperation

log(1 + 3) = 2

D

energy

AWGN

R

AWGN
Channel

queue

data queue

Ei Ēi

data queue S
Channel

α = 0.5

4× 0.5 = 2

• Source sends less data, but some energy to assist the relay.

• Relay uses this extra energy to forward more data.

• 2 bits sent to destination, 0 bits remaining at the relay.

• End-to-end throughput is 2 bits.
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Two Hop Relay Channel with Energy Cooperation

log(1 + 3) = 2
queue

energy

Channel
AWGN

R

AWGN
Channel

Ddata queue

Ei Ēi

data queue S

• Source sends less data, but some energy to assist the relay.

• Relay uses this extra energy to forward more data.

• 2 bits sent to destination, 0 bits remaining at the relay.

• End-to-end throughput is 2 bits.
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Two Hop Relay Channel with Energy Cooperation

queue

energy

Ēi

data queue S
Channel
AWGN

R

AWGN
Channel

Ddata queue

Ei

• Source sends less data, but some energy to assist the relay.

• Relay uses this extra energy to forward more data.

• 2 bits sent to destination, 0 bits remaining at the relay.

• End-to-end throughput is 2 bits.
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End-to-end Throughput Maximization

• Maximize end-to-end throughput

max
T

∑
i=1

1

2
log(1+ P̄i)

s.t.
k

∑
i=1

Pi ≤
k

∑
i=1

(Ei −δi), ∀k

k

∑
i=1

P̄i ≤
k

∑
i=1

(Ēi +αδi), ∀k

k

∑
i=1

1

2
log(1+ P̄i)≤

k

∑
i=1

1

2
log(1+Pi) , ∀k

subject to:

– Data causality at the relay node

– Energy causality at both nodes

– (Possibly) non-zero energy transfers
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Gaussian Two Way Channel with Energy Cooperation

• Energy harvesting users with deterministic energy arrivals Ei, Ēi

• One-way wireless energy transfer with efficiency 0 < α < 1.

queue

energy

queue

energy

δiEi Ēi

User 2User 1 data queuedata queue

• Physical layer is a Gaussian two-way channel:

Y1 = X1 +X2 +N1

Y2 = X1 +X2 +N2

N1,N2 are Gaussian noises with zero mean and unit power.
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Capacity Region

2

R1

1

R2

3

θR

• Convex region, boundary is characterized by solving

max
P̄i,Pi,δi

T

∑
i=1

θ1
1

2
log(1+Pi)+θ2

1

2
log(1+ P̄i)

s.t. (δ,P, P̄) ∈ F

• Point 1 is achieved by δ = 0: no energy transfer.

• Point 3 is achieved by δ = E: full energy transfer.
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Water-filling Approach

• Generalized two-dimensional directional water-filling algorithm.

• Transfer energy from one user to another while maintaining optimal allocation in time.

• Spread the energy as much as possible in time and user dimensions.

• Now we give a numerical example for θ1 = θ2 and α = 1.
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Numerical Example

E = [0,12,0] mJ Ē = [6,6,0] mJ

12

0

0 0

0 0 0

OFF

6 6

User 1

OFF

User 2

OFF OFF

0 1 2

OFFOFF

OFF 210 3

3

0
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Numerical Example

E = [0,12,0] mJ Ē = [6,6,0] mJ
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ON ON
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Numerical Example

E = [0,12,0] mJ Ē = [6,6,0] mJ

ON ON

ON ON

66

6

4

4 4 4

2

User 1

User 2

0 1 2

OFFOFF

OFF 210 3

3

0
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Numerical Example

E = [0,12,0] mJ Ē = [6,6,0] mJ
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Numerical Example

E = [0,12,0] mJ Ē = [6,6,0] mJ
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Numerical Example

E = [0,12,0] mJ Ē = [6,6,0] mJ
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Numerical Example

E = [0,12,0] mJ Ē = [6,6,0] mJ
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Numerical Example

E = [0,12,0] mJ Ē = [6,6,0] mJ
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Conclusions for Offline Energy Cooperation Scenarios

• Energy harvesting users with infinite capacity batteries.

• Energy transfer capability in an orthogonal channel in one way.

• Energy transfer provides a new degree of freedom to smooth out the energy profiles.

• Optimal policies identified for Gaussian two-hop relay and two-way channels.

• End-to-end throughput maximization for the two-hop relay channel.

• Capacity regions for two-way channels.
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Energy Harvesting and 
Remotely Powered Wireless 
Networks- Part II



Outline – Aylin- Part II

 Information theory of energy harvesting transmitters

 Energy harvesting AWGN channel with infinite battery

 Energy harvesting AWGN channel with no battery

 Binary noiseless energy harvesting channel

 State amplification and state masking
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Information Theory of 
EH Transmitters

 So far, we have assumed 

sufficiently long time slots and 

utilized the known rate 

expressions.

 What if energy harvesting is 

at the symbol level, i.e., each 

input symbol is individually 

limited by EH constraints?

Tx

iE

Rx
Rate :  r(p)

iX
ENC

iE

DEC
1 1 0 0 0 1

iY
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[Tutuncuoglu-Ozel-Ulukus-Yener’13] 

 The channel input is restricted by an 

external energy harvesting process.

 State: available energy

 Has memory (due to energy storage)

 Depends on channel input

 Causally known to Tx (causal CSIT)

ENCODER
iXW

Energy Harvesting (EH) Channel

Ei
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CHANNEL

XYP |

ii SX 

Si1  min Si  Xi Ei, Emax 
(Ch. input constrained by state)

(State has memory)
(State evolves based on ch. input)

ENCODER DECODER
iX iY

ŴW

maxE

iS

Ei

Energy Harvesting (EH) Channel
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Energy Harvesting AWGN Channel

[Ozel-Ulukus ‘12]
 Battery capacity         is infinite.

 Average recharge rate: 

 Capacity without energy harvesting: 
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ENCODER DECODER
iX iY

ŴW

Ni

Ei

Emax 

Emax

P  E[Ei ]
C  1

2
log 1P 



Energy Harvesting AWGN Channel
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 Code symbols are constrained by the energy in the 
battery at each channel use, i.e.,

 Conversely, the average power constraint for a non-EH 
AWGN channel would be a single constraint:

 is an upper bound on the capacity of 

the energy harvesting AWGN channel.

.,...,2,1     ,
11

2 nkEX
k

i
i

k

i
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.11
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n

X
n

n

i
i

n

i
i  
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 PC  1log
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Achievability
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 This upper bound is achievable.

 Two sources of error:
1. Decoding error,
2. Energy shortage.

 Idea: Design the codebook as if the channel is non-EH 
and show that energy shortages are insignificant. 

 Two achievable schemes:
1. Save-and-Transmit,
2. Best-Effort-Transmit.



Save-and-Transmit
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 Suppose                  , i.e., 

 Save energy for the first         channel uses, do not 
transmit. 

 Transmit i.i.d. Gaussian signals in the remaining            
channel uses.

 The energy saved during the first         channel uses is 
sufficient to guarantee no energy shortages occur in 
the remaining              channel uses.

   nonh    .0nnh

 nh

 nhn

 nh

 nhn



Save-and-Transmit
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 Since                    there is no loss in rate. 

 Rates                         are achievable.

  Pnhn 

nP

 Pnh

harvested 
energy

expended 
energy

0 0 0   1nhX   2nhX  nX

 nh n

  ,0nnh

 P 1log
2
1



Best-Effort-Transmit
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 Codewords are i.i.d. Gaussian with variance 

 the energy in the battery, i.e., the battery state in 
the  th channel use.

 If             , i.e., there is enough energy in the battery, 
send     . Otherwise, send nothing.

 The battery state updates according to

.P

:iS
i

 .1 22
1 iiiiii XSXESS 

2
ii XS 

iX



Best-Effort-Transmit
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 With                         and                , it is shown by SLLN 
that, finitely many energy shortages occur.

 Finitely many symbols are infeasible, i.e., the 
transmitter puts 0 to the channel instead of the 
desired code symbol finitely many times.

 Finitely many mismatches are insignificant for joint 
typical decoding. 

 Rates                         are achievable.

   PXE i
2   PEE i 

 P 1log
2
1



EH AWGN Channel with No Battery

[Ozel-Ulukus ‘11]

 There is no battery at the transmitter, i.e., 

 The code symbols are amplitude constrained:
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ENCODER DECODER
iX iY

ŴW

Ni
Ei

.0max E

.,...,2,1     ,2 niEX ii 
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 The transmitter has causal information of energy arrivals. 
The receiver does not know the energy arrivals.

 The harvested energy amount is one of finitely many 
possibilities. For simplicity, assume binary 

 Background: 
1. Static amplitude constrained AWGN channel [Smith’71]
2. State dependent channel with causal state information at 

the transmitter [Shannon’58]

EH AWGN Channel with No Battery

 ., 21 EE
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Static Amplitude Constrained 
AWGN Channel [Smith’71]
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 At each channel use, the code symbol is amplitude 
constrained by 

 The channel capacity under this constraint is 

which is a convex program.

 The capacity achieving distribution was shown to have 
finitely many mass points.

.A

   YXIAC
AX

;maxSm 

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State Dependent Channel with Causal 
State Information at the Tx [Shannon’58]
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 Channel model: 

 State          is causally available at the transmitter only. 

 The channel capacity is 

 is an extended channel input satisfying 

 sxyp ,|
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Capacity of the EH AWGN 
Channel with No Battery
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 Suppose the harvested energy is 

 Apply Shannon’s result with                   and

 The capacity achieving distribution is observed to have 
finitely many mass points.
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Mass Points
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 Symmetric about the origin
 Constrained to the blue line

2t

1t

2E

1E

binary

1E

2E
ternary
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2E
quaternary

1E

2Equinary
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Numerical Results
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Binary Noiseless EH Channel

[Tutuncuoglu-Ozel-Ulukus-Yener’13] 

 Transmitting                 requires      units of energy

 Unit battery, 

 Binary noiseless channel, Yi  Xi

1max E

ENCODER DECODER
Yi  Xi

ŴW

Emax 1Si  0,1 

Ei

Xi  0,1 

Xi  0,1  Xi
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 At the beginning of channel use i, battery state is Si.

 State evolution:

 Energy harvest: Ei are i.i.d. Bernoulli with 

Energy Model
 In channel use i, the transmitter first puts input symbol Xi

to the channel, and then harvests energy Ei :

Pr[Ei 1] qh

iS

Channel input Energy harvest

One channel use

1iS

Si1  min Si  Xi Ei,1  (next state 
depends on input)
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 : # of channel uses spent waiting for energy, ~ Geometric (qh), i.i.d.
 : # of channel uses the energy is kept in storage
 : # of channel uses between 1s at the receiver side

Timing Channel
 A representation that simplifies the problem.

 ,...1,0iZ
 ,...2,1iV
 ,...2,1iT

iii ZVT 

...000100000000000100000000                                     iX

61 Z 31 V 42 Z 82 V

91 T 122 T

...

...000000000001000000100000                                     iE

Xi=1Ei=1

Memoryless!
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 Lemma: The timing channel capacity with additive causally 

known state CT and the originally formulated binary EH 

channel capacity C are equal, i.e., C = CT .

 The two sets of variables,                    and                  , are 
alternative representations of the same sequences.

),,( mmm TZV ),,( nnn YEX

 
 
 0,1,0,1,0,0,0,0,0,1,0,1,0,1,0,0

0,1,0,0,0,0,0,1,0,1,0,0,1,0,0,0
0,1,0,0,0,0,0,1,0,1,0,0,1,0,0,0
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Capacity of the Timing Channel

 Capacity of the timing channel with causal CSIT

BEHCzuvupT C
T

TUIC 



][

);(max
),(),(

 [Shannon 1958] 
Capacity of a memoryless channel with causal CSIT:

CCSIT  max
p(u),v(u,z)

I(U;T )

 [Anantharam-Verdu 1996] 
Capacity of the timing channel: CT  max

p(x )

I(X;T )
[T ]
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 Main challenge: selection of auxiliary variable U
Z , V    U ,           v : (U, Z)V





 Binary encoding interpretation: The encoder indexes channel 

uses in mod N, and sends Ui by transmitting a 1 at the earliest 

feasible channel use with index Ui.

 Achievable rate: 

U  0,1,..., N 1 ,    U ~ pU (u),    V  U  Z mod N  1

210            

21 U 12 U

32104321043                                            1043210                           

33 U

3210             0432             

5N    ,...1,3,2,,...3,1,2  ii ZU    Example:

Modulo Encoding
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RA
(N ) max

p(u)

I(U;T )
[V  Z]

 max
p(u)

H (U)
[V ][Z]



 Choose 

 Decoder:

 Achievable Rate:

V  U  Z 1              U  Z
(U  Z  mod  N )1 U  Z






},1,0{ U

Extended Modulo Encoding

T '  T 1 mod N U mod  N
(U mod N decoded 
without error)

210            

21 U N  5

0     1     2     3     4      5      6      7      8     9    10

U2  6 or  U2 1

                                            04321043210 NT mod1

RA
ext  max

N
max

p(u)

I(U;T )
[V  Z]
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Genie Upper Bound
 Provide channel state    as side information at the decoder.

 The entropy maximizing distribution on                      with  

is Geometric(1/μ).

CUB
genie  max

p(v)

I(V;T | Z )
[V  Z]

 max
p(v)

H (V )
[V ][Z]

 max
0

1
 [Z]

max
[V ]

H (V )

CUB
genie  max

qu[0,1]
 qhH (qu )
qh  qu (1 qh )

 ,...2,1V

 ][V

Zi
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Modulo encoding is asymptotically optimal 

for low harvesting rates

Asymptotic Optimality

 Modulo Encoding: Genie Upper bound:

 Choose 

    lim
qh0

CUB
genie

RA
mod 1

RA
mod max

qu ,N

H (U)
[V ][Z]

N  1
qu

*









, })1,,1,0({~ NUnifU 

CUB
genie  max

qu[0,1]
 qhH (qu )
qh  qu (1 qh )
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(Entropy of Z upon observing 

T=t and decoding U=u)

(Mutual dependence of Z and T given U)

 Timing Channel Capacity:





][
);(max

),(),( T
TUIC

zuvupT 


)|;()();( UTZITHTUI 







1

)],|()()[,()|;(
t u

uUtTZHZHutpUTZI

Lemma: )(),|( tZHuUtTZH 

where   pZt
(z) 

qh (1 qh )z

1 (1qh )t , if   z  t

0, otherwise









(Truncated 

geometric)

Leakage Upper Bound
[Tutuncuoglu-Ozel-Yener-Ulukus’14]
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Leakage Upper Bound

CT  max
p(u),v(u,z )

I(U;T )
[T ]

 max
p(u),v(u,z )

H (T ) I(Z;T |U)
[T ]

CT    max
p(t )

 
H (T ) p(t)[H (Z)H (Zt )]t1


[T ]

 Easier to evaluate than       since the maximization is 

over         instead of
TC

),(),( zuvup)(tp

Leakage Upper Bound
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(Inner problem is convex)

CT    max
p(t )

 
H (T ) p(t)[H (Z)H (Zt )]t1


E[T ]

   max


1


max
p(t ),E[T ]

 H (T ) t p(t)
t1



Computing the Leakage 
Upper Bound

 KKT optimality conditions give

p(t)  Aexp  t t  nn1

t    1

1 1



  
t

t

n nttA  

 Calculate UB by exhaustive search over     for each  
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Interpretation of the UB

][
)]()()[()(

max 1

)( T
ZHZHtpTH

C t t

tpT 


 

   

81 T 102 T

...

...001000000000100010000000                                  iT

42 T

81 Z 42 Z 103 ZRevealed:

We inadvertently “waste” part of the potential rate of the channel
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Binary Symmetric EH Channel

 Binary symmetric channel:

 The energy arrivals are i.i.d. Bernoulli, 

 Two sources of errors:

1. Energy shortage: Without energy, the encoder must send a zero.

2. Channel errors: Any bit sent can be flipped by the channel.

).(Bernoulli~ qEi

 1,0, ii YX ,,0]Pr[ 2
1 eii pXY

iX
ŴW

maxE

iE

iS

iY
ENCODER CHANNEL

XYp |
DECODER
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 Observing     , decoder also obtains information about 

 Rate of this information flow can be quantified by

  ).;(1    )|(    )(   1 nnnnn YEI
n

YEHEH
n



nEnY

Randomness of energy 
arrival process

Randomness remaining after 
channel output is observed

Binary Symmetric EH Channel

The encoder may wish to [Tutuncuoglu-Ozel-Yener-Ulukus’14ITW]:

 Maximize entropy reduction rate    : State Amplification

(Cooperative scenario) [Kim et al. ‘08]

 Minimize entropy reduction rate     : State Masking

(Privacy or stealth scenario) [Merhav-Shamai ‘07]




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No Battery Case
[Tutuncuoglu-Ozel-Yener-Ulukus’14ITW]

 The encoder can send            only when  

 For i.i.d. arrivals, this is a memoryless channel with 

CSIT.

 Capacity achieved using Shannon strategies:

1iX .1iE



 


else

UE
XpUU ii

ii
n

0
1,11

),(,}1,0{     Bern   

Shorthand for                  and                 .U  (0,1)U  (0, 0)
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No Battery Case
 State Amplification 

 State Masking 

where

)()(
)(

)()1()()(

ee

eee

pHppqHR
qH

pHppqpHppqHR






)()(
)()1()()(

ee

eee

ppHpqpH
pHppqpHppqHR




qpqpqp )1()1( 
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Infinite Battery Case
[Tutuncuoglu-Ozel-Yener-Ulukus’14ITW]

 Capacity achieved via extending the save-and-transmit

scheme [Ozel-Ulukus ‘12].

 Channel input constrained as  









2
1
2
1

)(1
)()(

qpH
qpHpqH

CC
e

ee
BSC

  qX E
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00   as 

State Amplification

)log()(
)log()()();(

);,();(

nRHnRn
nRHWHYEI

YWEIYXI
nn

nnnn









Lemma: The             region is given by

)(0, qHCR BSC       

),( R
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State Masking

For                  , perfect state masking is possible, i.e., 

is achievable)0,(),( BSCCR 

maxE

 In the save-and-transmit scheme, channel input         is 

independent of harvested energy

 Any rate                  is also achievable.

 Due to converse proof, no better rate can be achieved

nX
nE

BSCCR 
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 [Mao-Hassibi ’13]: Two strategies,

 Channel input:



 If      was memoryless, this would be capacity achieving.iS
);(1lim nn

nIID YUI
n

R




 1,0iU



 


else

US
X ii

i 0
1,11

Unit-sized Battery Case
 Capacity of this channel is open as we have just seen.

 Some achievable rates proposed: [Tutuncuoglu-Ozel-Y.-

Ulukus’13][Mao-Hassibi ’13].
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Better state amplification 
with instantaneous Shannon 

strategies

Perfect state 
amplification 

with zero 
message rate

Numerical Results

State 

Amplification

 Noiseless 

channel

 2
1q

 0ep
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Better state masking 
with timing encoding

Perfect masking 
for infinite-

sized battery

Numerical Results

State 

Masking

 Noiseless 

channel

 2
1q

 0ep
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Conclusion
 New wireless communications paradigm: energy 

harvesting nodes
 New design insights arising from 
 new energy constraints
 energy storage limitations and inefficiencies
 interaction of multiple EH transmitters
 energy cooperation

 New problems in the information theory domain
 Lots of open problems related to all layers of the 

network design: e.g. Signal processing/PHY design; 
MAC protocol design; channel capacity…

7/10/2016
IEEE ISIT 2016, Barcelona, Spain 109



References-Part II
 [Ozel-Ulukus’12] O. Ozel and S. Ulukus, Achieving AWGN Capacity Under Stochastic Energy 

Harvesting. IEEE Trans. on Information Theory, 58(10):6471-6483, October 2012.
 [Ozel-Ulukus’11] O. Ozel and S. Ulukus, AWGN Channel under Time-Varying Amplitude 

Constraints with Causal Information at the Transmitter, Proceedings of the 45th Asilomar 
Conference on Signals, Systems and Computers, Pacific Grove, CA, November 2011.

 [Tutuncuoglu-Ozel-Yener-Ulukus ’13]: Kaya Tutuncuoglu, Omur Ozel, Aylin Yener and Sennur 
Ulukus, Binary Energy Harvesting Channel with Finite Energy Storage, Proceedings of the IEEE 
International Symposium on Information Theory, ISIT'13, Istanbul, Turkey, July 2013.

 [Tutuncuoglu-Ozel-Yener-Ulukus ’14]: Kaya Tutuncuoglu, Omur Ozel, Aylin Yener, and Sennur 
Ulukus, Improved Capacity Bounds for the Binary Energy Harvesting Channel, Proceedings of the 
IEEE International Symposium on Information Theory, ISIT'14, Honolulu, HI, July 2014.

 [Tutuncuoglu-Ozel-Yener-Ulukus ’14ITW]: Kaya Tutuncuoglu, Omur Ozel, Aylin Yener, and Sennur 
Ulukus, State Amplification and State Masking for the Binary Energy Harvesting Channel, 
Proceedings of Information Theory Workshop, ITW'14, Hobart, Australia, November 2014.

 [Mao-Hassibi ‘13]: W. Mao and B. Hassibi. On the capacity of a communication system with energy 
harvesting and a limited battery. Proceedings of the IEEE International Symposium on 
Information Theory, ISIT, July 2013.

 [Shannon ‘58] C. E. Shannon. Channels with side information at the transmitter. IBM Journal of 
Research and Development, 2(4):289–293, 1958.

 [Anantharam-Verdu ‘96]: V. Anantharam and S. Verdu. Bits through queues. IEEE Transactions on 
Information Theory, 42(1):4–18, January 1996.

7/10/2016
IEEE ISIT 2016, Barcelona, Spain 111



Information-Theoretic Capacity of Energy Harvesting
and Remotely Powered Systems

Ayfer Özgür
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Model

Transmitter Receiver

Emax

Battery

Nt ∼ N (0, 1)

Et

Xt Yt

|Xt |2 ≤ Bt

Bt+1 = min
(
Bt − |Xt |2 + Et+1,Emax

)
.

Et : i.i.d. energy harvesting process known causally at the transmitter and
not at the receiver.
State-dependent channel:

State process has memory and is input dependent.

State is known causally at the transmitter but not at the receiver.
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Emax =∞: Capacity equal to that of a classical AWGN channel with
P = E [Et ]:

C = log (1 + E[Et ])

First-order questions:

How does the capacity of the energy harvesting AWGN channel
depend on system parameters such as Emax and Et?

What are the properties of Et most relevant to capacity? What are
more favorable and less favorable energy profiles?

Are there different operating regimes where the dependence to Emax

and Et is qualitatively different?

For a given Et , how can we “optimally” choose Emax?
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A channel with random battery recharges

Transmitter Receiver

Emax

Battery

Nt ∼ N (0, 1)

Et

Xt Yt

|Xt |2 ≤ Bt

Bt+1 = min
(
Bt + Et+1 − |Xt |2,Emax

)
We focus on i.i.d. Bernoulli energy arrival process:

Et =

{
Emax w.p. p

0 w.p. 1− p,

The energy arrival process {Et} is causally known both at the transmitter
and the receiver.
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Results for this model

n-letter expression for capacity:

C = lim
N→∞

max
p(xN):

‖XN‖2≤Emax

N∑
k=1

p2(1− p)k−1I (X k ;X k + Z k)

Connection to online power control:

T − 1.05 ≤ C ≤ T .

Bounded gap to AWGN capacity:

log(1 + pEmax)− 1.77 ≤ C ≤ log(1 + pEmax).
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Clipping Channel

...

Yj [t] =

{
Xj [t] + Zj [t] , j ≤ L[t]

0 , j > L[t]

where L[t] are i.i.d. Geometric(p)
and ||X [t]||2 ≤ Emax .

Theorem

CEH = p · Cclp
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Capacity of the Clipping Channel

Cclp = lim
N→∞

max
p(xN):

‖XN‖2≤Emax

I (XN ;Y L|L)

= lim
N→∞

max
p(xN):

‖XN‖2≤Emax

N∑
k=1

p(1− p)k−1I (X k ;X k + Z k)
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Bounding CEH

CEH = lim
N→∞

max
p(xN):

‖XN‖2≤Emax

N∑
k=1

p2(1− p)k−1I (X k ;X k + Z k)

≤ lim
N→∞

max
p(xN):

E‖XN‖2≤Emax

N∑
k=1

p2(1− p)k−1
k∑

i=1

I (Xi ;Xi + Zi )

= lim
N→∞

max
p(xN):

E‖XN‖2≤Emax

N∑
i=1

p(1− p)i−1I (Xi ;Xi + Zi )

= lim
N→∞

max
{Ei}Ni=1:
Ei≥0 ∀i∑N
i=1 Ei≤Emax

N∑
i=1

p(1− p)i−1 1

2
log(1 + Ei )
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Bounding CEH

CEH ≤ lim
N→∞
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i=1 Ei≤Emax

N∑
i=1

p(1− p)i−1 1

2
log(1 + Ei )

CEH ≥ lim
N→∞

max
{Ei}Ni=1:
Ei≥0 ∀i∑N
i=1 Ei≤Emax

N∑
i=1

p(1− p)i−1 max
|Xi |≤

√
Ei
I (Xi ;Xi + Zi )

We can show

max
|Xi |≤

√
E
I (Xi ;Xi + Zi ) ≥

1

2
log(1 + E)− 1.05.

CEH ≥ lim
N→∞

max
{Ei}Ni=1:
Ei≥0 ∀i∑N
i=1 Ei≤Emax

N∑
i=1

p(1− p)i−1 1

2
log(1 + Ei )− 1.05.
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Connection to the online throughput:

T − 1.05 ≤ C ≤ T .

Bounded gap to AWGN capacity:

log(1 + pEmax)− 1.77 ≤ CTxRx ≤ log(1 + pEmax).
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Bounding CEH
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Capacity Improvement due to CSIR

Proposition

In a general channel (not necessarily stationary memoryless), capacity
improvement due to receiver side information is bounded by the entropy
rate of the side information itself.

For the Bernoulli case, capacity improvement is bounded by H(p) ≤ 1.

Capacity with no receiver energy arrival information:

log(1 + pEmax)− 2.77 ≤ CTx ≤ log(1 + pEmax).
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Capacity

Theorem

The capacity of the energy harvesting channel with i.i.d. energy arrivals is
given by

C causal
Tx = lim

n→∞

1

n
sup

PUn∈Pn(b)
I (Un;Y n), (1)

C causal
TxRx = lim

n→∞

1

n
sup

PUn∈Pn(b)
I (Un;Y n|En), (2)

Cnoncausal
TxRx = lim

n→∞

1

n
sup

PXn|En∈Fn(b)
I (X n;Y n|En), (3)

where

Fn(b) =
{
PX n|En s.t. ∀en ∈ En, a.s. for t = 1, . . . , n :

X 2
t ≤ Bt , B0 = b, Bt = min{Bt−1 − |Xt−1|2 + et ,Emax}

}
.
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1

n
sup

PXn|En∈Fn(b)
I (X n;Y n|En), (3)

where

Pn(b) =
{
PUn s.t. Ut : et → X for t = 1, . . . , n and ∀en ∈ Ena.s. :

|Ut(e
t)|2 ≤ Bt , B0 = b, Bt = min{Bt−1 − |Ut−1(et−1)|2 + et ,Emax}

}
.
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Connection to the Energy Allocation Problem

Theorem

The capacities of the energy harvesting channel with various levels of
energy arrival information can be bounded by

T online − 1.05− H(gt(Et)) ≤ C causal
Tx ≤ T online,

T online − 1.05 ≤ C causal
TxRx ≤ T online,

T offline − 1.05 ≤ Cnoncausal
TxRx ≤ T offline

where H(gt(Et)) is the entropy rate of the power control process.

Also for
η ≥ 0.7473,

ηT online − H(gt(Et)) ≤ C causal
Tx ≤ T online,

ηT online ≤ C causal
TxRx ≤ T online,

ηT offline ≤ Cnoncausal
TxRx ≤ T offline.
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Approximate Capacity for General i.i.d. Processes

Theorem:

The capacity of the energy harvesting channel can be approximated as

1

2
log(1 + µ)− 3.85 ≤ C causal

Tx ≤ 1

2
log(1 + µ),

1

2
log(1 + µ)− 1.77 ≤ C causal

TxRx ≤
1

2
log(1 + µ),

1

2
log(1 + µ)− 1.77 ≤ Cnoncausal

TxRx ≤ 1

2
log(1 + µ).

Proof: For the case where the the receiver does not have side information
devise a new online power control policy which is universally near-optimal
and at the same time has low entropy rate:

gt = q(1− q)jEmax ,

where j = t −max{t ′ ≤ t : Bt = Emax} and q = µ/Emax .
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Insights

C ≈ 1

2
log(1 + E[min{Et ,Emax}])

0

fE (x)

x

Ē Emax

Emax > Ē

C ≈ 1

2
log(1 + E[Et ])

0

fẼ (x)

x

Emax

Emax < Ē

C ≈ 1

2
log(1 + E[Ẽt ])
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Home IoT
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Two topologies for home IoT

Current practice:

Transfer energy at a constant rate.

Periodically charge transmitter’s battery.
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Exploit Side Information

Charger observes the output of the
channel.

Charger observes the input to the
channel.
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Binary Example

Transmitter ReceiverM

Charger

Xt

Et

M̂

Yt = Xt Xt ∈ {0, 1} Et ∈ {0, 1}

Charger has no side information:
I Et = 1, ∀t: C∅ = 1 bits/channel use, Γ = 1 unit/channel use.

Charger knows the message:
I Charge when the transmitter intends to send a 1:

CM = 1 bits/channel use, Γ = 1/2 units/channel use.

Charger can observe the transmitted signal X t−1:
I Charge when battery is empty:

CX = 1 bits/channel use, Γ = 1/2 units/channel use.
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Charger Side Information

Transmitter PY |X ReceiverM

Emax

Charger

Xt Yt

Et

M̂

X t−1 Y t−1

C∅: Generic Charger; f Ct : ∅ → E
CM : Charger and Tx connected through a backhaul link; f Ct :M→ E
CX : Charger observes the transmitted signal; f Ct : X t−1 → E .

CY : Receiver charges the transmitter; f Ct : Yt−1 → E
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Remotely Powered Communications

Transmitter PY |X ReceiverM

Emax

Charger

Xt Yt

Et

M̂

X t−1 Y t−1

Charger: Dynamically decide how much energy to transfer to the
receiver based on its side information regarding the transmission
(subject to an average power constraint Γ).

Transmitter: Dynamically adapt its transmission scheme based on its
instantaneous battery level.

Exploiting side information at the charger can enable performance close to
the centralized case.
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Receiver powering transmitter

Transmitter Channel Receiver

BatteryEmax

Xt Yt

Et(Y
t−1)

Receiver can convey both feedback information and energy with its
charging actions.
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Simultaneous Information and Energy Transfer

Transmitter PY |X ReceiverM
Xt Yt

M̂

Maximize information rate under a minimum received power constraint.

C (P) = max
p(X ):E[b(Y )]≥P

I (X ;Y ).

For a BSC(α),

C (P) =

{
1− h2(α), 0 ≤ P ≤ 1/2
h2(P)− h2(p), 1/2 ≤ P ≤ 1− α.

Ayfer Özgür Information-Theoretic Capacity July’16 24 / 31



Can feedback increase capacity?

Transmitter Channel

BEC

Receiver

BatteryEmax = 1

Et

Xt Yt

Yt−1

X = {0, 1} Y = {0, 1, e}

α

α

1− α

1− α

1 1

0 0

e

Et =

{
1 , t odd

0 , t even

Bt =

{
1 , t odd

1− Xt−1 , t even
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A claim by Shannon
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A claim by Shannon
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Feedback increases capacity

α

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Capacity of the EH-BEC with and without feedback

Cfb

C
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Open Questions and Directions

Extension to more realistic energy harvesting and battery models.

Coding and modulation techniques.

Networking and multi-user systems.
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