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= Transmission Completion Time Minimization for single link

= Short Term Throughput Maximization for single link with finite battery

= Transmission Completion Time Minimization for single link w/ finite battery
= Extension to fading channels

= Transmission policies for nodes with inefficient energy storage

= Energy harvesting receivers

= Energy harvesting multiuser networks

= Energy cooperation in energy harvesting networks

= TInformation theory of energy harvesting communications (introductory)
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o Motivation T oaarsy

= Energy efficient communication means something
different than it did a decade ago!

= From a communication network design perspective do

rechargeable/energy harvesting networks bring?

= Communication with energy harvesting nodes:

= green, self-sufficient nodes with extended network lifetime

= relatively new field with increasing interest

8/6/2015
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Prerequisites for the Tutorial

= Optimization (Basic)
= Communication Theory (Basic)
= Fairly self-contained otherwise

8/6/2015
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v Energy Harvesting Networks

= Wireless networking with rechargeable (energy

harvesting) nodes:
= Green, self-sufficient nodes,
= Extended network lifetime,

= Smaller nodes with smaller batteries.

A relatively new field with increasing interest.
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Energy Harvesting Applications
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v Energy Harvesting Applications

Fujitsu's hybrid device

utilizing heat or light.

Nanogenerators built at
« Georgia Tech, utilizing strain

Image Credits: (top) http://www.fujitsu.com/global/news/pr/archives/month/2010/20101209-01.html
(bottom) http://www.zeitnews.org/nanotechnology/squeeze-power-first-practical-nanogenerator-developed.html
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v Energy Harvesting Applications

d Textile electrode

Solar charge
textile battery

KAIST's Solar charged
Electrr;de « T@XT”@ baTTery

composite

MC10's biostamps

for medical monitoring,

powered wirelessly

Image Credits: (top) http://pubs.acs.org/doi/abs/10.1021/n1403860k#affl (bottom) )
http://www.dailymail.co.uk/sciencetech/article-2333203/Moto-X-Motorola-reveals-plans-ink-pills-replace-ALL-passwords.html
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v Energy Harvesting Applications

« In-body (intravascular) wireless devices

Proteus Biomedical pills,
powered by stomach acids

Image Credits: (top) http://www.extremetech.com/extreme/119477-stanford-creates-wireless-implantable-innerspace-medical-device
(middle) http://www.imedicalapps.com/2012/03/robotic-medical-devices-controlled-wireless-technology-nanotechnology/
(bottom) http://scitechdaily.com/smart-pills-will-track-patients-from-the-inside-out/
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Motivation —

= New Wireless Network Design Challenge:

A set of energy feasibility constraints based
on harvests govern the communication
resources.

= Design question:
When and at what rate/power should a
"rechargeable” (energy harvesting) node
transmit?

= Optimality? Throughput; Delivery Delay

= Outcome: Optimal Transmission Schedules

8/6/2015
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Two Main Goals of
Transmission Scheduling

= Transmission Completion Time Minimization (TCTM):

Given a number of bits to send, minimize the time at
which all bits have departed the transmitter.

= Short-Term Throughput Maximization (STTM):

Given a deadline, maximize the number of bits sent

before the end of transmission.

8/6/2015
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= Transmission Completion Time Minimization for single link

= Short Term Throughput Maximization for single link with finite battery

= Transmission Completion Time Minimization for single link w/ finite battery
= Extension to fading channels

= Transmission policies for nodes with inefficient energy storage

= Energy harvesting receivers

= Energy harvesting multiuser networks

= Energy cooperation in energy harvesting networks

= TInformation theory of energy harvesting communications (introductory)
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TCTM for Single Link —

= [Yang-Ulukus '12]

= System Model: 1 P

/

]

Energy queue

O >O

transmitter receiver
= Energy harvesting transmitter
= Energy and data arrivals to transmitter
= Transmitting with power p achieves rate r(p)

Data queue

8/6/2015
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TCTM for Single Link —

System Model:
EI

E,
‘L Sy ,l( S1
(03, o

¢ «— ™
N%
¢ «—
W%
N

= Energy harvests: Size E; at time ¢,
. Size B; at time s;

All arrivals known by transmitter beforehand.

8/6/2015
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TCTM for Single Link —

= Problem:

Find optimal fransmission power/rate policy
that minimizes transmission time for a known
amount of arriving packets.

= Constraints:
Cannot use energy not harvested yet.
Cannot transmit packets not received yet.

8/6/2015
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Power-Rate Function

= Transmission with power p yields a rate of r(p)

= Assumptions on r(p):

i. r(0)=0,r(p) — oasp— ©

Rate

ii. increases monotonically in p
iii. strictly concave

iv. r(p) continuously differentiable

Power

1 P
Example: AWGN Channel, r(P)= Elog(l T ﬁ)

8/6/2015
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Power-Rate Function

" r(p) strictly concave, increasing, r(0)=0 implies

r(p) 1s monotonically decreasingin p

tan(a) =

A = Given a fixed energy, a longer
transmission with lower power
departs more bits (Lazy
Scheduling).

Rate

= Also, r-!(p) exists and is
strictly convex

8/6/2015
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Scenario I:
Packets Ready before Transmission
E0 EI EZ EK
l l s l s, l s, T
—o—o———o 1
0§ D i D> i i PN ! t
‘€ >'€— > '€ >
I [, Iy

= Transmission structure: Power p; for duration [,

= Expended Energy: E(t):zi:pili+pi+l(t—zi:li], zT:maX{i:Zi l<t}

B(t)= Zl:r(pl.)li + r(pm){t — Zl:ll]

8/6/2015
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Scenario I:
Packets Ready before Transmission
E0 EI EZ EK
—_—
0 i D i D> i i PN ! t
2 Sld— > '€ >
I [, Iy

= Problem Definition: min 7
st. E()< Y E,  0<t¢<T

1.s; <t

B(T) = B,

8/6/2015
IEEE ICC 2015, London, UK 21



PENNSTATE Wireless Communications

& Networking Laboratory
5 WeANGPSU

Necessary conditions for optimality

= Lemma 1: Transmit powers increase monotonically,

l.€., P, <Py <..<Dy

Proof: (by contradiction) assume not, i.e., p, > p.,, for some i
Ener'gy consumed in l,‘ and ll'+1 IS pili +pi+lli+l
Consider the following constant power policy:

' ' ili TP li+
Pi=Pig = P Lot
li +lz’+l

which does not violate energy constraint since p; < p,

8/6/2015
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Necessary conditions for optimality

Lemma 1: Transmit powers increase monotonically,

l.€., P, <Py <..<Dy

Pr‘OOf(COﬂ‘l"d)‘ Transmitted bi‘rs then become

I" Z +7/;+1l,+1 (pzlz +pz+l HIJ(Z z+1)
>r(p,) l (L+1,)+r( ) L (L+1,)
}9i l n Z i+1 }?r+l Z i+1

i i+1 z i+1
=r(p)L + (P
where inequality is due to strict concavity of r(p)

Therefore p>p,,; cannot be optimal

8/6/2015
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Necessary conditions for optimality

= Lemma 1: The transmit powers increase

monotonically, i.e., 1 < Py << Py

Proof(cont'd): a1

T

Y r(p)
Time-sharing between !
any two points is i
strictly suboptimal for ! l i*ll (Ap) i lﬁ—*}(Ap)
concave r(p) E, o . i,l B\ .

1 ' 4>
Pin Pi P Power
8/6/2015
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Necessary conditions for optimality

= Lemma 2: The transmission power remains constant

between energy harvests.

Proof: (by contradiction) assume not

IS

Let the total consumed energy in epoch [s,s. ] be E__, which
available in energy queue at ¢ =,
Then a constant power transmission

E
r _ total
p - ’ tE[SiaSHl]

is feasible and strictly better than a non-constant transmission.

8/6/2015
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Necessary conditions for optimality
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= Lemma 2: The transmission power remains constant

between energy harvests.

E, E, E, Ex
! bs; s, bsg T
(‘.: fl\ .\ If'\ Y ; .\ I )
H LT A £ T |
0 P | | : t
i P11 & P | i1 Py
I( )I< BK )I)! E I( ;
l; L Iy

Transmission power only changes at S,

8/6/2015
IEEE ICC 2015, London, UK
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Necessary conditions for optimality

= Lemma 3: Whenever transmission rate changes,
the battery is empty.

Proof: (by contradiction) assume not, i.e., p, < p.,, for some i

and energy buffer has A energy remaining at time of change.

Choose 6, and o,

i+1

pi=p;+ 51’9 Din = D — 5i+1

such that 61 =61, <A and let

i+1%i+1

Since A amount of energy has moved from i +1 to i, and this
was available at the buffer, this policy is feasible.

8/6/2015
IEEE ICC 2015, London, UK 27
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Necessary conditions for optimality

= Lemma 3: Whenever transmission rate changes,

energy buffer is empty. S,

A I

Rate

Power

8/6/2015
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Necessary conditions for optimality

Summary:
= L1: Power only increases
= L2: Power constant between arrivals

= L3: At time of power change, energy buffer is empty

Conclusion:

For optimal policy, compare and sort (L1) power levels
that deplete battery (L3) at arrival instances (L2).

8/6/2015
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Optimal Policy for Scenario I

and has the form

for n=12,...N

For a given B, the optimal policy satisfies:

>
. _ 3 ]:ln—l
[ =arg min -

lZSl-ST S _S

Zr(pn)ln :BO
n=l1

IEEE ICC 2015, London, UK
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Algorithm for Scenario I
1. Find minimum number of energy arrivals required 7_.
(B,) &
by comparing: A4, =r" k—(’ s, <D E,
S j=0
(Zii—l E \
2. Finds, <7, <s, satisfying B, = L J s, T,
1
i ) P J
S E)
3. Set p,=min< p,,« ———,i=1...i_. rr,
Si
I, =s, where i is the minimizer of p,
4. Repeat starting from s,
8/6/2015

IEEE ICC 2015, London, UK
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Illustration - Step 1 eaNgrsy

E, E E, E. E E
1 2 3 4
bbby r
. _—_— - >
Vi 22 3 4 .. :
———— , Aol |
— 4, e
N AI i i i E_O_'i
M E, 5 | a
| . .
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Tllustration - Step 2 —

E, E E, E E E
1 2 3 4
Vool oy I
c 6—6——o = o >

,/
’
td
| '
I s’
s’
’/
d

’
’
’
'
td
td
s’
’/
pa
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E, E E, E. E E
1 2 3 4

J ¥ Vool ¥

O——o——0—0—

o i1y Sz S S Sk

IEEE ICC 2015, London, UK
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Illustration - Step 4
E,2 E, E, E, E E
1 2 3 4
bbby I
. = = o o = >
/E\ —
2 E
" | | | ' | «
< - —_— | ¢
I [, LT 5, T;
8/6/2015
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Scenario II:

Packets Arrive During Transmission

E,

E, Eyg
l‘ Sy ,l( Si
(03, o

Ll

Sk |
|

¢ «— ™

= Transmitter cannot depart packets not received yet!

= Additional packet constraints apply

8/6/2015
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Scenario II:

Packets Arrive During Transmission
Expended Energy: E(r)=Y pi + pm[t—zi:ll), szax{ iyl St}
: (&)
B(®)= 2 r(p ) +r(pu)| 1= 21

Problem Definition: min T

st. E(f)< Y E, 0<¢<T

__/ is; <t
B(t)< > B, 0<¢<T

iit; <t

B(T) = iBi

Energy Causality

8/6/2015
IEEE ICC 2015, London, UK 37
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Necessary conditions for optimality

= Lemma 4: Power only increases.
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= Lemma 5: Power constant between 2 arrivals of any kind.

= Lemma 6: At time of power change:

(Proofs are similar to Lemmas 1-3)

if =5, (energy arrival), energy buffer is empty:;
if t=1¢, (packet arrival), packet buffer is empty.

8/6/2015

IEEE ICC 2015, London, UK
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Optimal Policy for Scenario II

The optimal policy satisfies > r(p,)l, =) B,

and has the form
(Zj:s~<u-Ej\ Zj:t~<u-Bj \

)
= min-<

r(p) i, <T FL u. J u.
_

Vo

1 l

J

where {u, }is the ordered combination of {s, }and {t, }

and subsequent rates are found iteratively

8/6/2015
IEEE ICC 2015, London, UK
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* Transmission Completion Time Minimization for single link

= Short Term Throughput Maximization for single link with finite battery
= Transmission Completion Time Minimization for single link w/ finite battery
= Extension to fading channels

= Transmission policies for nodes with inefficient energy storage

= Energy harvesting receivers

= Energy harvesting multiuser networks

= Energy cooperation in energy harvesting networks

= TInformation theory of energy harvesting communications (introductory)

8/6/2015
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STTM for single link with —
Finite Battery

= [Tutuncuoglu-Yener 12qa]

= Maximize the throughput of an energy
harvesting transmitter by deadline T.

= Find optimal power allocation/transmission
policy that departs maximum number of bits in
a given duration.

= Up to a certain amount of energy can be stored
by the transmitter @ BATTERY CAPACITY

8/6/2015
IEEE ICC 2015, London, UK 41
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System Model

= Energy arrivals of energy E, at times s,

E,

-
. @
T

,l\sl
\— 4

>
t

¢ «— ™

S, ,1'\ S3
A4

= Arrivals known non-causally by transmitter,
= Stored in a finite battery of capacity £,,.,,
= Desigh parameter: power — rate r(p) .

8/6/2015
IEEE ICC 2015, London, UK 42



Wireless C Icati
"E”%“—TE Cheieariog Lt

Notation

= Power allocation function: p(¢)

Energy consumed: IOT p(t)dt

Short-term throughput: jOT r(p(t))dt

= Power-rate function r(p): Strictly concave in p
= Overflowing energy is lost (not optimal)

8/6/2015
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Energy Constraints

(Energy arrivals of E; at times s,)

n—1 £
» Energy Causality: D E, —IO p()dt 20 Spq STSS,
k=0

n—1 £
" Battery Capacity: Y £, —[ p()di<E,, s
k=0

= Set of energy-feasible power allocations

n—l1 £
B = {p(t)‘ 0< ZEk —jo p@)dt<E_ _,Vn>0,s ,<t'< Sn}
k=0

8/6/2015
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Energy "Tunnel”
E C
Energy Causality )
E 2 I
1 E max
/
7/
- 7 J
)
El - \’Cg -
b 0 _-" Feas\b\e
-~
r
-7 \ Battery Capacity
7’
>
Sy S5 [
8/6/2015
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STTM Problem for Single Link

= Maximize total number of transmitted bits by deadline T

max jOT F(p()dt, st p(t)e P

p(t)

p—

B :{p(t)‘ 0< ) E, —jofp(t)dt <E_.,Vn>0,s  <t'< Sn}

0

o
Il

= Convex constraint set, concave maximization problem

8/6/2015
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Necessary conditions for
optimality of a transmission policy

= Property 1: Transmission power remains constant between

arrivals.
= Property 2: Battery never overflows.
Proof: Assume an energy of A overflows at fime ¢

( A
2 _5,
Define pty=17 "5 7= 0,1l

p(t) else

T

Then j r(p'()dt > j r(p()dt  since r(p) is increasing in p
0 0

8/6/2015
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Necessary conditions for
optimality of a transmission policy

= Property 3: Power level increases at an energy arrival instant

only if battery is depleted. Conversely, power level decreases

at an energy arrival instant only if battery is full.

Proof: Let p(r7)< p(t?)

Define p'(¢) <pg;;g F’T;g} Feasible unless
= — >
g g ’ et battery is depleted
| p() else

Then jr(p’(t))dt S jr(p(z)) dt  due to strict concavity of r(p)
0 0

8/6/2015
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Necessary conditions for
optimality of a transmission policy

= Property 3: Power level increases at an energy arrival instant

only if battery is depleted. Conversely, power level decreases

at an energy arrival instant only if battery is full.

[rw'@yde>[rpw)d

p(t) .-~
_- P(t) —

p(t)

Policy can be improved Policy cannot be improved

8/6/2015
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Necessary conditions for
optimality of a transmission policy
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= Property 3: Power level increases at an energy arrival instant

only if battery is depleted. Conversely, power level decreases

at an energy arrival instant only if battery is full.

Proof: Let p(r7)> p(t")

Define p'(t) =+

(p(t)+¢
p(t)—¢

- p(?)

7,7+ 0]
[t —0,7]

else

i

Feasible unless
battery is full

Then jr(p'(t))dt S J"’OD(W dt  due to strict concavity of r(p)
0 0

IEEE ICC 2015, London, UK
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Necessary conditions for
optimality of a transmission policy

= Property 3: Power level increases at an energy arrival instant

only if battery is depleted. Conversely, power level decreases

at an energy arrival instant only if battery is full.

p(t) -z

P

[rw'@yde> [rpw)dt

Policy can be improved

p*(t)

e

Policy cannot be improved

8/6/2015
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Necessary conditions for
optimality of a transmission policy

= Property 4: Battery is depleted at the end of transmission.
Proof: Assume an energy of A remains after p(1)
p(t)+é [T -6,T]

Define p'(t) =+ ) s
p(t) else

Then j r(p'(1)dt > j r(p(t)dt  since r(p) is increasing

8/6/2015
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Necessary Conditions for
Optimality

Implications of Properties 1-4:

= Structure of optimal policy: (Property 1)

0 D, I <t<i Ceis) -
= , I €S}, p,constan
P 0 t>T P

= For power to increase or decrease, policy must meet the upper

or lower boundary of the tunnel respectively (Property 3)

= At termination step, battery is depleted (Property 4).

8/6/2015
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Energy "Tunnel”

Energy Causality

>

max

Battery Capacity

8/6/2015
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Shortest Path Interpretation

= Optimal policy is identical for any concave power-rate function!

= Let r(p)=—p*+1,then the problem solved becomes:

T 5
max | —\/p (t)+1dt st. p(t)e’P

p(t) *

. (T o)
=min | \/p ()+1dt st. p(t)eP

p(t) o

Y

length of policy path in energy tunnel

—> The throughput maximizing policy yields
the shortest path through the energy tunnel for
any concave power-rate function.

8/6/2015
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Shortest Path Interpretation

= Property 1: Constant power is better than any other alternative )

= Shortest path between two points is a line (constant slope)

E

——

== -

—®
////
/;///
Lo v/
/// 7 /
7 - 7 7
7 - 7 o,
7 - P
z- ,/’/
-—
/;‘—:”’
-—
—
7t
8/6/2015

IEEE ICC 2015, London, UK

56




PENNSTATE Wireless Communications

® Throughput Maximizing .
Algorithm (TMA)

= Knowing the structure of the policy, we can construct an iterative

algorithm to get the tightest string in the tunnel.
= Note: After astep (p,,i,) is determined, the rest of the policy is

the solution to a shifted problem with shifted arrivals and deadline:

n
" s N, B ' _ .
EO _ZEk L-Prs r'=r s M max = Pax — s
k=0

" " . . '
E'=F s'=s . —1i, for n=0,...,n'_

n+n; 2 n n+n ax

= Essentially, the algorithm compares and find the tightest segment

that hits the upper or lower wall staying feasible all along.

8/6/2015
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Throughput Maximizing
Algorithm (TMA)
{ n_ Ek _Emax }
Pnax [ 1] = maxs == 0
Sl’l
n_l_lzk
poln]= £ E 4
S PolN]
P[] = [y 1], P[] ( = E
Pmax 115 Py & — \ Pn] max
E1 { . /’ _ J
Pl ] = (P07 ]} o ROCEN
2T X N
S~ Prmax[N] t

IEEE ICC 2015, London, UK
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® Throughput Maximizing —
Algorithm (TMA)

n
= max{n | /Ql P[k] #J,n= 1929'"9 nmax} (duration of the first step

= The transmission
power must change E 4
before arrival n,, ., to
stay in the feasible > >
E, { -

tunnel

—> At or beforen,,, E, RO
battery must be empty or | E|, L2 - Ny=2 ’
full to allow the necessary Lz
change. (Prop. 3) AN >

8/6/2015
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@ Throughput Maximizing Algorithm
(TMA)
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nmax
1. Findn, .Ifn, =n_, terminate with power (Zkzo E /T

2. Determine relation between P[n , +1] and (17, P[k]

3. Transmit based on the outcome of step 2 with:

n, =max{n| p,[n] e, P[k]} n, =max{n|p_ . [n]lelNV,_,Plk]}
Py = poln ] Py = P[]
il - Snl il = Sn1

4. Repeat for shifted problem with updated parameters:
EO':ZEk —i.p,, I'=T—-i, n_, =n_ —n,
k=0

max max

" " . _ '
E'=E s'=s . —I, for n=0,...,n

n+n, 2 n n+n max

8/6/2015
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Alternative Solution

= Transmission power is constant within each epoch:

p(t)={p, teepochi,i=1..,N+M+1}

= STTM problem expressed with above notation

M +N+1 Energy constraints:

max Z L.,r(p.) (L,: length of epoch i) sufficient to check

Di 1 l l arrivals only
1=

[
st. 0SY E,~Lp, <E,.. VI /
i=1

8/6/2015
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Water-filling approach
= Lagrangian function for STTM
M+N+1 M+N+1 / .
+ N+ + N+ J ﬂ, L —E :O V
max ZLi'r(pi)_ Z ﬂ‘j(zLipi_Ei J(ZZI: pi s /
Pi g j=1 i=1 .
J
M+N+1 J ILl Ei _Lipi _Emax = O vj
o Z ﬂj[ZEi_Lipi_Emax J(’Zl:
- . (Complementary slackness conditions)

= KKT Stationarity Condition

M+N+1 M+N+1 ( j M+N+1
=1

V( Z L.r(p)- Z ﬂ’jk. Lipi_Ei)_ Z Iuj(iEi_Lipi_Emax)):O atp=p*

8/6/2015
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Water-filling approach

Gradient for kth component

( i}L I"(p,)_ i+ [ZLPZ ] i’L :uj[Z]:Ei_Lipi_Emaxj):O Vn

j=1 i=1
M+N+1 M+N+1 J M+N+1 J
L.V, — L(V . LV, p)|=0
Z 51:(]€)pl) JZ::‘ ](ZZI: l kpz ]J JZ:; ﬂ][; zg kpz)j
BE B
M+N+1 M+N+1
-L, Z/l -L, Zy]—O
M+N+1
A,
+pk JZ/;( Iuj
. 1
=> Py = G -1 illi
o SRR (Water Filling)
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Water-filling approach
= Complementary Slackness ZJ.(ZJ:LI.]?I.—EI. =0 V)

Conditions:

J
ﬂj(Zl:Ei_Lipi_Emax :O VJ

J
A,'s are positive only when battery is empty (Z L.p, —El.j =0

i=1

i=l1

J
;' s only positive only when battery is full (ZE —L.p, —Emaxj =0

+

] 1

Pr = MAN+ -1
Zj:k (ﬂ’j _'uj)
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Directional Water-Filling

= Harvested energies filled into epochs individually

_ Water levels (v))

>
L

IEEE ICC 2015, London, UK
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Directional Water-Filling

= Harvested energies filled into epochs individually

= Constraints:

= Energy Causality: water-flow only forward in time =)

E, E, L,
“e “e -
______ _ Water levels (v))
L,
G B ) >
0 t

8/6/2015
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Directional Water-Filling

= Harvested energies filled into epochs individually

= Constraints:
= Energy Causality: water-flow only forward in time
= Battery Capacity: water-flow limited to E,,,. by taps @&
E, E, E,

G 5 H >
0 t

8/6/2015
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Directional Water-Filling

E A E54|__
E4
E, —
E
E,| B, 2: :
0 ] ot
Eo E1 Ez %E4 ES
"0 990 "o
—6—66-9 &=
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= Energy tunnel
and directional
water-filling
approaches

yield the same
policy

IEEE ICC 2015, London, UK
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Directional Water-Filling

4I—;_‘
”
”
”
”
”
”
- —
7
7/
- 1 1
- : : S
1 1 -
©@ @0 @
N
CJ J U U \J [
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= Energy tunnel
and directional
water-filling
approaches

yield the same
policy

IEEE ICC 2015, London, UK
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&
Simulation Results

14000 T T T
—+— Optimal offline algorithm
&— On-off algorithm

12000F) ------- Upper bound with no energy constraints .
§ ) o
@ A
5 10000} ]
= A
2 . ~
€ 8000+ A -
@ R >
g oA
£ 6000+ R .
% K ° /__//{?'* -
2 A
L; 4000 - S 1
g ‘;)/*.fﬁuA'
o w2

G. ; g 1 1 1 1
0 2000 4000 6000 8000 10000
Time (sec)
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= Improvement of optimal algorithm over an on-off transmitter in

a simulation with truncated Gaussian arrivals.

IEEE ICC 2015, London, UK
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Outline

= Transmission Completion Time Minimization for single link

= Short Term Throughput Maximization for single link with finite battery

= Transmission Completion Time Minimization for single link w/finite battery
= Extension to fading channels

= Transmission policies for nodes with inefficient energy storage

= Energy harvesting receivers

= Energy harvesting multiuser networks

= Energy cooperation in energy harvesting networks

= TInformation theory of energy harvesting communications (introductory)

8/6/2015
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® Transmission Completion Tim —_—
Minimization (TCTM) for single
link with finite battery

= Given the total number of bits to send as B,
complete transmission in the shortest time
possible.

min T s, B—jOT r(p(t)dt <0, p(t)eP

p (1)

n—1 "
B :{p(t)‘ 0< ZEk —J:) p)dt<E_ ,Vn>0,s  <t'< Sn}
k=0

8/6/2015
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Relationship of
STTM and TCTM problems

= Lagrangian dual of TCTM problem becomes:

u=>0

= IMax
u=>0

max( min T+u(B—jOT r(p(t))dtj)

p(t)eB,T
[min T +uB —ulmax ' r(p(t))dt I\
T p(1)ep J0 )

STTM problem for deadline 7

8/6/2015
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Relationship of
STTM and TCTM problems
= Optimal allocations are identical:
STTM's solution TCTM's solution
for deadline T — for departing B

departing B bits bits in time T

= STTM solution can be used to solve the
TCTM problem

8/6/2015
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Maximum Service Curve

s(7T) = max IOT r(p(t))dt, st p(t)e B

p(t)

A
¢(M)

D) = Maximum number of bits
® that can be sent in time
g i T.
: i
E i | = Each point calculated by
£ : | solving the
g . | | corresponding STTM

| | ! problem.

>
A\ S, S Deadline (T)

8/6/2015
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Maximum Service Curve

= Continuous, monotone increasing, invertible

s(D) = Optimal allocation

for TCTM with B,
bits

Optimal allocation
for STTM with
deadline T,

Maximum Departure (B)

R X
A\ S T, S Deadline (T)

8/6/2015
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Outline

= Transmission Completion Time Minimization for single link

= Short Term Throughput Maximization for single link with finite battery

= Transmission Completion Time Minimization for single link w/ finite battery
= Extension to fading channels

= Transmission policies for nodes with inefficient energy storage

= Energy harvesting receivers

= Energy harvesting multiuser networks

= Energy cooperation in energy harvesting networks

= TInformation theory of energy harvesting communications (introductory)

8/6/2015
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Extension to Fading Channels

= [Ozel-Tutuncuoglu-Ulukus-Yener '11]

= Find the short-term throughput maximizing
and transmission completion time minimizing
power allocations in a fading channel with non-
causally known channel states.

= Finite battery.

8/6/2015
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System Model
hs
h,=h;=h _
Fading 7 — hs hs=hs
levels i
E, E, E, E, ' E, E,s =0
é e % % 03 % \i, ¥ &ll) >
0 ; t
L, L, L,

1

= AWGN Channel with fading h: R(P,h) = Elog(l + h.P)
= Each "epoch” defined as the interval between two "events”.

= Fading states and harvests known non-causally

8/6/2015
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STTM Problem with Fading —

= Transmission power constant within each epoch:

pt)={p,, teepochi, i=1. ., N+M+1}

= Maximize total number of transmitted bits by a

deadline T’
M+N+1L.
max ‘log(1+ h.p.
2 Z:, S-log(1+7,p,)

)
st. 0SY E —Lp <E. VI
i=1

8/6/2015
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® STTM Problem with Fading

= Lagrangian of the STTM problem

M+N+1 L. M+N+1 J
xS Goathp)="3, 28
= J= i=

M+N+1
i=1

Wireless Communications
& Networking Laboratory

WCAN@PSU

J
/IJ.[ZLZ.pi —El.j =0 Vj
i=1

J
ﬂj(ZEi —L;p, _Emax] =0 V)

J=1

i=1

M+N+1 j
o Z ﬂ][ZEZ _Lipi _Emaxj

+ > m.p;
i=1

np;= 0 Vj
(Complementary slackness conditions)

fading levels: -

Pi =

= Solution: directional water-filling with

1 +
v,—— |,
{l hz}

- I
i M+N+1
2 A H

J=t

IEEE ICC 2015, London, UK
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STTM Problem with Fading——

[ifL r(p;)— if (ZLP, j— if ,uj(ZE —L.p, - ) ifnlplj 0 Vn

j=1
+N+1 M+N+1 M+N+1 J M+N+1
21: Zl (ZL(Vkp’ ) Z:J ﬂj(ZILi(Vkpi)j+ Z;ni(vkpi):()
- hk5( . / . T NS L y
1+hy, L, if j>k L, if j>k M
B {0 ifj'<k} {0 ifj'<k}
h M+N+1 M+N+1
=L, - —L, A.—L, +n, =0
k 1+hkpk Z Z,U] up
M+N+1
=> = > (4, -u) (if p, > 0is satisfied. Otherwise p, =0and7, >0)
1+hkpk =k
+
o I 1| (Water Filling)
= Py = M+N+1
D A -,
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Directional Water-Filling

= Same directional water filling model with added
fading levels.

= Directional water flow (Energy causality)

= Limited water flow (Battery capacity)

E, E, E,
.o - ~
_______ __ __ Water levels (v)
-~ Fading levels (1/h))
O—x¢ & ¢ &S >
0 t

8/6/2015
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Directional Water-Filling
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= Same directional water filling model with added

fading levels.

= Directional water flow (Energy causality)

= Limited water flow (Battery capacity)

E, E, E,
\.@ \.‘ -

Water depth gives
transmission power p;

& >

t

8/6/2015
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Maximum Service Curve

= Continuous, non-decreasing

)
© (flat regions when fading is severe)
-]
. = Tnverse can be considered
£ as the smallest 7 that
X .
= achieves B,
; ! | ;! | >
o Til i i i | ' Deadline (T)
A T
| | _'_|_
B H—H-O—HH—H—>
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Online Algorithms

Optimal online policy can be found using dynamic
programming
= States of the system: fade level: h, battery energy: e

T, (e,ht) = E[LT%log(l n h(r)g(e,h,r))dr}

J(e,h,t)=sup J,
g

= Quantizing time by 3, g'(e,h,kd) can be found by iteratively solving

max (élog(l +h.g(e h,t))+J(e' h',t+0)

g(e,h,t) 2
e'=e+0(-g(e,h,t)+P,,)
h'=E[h(t+0)| h(t)]

8/6/2015
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Online Algorithms

Constant Water Level

= A cutoff fading level 4, is determined by the average
harvested power P, as:

J‘,:(hi - %]f(h)dh = Pm,g f(h):Fading distribution

= Transmitter uses the corresponding water-filling power
if available, is silent otherwise

(1 oy
D; ho hi
8/6/2015

IEEE ICC 2015, London, UK 87



Wireless C Icati
PENNGETE Cheieariog Lt

WCAN@PSU

Online Algorithms

Time-Energy Adaptive Water-filling

= /i, determined by remaining energy scaled by remaining time as

1 1)
J,

———Jf(l’l)dh _ ]Suie;t

Hybrid Adaptive Water-filling

= },determined similarly but by adding average received power

7 o |/ dh == B

of 1 1) E
J,

8/6/2015
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Simulations

1.1 !

Performances of the
policies w.r.t. energy
arrival rates under:

0.9

T

0.7
= unit mean

Rayleigh fading

0.6

T

0.5

+T'~'b = T =10 secC

| meg Optimal Online

0.4

Avg. Throughput (Mbits / sec)

0.3k " | @ Time-Energy Adaptive WF s E = 10 J
._ : | m—p== Hybrid Adaptive WF max -
[]-2 ______ . il . .. e e e e e e e : + CDnStant Wat'er LE‘UE'
0.1 i i | i |
0 0.5 1 1.5 2 2.5 3

Avg. Recharge Rate (J/sec)
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Outline

= Transmission Completion Time Minimization for single link

= Short Term Throughput Maximization for single link with finite battery

= Transmission Completion Time Minimization for single link w/ finite battery
= Extension to fading channels

= Transmission policies for nodes with inefficient energy storage

= Energy harvesting receivers

= Energy harvesting multiuser networks

= Energy cooperation in energy harvesting networks

= TInformation theory of energy harvesting communications (introductory)
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Transmission Policies with
Inefficient Energy Storage

= Energy stored in a battery, supercapacitor, . ..

= “Real life"” issues:

V-

N ol
Degradation
Recovery
Loss

= [Devillers-Gunduz '11]: Leakage and Degradation

= [Tutuncuoglu-Yener-Ulukus'15]: Storage/Recovery Losses

8/6/2015
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Battery Degradation
= [Devillers-Gunduz '11] | ———— - - - =

Degradation

AN

Yo}
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%Baﬁery Leakage

= [Devillers-Gunduz '11]
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Leakage

= Optimal Policy: When total energy in an epoch is low, deplete

energy earlier to reduce leakage.

N

E —

- ~
7

0 t

8/6/2015
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Storage/Recovery Losses

= [Tutuncuoglu-Yener-Ulukus'15] w \ >

= Main Tension:

Concavity of r(p):
Use battery to
maintain a constant
power tfransmission

Wireless Communications
& Networking Laboratory

WCAN@PSU

Storage Recovery
Loss Loss

Battery inefficiency:
Storing energy in
battery causes energy
loss

8/6/2015
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Time slotted model
EI EZ E3 EN]
l =1 l [ =2 l l =N
G - - - I >
0 T 2r ... (N-Dr Nr

= Time slots of duration 7 =13

= Energy harvests: Size E; at the beginning of time slot i

Energy arrivals known offline first.

8/6/2015
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System Model

Energy storage (ESD) n hi: Harvested power

E, .. = s Stored power
= u; Retrieved (used) power
n u; = p;: Transmit power
Si Rate: r(p(t))
hi — O >0
Transmitter Di= hi —5; T u; Receiver

= ESD has finite capacity E,, ., and storage efficiency .

1

= Energy Causality: Z’?Sn —u, 20, i=1,...,.N

n=1

<E

= Storage Capacity: Z:;”Sn —u, <Lk, 1=L.,N

8/6/2015
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Throughput Maximization

= Find optimal energy storage policy that maximizes
the average throughput of an energy harvesting
transmitter within a deadline of N time slots.

N
r{na)}( Zr(El. —s8,+u,)
Siolif g

max ?

st. 0<E, +Z(nsl. —u )< E
n=1

E —-s +u 20, 5,20, u, 20, i=1,...,N.

8/6/2015
IEEE ICC 2015, London, UK 97



Wireless C Icati
PENNGETE Cheieariog Lt

WCAN@PSU

Throughput Maximization

= Find optimal energy storage policy (y,,p,) that
maximizes the average transmission rate of an
energy harvesting transmitter within a deadline D.

N
max Zr(El—Si+ul)
Old problem: bent 43
/ N \S.l‘. O£E0+2(nsi—ui)£EmaX, i=1,...,N,
max r(p. n=1
na Zl: (p,)

E —s,+u 20, 5,20, u;, 20, i=1,...,N.

st. 0<Y (E,—p)<E,,, i=1...,N,

n=1

\ piZO, i:L.”’]VJ

8/6/2015
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Optimal Power Policy
i) No storage capacity constraint
4 v B
1 }; -0 A+ -9, =0, i=1...,N,
KKT TP
h 3l .
Stationarity L+ hp _Z/ln_i_:ui_'_l)”i:oa i=1,...,N,
\ ) n=i j
4 )
AE, . =0 (E.—s.+u.)=0, i=1,....N
Complemen.l.ar,y i bat,i s /le( i Sl uz) s 1 b b b
¢iSi209 v, i:Oa i=1,...,N.
KSIackness Y
D= ! —%z ~ 1 —l, i=1,...,N,
nzﬂ‘n_ﬂi+¢i Zﬁn_ﬂi_“;”i
8/6/2015
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Optimal Power Policy -

i) No storage capacity constraint

P = ! _l_ : _la i:19"°9N9

N h_ N
Uzﬁn — M T Z;Ln —H TV,

= When battery is charging (s, >0)

1 |
p,- = N _Z = ps,i
n2. A
4 B
= When battery is discharging (u;> 0) 1+hp, .
11 =1
Pi=x _Z:pu,i 1+hps,i
>, < 4
8/6/2015
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Optimal Power Policy —

i) No storage capacity constraint

& Structure of optimal policy:\

([ps,i]+9 E, 2 Psi

pi=y L PuiSE <D, Pi 4
Pui» LEi=p,;
\ / ps,i
pu,i
"Double Threshold Policy” >
Double Threshold Policy 0 E
8/6/2015
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Optimal Power Policy —

i) No storage capacity constraint

* How to findp_;andp, ;?
* Only change when E, =0 (battery empty)

= Both increasing in time since il. > ()

" 1+ hpw.

1+hps’l. -

Iteratively find the smallest feasible p ; and p, ;
that depletes the battery in the future.

8/6/2015
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Optimal Power Policy -

i) No storage capacity constraint

N

P

A

0 i=1 =2 i=3 i=4 =5

8/6/2015
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Optimal Power Policy o

ii) Finite-sized storage

* How to findp_;andp, ;?

* Onlychangewhen F, . =0or E, =FE

at,i

= TIncreasing if Eba” = 0 and decreasing if Eba” Emax
" 1+hp,, B
I+hp, -

Find feasible pairs (Ps,wpu,i) that fill or deplete the
battery, choose the one based on the second property.

8/6/2015
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Optimal Power Policy

ii) Finite-sized storage

P

/

A

=1 =2 =3 1=4 I=5
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Optimal Power Policy

iii) Fading channel

N

P;

8/6/2015
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v Optimal Online Policy

= So far, we have discussed offline policies.

= Energy harvesting scenario may not be predictable, or

may hot be available prior to transmission

= Markov Decision Process (MDP) formulation:

" Action: p, = gi(Eiahi)

| n=i+1

[ N
= Value: Ji(Ei,hi)zmﬂaX r(gi(Ei,hi),h,-)-i-E Z”(&(Eiahi)»hi)}

- mﬂaX r(gi (Ei,hi)ahi)+ E:Jz‘+1 (Emah”l)]
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® Optimal Online Policy —

20

s
n

10 ] Sy

Optimal transmit power, p,

Stored energy, S,

Harvested energy, E,
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® Optimal Online Policy —

= 204 -
o e 20
o [
3
2 154 § 5l
g =
£
§ 10 2
= 5
[ —-——
£ =
£ 594 £
o =
. o)

100

Stored energy. S 2 o Harvested energy, E Stored energy, S,

Harvested energy, E

Bursty energy harvesting Random walk energy harvesting
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Proposed Online Policy

= Both offline and online policies point to thresholds
= Choose fixed thresholds throughout tfransmission

‘max{p ,E,+S,—E™|  E >p,
Pi =9 E, p.SE <p,

l

min{pu,El. +Sl.} E <p,

to satisfy

1] (e=p)pp(e)de=|"(p, ~e)py(e)de=0
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N =10" time slots

=10 ms

E_ =1lmJ

E,=0

E~iid U[0,200]wu]
h=-100 dB
B=1MHz

N,=10" W/Hz

Throughput per Hz (Bits/s/Hz)

Simulations
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1.7h

1.65

1.5

1.45

—— Optimal offline policy

—*— Efficiency-adaptive DWF
—<— Directional water-filling

1.4

0.2

0.4
Storage efficiency, n

0.6

0.8 1
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N =10" time slots

=10 ms

E _=1lmJ

E, =0

E.~ Bursty(1004))
h=-100 dB
B=1MHz

N, =10" W/Hz

Throughput per Hz (Bits/s/Hz)

Simulations

1.71

1.65

—_
»

1.55

—_
()]

1.45

1.4
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Simulations
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Simulations
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ﬁ . & Networking Laboratory
Outline

= Transmission Completion Time Minimization for single link

= Short Term Throughput Maximization for single link with finite battery

= Transmission Completion Time Minimization for single link w/ finite battery
= Extension to fading channels

= Transmission policies for nodes with inefficient energy storage

= Energy harvesting receivers

= Energy harvesting multiuser networks

= Energy cooperation in energy harvesting networks

= TInformation theory of energy harvesting communications (introductory)
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Conclusion weanarsy

In this tutorial, we covered energy efficient design (optimal
scheduling policies) for one energy harvesting (rechargeable)
transmitter.

New networking paradigm: energy harvesting nodes
New design insights arising from

= new energy constraints

= energy storage limitations and inefficiencies

= interaction of multiple EH transmitters

= energy cooperation
New problems in the information theory domain

Lots of open problems related to all layers of the network
design: e.g. signal processing/PHY design; MAC protocol design;
channel capacity...
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