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Department of ECE

University of Maryland

ulukus@umd.edu

1



So Far, We Learned...

• Single-user communication with an energy harvesting transmitter.

• Energy arrives (is harvested) during the communication session.

• A non-trivial shift from the conventional battery powered systems.

• Transmission policy is adapted to energy arrivals.

• Energy causality constraint and battery capacity limit.

• Objective: Maximize average throughput.
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The Optimal Policy for Emax = ∞
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• Upper staircase is the cumulative energy arrivals

• Feasible energy consumption lies below the staircase

• Transmit power remains constant in each epoch

• The tightest curve under the cumulative energy arrival staircase
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The Optimal Policy for Emax < ∞
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∑
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(
∑

Ei − Emax)
+

• Upper staircase: energy arrivals

• Lower staircase: finite battery constraint (no overflows)

• Any feasible energy consumption curve must lie in between

• Power remains constant in each epoch

• The tightest curve in the feasibility tunnel
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Single-User Optimal Policy for Fading Channel

• Directional water-filling algorithm.

• First: fill each incoming energy till next energy arrival.
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• Second: Allow transfer of energy one by one to the right only.

• Equalize the water level if the water level is higher in the left.
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Equivalence of Feasibility Tunnel and Directional Water-filling
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Equivalence of Feasibility Tunnel and Directional Water-filling
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Single-User Channel with Data Arrivals

• Data is not available before communication; arrives during transmission with amounts {Bi}.

• Data causality: Source cannot send data packets before receiving them.

• Throughput maximization problem:

max
p

N

∑
i=1

1

2
log(1+ pi),

N

∑
i=1

g(pi)

s.t.
k

∑
i=1

pi ≤
k

∑
i=1

Ei, ∀k

k

∑
i=1

g(pi)≤
k

∑
i=1

Bi, ∀k

• Either data or energy are bottlenecks.

• Solution given by tightest curve under both cumulative energy and data arrivals:

rn = min

{

1

2
log

(

∑
in
j=1 E j −∑

in−1

j=1 22r j −1

in − in−1

)

,
∑

in
j=1 B j −∑

in−1

j=1 r j

in − in−1

}
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Single-User Channel with Data Arrivals

• Data is not available before communication; arrives during transmission with amounts {Bi}.

• Data causality: Source cannot send data packets before receiving them.

• Throughput maximization problem:

max
r

N

∑
i=1

ri

s.t.
k

∑
i=1

22ri −1 ≤
k

∑
i=1

Ei, ∀k

k

∑
i=1

ri ≤
k

∑
i=1

Bi, ∀k

• Either data or energy are bottlenecks.

• Solution given by tightest curve under both cumulative energy and data arrivals:

rn = min

{

1

2
log
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∑
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j=1 E j −∑

in−1

j=1 22r j −1

in − in−1

)

,
∑
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j=1 B j −∑
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j=1 r j

in − in−1

}
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Single-User Channel with Data Arrivals: Example

Optimal policy

∑
k

i=1
Bi

∑
k

i=1
Ei

• Optimal policy: Tightest curve under both cumulative energy and data arrivals.
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Receiver-Side Energy Harvesting

Rx

energy
buffer
energy

Ei Ēi

data buffer

Tx

buffer

• Receiver spends power mainly in decoding.

• Decoding causality constraints:

– Receiver cannot spend energy in decoding before harvesting it.

• Transmitters should make sure receivers have enough energy to decode.

• Decoding power φ(r) is convex and increasing. Examples:

– linear φ(r) = ar+b

– exponential φ(r) = c2dr + e, specifically, φ(r) = 22r −1 = g−1
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Receiver-Side Energy Harvesting

Rx

energy
buffer
energy

Ei Ēi

data buffer

Tx

buffer

• Throughput maximization problem:

max
p

N

∑
i=1

g(pi)

s.t.
k

∑
i=1

pi ≤
k

∑
i=1

Ei, ∀k

k

∑
i=1

φ(g(pi))≤
k

∑
i=1

Ēi, ∀k
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Receiver-Side Energy Harvesting: Data Arrival Interpretation

data buffer

energy
buffer
energy

Tx Rx

data arrival effect

φ(·)

Ei Ēi

buffer

• Decoding causality constraints:

k

∑
i=1

φ(g(pi))≤
k

∑
i=1

Ēi, ∀k

• Interpretation: Gate keeper effect; generalized data arrival effect

k

∑
i=1

φ(ri)≤
k

∑
i=1

Ēi, ∀k

• Consider φ(r) = r
k

∑
i=1

ri ≤
k

∑
i=1

Ēi ,
k

∑
i=1

Bi, ∀k
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Receiver-Side Energy Harvesting: Virtual Relay Interpretation

data buffer

energy
buffer
energy

buffer
energy

Tx

Ei

Rx

Ēi

Virtual Relay

energy arrival effect

φ(·)

buffer

• Two-hop setting with a virtual relay.

• Relay passes data only if it has energy to forward.

• Relay has no data buffer; rate in equals rate out.

• {Ēi} and φ control the amount of energy the relay has to forward data.
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Receiver-Side Energy Harvesting: Solution

data buffer

energy
buffer
energy

Tx Rx

data arrival effect

φ(·)

Ei Ēi

buffer

• Either transmitter’s or receiver’s energies are bottlenecks.

• Decoding costs interpreted as generalized data arrivals.

• Define ψ , φ−1, and f , g−1.

• Find tightest curve under both cumulative transmitter’s energy and generalized data arrivals:

rn = min

{

g

(

∑
in
j=1 E j −∑

in−1

j=1 f (r j)

in − in−1

)

,ψ

(

∑
in
j=1 Ē j −∑

in−1

j=1 φ(r j)

in − in−1

)}
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Receiver-Side Energy Harvesting: Example

Optimal policy

∑
k

i=1
Ei

∑
k

i=1
Ēi

• φ(r) = r.

• Optimal policy: Tightest curve under both cumulative transmitter’s and receiver’s energies.
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Scheduling in Multi-user Energy Harvesting Systems

• Broadcasting with an energy harvesting transmitter

– An energy harvesting transmitter sends messages to two users

– E.g., a wireless access device sending different messages to users

• Multiple access with energy harvesting transmitters

– Energy harvesting transmitters communicating with a single receiver

– E.g., multiple sensors sending data to a center

• Interference channel with energy harvesting transmitters

– Tx-Rx pairs communicate simultaneously where Txs are energy harvesting.

– E.g., multiple sensors sending data to different centers.

• Two-hop communication with energy harvesting nodes

– Source and relay nodes send messages using harvested energy.

– E.g., end-to-end data delivery in sensor networks.
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Broadcasting with an Energy Harvesting Transmitter

Tx

Rx1

Rx2

E

B1

B2

• Energy arrives (is harvested) during the communication session.

• Assume battery has infinite storage capacity: Emax = ∞

• Broadcasting data to two users by adapting to energy arrivals

• Objective: maximize the data departure region
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Broadcast Channel Model

Tx

Rx1

Rx2

E

B1

B2

• AWGN broadcast channel:

Y1 = X +N1, Y2 = X +N2

where N1 ∼ N (0,1), N2 ∼ N (0,σ2)

• σ2 > 1: 2nd user is degraded

• We call 1st user stronger and 2nd user weaker
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Broadcast Channel Model

R2

C2

R1C1

r1 ≤
1

2
log2 (1+αP)

r2 ≤
1

2
log2

(

1+
(1−α)P

αP+σ2

)

• We work in the (r1,r2) domain:

P = 22(r1+r2)+(σ2 −1)22r2 −σ2 , F(r1,r2)

• F(r1,r2) is the minimum power required to send at rates (r1,r2)
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Energy Model

0

epoch 1 epoch 4

E0 E1 E2 E3 E4 E5

(B1, B2)

• Energy is harvested during the course of communication.

• We will consider offline policies.

• Energy causality constraints: energy that has not arrived cannot be used

∫ te
i

0
F(r1,r2)(τ)dτ ≤

i−1

∑
j=0

E j, ∀i
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Constraints on the Power Policy

• Energy arrivals known deterministically a priori

0 t

∫
t

0
F(r1,r2)(τ)dτ

s1
s2 s3

∑
h(t)
i=0

Ei

• Upper staircase: energy arrivals

• Any feasible energy consumption curve must lie below the upper staircase
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Find the Maximum Departure Region

• The maximum departure region D(T ): union of (B1,B2) pairs achievable by some rate

allocation policy that satisfies the energy causality constraint.

0
T

.......

E0 E1 E2 EK−1

(r12, r22)

ℓ2 ℓK ℓK+1

(r1(K+1), r2(K+1))(r11, r21) (r1K, r2K)

ℓ1

EK

• Transmission rates, and power, remain constant between energy harvests.

• Denote the rates that go to users as (r1i,r2i) over epoch i.

• The power at epoch i: F(r1i,r2i)

• The energy spent during epoch i: F(r1i,r2i)ℓi

• The energy causality constraint reduces to constraints on (r1i,r2i):

k

∑
i=1

F(r1i,r2i)ℓi ≤
k−1

∑
i=0

Ei, k = 1, . . . ,K +1
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Finding the Maximum Departure Region

• D(T ) is a strictly convex region.

• Characterize D(T ) by solving optimization problems for all µ1,µ2 ≥ 0:

max
r1,r2

µ1

K+1

∑
i=1

r1iℓi +µ2

K+1

∑
i=1

r2iℓi

s.t.
k

∑
i=1

F(r1i,r2i)ℓi ≤
k−1

∑
i=0

Ei, k = 1, . . . ,K +1

B2

B1

D(T )

(µ1, µ2)
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Finding the Maximum Departure Region

• The Lagrangian function

L = µ1

K+1

∑
i=1

r1iℓi +µ2

K+1

∑
i=1

r2iℓi −
K+1

∑
k=1

λk

(
k

∑
i=1

F(r1i,r2i)ℓi −
k−1

∑
i=0

Ei

)

+
K+1

∑
i=1

γ1ir1i +
K+1

∑
i=1

γ2ir2i

• Total power in terms of Lagrange multipliers

Pi = max

{

µ1 + γ1i

∑
K+1
k=i λk

−1,
µ2 + γ2i

∑
K+1
k=i λk

−σ2

}

• Structural properties of the optimal policy:

– Optimal total transmit power, {F(r∗1i,r
∗
2i)}K+1

i=1 , is independent of µ1,µ2.

– In particular, it is the same as the optimal single-user transmit power.
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Single User Optimal Policy

• Single user optimal policy is found by calculating the tightest curve below the energy arrival

curve:

T

T

E0 E3 E4 E5 E6E2E1

∑
Ei

• Slope of the curve is the allocated power

• Power is monotonically increasing

26



Structure of the Optimal Policy

• Total transmit power is the same as the single-user case.

• The power shares follow a cut-off structure:

• Cut-off level Pc

Pc =
µ−1

σ2 −µ

where µ = µ2
µ1

and 1 < µ < σ2.

• If below Pc, then, only transmit to the stronger user.

• Otherwise, stronger user’s power share is Pc.

• Extreme cases:

– If µ ≤ 1, only the stronger user’s data is transmitted

– If µ ≥ σ2, only the weaker user’s data is transmitted
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The Structure of the Optimal Policy

T

T

T

E0 E3 E4 E5 E6E2E1

Pc

P

∑i
j=0 Ej
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Broadcast Channel with Finite Emax

Tx

Rx1

Rx2

E

Emax

B1

B2

• (B1,B2) bits to be sent and battery capacity Emax < ∞

• AWGN broadcast channel:

Y1 = X +N1, Y2 = X +N2

• N1 ∼ N (0,1) and N2 ∼ N (0,σ2) with σ2 > 1

• 1st user stronger and 2nd user weaker
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Broadcast Channel with Finite Emax

0

epoch 1 epoch 4

E0 E1 E2 E3 E4 E5

(B1, B2)

• Incoming energies are smaller than Emax: Ei ≤ Emax

• Energy causality constraints: energy that has not arrived cannot be used

∫ te
i

0
F(r1,r2)(u)du ≤

i−1

∑
j=0

E j, ∀i

• No-energy-overflow condition: energy overflow (wasting) is suboptimal

h(t)

∑
j=0

E j −
∫ t

0
F(r1,r2)(u)du ≤ Emax, ∀t
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Constraints on the Power Policy

0

(∑Ei−Emax)
+

s1
s2 s3 t

Emax

∫
t

0
F(r1,r2)(τ)dτ

∑Ei

• Energy causality constraints: energy that has not arrived cannot be used

∫ te
i

0
F(r1,r2)(u)du ≤

i−1

∑
j=0

E j, ∀i

• No-energy-overflow condition: energy overflow (wasting) is suboptimal

h(t)

∑
j=0

E j −
∫ t

0
F(r1,r2)(u)du ≤ Emax, ∀t
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Find the Maximum Departure Region

0
T

.......

E0 E1 E2 EK−1

(r12, r22)

ℓ2 ℓK ℓK+1

(r1(K+1), r2(K+1))(r11, r21) (r1K, r2K)

ℓ1

EK

• The transmission rates, and hence the transmission power, remain constant between energy

harvests in any optimal policy

• The energy causality constraint reduces to constraints on (r1i,r2i):

k

∑
i=1

F(r1i,r2i)ℓi ≤
k−1

∑
i=0

Ei, k = 1, . . . ,K +1

• The no-energy-overflow condition:

k

∑
i=0

Ei −
k

∑
i=1

F(r1i,r2i)ℓi ≤ Emax, k = 1, . . . ,K
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Finding the Maximum Departure Region

• D(T ) is a strictly convex region.

• Characterize D(T ) by solving optimization problems for all µ1,µ2 ≥ 0:

max
r1,r2

µ1

K+1

∑
i=1

r1iℓi +µ2

K+1

∑
i=1

r2iℓi

s.t.
k

∑
i=1

F(r1i,r2i)ℓi ≤
k−1

∑
i=0

Ei, 1 ≤ k ≤ K +1

k

∑
i=0

Ei −
k

∑
i=1

F(r1i,r2i)ℓi ≤ Emax, 1 ≤ k ≤ K
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Finding the Maximum Departure Region

• The Lagrangian function

L = µ1

K+1

∑
i=1

r1iℓi +µ2

K+1

∑
i=1

r2iℓi −
K+1

∑
k=1

λk

(
k

∑
i=1

F(r1i,r2i)ℓi −
k−1

∑
i=0

Ei

)

−
K

∑
k=1

ηk

(
k

∑
i=0

Ei −
k

∑
i=1

F(r1i,r2i)ℓi −Emax

)

+
K+1

∑
i=1

γ1ir1i +
K+1

∑
i=1

γ2ir2i

• Total power in terms of Lagrange multipliers

Pi = max

{

µ1
(

∑
K+1
k=i λk −∑K

k=i ηk

) −1,
µ2

(

∑
K+1
k=i λk −∑K

k=i ηk

) −σ2

}
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Structure of the Optimal Policy

• Optimal total transmit power, {F(r∗1i,r
∗
2i)}K+1

i=1 , is independent of µ1,µ2.

• In particular, it is the same as the optimal single-user transmit power.

• The power shares follow a cut-off structure:

• Cut-off level Pc

Pc =
µ−1

σ2 −µ

where µ = µ2
µ1

and 1 < µ < σ2.

• If below Pc, then, only the stronger user

• Otherwise, stronger user’s power share is Pc.

• Extreme cases:

– If µ ≤ 1, only the stronger user’s data is transmitted

– If µ ≥ σ2, only the weaker user’s data is transmitted
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The Structure of the Optimal Policy

T

T

T

EmaxEmax
Emax Emax Emax Emax Emax

E0 E3 E4 E5 E6E2E1

E1 E2 E3 E4 E5 E6E0

Pc

P
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Broadcast Channel with Energy Harvesting Transmitter and Receivers

Rx2

B1

B2

Ē1i

Ē2i

Ei

Tx

Rx1

• Transmitter uses superposition coding.

• Weak user only decodes its message:

– Decoding power is a function of its own rate: φ(r2).

• Strong user decodes both messages:

– Decoding power is a function of sum rate: φ(r1 + r2).

37



Broadcast Channel with Energy Harvesting Transmitter and Receivers

• Characterizing the maximum departure region D(N):

max
r1,r2

µ1

N

∑
i=1

r1i +µ2

N

∑
i=1

r2i

s.t.
k

∑
i=1

F (r1i,r2i)≤
k

∑
i=1

Ei, ∀k

k

∑
i=1

φ(r1i + r2i)≤
k

∑
i=1

Ē1i, ∀k

k

∑
i=1

φ(r2i)≤
k

∑
i=1

Ē2i, ∀k

• Consider exponential decoding power function: φ(r) = 22r −1.
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Problem Formulation

• Change of variables: pti , 22(r1i+r2i), and p2i , 22r2i −1.

• Problem in terms of powers:

max
pt ,p2

µ1

N

∑
i=1

g(pti)+(µ2 −µ1)
N

∑
i=1

g(p2i)

s.t.
k

∑
i=1

(σ2 −1)p2i + pti ≤
k

∑
i=1

Ei, ∀k

k

∑
i=1

pti ≤
k

∑
i=1

Ē1i, ∀k

k

∑
i=1

p2i ≤
k

∑
i=1

Ē2i, ∀k

pti ≥ p2i, ∀i
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Problem Decomposition

• Problem decomposition: Inner problem for fixed p2

max
pt ,p2

µ1

N

∑
i=1

g(pti)+(µ2 −µ1)
N

∑
i=1

g(p2i)

s.t.
k

∑
i=1

pti ≤
k

∑
i=1

Ei − (σ2 −1)p2i, ∀k

k

∑
i=1

pti ≤
k

∑
i=1

Ē1i, ∀k

k

∑
i=1

p2i ≤
k

∑
i=1

Ē2i, ∀k

pti ≥ p2i, ∀i
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Problem Decomposition: Inner Problem

• Inner problem: For fixed p2, solve the following problem with minimum power constraints:

H(p2), max
pt

N

∑
i=1

g(pti)

s.t.
k

∑
i=1

pti ≤
k

∑
i=1

Vi, ∀k

pti ≥ p2i, ∀i

p2i

1: Initialization 2: Filling last bin first 3: Filling middle bin 4: Directional water-filling
from first bin
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Problem Decomposition

• Problem decomposition: Inner problem for fixed p2

max
pt ,p2

µ1

N

∑
i=1

g(pti)+(µ2 −µ1)
N

∑
i=1

g(p2i)

s.t.
k

∑
i=1

pti ≤
k

∑
i=1

Ei − (σ2 −1)p2i, ∀k

k

∑
i=1

pti ≤
k

∑
i=1

Ē1i, ∀k

k

∑
i=1

p2i ≤
k

∑
i=1

Ē2i, ∀k

pti ≥ p2i, ∀i
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Problem Decomposition: Outer Problem

• Problem decomposition: Outer problem in terms of p2

max
p2

µ1H(p2)+(µ2 −µ1)
N

∑
i=1

g(p2i)

s.t.
k

∑
i=1

p2i ≤
k

∑
i=1

Ē2i, ∀k

k

∑
i=1

pti ≤
k

∑
i=1

Ē1i, ∀k

k

∑
i=1

p2i ≤
k

∑
i=1

Ē2i, ∀k

pti ≥ p2i, ∀i
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Problem Decomposition: Outer Problem

• Problem decomposition: Outer problem in terms of p2

max
p2

µ1H(p2)+(µ2 −µ1)
N

∑
i=1

g(p2i)

s.t.
k

∑
i=1

p2i ≤
k

∑
i=1

Ē2i, ∀k

• H(p2) is a decreasing concave function in p2.

• For a fixed increasing p2, the solution pt is also increasing.

• Convex problem. Possibly not all energies will be used.

• Iterate between inner and outer problems until convergence.
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Conclusions for the Broadcasting Scenario

• Energy harvesting transmitter with infinite and finite capacity battery

• Maximize the departure region.

• Obtain the structure such as

– the monotonicity of the transmit power

– the cut-off power property

• Energy harvesting transmitter and receivers:

– Exponential decoding costs.

– Superposition coding: Strong user’s decoding cost higher than weak user’s.

– Maximum departure region found by inner/outer problem decomposition.
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Optimal Packet Scheduling: Multiple Access Channel

• AWGN MAC channel Y = X1 +X2 +Z, Z ∼ N(0,1).

• The capacity region is a pentagon denoted as C (P1,P2):

R1 ≤ g(P1), R2 ≤ g(P2), R1 +R2 ≤ g(P1 +P2)

where g(p) = 1
2

log(1+ p).

user 1

user 2

receiver

E

E

B1

B2

Cs

Cs

R2

C2

R1C1
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Problem Formulation

• Maximize departure region D(T ) by time T .

T

T

E10

E20

E11

. . .

E1(K−1)

E23 E24

E15

E2K

. . .

B2

B1

t0

t0

s1

s1

s2 s3 s4 sK−1 sK

s2 s3 s4 sK−1 sK

2

B2

4

3

(B1, B2)

1

B1
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Characterizing D(T )

• Transmission rate remains constant between energy harvests.

• For any feasible transmit power sequences p1, p2 over [0,T ), the departure region is a

pentagon defined as

B1 ≤
N

∑
n=1

g(p1n)ln

B2 ≤
N

∑
n=1

g(p2n)ln

B1 +B2 ≤
N

∑
n=1

g(p1n + p2n)ln

• D(T ) is a union of (B1,B2) and convex.

• The boundary points maximize µ1B1 +µ2B2 for some µ1,µ2 ≥ 0.
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µ1 = µ2

• The problem becomes maxp1,p2
B1 +B2.

• Sum of powers has same “majorization” property as in single-user.

• Merge energy arrivals of the users, get the optimal sum powers, p1, . . ., pn

• Each feasible sequence of p1n and p2n gives a pentagon.

• Union of them is a larger pentagon: dominant faces on the same line.

• Need to identify the boundary of this larger pentagon.
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Achieving Corner Points of the Boundary

• Maximize B1 s.t. B1 +B2 is maximized at the same time ⇒ point 1.

– Equalize the transmit powers of the first user as much as possible

– Additionally: both users’ energy constraints are tight if sum power changes.

si1
Tsi2

p12

p11

p13

p14

p15

∑
E1i

· · ·
E2K

t0 s1

E22

s3 s4

E24

sKs2

E10

· · ·
E1K

t0 s1

E11 E13

s2 s3 s4
sK

E20

∑
E1i+E2i

p1

p2

p3

B̄1

B̄2

2

B2

4

3

(B1, B2)

1

B1
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µ1 = 0 or µ2 = 0

• Maximize B1 or B2 ⇒ a single-user scenario.

• Given p∗1n, maximize B2: backward/directional waterfilling with base level p∗1n ⇒ point 3.

E20

· · ·
EK

t0 s1

E22

s3 s4

E24

sKs2

T

p11

s1 s2 s3 s4

P

E10

· · ·
EK

t0 s1

E11 E13

s2 s3 s4
sK

p12

p14

B̄1

B̄2 2

B2

4

3

(B1, B2)

1

B1
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µ1,µ2 > 0

• Each boundary point corresponds to a corner point on some pentagon.

• µ1 > µ2 ⇒ achieving points between point 1 and point 3:

max
p1,p2

(µ1 −µ2)∑
n

g(p1n)ln +µ2 ∑
n

g(p1n + p2n)ln

s.t.

j

∑
n=1

p1nln ≤
j−1

∑
n=0

E1n, ∀ j : 0 < j ≤ N

j

∑
n=1

p2nln ≤
j−1

∑
n=0

E2n, ∀ j : 0 < j ≤ N

2

B2

4

3

(B1, B2)

1

B1
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Generalized Iterative Backward Waterfilling

• Solve the problem via generalized iterative backward waterfilling:

• Given p∗
2, solve for p1:

max
p1

(µ1 −µ2)
N

∑
n=1

g(p1n)ln +µ2

N

∑
n=1

g(p1n + p∗2n)ln

s.t.

j

∑
n=1

p1nln ≤
j−1

∑
n=0

E1n, 0 < j ≤ N

• Once p∗
1 is obtained, we do a backward waterfilling for the second user.

• We perform the optimization for both users in an alternating way.

• The iterative algorithm converges to the global optimal solution.
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Multiple Access Channel with Energy Harvesting Transmitters and Receiver

Tx2

E2i

E1i

Ēi

B1

B2

Rx

Tx1

• Decoding power is a function of the two incoming rates r1, r2.

• Structure of the function depends on the decoding scheme:

– Simultaneous decoding; successive cancellation decoding.
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Multiple Access Channel: Simultaneous Decoding

• Decoding power is a function of the sum rate: φ(r1 + r2).

• A policy {p1i, p2i} is feasible if

k

∑
i=1

p1i ≤
k

∑
i=1

E1i, ∀k

k

∑
i=1

p2i ≤
k

∑
i=1

E2i, ∀k

k

∑
i=1

φ(g(p1i + p2i))≤
k

∑
i=1

Ēi, ∀k

• Consider exponential decoding function φ(r) = 22r −1 = g−1. The last inequality becomes

k

∑
i=1

p1i + p2i ≤
k

∑
i=1

Ēi, ∀k
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Multiple Access Channel: Simultaneous Decoding

• Characterizing the maximum departure region D(N):

max
p1,p2

(µ1 −µ2)
N

∑
i=1

g(p1i)+µ2

N

∑
i=1

g(p1i + p2i)

s.t.
k

∑
i=1

p1i ≤
k

∑
i=1

E1i, ∀k

k

∑
i=1

p2i ≤
k

∑
i=1

E2i, ∀k

k

∑
i=1

p1i + p2i ≤
k

∑
i=1

Ēi, ∀k
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Multiple Access Channel: Simultaneous Decoding

Tx2

E2i

E1i

Ēi

B1

B2

Rx

Tx1

Tx2

E2i

E1i

Ēi

B1

B2

Rx

Tx1

• Receiver-side constraints become joint transmitter-side constraints.

max
p1,p2

(µ1 −µ2)
N

∑
i=1

g(p1i)+µ2

N

∑
i=1

g(p1i + p2i)

s.t.
k

∑
i=1

p1i ≤
k

∑
i=1

E1i, ∀k

k

∑
i=1

p2i ≤
k

∑
i=1

E2i, ∀k

k

∑
i=1

p1i + p2i ≤
k

∑
i=1

Ēi, ∀k
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Problem Decomposition

• Problem decomposition: Inner problem for fixed p1

max
p1,p2

(µ1 −µ2)
N

∑
i=1

g(p1i)+µ2

N

∑
i=1

g(p1i + p2i)

s.t.
k

∑
i=1

p1i ≤
k

∑
i=1

E1i, ∀k

k

∑
i=1

p2i ≤
k

∑
i=1

E2i, ∀k

k

∑
i=1

p2i ≤
k

∑
i=1

Ēi − p1i, ∀k
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Problem Decomposition: Inner Problem

• Inner problem: Fix a feasible p1; solve the following fading problem:

G(p1), max
p2

N

∑
i=1

g(p1i + p2i)

s.t.
k

∑
i=1

p2i ≤ Qi, ∀k

• Directional water filling over the inverse of the fading levels: {1+ p1i}.
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Problem Decomposition

• Problem decomposition: Inner problem for fixed p1

max
p1,p2

(µ1 −µ2)
N

∑
i=1

g(p1i)+µ2

N

∑
i=1

g(p1i + p2i)

s.t.
k

∑
i=1

p1i ≤
k

∑
i=1

E1i, ∀k

k

∑
i=1

p2i ≤
k

∑
i=1

E2i, ∀k

k

∑
i=1

p2i ≤
k

∑
i=1

Ēi − p1i, ∀k
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Problem Decomposition: Outer Problem

• Problem decomposition: Outer problem in terms of p1

max
p1

(µ1 −µ2)
N

∑
i=1

g(p1i)+µ2G(p1)

s.t.
k

∑
i=1

p1i ≤
k

∑
i=1

E1i, ∀k

k

∑
i=1

p1i ≤
k

∑
i=1

Ēi, ∀k

k

∑
i=1

p1i ≤
k

∑
i=1

Ēi, ∀k
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Problem Decomposition: Outer Problem

• Problem decomposition: Outer problem in terms of p1

max
p1

(µ1 −µ2)
N

∑
i=1

g(p1i)+µ2G(p1)

s.t.
k

∑
i=1

p1i ≤
k

∑
i=1

E1i, ∀k

• G(p1) is a decreasing concave function in p1.

• Convex problem. Possibly not all energies will be used.

• Iterate between inner and outer problems until convergence.
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Multiple Access Channel: Successive Cancellation Decoding

• Rates achieved by decoding corner points, and time sharing if necessary.

• For µ1 > µ2, we always hit a lower corner point at each time slot:

r2 = g

(
p2

1+ p1

)

, r1 = g(p1)

• Receiver decodes sequentially:

– First decodes second user’s message by treating first user’s signal as noise.

– Then subtracts second user’s signal and decodes first user’s message interference free.

• Decoding power is spent sequentially: φ(r2)+φ(r1).
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Multiple Access Channel: Successive Cancellation Decoding

• A policy {p1i, p2i} is feasible if

k

∑
i=1

p1i ≤
k

∑
i=1

E1i, ∀k

k

∑
i=1

p2i ≤
k

∑
i=1

E2i, ∀k

k

∑
i=1

φ(g(p1i))+φ

(

g

(
p2i

1+ p1i

))

≤
k

∑
i=1

Ēi, ∀k

• Departure region is non-convex. Time sharing may be necessary.

• By convexity of φ, successive decoding is more energy saving than simultaneous decoding:

φ(g(p1))+φ

(

g

(
p2

1+ p1

))

≤ φ(g(p1 + p2))

• Consider exponential decoding function φ(r) = 22r −1 = g−1.

64



Problem Formulation

• Characterizing the maximum departure region D(N):

max
p1,p2

µ1

N

∑
i=1

g(p1i)+µ2

N

∑
i=1

g

(
p2i

1+ p1i

)

s.t.
k

∑
i=1

p1i ≤
k

∑
i=1

E1i, ∀k

k

∑
i=1

p2i ≤
k

∑
i=1

E2i, ∀k

k

∑
i=1

p1i +
p2i

1+ p1i

≤
k

∑
i=1

Ēi, ∀k

• Signomial program.

• Signomial program.
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Problem Formulation

• Problem in terms of rates:

max
r1,r2

µ1

N

∑
i=1

r1i +µ2

N

∑
i=1

r2i

s.t.
k

∑
i=1

22r1i −1 ≤
k

∑
i=1

E1i, ∀k

k

∑
i=1

22r1i
(
22r2i −1

)
≤

k

∑
i=1

E2i, ∀k

k

∑
i=1

22r1i +22r2i −2 ≤
k

∑
i=1

Ēi, ∀k

• Signomial program.

• Signomial program.
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Problem Formulation

• Problem in terms of rates:

max
r1,r2

µ1

N

∑
i=1

r1i +µ2

N

∑
i=1

r2i

s.t.
k

∑
i=1

22r1i −1 ≤
k

∑
i=1

E1i, ∀k

k

∑
i=1

22r1i
(
22r2i −1

)
≤

k

∑
i=1

E2i, ∀k

k

∑
i=1

22r1i +22r2i −2 ≤
k

∑
i=1

Ēi, ∀k

• Non-convex problem.

• Signomial program:

– Local optimal (KKT) points can be found by majorization maximization arguments.
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Conclusions for the Multiple Access Scenario

• Energy harvesting transmitters sending messages to a single access point.

• The problem: maximization of the departure region.

• Obtain the structure using generalized iterative waterfilling.

• Energy harvesting transmitters and receiver:

– Decoding power is function of both rates r1,r2.

– Structure of the decoding function depends on the decoding scheme:

∗ Simultaneous decoding: φ(r1 + r2).

∗ Successive cancellation decoding: φ(r2)+φ(r1).
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Interference Channel with an Energy Harvesting Transmitter

Tx1

Tx2

Rx1

Rx2

E1j

E2j

B1i

B2i

√
a

√
b

1

1

Emax,1

Emax,2

• Two transmitter-receiver pairs communicate in the same medium simultaneously.

• Energy arrives (is harvested) during the communication session.

• Batteries have finite storage capacities: Emax < ∞

• Objective: Maximize sum-rate of the users by adapting to energy arrivals
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Interference Channel Model

Tx1

Tx2

Rx1

Rx2

E1j

E2j

B1i

B2i

√
a

√
b

1

1

Emax,1

Emax,2

• AWGN interference channel:

Y1 = X1 +
√

aX2 +N1, Y2 = X2 +
√

bX1 +N2

where N1 ∼ N (0,1), N2 ∼ N (0,1)

• Sum-rate under E[X2
1 ]≤ p1 and E[X2

2 ]≤ p2 denoted as r(p1, p2).
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Energy Model

0

Ej,0 Ej,1 Ej,N−1

t1

Ej,2

t2

ℓ1 ℓ2

tN−1 T

ℓN

• Energy is harvested during the course of communication.

• We will consider offline policies.

• We have a slotted system with slot duration τ.

• Energy causality constraints in the Txs: energy that has not arrived cannot be used

n

∑
i=1

p j,iℓi ≤
n−1

∑
i=0

E j,i, n = 1, . . . ,N and j = 1,2

• Battery limit constraints in the Txs: energy overflows are suboptimal:

n

∑
i=1

(p j,iℓi −E j,i)+E j,max −E j,i+1 ≥ 0, n = 1, . . . ,N −1, and j = 1,2
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Sum-Rate Optimal Policy

• Sum-rate optimal policy is found by solving the following problem:

max
p1,p2

K+1

∑
i=1

r(p1i, p2i)ℓi

s.t.
n

∑
i=1

p j,iℓi ≤
n

∑
i=1

E j,i, 1 ≤ n ≤ N

n

∑
i=1

E j,i −
n

∑
i=1

p j,iℓi ≤ Emax, 1 ≤ n ≤ N
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A General Iterative Solution

• For any achievable r(p1, p2), there exists another achievable scheme with

– r̂(p1, p2)> r(p1, p2)

– r̂(p1, p2) is jointly concave

• Solve the problem iteratively.

• Given p∗
2, solve for p1:

max
p1

K+1

∑
i=1

r(p1i, p∗2i)ℓi

s.t.
n

∑
i=1

p1,iℓi ≤
n

∑
i=1

E1,i, 1 ≤ n ≤ N

n

∑
i=1

E1,i −
n

∑
i=1

p1,iℓi ≤ Emax, 1 ≤ n ≤ N

• Once this solution is found, we fix it and solve for p∗
2.

• The iterative algorithm converges to the global optimal solution.
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Asymmetric Interference with ab > 1

• Let a ≥ 1 and b ≤ 1 with ab > 1.

r(p1, p2) =
1

2
log

(

1+
p1

1+ap2

)

+
1

2
log(1+ p2)

• For fixed p2, user 1 observes a fading level of 1
1+ap2

.

• Use directional waterfilling for user 1’s problem.

• For fixed p1, user 2 has the generalized water level

∂

∂p2
r(p1, p2) =− ap1

2(1+ p1+ap2)(1+ap2)
+

1

2(1+ap2)

• Use generalized directional waterfilling for user 2’s problem.
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Asymmetric Interference with ab < 1

• Let a ≤ 1 and b ≥ 1 with ab < 1.

r(p1, p2) = min{1

2
log

(

1+
p1

1+ap2

)

+
1

2
log(1+ p2) ,

1

2
log(1+bp1 + p2)}

• Define pc =
b−1
1−ab

.

• User 1 observes fading level 1
1+ap2

if p2 < pc and b
1+p2

otherwise.

• Use directional waterfilling for user 1’s problem.

• Similarly, a generalized waterfilling algorithm solves user 2’s problem.
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Conclusions for the Interference Channel Scenario

• Energy harvesting transmitter-receiver pairs with finite capacity batteries.

• Maximize the sum-rate of the communication.

• Sum-rate is a jointly concave function of powers.

• Iterative generalized directional water-filling algorithm.

• Specific cases such as asymmetric interference with ab < 1 and ab > 1.

• Extension to bit arrivals is available.
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Two-Hop Communication with Energy Harvesting Nodes

Ēi

energy

data queue S

Ei

Channel
AWGN

R

AWGN
Channel

Ddata queue

queue

• Source (S) sends messages to the destination (D) via a relay (R).

• Source and relay uses energy harvested from the environment.

• Source adapts its transmission to the energy profiles of both nodes.

• Relay adapts its transmission to the data stream from the source and its energy profile.

• Objective: maximize end-to-end throughput
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Channel Model

Ēi

energy

data queue S

Ei

Channel
AWGN

R

AWGN
Channel

Ddata queue

queue

• Channel between S and R is AWGN with gain h:

r(p) =
1

2
log(1+hp)

• Channel between R and D is AWGN with gain h̄:

r̄( p̄) =
1

2
log
(
1+ h̄p̄

)

• Relay operates in full duplex mode.
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Energy Model

0

0

t2 T

t1 T

E2 E3

Ē2Ē1
Ē0

E1E0

t3 t5

t4

• Energy is harvested during the communication. We consider offline policies.

• Energy causality constraints in the nodes: energy that has not arrived cannot be used

k

∑
i=1

piℓi ≤
k−1

∑
i=0

Ei, ∀k

k

∑
i=1

p̄iℓi ≤
k−1

∑
i=0

Ēi, ∀k

• Data causality constraints in the relay: data that has not arrived cannot be forwarded.

k

∑
i=1

r̄( p̄i)≤
k

∑
i=1

r(pi), ∀k
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Finding Optimal Policies of the Nodes

• Maximize end-to-end throughput

max
N

∑
i=1

r̄( p̄i)ℓi

s.t.
k

∑
i=1

piℓi ≤
k−1

∑
i=0

Ei, ∀k

k

∑
i=1

p̄iℓi ≤
k−1

∑
i=0

Ēi, ∀k

k

∑
i=1

r̄( p̄i)≤
k

∑
i=1

r(pi), ∀k

• Optimal policies are not unique.

• There is a separation-based optimal policy.
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Separation-Based Optimal Policy

• Source maximizes its throughput without regard to relay energy profile:

max
N

∑
i=1

r(pi)

k

∑
i=1

pi ≤
k−1

∑
i=0

Ei, ∀k

• Relay maximizes its throughput according to the optimal source data stream:

max
N

∑
i=1

r̄( p̄i)

k

∑
i=1

p̄i ≤
k−1

∑
i=0

Ēi, ∀k

k

∑
i=1

r̄( p̄i)≤
k

∑
i=1

r(pi), ∀k

• Both problems are single-user throughput maximization problems.

• This policy is not energy minimal.
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Structure of Separation-Based Optimal Policy

T

T

T

∑ Ēi

E0 E1 E2

∫
t

0 B(τ)dτ

Optimal Policy

Ē0

E3

Ē4Ē1 Ē2 Ē3 Ē5 Ē6
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Conclusions for the Two-Hop Communication Scenario

• Energy harvesting source and relay with infinite capacity batteries.

• Maximize the end-to-end throughput.

• Optimal policy is not unique.

• An optimal policy is obtained based on a separation principle:

– Both source and relay perform single-user optimizations.

– It is not energy minimal.

• There is no simple extension for the finite battery case.
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Wireless Energy Transfer

• Newly emerging technologies have enabled us to perform wireless energy transfer efficiently.

• Inductive coupling can be used to wirelessly transfer energy.
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Energy Cooperation in Multi-user Energy Harvesting Communications

• Wireless energy transfer is a new cooperation paradigm.

• Energy cooperation: Nodes share their energy as well as their information.
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Gaussian Two-Hop Relay Channel with Energy Cooperation

queue

energy

data queue S

Ei

Channel
AWGN

Ēi

AWGN
Channel

Ddata queue

δi

R

• Energy harvesting source and relay with deterministic energy arrivals Ei, Ēi.

• Wireless energy transfer unit that allows the source to transfer some of its energy to the relay

(with 0 ≤ α ≤ 1 efficiency).

• Unlimited data and energy buffers at the source and the relay.

• New energy arrivals at every slot i, 1 ≤ i ≤ T .

• The source transfers δi energy to the relay at slot i.

• Relay receives αδi of this transferred energy at the next slot.
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Two Hop Relay Channel without Energy Cooperation

Ēi

energy

data queue S

Ei

Channel
AWGN

R

AWGN
Channel

Ddata queue

queue

• Optimal source/relay profile is a separable policy.

• Source performs single user throughput maximization with respect to its own energy arrivals.

• Relay forwards as many of the received bits as possible, satisfying data causality and energy

causality.
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Two Hop Relay Channel without Energy Cooperation

log(1 + 7) = 3

Channel

energy

data queue

Ei Ēi

data queue S
Channel
AWGN

R

AWGN

queue

D

• Separable policy, source maximizes its own throughput.

• Relay tries to send as much as it can.

• 1 bit sent to destination, 2 bits remaining at the relay.

• End-to-end throughput is 1 bit.
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Two Hop Relay Channel without Energy Cooperation

log(1 + 1) = 1

queue

energy

data queue

Ei Ēi

data queue S
Channel
AWGN

R

AWGN
Channel

D

• Separable policy, source maximizes its own throughput.

• Relay tries to send as much as it can.

• 1 bit sent to destination, 2 bits remaining at the relay.

• End-to-end throughput is 1 bit.
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Two Hop Relay Channel without Energy Cooperation

Ēi

energy

Ei

queue

data queue S
Channel
AWGN

R

AWGN
Channel

Ddata queue

• Separable policy, source maximizes its own throughput.

• Relay tries to send as much as it can.

• 1 bit sent to destination, 2 bits remaining at the relay.

• End-to-end throughput is 1 bit.
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Two Hop Relay Channel with Energy Cooperation

log(1 + 3) = 2

D

energy

AWGN

R

AWGN
Channel

queue

data queue

Ei Ēi

data queue S
Channel

α = 0.5

4× 0.5 = 2

• Source sends less data, but some energy to assist the relay.

• Relay uses this extra energy to forward more data.

• 2 bits sent to destination, 0 bits remaining at the relay.

• End-to-end throughput is 2 bits.
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Two Hop Relay Channel with Energy Cooperation

log(1 + 3) = 2
queue

energy

Channel
AWGN

R

AWGN
Channel

Ddata queue

Ei Ēi

data queue S

• Source sends less data, but some energy to assist the relay.

• Relay uses this extra energy to forward more data.

• 2 bits sent to destination, 0 bits remaining at the relay.

• End-to-end throughput is 2 bits.
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Two Hop Relay Channel with Energy Cooperation

queue

energy

Ēi

data queue S
Channel
AWGN

R

AWGN
Channel

Ddata queue

Ei

• Source sends less data, but some energy to assist the relay.

• Relay uses this extra energy to forward more data.

• 2 bits sent to destination, 0 bits remaining at the relay.

• End-to-end throughput is 2 bits.
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End-to-end Throughput Maximization

• Maximize end-to-end throughput

max
T

∑
i=1

1

2
log(1+ P̄i)

s.t.
k

∑
i=1

Pi ≤
k

∑
i=1

(Ei −δi), ∀k

k

∑
i=1

P̄i ≤
k

∑
i=1

(Ēi +αδi), ∀k

k

∑
i=1

1

2
log(1+ P̄i)≤

k

∑
i=1

1

2
log(1+Pi) , ∀k

subject to:

– Data causality at the relay node

– Energy causality at both nodes

– (Possibly) non-zero energy transfers

• Solution could be identified only in special cases.
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Case I: Higher Initial Relay Energy

T1

E1

E1 + E2

2 . . .
slot number i

∑
T

i=1
Ei

∑
Ei

Ē1

Ē1 + Ē2

∑
T

i=1
Ēi

Source energy arrivals Ei

Relay energy arrivals Ēi

. . . ĩ ĩ + 1

• Higher initial relay energy and single intersection with source energy curve

• Covers the case when the source is energy harvesting and all relay energy is available initially
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Case I: Higher Initial Relay Energy

T1

E1

E1 + E2

2 . . .
slot number i

∑
T

i=1
Ei

∑
Ei

Ē1

Ē1 + Ē2

∑
T

i=1
Ēi

Source energy arrivals Ei

Relay energy arrivals Ēi

Min of Ei and (αEi + Ēi)/(1 + α)

(αEi + Ēi)/(1 + α)

Optimal policy

. . . ĩ ĩ + 1

• Since source energy is low initially, no energy transfer until the intersection

• Form a new energy profile min(αEi+Ēi
α+1

,Ei) and maximize throughput

• Source and relay powers are matched to ensure relay data queue is empty.
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Case II: Non energy harvesting source and energy harvesting relay

Source energy arrivals

Relay energy arrivals

E1

slot number i
. . .21 T

Ē1

Ē1 + Ē2

∑
Ei

∑
T

i=1
Ēi

• All source energy is available initially

• Relay is energy harvesting
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Case II: Non energy harvesting source and energy harvesting relay

Optimal source policy

Optimal relay policy
Source energy arrivals after transfer

Relay energy arrivals after transfer
Source energy arrivals
Relay energy arrivals

E1 − δ1

slot number i
. . .21 T

Ē1 + αδ1

Ē1 + Ē2 + αδ1

∑
Ei

• Transferring energy at a slot can only increase relay powers after that slot.

• Since source is not energy harvesting, energy transfer at first slot is optimal.

f (Ē1 +δ∗1, Ē2, . . . , ĒT ) =
T

2
log(1+

E1 −δ∗1
T

)

• f (Ē1, . . . , ĒT ) is the maximum number of bits for arrivals (Ē1, . . . , ĒT ).
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Gaussian Two Way Channel with Energy Cooperation

• Energy harvesting users with deterministic energy arrivals Ei, Ēi

• One-way wireless energy transfer with efficiency 0 < α < 1.

queue

energy

queue

energy

δiEi Ēi

User 2User 1 data queuedata queue

• Physical layer is a Gaussian two-way channel:

Y1 = X1 +X2 +N1

Y2 = X1 +X2 +N2

N1,N2 are Gaussian noises with zero mean and unit power.
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Capacity Region

2

R1

1

R2

3

θR

• Convex region, boundary is characterized by solving

max
P̄i,Pi,δi

T

∑
i=1

θ1
1

2
log(1+Pi)+θ2

1

2
log(1+ P̄i)

s.t. (δ,P, P̄) ∈ F

• Point 1 is achieved by δ = 0: no energy transfer.

• Point 3 is achieved by δ = E: full energy transfer.
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Water-filling Approach

• Generalized two-dimensional directional water-filling algorithm.

• Transfer energy from one user to another while maintaining optimal allocation in time.

• Spread the energy as much as possible in time and user dimensions.

• Now we give a numerical example for θ1 = θ2 and α = 1.
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Numerical Example

E = [0,12,0] mJ Ē = [6,6,0] mJ
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3
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Numerical Example
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Numerical Example
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Numerical Example
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Numerical Example
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Numerical Example

E = [0,12,0] mJ Ē = [6,6,0] mJ

1.2
ON ON

ON

7.2

4.8 4.8

4.8 4.8 4.8

2.4

2.4

User 1

User 2

0 1 2

OFF

OFF 210 3

3

0

0 0

ON ON

107



Numerical Example
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Numerical Example
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Numerical Example
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Numerical Example
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ON

0 0

6 6

12

0

0

ON ON

User 1

User 2

ON

0 1 2

OFFOFF

OFF 210 3

3

0

0 0

111



Numerical Example
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Numerical Example
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Numerical Example
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Numerical Example
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Numerical Example
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Numerical Example
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Two User Gaussian MAC with Energy Cooperation

• Energy harvesting users with deterministic energy arrivals Ei, Ēi

• One-way wireless energy transfer with efficiency 0 < α < 1.

queue

energy

queue

energy

δiEi Ēi

User 2User 1 data queuedata queue

Receiver

118



Capacity Region

4

R1

R2

1

5

2

3

• Convex region, boundary is characterized as maxR∈C M θR, θ ≥ 0

• We investigate θ1 ≥ θ2 and θ1 < θ2 separately.
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The Case θ1 ≥ θ2

α = 1

1

R1

2

3

4 R24

α < 1

• In the optimal solution, no energy is transferred.

• Solution is found by generalized backward directional water-filling algorithm.
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The Case θ1 < θ2, α < 1

α = 1

1

R1

2

3

4 R24

α < 1

• Point 4 is achieved by full energy transfer.

• Energy transfer is necessary to achieve points between 3 and 4.
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The Case θ1 < θ2, α = 1

α = 1

1

R1

2

3

4 R24

α < 1

• When α = 1, boundary points between 3 and 4 are linear.

• 2,3 and 4 are all sum rate optimal.
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Conclusions for Energy Cooperation Scenarios

• Energy harvesting users with infinite capacity batteries.

• Energy transfer capability in an orthogonal channel in one way.

• Energy transfer provides a new degree of freedom to smooth out the energy profiles.

• Optimal policies identified for Gaussian two-hop relay, two-way and MAC channels.

• End-to-end throughput maximization for the two-hop relay channel.

• Capacity regions for two-way and MAC channels.
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Information Theory of Single-User Energy Harvesting Communication

• Energy is not available up front, arrives randomly in time.

• Energy can be saved in the battery for future use.

• Transmission is interrupted if battery energy is run out.

• What is the highest achievable rate?

Xi Yi

W

Ni

Encoder Decoder
Ŵ

Ei
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Classical AWGN Channel

Xi Yi

W

Ni

Encoder Decoder
Ŵ

• AWGN channel:

Y = X +N

• Average power constraint:

1

n

n

∑
i=1

X2
i ≤ P

• AWGN capacity formula with an average power constraint P:

C =
1

2
log2 (1+P)
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Achievability in the Classical AWGN Channel

• Generate codebook with i.i.d. Gaussians with zero-mean, variance P− ε.

transmit

2nR

w

2
1

1 2 n

w

power = P − ǫ, w.p. 1

W

n21

• By SLLN, codewords so generated obey the power constraint w.p. 1,

1

n

n

∑
i=1

X2
i → P− ε, w.p. 1
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Energy Harvesting AWGN Channel Model (Emax = ∞)

Xi Yi

W

Ni

Encoder Decoder
Ŵ

Ei

• Code symbols are constrained to the battery energy at each channel use:

k

∑
i=1

X2
i ≤

k

∑
i=1

Ei, k = 1,2, . . . ,n

• Energy harvesting: n constraints.

• Average power constraint: a single constraint, k = n.

• E[Ei] = P: average recharge rate.

• Battery storage capacity is infinite.
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Achievability in the Energy Harvesting AWGN Channel: Major Concerns

• If we generate an i.i.d. Gaussian codebook with zero-mean, variance P− ε.

transmit

codeword 
energy

harvested
energy

energy

power = P − ǫ, w.p. 1

W

2nR

w

2
1

2 n

w

n

1 n

1

1

2

• How do we design the codebook such that:

– all codewords are energy-feasible for all channel uses.

• Do we need energy arrival state information:

– causally, non-causally or not at all, at the transmitter and/or receiver.
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The Capacity with Energy Harvesting

.       .         .      .      .

+E2

X1

+E1 +En

XnX2

−X2
2 −X2

n−X2
1

• Upper bound: Average power constrained AWGN capacity:

C ≤ 1

2
log(1+P)

• This is an upper bound because:

– Average power constraint imposes a single constraint:

1

n

n

∑
i=1

X2
i ≤ 1

n

n

∑
i=1

Ei → P (by SLLN)

– While energy harvesting imposes n constraints:

n

∑
i=1

X2
i ≤

n

∑
i=1

Ei, k = 1, . . . ,n

• Our contribution: This bound can be achieved.

129



Achieving the Capacity

• Probability of error: decoding error and violation of energy constraints

• A first approach:

Design a codebook that obeys all n energy constraints.

• An alternative approach:

Design a simple codebook and show the insignificance of energy shortages.

• We will follow the second approach.

• Two achievable schemes:

1) Save-and-Transmit Scheme

2) Best-Effort-Transmit Scheme
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Save-and-Transmit Scheme

• Save energy in the first h(n) channel uses, do not transmit.

• In the remaining n−h(n) channel uses, send i.i.d. Gaussian signals.

• Saving period of h(n) channel uses makes the remaining symbols feasible.

• Choose h(n) ∈ o(n) so that saving incurs no loss in rate, i.e., h(n)/n → 0.

• Rates < 1
2

log(1+P) are achievable.

. . . . .. . . . .

h(n)1 n

Xh(n)+1 Xh(n)+2 Xn−1 Xn0 0 0

nP

[n − h(n)]P

h(n)P

energy arrival

energy expenditure
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Best-Effort-Transmit Scheme

• Xi: i.i.d. Gaussian.

• S(i): battery energy in the ith channel use.

• If S(i)≥ X2
i , put Xi otherwise put 0 to the channel.

• Mismatch between the codewords and the transmitted symbols.

• Battery energy updates:

S(i+1) = S(i)+Ei −X2
i 1(S(i)≥ X2

i )

• Since E[X2
i ] = P− ε, only finitely many symbols are infeasible.

• Finitely many mismatches. Inconsequential for joint typical decoding.

• Rates < 1
2

log(1+P) are achievable.
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Energy Harvesting AWGN Channel Model (Emax = 0)

Xi Yi

W

Ni

Encoder Decoder
Ŵ

. . .E2E1 EiEnergy

arrival

Amplitude

constraint

Causal
information

• At the ith channel use, i.i.d. Ei energy arrives

|Xi| ≤
√

Ei

• Alphabet E of energies is finite. For simplicity, binary: E = {E1,E2}

• The transmitter knows energy arrivals causally.

• The receiver does not know energy arrivals.
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The Channel Model

• A state dependent channel with side information at the transmitter.

• At realization E of the energy arrivals, the channel is

p(y|x,E) = 1√
2π

e−
(y−x)2

2 , |x| ≤
√

E

• Combination of

– Smith’s static amplitude constrained AWGN channel

– Shannon’s channel with side information at the transmitter
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Smith’s Amplitude Constrained AWGN Channel

• In 1971, Smith studied static amplitude constraints:

p(y|x) = 1√
2π

e−
(y−x)2

2 , |x| ≤ A

• At each channel use, channel symbol is amplitude constrained to A.

CSm(A) = max
|X |≤A

I(X ;Y )

• This is a convex functional optimization problem.

• The capacity achieving input distribution is discrete.

−A

−A

A

A

−A A
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Shannon’s Channels with Side Information at the Transmitter

• The state-dependent channel p(y|x,s), s ∈ S

• i.i.d. states with P(s = si) = psi
.

• s is available causally at the transmitter, not available at the receiver.

• Shannon proved in 1958 that

CSh = max
p(T )

I(T ;Y )

• T is the extended input T = [T1, . . . ,T|S |] with

p(y|t = (t1, . . . , t|S |)) =
|S |
∑
i=1

psi
p(y|ti,si)
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Shannon’s Channels with Side Information at the Transmitter

• Shannon strategy: codewords are |S |×n matrices.

state sequence:

2nR

w

2
1

1 2 n

W

1 2 n

b

c

a

b a c ba
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Capacity of AWGN Channel with Time-Varying Amplitude Constraints

• Applying Shannon’s result,

CSh = max
p(T )

I(T ;Y )

• T = [T1,T2]

p(y|t1, t2) =
p1√
2π

e−
(y−t1)

2

2

︸ ︷︷ ︸

|t1|≤
√

E1

+
p2√
2π

e−
(y−t2)

2

2

︸ ︷︷ ︸

|t2|≤
√

E2

• If E is observed, the channel symbol needs to satisfy |X | ≤
√

E.

• The capacity achieving distribution is discrete.

• [T1,T2] takes values from a finite set in R
2.
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Structure of the Optimal Mass Points

• Symmetric with respect to (0,0)

• Constrained to the shaded area

• a1 =
√

E1 and a2 =
√

E2

√
e1

√
e2

t2

t1
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Structure of the Optimal Mass Points

• If a1 and a2 are sufficiently small: binary

√
e1

√
e2

t2

t1

• If a1 and a2 are increased: ternary

√
e1

√
e2

t2

t1

140



Structure of the Optimal Mass Points

• If a1 and a2 are increased: quaternary

√
e1

√
e2

t2

t1

• If a1 and a2 are increased: quintuple

√
e1

√
e2

t2

t1
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Experimental Observation of the Optimal Mass Points

√
e1

√
e2

t2

t1

• Experiments are based on verification of the necessary optimality conditions.
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AWGN Channel with On-Off Energy Arrivals, pon = 0.5
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Energy Harvesting Channel with Finite Energy Storage

• Channel input: Xi ∈ {0,1, . . . ,K}

• Each symbol k has k-unit energy cost.

• The transmitter has Emax unit battery.

• At channel use i, the symbol energy of Xi must be smaller than the energy in the battery Si.

• A state-dependent channel with state Si:

Si+1 = min{Si −Xi +Ei,Emax}

• State has memory and input dependence.

Encoder
ŴW

Ei

Emax

DecoderChannel
Xi Yi
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Energy Harvesting Channel with Finite Energy Storage

• Channel input: Xi ∈ {0,1, . . . ,K}

• Each symbol k has k-unit energy cost.

• The transmitter has Emax unit battery.

• At channel use i, the symbol energy of Xi must be smaller than the energy in the battery Si.

• A state-dependent channel with state Si:

Si+1 = min{Si −Xi +Ei,Emax}

• State has memory and input dependence.

Ei

Encoder
ŴW

DecoderChannel
Xi Yi

Emax = 1
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Binary Energy Harvesting Channel with Unit Storage

• A noiseless binary channel: Xi ∈ {0,1}

• The transmitter has one unit battery: Emax = 1.

• Encoding/decoding can be equivalently done in terms of time intervals between 1s.

• An additive noise timing-channel:

Tn =Vn +Zn

where Vn is waiting time, Zn is additive noise, Tn is the length of the interval between two 1s.

. . .

T1

V1 Z2 V2

T2

Z1
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Binary Energy Harvesting Channel with Unit Storage

• An additive noise timing-channel:

Tn =Vn +Zn

• Zn: i.i.d. geometric noise

• Transmitter causally knows Zn before deciding on Vn.

• The additive timing channel is state dependent where the state is the noise.

• Capacity is found by using Shannon strategy in the timing channel:

C = max
p(u), f (u,z)

I(U ;Z)

E[T ]

. . .

T1

V1 Z2 V2

T2

Z1
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Conclusions

• Capacity of energy harvesting AWGN channel under two extremes.

• When battery capacity is Emax = ∞:

– Transmitter/receiver do not need energy arrival information.

– Equal to the AWGN channel capacity with average power E[Ei] = P.

– Save-and-Transmit Scheme and Best-Effort-Transmit Scheme

• When battery capacity is Emax = 0:

– Transmitter has causal energy information, receiver has no information.

– Smith’s static amplitude constraints and Shannon’s causal side information

– Discrete signaling is optimal.

• Open problem: When battery capacity Emax is finite.

– When Emax = 1, capacity found through a corresponding timing channel.
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