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Outline
 Transmission Completion Time Minimization for single link

 Short Term Throughput Maximization for single link with finite battery

 Transmission Completion Time Minimization for single link w/ finite battery

 Extension to fading channels

 Transmission policies for nodes with inefficient energy storage

 Energy harvesting receivers

 Energy harvesting multiuser networks

 Energy cooperation in energy harvesting networks

 Information theory of energy harvesting communications (introductory)

- Part2
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Motivation
 Energy efficient communication means something 

different than it did a decade ago!

 From a communication network design perspective do

rechargeable/energy harvesting networks bring? 

 Communication with energy harvesting nodes:
 green, self-sufficient nodes with extended network lifetime

 relatively new field with increasing interest
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Prerequisites for the Tutorial

 Optimization (Basic)
 Communication Theory (Basic)
 Fairly self-contained otherwise
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Introduction

Ubiquitous
Mobile / 
Remote Energy-

limited

Many sources

Abundant energy

Green
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Energy Harvesting Networks

 Wireless networking with rechargeable (energy 

harvesting) nodes:

 Green, self-sufficient nodes,

 Extended network lifetime,

 Smaller nodes with smaller batteries.

A relatively new field with increasing interest.
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Introduction
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Wireless sensor networks

Green 
communications

Energy Harvesting Applications
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Energy Harvesting Applications

Fujitsu’s hybrid device 

utilizing heat or light.

Image Credits: (top) http://www.fujitsu.com/global/news/pr/archives/month/2010/20101209-01.html
(bottom) http://www.zeitnews.org/nanotechnology/squeeze-power-first-practical-nanogenerator-developed.html

Nanogenerators built at 

Georgia Tech, utilizing strain
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Energy Harvesting Applications

MC10’s biostamps

for medical monitoring,

powered wirelessly

Image Credits: (top) http://pubs.acs.org/doi/abs/10.1021/nl403860k#aff1 (bottom) ) 
http://www.dailymail.co.uk/sciencetech/article-2333203/Moto-X-Motorola-reveals-plans-ink-pills-replace-ALL-passwords.html 

KAIST’s Solar charged 
textile battery 
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In-body (intravascular) wireless devices

Image Credits: (top) http://www.extremetech.com/extreme/119477-stanford-creates-wireless-implantable-innerspace-medical-device 
(middle) http://www.imedicalapps.com/2012/03/robotic-medical-devices-controlled-wireless-technology-nanotechnology/ 
(bottom) http://scitechdaily.com/smart-pills-will-track-patients-from-the-inside-out/

Energy Harvesting Applications

Proteus Biomedical pills,
powered by stomach acids
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Motivation
 New Wireless Network Design Challenge: 

A set of energy feasibility constraints based 
on harvests govern the communication 
resources.

 Design question:
When and at what rate/power should a 
“rechargeable” (energy harvesting) node 
transmit? 

 Optimality? Throughput; Delivery Delay
 Outcome: Optimal Transmission Schedules
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Two Main Goals of 
Transmission Scheduling

 Transmission Completion Time Minimization (TCTM):

Given a number of bits to send, minimize the time at 

which all bits have departed the transmitter.

 Short-Term Throughput Maximization (STTM):

Given a deadline, maximize the number of bits sent 

before the end of transmission.
8/6/2015
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Outline
 Transmission Completion Time Minimization for single link

 Short Term Throughput Maximization for single link with finite battery

 Transmission Completion Time Minimization for single link w/ finite battery

 Extension to fading channels

 Transmission policies for nodes with inefficient energy storage

 Energy harvesting receivers

 Energy harvesting multiuser networks

 Energy cooperation in energy harvesting networks

 Information theory of energy harvesting communications (introductory)
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 [Yang-Ulukus ‘12]
 System Model:

 Energy harvesting transmitter
 Energy and data arrivals to transmitter
 Transmitting with power p achieves rate r(p)

TCTM for Single Link

Ei

Bi

transmitter receiver

Energy queue
Data queue
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 Energy harvests: Size Ei at time ti

 Data packet arrivals: Size Bi at time si

System Model:
E0

B0

t

T
E1 E2 E3

B1 B2 B3

t1 t2 t3

s1 s2 s3s0

All arrivals known by transmitter beforehand.
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 Problem:
Find optimal transmission power/rate policy
that minimizes transmission time for a known 
amount of arriving packets.

 Constraints:
Cannot use energy not harvested yet.
Cannot transmit packets not received yet.
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Power-Rate Function

 Transmission with power p yields a rate of r(p)

 Assumptions on r(p):

i. r(0)=0, r(p) → ∞ as p → ∞ 
ii. increases monotonically in p
iii. strictly concave
iv. r(p) continuously differentiable

Example: AWGN Channel,                                

)( pr
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Power

1( ) log(1 )
2

Pr P
N

 
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Power-Rate Function

 r(p) strictly concave, increasing, r(0)=0 implies

)( pr

Ra
te

Power



p
p
pr in  decreasinglly monotonica is  )()tan( 

 Given a fixed energy, a longer
transmission with lower power 
departs more bits (Lazy 
Scheduling).

 Also, r -1(p) exists and is 
strictly convex
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 Transmission structure: Power pi for duration li

 Expended Energy:

 Departed bits:

Scenario I:
Packets Ready before Transmission

E(t)  pili  pi1 t  li
i1

i





i1

i

 ,     i  max  i : l j  t
j1

i 
B(t)  r(pi )li  r(pi1) t  li

i1

i





i1

i

  

E0

B0

t

T
E1 E2 EK

0

s1 s2 sK

p1 

l1

p2 

l2

pN

lN

…
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 Problem Definition:

Scenario I:
Packets Ready before Transmission

0

:

)(       

0      )(   s.t.
 min

BTB

TtEtE
T

tsi
i

i



 


E0

B0

t

T
E1 E2 EK

0

s1 s2 sK

p1 

l1

p2 

l2

pN

lN

…
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 Lemma 1: Transmit powers increase monotonically, 

i.e.,

Proof: (by contradiction) assume not, i.e.,                for some i

Energy consumed in     and       is

Consider the following constant power policy:

which does not violate energy constraint since  

Necessary conditions for optimality

Nppp  ...21

1 ii pp

1        ii ll 11  iiii lplp

1

11
1




 




ii
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ii ll

lplppp

ii pp 
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 Lemma 1: Transmit powers increase monotonically, 

i.e.,

Proof(cont’d): Transmitted bits then become

where inequality is due to strict concavity of r(p)

Therefore pi>pi+1 cannot be optimal

Necessary conditions for optimality

Nppp  ...21

ri  li  ri1li1  r pili  pi1li1

li  li1







(li  li1)

 r(pi )
li

li  li1

(li  li1) r(pi1) li1

li  li1

(li  li1)

 r(pi )li  r(pi1)li1
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 Lemma 1: The transmit powers increase 

monotonically, i.e.,

Proof(cont’d):

Necessary conditions for optimality

Nppp  ...21

)( prRa
te

Powerip ip1ip
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Time-sharing between 

any two points is 

strictly suboptimal for 

concave r(p)
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 Lemma 2: The transmission power remains constant 

between energy harvests.

Proof: (by contradiction) assume not

Let the total consumed energy in epoch               be         , which 

is available in energy queue at

Then a constant power transmission

is feasible and strictly better than a non-constant transmission.

Necessary conditions for optimality

],[ 1ii ss totalE
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E0

B0

t

T
E1 E2 EK

0

s1 s2 sK

p1 

l1

p2 

l2

pN

lN

…

E0

B0

t

T
E1 E2 EK

0

s1 s2 sK

p1 

l1

p2 

l2

pN

lN

…

 Lemma 2: The transmission power remains constant 

between energy harvests.

Necessary conditions for optimality

Transmission power only changes at is
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 Lemma 3: Whenever transmission rate changes, 

the battery is empty.

Proof: (by contradiction) assume not, i.e.,                for some i

and energy buffer has      energy remaining at time of change.

Necessary conditions for optimality

1 ii pp



Choose  i  and  i1 such that  ili   i1li1   and let
     pi  pi  i ,       pi1  pi1  i1

Since  amount of energy has moved from i 1 to i, and this 
was available at the buffer, this policy is feasible.
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 Lemma 3: Whenever transmission rate changes, 

energy buffer is empty.

Necessary conditions for optimality

 i1

)( prRa
te

Powerip ip  1ip1ip

i
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Summary:

 L1: Power only increases

 L2: Power constant between arrivals

 L3: At time of power change, energy buffer is empty

Conclusion:

Necessary conditions for optimality

For optimal policy, compare and sort (L1) power levels 

that deplete battery (L3) at arrival instances (L2).
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Optimal Policy for Scenario I

For a given B0 the optimal policy satisfies:

and has the form 



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1.

Algorithm for Scenario I

Find minimum number of energy arrivals required imin

by comparing:       Ai  r1 B0

si


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
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j0
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Illustration – Step 1

E0

t

T1

E1 E2 EK

0 s1 s2 sK

A1

…

E3

s3

E4

s4

 iE

t

A2
A3

A4

Ai  r1 B0

si







si  Ej
j0

i1


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Illustration – Step 2

E0

t

T1

E1 E2 EK

0 s1 s2 sK…

E3

s3

E4

s4

 iE

t

B0  r
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Illustration – Step 3
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Illustration – Step 4

E0

t

E1 E2 EK

0 s1 s2 sK…

E3

s3

E4

s4

 iE

tl1

p1

T2 T3

p2

l2

p3

l3 T
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Scenario II:
Packets Arrive During Transmission

E0

B0

t

T
E1 E2 EK

B1 B2

t1 t2

s1 s2 sKs0

 Transmitter cannot depart packets not received yet!

 Additional packet constraints apply
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Scenario II:
Packets Arrive During Transmission

Expended Energy:

Departed bits:

Problem Definition:












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)(       

0      )(       

0      )(   s.t.
min

E(t)  pili  pi1 t  li
i1

i





i1

i

 ,     i  max  i : l j  t
j1

i 
B(t)  r(pi )li  r(pi1) t  li

i1

i





i1

i

  

Energy Causality

Packet Causality
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 Lemma 4: Power only increases.

 Lemma 5: Power constant between 2 arrivals of any kind.

 Lemma 6: At time of power change:

(Proofs are similar to Lemmas 1-3)

Necessary conditions for optimality

if t  si  (energy arrival), energy buffer is empty;
if t  ti  (packet arrival), packet buffer is empty.
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Optimal Policy for Scenario II

The optimal policy satisfies

and has the form


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Outline
 Transmission Completion Time Minimization for single link

 Short Term Throughput Maximization for single link with finite battery

 Transmission Completion Time Minimization for single link w/ finite battery

 Extension to fading channels

 Transmission policies for nodes with inefficient energy storage

 Energy harvesting receivers

 Energy harvesting multiuser networks

 Energy cooperation in energy harvesting networks

 Information theory of energy harvesting communications (introductory)

8/6/2015
IEEE ICC 2015, London, UK 40



 [Tutuncuoglu-Yener ’12a]
 Maximize  the throughput of an energy 

harvesting transmitter by deadline T.
 Find optimal power allocation/transmission 

policy that departs maximum number of bits in 
a given duration.

 Up to a certain amount of energy can be stored 
by the transmitter  BATTERY CAPACITY

STTM for single link with 
Finite Battery
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IEEE ICC 2015, London, UK 41



 Energy arrivals of energy      at times     

 Arrivals known non-causally by transmitter,
 Stored in a finite battery of capacity       ,
 Design parameter: power     rate    .

System Model

iE is

maxE
)( pr

E0

t

T
E1 E2 E3

s1 s2 s3s0
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Notation

 Power allocation function:

 Energy consumed: 

 Short-term throughput:

 Power-rate function r(p): Strictly concave in p
 Overflowing energy is lost (not optimal)


T

dttpr
0

))((

)(tp


T

dttp
0

)(
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 Battery Capacity:

Energy Constraints

(Energy arrivals of Ei at times si)

 Energy Causality: nn
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 Set of energy-feasible power allocations
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Energy “Tunnel”

cE

t1s 2s

0E
1E

2E
maxE

Energy Causality

Battery Capacity
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STTM Problem for Single Link

 Maximize total number of transmitted bits by deadline T

 Convex constraint set, concave maximization problem

 
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Necessary conditions for 
optimality of a transmission policy

 Property 1: Transmission power remains constant between 

arrivals.

 Property 2: Battery never overflows.

Proof:

pr(p)dtr(p(t))dt(t))pr(

elsetp

tp
tp

TT

 in increasing is  since        Then

     
 

  Define

timeatoverflowsofenergyan Assume          
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Necessary conditions for 
optimality of a transmission policy

 Property 3: Power level increases at an energy arrival instant 

only if battery is depleted. Conversely, power level decreases 

at an energy arrival instant only if battery is full.

Proof:

r(p)dtr(p(t))dt(t))pr(

elsetp
tp
tp

tp

pp

TT

 of concavity strict to due        Then

depleted is battery
unless Feasible

        Define

  Let              
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Necessary conditions for 
optimality of a transmission policy

 Property 3: Power level increases at an energy arrival instant 

only if battery is depleted. Conversely, power level decreases 

at an energy arrival instant only if battery is full.

Policy can be improved Policy cannot be improved

p(t)

p’(t)
p*(t)

  r(p(t))dt(t))dtpr(
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Necessary conditions for 
optimality of a transmission policy

 Property 3: Power level increases at an energy arrival instant 

only if battery is depleted. Conversely, power level decreases 

at an energy arrival instant only if battery is full.

Proof:

r(p)dtr(p(t))dt(t))pr(

elsetp
tp
tp

tp

pp

TT

 of concavity strict to due        Then

full is battery
unless Feasible

        Define

  Let              
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Necessary conditions for 
optimality of a transmission policy

 Property 3: Power level increases at an energy arrival instant 

only if battery is depleted. Conversely, power level decreases 

at an energy arrival instant only if battery is full.

Policy can be improved Policy cannot be improved

p(t)
p’(t)

  r(p(t))dt(t))dtpr(

p*(t)
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Necessary conditions for 
optimality of a transmission policy

 Property 4: Battery is depleted at the end of transmission.

Proof:

increasing is  since        Then

     
 

  Define
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Necessary Conditions for 
Optimality

Implications of Properties 1-4:

 Structure of optimal policy: (Property 1)

 For power to increase or decrease, policy must meet the upper 

or lower boundary of the tunnel respectively (Property 3)

 At termination step, battery is depleted (Property 4).
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Energy “Tunnel”

cE

t1s 2s

0E
1E

2E
maxE

Energy Causality

Battery Capacity
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Shortest Path Interpretation

 Optimal policy is identical for any concave power-rate function!

 Let                       , then the problem solved becomes:

The throughput maximizing policy yields 
the shortest path through the energy tunnel for 
any concave power-rate function.


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Shortest Path Interpretation

 Property 1: Constant power is better than any other alternative

 Shortest path between two points is a line (constant slope)

E

t0
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Throughput Maximizing 
Algorithm (TMA)
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 Knowing the structure of the policy, we can construct an iterative 

algorithm to get the tightest string in the tunnel.

 Note: After a step             is determined, the rest of the policy is 

the solution to a shifted problem with shifted arrivals and deadline:

 Essentially, the algorithm compares and find the tightest segment 

that hits the upper or lower wall staying feasible all along.
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Throughput Maximizing 
Algorithm (TMA) 
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Throughput Maximizing 
Algorithm (TMA) 
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 The transmission 
power must change
before arrival nub+1 to 
stay in the feasible 
tunnel

nub=20E

E
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t

At or before nub, 
battery must be empty or 
full to allow the necessary 
change. (Prop. 3)



Upper bound for the 
duration of the first step
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1. Find        . If                   terminate with power

2. Determine relation between

3. Transmit based on the outcome of step 2 with:

4. Repeat for shifted problem with updated parameters:
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Throughput Maximizing Algorithm 
(TMA) 
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Alternative Solution

 Transmission power is constant within each epoch:

 STTM problem expressed with above notation

lEpLEts
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Energy constraints:
sufficient to check

arrivals only
(Li: length of epoch i)
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Water-filling approach

 Lagrangian function for STTM

 KKT Stationarity Condition

 Li .r(pi )
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(Complementary slackness conditions)
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(Water Filling)1
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Water-filling approach
 Gradient for kth component
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Water-filling approach

 Complementary Slackness

Conditions: jEpLE
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Directional Water-Filling

 Harvested energies filled into epochs individually

0 t
O O O

0E 1E 2E

Water levels (vi)
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Directional Water-Filling

 Harvested energies filled into epochs individually

 Constraints:

 Energy Causality: water-flow only forward in time

0 t
O O O

0E 1E 2E

Water levels (vi)
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Directional Water-Filling

 Harvested energies filled into epochs individually

 Constraints:

 Energy Causality: water-flow only forward in time

 Battery Capacity: water-flow limited to Emax by taps

0 t
O O O

0E 1E 2E

Water levels (vi)
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Directional Water-Filling

 Energy tunnel 

and directional 

water-filling 

approaches 

yield the same 

policy
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Directional Water-Filling

 Energy tunnel 

and directional 

water-filling 

approaches 

yield the same 

policy
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Simulation Results

 Improvement of optimal algorithm over an on-off transmitter in 
a simulation with truncated Gaussian arrivals.
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Outline
 Transmission Completion Time Minimization for single link

 Short Term Throughput Maximization for single link with finite battery

 Transmission Completion Time Minimization for single link w/finite battery

 Extension to fading channels

 Transmission policies for nodes with inefficient energy storage

 Energy harvesting receivers

 Energy harvesting multiuser networks

 Energy cooperation in energy harvesting networks

 Information theory of energy harvesting communications (introductory)
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 Given the total number of bits to send as B, 
complete transmission in the shortest time 
possible.

Transmission Completion Time 
Minimization (TCTM) for single 
link with finite battery
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 max
u0

min
T

T  uB  u.max
p(t )P

 r(p(t))dt
0

T

 
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
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 Lagrangian dual of TCTM problem becomes:

Relationship of
STTM and TCTM problems
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STTM problem for deadline T
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 Optimal allocations are identical:

 STTM solution can be used to solve the 
TCTM problem

Relationship of
STTM and TCTM problems

STTM’s solution 
for deadline T

departing B bits

TCTM’s solution 
for departing B
bits in time T


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Maximum Service Curve 
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)  Maximum number of bits 

that can be sent in time 
T.

 Each point calculated by 
solving the 
corresponding STTM 
problem.
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Maximum Service Curve 

 Continuous, monotone increasing, invertible

 Optimal allocation 
for TCTM with B1
bits

Optimal allocation 
for STTM with 
deadline T1
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Outline
 Transmission Completion Time Minimization for single link

 Short Term Throughput Maximization for single link with finite battery

 Transmission Completion Time Minimization for single link w/ finite battery

 Extension to fading channels

 Transmission policies for nodes with inefficient energy storage

 Energy harvesting receivers

 Energy harvesting multiuser networks

 Energy cooperation in energy harvesting networks

 Information theory of energy harvesting communications (introductory)
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Extension to Fading Channels

 [Ozel-Tutuncuoglu-Ulukus-Yener ‘11]

 Find the short-term throughput maximizing 
and transmission completion time minimizing 
power allocations in a fading channel with non-
causally known channel states.

 Finite battery.
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System Model

 AWGN Channel with fading h :

 Each “epoch” defined as the interval between two “events”.

 Fading states and harvests known non-causally
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STTM Problem with Fading

 Transmission power constant within each epoch:

 Maximize total number of transmitted bits by a 

deadline T
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STTM Problem with Fading

 Lagrangian of the STTM problem
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(Complementary slackness conditions)

 Solution: directional water-filling with 

fading levels: 
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(Water Filling)
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Directional Water-Filling

0 t
O O Ox

→

0E
→

2E
→

4E

Fading levels (1/hi)

Water levels (vi)

x

 Same directional water filling model with added 

fading levels.

 Directional water flow (Energy causality)

 Limited water flow (Battery capacity)
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Directional Water-Filling

 Same directional water filling model with added 

fading levels.

 Directional water flow (Energy causality)

 Limited water flow (Battery capacity)

0 t
O O Ox

→

0E
→

2E
→

4E

x

Water depth gives
transmission power pi
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Maximum Service Curve 

 Continuous, non-decreasing
(flat regions when fading is severe)

 Inverse can be considered 
as the smallest T that 
achieves B1

Deadline (T)

M
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im
um

 D
ep

ar
tu
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 (

B
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T1

B1

O x x x x x xO O O
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Online Algorithms
Optimal online policy can be found using dynamic 

programming
 States of the system: fade level: h, battery energy: e

 Quantizing time by δ,  g*(e,h,kδ) can be found by iteratively solving

g
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Online Algorithms
Constant Water Level

 A cutoff fading level h0 is determined by the average 
harvested power Pavg as:

 Transmitter uses the corresponding water-filling power 
if available, is silent otherwise













i
i hh

p 11

0

1
h0


1
h





h0



 f (h)dh  Pavg               f(h): Fading distribution
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Online Algorithms
Time-Energy Adaptive Water-filling
 h0 determined by remaining energy scaled by remaining time as

Hybrid Adaptive Water-filling
 h0 determined similarly but by adding average received power

1
h0


1
h





h0



 f (h)dh  Ecurrent

T  t

1
h0


1
h





h0



 f (h)dh  Ecurrent

T  t
 Pavg
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Simulations

Performances of the 
policies w.r.t. energy 
arrival rates under:

 unit mean 
Rayleigh fading

 T = 10 sec

 Emax = 10 J.
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Outline
 Transmission Completion Time Minimization for single link

 Short Term Throughput Maximization for single link with finite battery

 Transmission Completion Time Minimization for single link w/ finite battery

 Extension to fading channels

 Transmission policies for nodes with inefficient energy storage

 Energy harvesting receivers

 Energy harvesting multiuser networks

 Energy cooperation in energy harvesting networks

 Information theory of energy harvesting communications (introductory)
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Transmission Policies with 
Inefficient Energy Storage

 Energy stored in a battery, supercapacitor, . . .

 “Real life” issues:

 [Devillers-Gunduz ‘11]: Leakage and Degradation

 [Tutuncuoglu-Yener-Ulukus‘15]: Storage/Recovery Losses

Storage 
Loss

Leakage
Degradation

Recovery 
Loss
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Battery Degradation

 [Devillers-Gunduz ‘11]

 Optimal Policy: Shortest path within narrowing tunnel

Degradation

E

t0
8/6/2015
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Battery Leakage

 [Devillers-Gunduz ‘11]

 Optimal Policy: When total energy in an epoch is low, deplete 

energy earlier to reduce leakage.

E

t0

Leakage
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Storage/Recovery Losses

 [Tutuncuoglu-Yener-Ulukus’15]

 Main Tension:

Storage 
Loss

Recovery 
Loss

Concavity of r(p): 
Use battery to 

maintain a constant 
power transmission

Battery inefficiency: 
Storing energy in 

battery causes energy 
loss
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 Time slots of duration

 Energy harvests: Size Ei at the beginning of time slot i

Time slotted model

Energy arrivals known offline first.

E1

t

E2 E3 EN-1

 2 )1( N0

1i 2i ... Ni 

N...

s1
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hi

Transmitter Receiver

Energy storage (ESD)

Emax

si

η ui

pi = hi – si + ui

System Model

Rate: r(p(t))

 hi: Harvested power
 si: Stored power
 ui: Retrieved (used) power
 pi: Transmit power

 ESD has finite capacity Emax and storage efficiency η.

 Energy Causality:

 Storage Capacity:

Ni,us
i

n
nn ,...,10

1




          

Ni,Eus
i

n
nn ,...,1max

1
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

       
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 Find optimal energy storage policy that maximizes 
the average throughput of an energy harvesting 
transmitter within a deadline of N time slots.

Throughput Maximization

 
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Throughput Maximization

 
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Old problem:

 Find optimal energy storage policy (γi ,ρi) that 
maximizes the average transmission rate of an 
energy harvesting transmitter within a deadline D.
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Optimal Power Policy
i) No storage capacity constraint
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 When battery is charging ( si > 0 )

 When battery is discharging ( ui > 0 ) 
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Optimal Power Policy
i) No storage capacity constraint
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 Structure of optimal policy:

 
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Optimal Power Policy
i) No storage capacity constraint

pi

0

iup ,

isp ,

Ei
“Double Threshold Policy”
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 How to find     and     ?

 Only change when                  (battery empty) 

 Both increasing in time since               



i  0
0, ibatE

Optimal Power Policy
i) No storage capacity constraint





is

iu

hp
hp

,

,

1
1

isp , iup ,

Iteratively find the smallest feasible        and       

that depletes the battery in the future.
isp , iup ,
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,iup

*
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*
,iup

*
,isp

Optimal Power Policy
i) No storage capacity constraint

pi

0

Ei

i 1

pi
*

i  2 i  3 i  4 i  5
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 How to find     and     ?

 Only change when                  or

 Increasing if                 and decreasing if



0, ibatE

Optimal Power Policy
ii) Finite-sized storage
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Find feasible pairs                that fill or deplete the 

battery, choose the one based on the second property.
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Optimal Power Policy
ii) Finite-sized storage
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Optimal Power Policy
iii) Fading channel
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 So far, we have discussed offline policies.

 Energy harvesting scenario may not be predictable, or 

may not be available prior to transmission

Optimal Online Policy

 Markov Decision Process (MDP) formulation:

 Action:

 Value: 
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Optimal Online Policy
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Optimal Online Policy

Random walk energy harvestingBursty energy harvesting
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 Both offline and online policies point to thresholds

 Choose fixed thresholds throughout transmission

to satisfy

Proposed Online Policy
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Simulations
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Simulations
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Simulations
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Simulations
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Outline
 Transmission Completion Time Minimization for single link

 Short Term Throughput Maximization for single link with finite battery

 Transmission Completion Time Minimization for single link w/ finite battery

 Extension to fading channels

 Transmission policies for nodes with inefficient energy storage

 Energy harvesting receivers

 Energy harvesting multiuser networks

 Energy cooperation in energy harvesting networks

 Information theory of energy harvesting communications (introductory)
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Conclusion
 In this tutorial, we covered energy efficient design (optimal 

scheduling policies) for one energy harvesting (rechargeable) 
transmitter.

 New networking paradigm: energy harvesting nodes
 New design insights arising from 

 new energy constraints
 energy storage limitations and inefficiencies
 interaction of multiple EH transmitters
 energy cooperation

 New problems in the information theory domain
 Lots of open problems related to all layers of the network 

design: e.g. signal processing/PHY design; MAC protocol design; 
channel capacity…
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