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Goals
 Energy Efficiency (EE): What it meant last decade; 

what it means today

 From a communication network design perspective what 

should we care about for energy efficient design of
 cellular/conventional wireless networks? (greenish)

 rechargeable/energy harvesting networks? (green)

 Communication with energy harvesting nodes
 Green, self-sufficient nodes with extended network lifetime

 Relatively new field with increasing interest
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Prerequisites for the Tutorial

 Optimization (Basic)
 Communication Theory (Basic)
 Fairly self-contained otherwise
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Classical Networks

 Multiple User/shared 

frequency resources

(interference limited)

 Battery powered mobile nodes

 Single charge
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Applications

 Cellular Networks (nG, n>1) including multi-tier 

(femto+macro) & network MIMO

 Sensor networks (shared bandwidth, single or 

multiple “sinks”)

 Adhoc networks with “access” points

 Multimedia traffic, we will concentrate on the 

portion that is “energy hungry” = delay intolerant
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Performance Measure

Quality of Service (QoS)

 Packet delay

 Delay sensitive applications (e.g. voice)

 Packet error rate

 Certain requirements to meet for quality
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Performance Measure

Packet Error Rate

Bit Error Rate

SNR / SIR

Coding/Retransmission

Detection
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Signal-to-Interference Ratio (SIR)

Performance Measure



 ij jj

ii
i hp

hpSIR
receiver at power noise 

user for tcoefficien channel
 user of power transmit 

:
:
:


 ih

ip

i

i

Goal (EE): For acceptable SIR satisfying 

QoS constraints, minimize total 

transmission power in the network.
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Interference Management 
for CDMA/SDMA systems

 Users have unique, but non-orthogonal

signatures

 Near-far problem
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Near-Far Problem

 Strong user can 
destroy weak 
user’s 
communication

ip
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 Prominent in CDMA/SDMA systems
(users share the same frequency and time)
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Near-Far Problem

CDMA
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Better user with close 
code s(t) interferes

Better user with close 
spatial position interferes
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Interference Management 
Techniques

 Power Control [Yates’95]

 Multiuser Detection/ Receiver Design [Verdu’98]

 Adaptive Sectorization [Saraydar-Yener’01]

 Transceiver (Precoder+Receiver) Design [Serbetli-

Yener’04]

 EE Network design: Find the minimum power needed 

with optimum receivers and/or transmitters.
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SIR-based Power Control
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Power Control + Receiver 
Design (SIMO)
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Power Control + Transceiver 
Design (MIMO)
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Capacity-Based Power Control

 Fading: random fluctuations in channel gains.

 CSI known both at the transmitter and the receiver

 Ergodic capacity subject to average power 

constraints

 Main operational difference:

 QoS based power control: compensate for channel effects

 Capacity-based power control: exploit the channel effects
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Single-User Fading Channel
 Channel capacity for single user

 In the presence of fading, the capacity for channel state h,

 Ergodic (expected) capacity under an average power constraint
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Optimal Power Allocation using Waterfilling

 The Lagrangian

 Optimality conditions

 Complementary slackness condition:

 Optimal Power Allocation:
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Optimal Power Allocation using Waterfilling

 Waterfilling of power over time:
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Illustration of Water-filling over 
Inverse of Channel States

Single User Optimum Power Allocation 
vs. Fading States



Differences Between QoS-Based and 
Capacity-Based Power Control

 Single user system:

 SIR-based:

 Channel inversion; more power if channel is bad, less if channel is good.
 Compensate for channel fading via power control

 Capacity-based:

 Waterfilling; more power if channel is good, less if channel is bad.
 Exploit variations, opportunistic transmission
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Introduction

Ubiquitous
Mobile / 
Remote Energy-

limited

Many sources

Abundant energy

Green

Energy 

Harvesting 

Wireless 

Networks
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Energy Harvesting Networks

 Wireless networking with rechargeable (energy 

harvesting) nodes:

 Green, self-sufficient nodes,

 Extended network lifetime,

 Smaller nodes with smaller batteries.

A relatively new field with increasing interest.
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Some Applications

Wireless sensor networks

Green
communications
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Motivation
 New Wireless Network Design Challenge: 

A set of energy feasibility constraints based 
on harvests govern the communication 
resources.

 Design question:
When and at what rate/power should a 
“rechargeable” (energy harvesting) node 
transmit? 

 Optimality? Throughput; Delivery Delay
 Outcome: Optimal Transmission Schedules
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Two Main Goals of 
Transmission Scheduling

 Transmission Completion Time Minimization (TCTM):

Given a number of bits to send, minimize the time at 

which all bits have departed the transmitter.

 Short-Term Throughput Maximization (STTM):

Given a deadline, maximize the number of bits sent 

before the end of transmission.
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 [Yang-Ulukus ‘12]
 System Model:

 Energy harvesting transmitter
 Energy and data arrivals to transmitter
 Transmitting with power p achieves rate r(p)

TCTM for Single Link

Ei

Bi

transmitter receiver

Energy queue
Data queue
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 Energy harvests: Size Ei at time ti

 Data packet arrivals: Size Bi at time si

TCTM for Single Link

System Model:
E0

B0

t

T
E1 E2 E3

B1 B2 B3

t1 t2 t3

s1 s2 s3s0

All arrivals known by transmitter beforehand.
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 Problem:
Find optimal transmission power/rate policy
that minimizes transmission time for a known 
amount of arriving packets.

 Constraints:
Cannot use energy not harvested yet.
Cannot transmit packets not received yet.

TCTM for Single Link
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Power-Rate Function

 Transmission with power p yields a rate of r(p)

 Assumptions on r(p):

i. r(0)=0, r(p) → ∞ as p → ∞ 
ii. increases monotonically in p
iii. strictly concave
iv. r(p) continuously differentiable

Example: AWGN Channel,                                
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Power-Rate Function

 r(p) strictly concave, increasing, r(0)=0 implies

)( pr
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p
p
pr in  decreasinglly monotonica is  )()tan( 

 Given a fixed energy, a longer
transmission with lower power 
departs more bits (Lazy 
Scheduling).

 Also, r -1(p) exists and is 
strictly convex
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 Transmission structure: Power pi for duration li

 Expended Energy:

 Departed bits:

Scenario I:
Packets Ready before Transmission
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 Problem Definition:

Scenario I:
Packets Ready before Transmission
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 Lemma 1: Transmit powers increase monotonically, 

i.e.,

Proof: (by contradiction) assume not, i.e.,                for some i

Energy consumed in     and       is

Consider the following constant power policy:

which does not violate energy constraint since  

Necessary conditions for optimality
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 Lemma 1: Transmit powers increase monotonically, 

i.e.,

Proof(cont’d): Transmitted bits then become

where inequality is due to strict concavity of r(p)

Therefore pi>pi+1 cannot be optimal

Necessary conditions for optimality

Nppp  ...21
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 Lemma 1: The transmit powers increase 

monotonically, i.e.,

Proof(cont’d):

Necessary conditions for optimality
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Time-sharing between 

any two points is 

strictly suboptimal for 

concave r(p)
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 Lemma 2: The transmission power remains constant 

between energy harvests.

Proof: (by contradiction) assume not

Let the total consumed energy in epoch               be         , which 

is available in energy queue at

Then a constant power transmission

is feasible and strictly better than a non-constant transmission.

Necessary conditions for optimality
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 Lemma 2: The transmission power remains constant 

between energy harvests.

Necessary conditions for optimality

Transmission power only changes at is
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 Lemma 3: Whenever transmission rate changes, 

energy buffer is empty.

Proof: (by contradiction) assume not, i.e.,                for some i

and energy buffer has      energy remaining at time of change.

Necessary conditions for optimality

1 ii pp



 

Choose  i  and  i1  such that  ili   i1li1    and let
     pi  pi  i ,       pi1  pi1  i1

Since  amount of energy has moved from i 1 to i, and this 
was available at the buffer, this policy is feasible.
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 Lemma 3: Whenever transmission rate changes, 

energy buffer is empty.

Necessary conditions for optimality

 i1
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Summary:

 L1: Power only increases

 L2: Power constant between arrivals

 L3: At time of power change, energy buffer is empty

Conclusion:

Necessary conditions for optimality

For optimal policy, compare and sort (L1) power levels 

that deplete energy buffer (L3) at arrival instances (L2).
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Optimal Policy for Scenario I

For a given B0 the optimal policy satisfies:

and has the form 
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1.

Algorithm for Scenario I

Find minimum number of energy arrivals required imin

by comparing:       Ai  r1 B0

si
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Illustration – Step 1
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Illustration – Step 2
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Illustration – Step 3
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Illustration – Step 4
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Scenario II:
Packets Arrive During Transmission

E0
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t

T
E1 E2 EK

B1 B2

t1 t2

s1 s2 sKs0

 Transmitter cannot depart packets not received yet!

 Additional packet constraints apply
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Scenario II:
Packets Arrive During Transmission

Expended Energy:

Departed bits:

Problem Definition:
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Energy Causality

Packet Causality
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 Lemma 4: Power only increases.

 Lemma 5: Power constant between 2 arrivals of any kind.

 Lemma 6: At time of power change:

(Proofs are similar to Lemmas 1-3)

Necessary conditions for optimality

 

if t  si  (energy arrival), energy buffer is empty;
if t  ti  (packet arrival), packet buffer is empty.
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Optimal Policy for Scenario II

The optimal policy satisfies

and has the form
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 [Tutuncuoglu-Yener ’12a]
 Maximize  the throughput of an energy 

harvesting transmitter by deadline T.
 Find optimal power allocation/transmission 

policy that departs maximum number of bits in 
a given duration.

 Up to a certain amount of energy can be stored 
by the transmitter  BATTERY CAPACITY

STTM for single link with 
Finite Battery
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 Energy arrivals of energy      at times     

 Arrivals known non-causally by transmitter,
 Stored in a finite battery of capacity       ,
 Design parameter: power     rate    .

System Model

iE is

maxE
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Notations and Assumptions

 Power allocation function:

 Energy consumed: 

 Short-term throughput:

 Power-rate function r(p): Strictly concave in p
 Overflowing energy is lost (not optimal)
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 Battery Capacity:

Energy Constraints

(Energy arrivals of Ei at times si)

 Energy Causality: nn
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Energy “Tunnel”
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STTM Problem for Single Link

 Maximize total number of transmitted bits by deadline T

 Convex constraint set, concave maximization problem
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Necessary conditions for 
optimality of a transmission policy

 Property 1: Transmission power remains constant between 

arrivals.

 Property 2: Battery never overflows.

Proof:

pr(p)dtr(p(t))dt(t))pr(
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Necessary conditions for 
optimality of a transmission policy

 Property 3: Power level increases at an energy arrival instant 

only if battery is depleted. Conversely, power level decreases 

at an energy arrival instant only if battery is full.

Proof:

r(p)dtr(p(t))dt(t))pr(

elsetp
tp
tp

tp

pp

TT

 of concavity strict to due        Then

depleted is battery
unless Feasible

        Define

  Let              
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Necessary conditions for 
optimality of a transmission policy

 Property 3: Power level increases at an energy arrival instant 

only if battery is depleted. Conversely, power level decreases 

at an energy arrival instant only if battery is full.

Policy can be improved Policy cannot be improved

p(t)

p’(t)
p*(t)

  r(p(t))dt(t))dtpr(
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Necessary conditions for 
optimality of a transmission policy

 Property 3: Power level increases at an energy arrival instant 

only if battery is depleted. Conversely, power level decreases 

at an energy arrival instant only if battery is full.

Proof:

r(p)dtr(p(t))dt(t))pr(

elsetp
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TT

 of concavity strict to due        Then

full is battery
unless Feasible
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  Let              

 






























 

00

)(
],[)(
],[)(

)(

)()(






6/9/2013
IEEE ICC 2013, Budapest, Hungary



Necessary conditions for 
optimality of a transmission policy

 Property 3: Power level increases at an energy arrival instant 

only if battery is depleted. Conversely, power level decreases 

at an energy arrival instant only if battery is full.

Policy can be improved Policy cannot be improved

p(t)
p’(t)

  r(p(t))dt(t))dtpr(

p*(t)
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Necessary conditions for 
optimality of a transmission policy

 Property 4: Battery is depleted at the end of transmission.

Proof:

increasing is  since        Then

     
 

  Define

p(t) after remains  of energy an Assume          
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Necessary Conditions for 
Optimality

Implications of Properties 1-4:

 Structure of optimal policy: (Property 1)

 For power to increase or decrease, policy must meet the upper 

or lower boundary of the tunnel respectively (Property 3)

 At termination step, battery is depleted (Property 4).
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Energy “Tunnel”

cE
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Battery Capacity
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Shortest Path Interpretation

 Optimal policy is identical for any concave power-rate function!

 Let                       , then the problem solved becomes:

The throughput maximizing policy yields 
the shortest path through the energy tunnel for 
any concave power-rate function.
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Shortest Path Interpretation

 Property 1: Constant power is better than any other alternative

 Shortest path between two points is a line (constant slope)

E

t0
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Throughput Maximizing 
Algorithm (TMA)
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 Knowing the structure of the policy, we can construct an iterative 

algorithm to get the tightest string in the tunnel.

 Note: After a step             is determined, the rest of the policy is 

the solution to a shifted problem with shifted arrivals and deadline:

 Essentially, the algorithm compares and find the tightest segment 

that hits the upper or lower wall staying feasible all along.
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Throughput Maximizing 
Algorithm (TMA) 
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Throughput Maximizing 
Algorithm (TMA) 
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 The transmission 
power must change
before arrival nub+1 to 
stay in the feasible 
tunnel

nub=20E

E
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maxE

t

At or before nub, 
battery must be empty or 
full to allow the necessary 
change. (Prop. 3)



Upper bound for the 
duration of the first step
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1. Find        . If                   terminate with power

2. Determine relation between

3. Transmit based on the outcome of step 2 with:

4. Repeat for shifted problem with updated parameters:
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Alternative Solution

 Transmission power is constant within each epoch:

 STTM problem expressed with above notation

lEpLEts
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Energy constraints:
sufficient to check

arrivals only
(Li: length of epoch i)
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Water-filling approach

 Lagrangian function for STTM

 KKT Stationarity Condition
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(Complementary slackness conditions)
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(Water Filling)1
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Water-filling approach
 Gradient for kth component
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Water-filling approach

 Complementary Slackness
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Directional Water-Filling

 Harvested energies filled into epochs individually

0 t
O O O

0E 1E 2E

Water levels (vi)
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Directional Water-Filling

 Harvested energies filled into epochs individually

 Constraints:

 Energy Causality: water-flow only forward in time

0 t
O O O

0E 1E 2E

Water levels (vi)
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Directional Water-Filling

 Harvested energies filled into epochs individually

 Constraints:

 Energy Causality: water-flow only forward in time

 Battery Capacity: water-flow limited to Emax by taps

0 t
O O O

0E 1E 2E

Water levels (vi)
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Directional Water-Filling

 Energy tunnel 

and directional 

water-filling 

approaches 

yield the same 

policy
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Directional Water-Filling

 Energy tunnel 

and directional 

water-filling 

approaches 

yield the same 

policy
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Simulation Results

 Improvement of optimal algorithm over an on-off transmitter in 
a simulation with truncated Gaussian arrivals.
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Outline
1. Classical Networks

 SIR-based design

 Capacity-based design [Preliminary for Part 2]

2. Energy Harvesting Networks

 Transmission Completion Time Minimization for single link

 Short Term Throughput Maximization for single link with finite battery

 Transmission Completion Time Minimization for single link w/ finite battery

 Extension to fading channels

 Transmission policies with inefficient energy storage
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 Given the total number of bits to send as B, 
complete transmission in the shortest time 
possible.

Transmission Completion Time 
Minimization (TCTM) for single 
link with finite battery

 
T

tp
tpdttprBtsT

0)(
)(,0))((..min           









 




  nn

n

k

t

k stsnEdttpEtp ' ,0 ,)(0  )( 1

1

0

'

0 max

6/9/2013
IEEE ICC 2013, Budapest, Hungary



 max
u0

min
T

T  uB  u.max
p(t )P

 r(p(t))dt
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 Lagrangian dual of TCTM problem becomes:

Relationship of
STTM and TCTM problems
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STTM problem for deadline T
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 Optimal allocations are identical:

 STTM solution can be used to solve the 
TCTM problem

Relationship of
STTM and TCTM problems

STTM’s solution 
for deadline T

departing B bits

TCTM’s solution 
for departing B
bits in time T
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Maximum Service Curve 
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)  Maximum number of bits 

that can be sent in time 
T.

 Each point calculated by 
solving the 
corresponding STTM 
problem.
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Maximum Service Curve 

 Continuous, monotone increasing, invertible

 Optimal allocation 
for TCTM with B1
bits

Optimal allocation 
for STTM with 
deadline T1
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Outline
1. Classical Networks

 SIR-based design

 Capacity-based design [Preliminary for Part 2]

2. Energy Harvesting Networks

 Transmission Completion Time Minimization for single link

 Short Term Throughput Maximization for single link with finite battery

 Transmission Completion Time Minimization for single link w/ finite battery

 Extension to fading channels

 Transmission policies with inefficient energy storage
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Extension to Fading Channels

 [Ozel et. al. ‘11]

 Find the short-term throughput maximizing 
and transmission completion time minimizing 
power allocations in a fading channel with non-
causally known channel states.

 Finite battery capacity
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System Model

 AWGN Channel with fading h :

 Each “epoch” defined as the interval between two “events”.

 Fading states and harvests known non-causally
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1),( PhhPR 

0E 2E 3E 6E 7E

0 t
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STTM Problem with Fading

 Transmission power constant within each epoch:

 Maximize total number of transmitted bits by a 

deadline T
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STTM Problem with Fading

 Lagrangian of the STTM problem
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(Complementary slackness conditions)

 Solution: directional water-filling with 

fading levels: 
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(Water Filling)
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STTM Problem with Fading
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Directional Water-Filling

0 t
O O Ox

→

0E
→

2E
→

4E

Fading levels (1/hi)

Water levels (vi)

x

 Same directional water filling model with added 

fading levels.

 Directional water flow (Energy causality)

 Limited water flow (Battery capacity)
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Directional Water-Filling

 Same directional water filling model with added 

fading levels.

 Directional water flow (Energy causality)

 Limited water flow (Battery capacity)

0 t
O O Ox

→

0E
→

2E
→

4E

x

Water depth gives
transmission power pi
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Maximum Service Curve 

 Continuous, non-decreasing
(flat regions when fading is severe)

 Inverse can be considered 
as the smallest T that 
achieves B1

Deadline (T)
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Online Algorithms
Optimal online policy can be found using dynamic 

programming
 States of the system: fade level: h, battery energy: e

 Quantizing time by δ,  g*(e,h,kδ) can be found by iteratively solving
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Online Algorithms
Constant Water Level

 A cutoff fading level h0 is determined by the average 
harvested power Pavg as:

 Transmitter uses the corresponding water-filling power 
if available, is silent otherwise
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Online Algorithms
Time-Energy Adaptive Water-filling
 h0 determined by remaining energy scaled by remaining time as

Hybrid Adaptive Water-filling
 h0 determined similarly but by adding average received power
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Simulations

Performances of the 
policies w.r.t. energy 
arrival rates under:

 unit mean 
Rayleigh fading

 T = 10 sec

 Emax = 10 J.
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Outline
1. Classical Networks

 SIR-based design

 Capacity-based design [Preliminary for Part 2]

2. Energy Harvesting Networks

 Transmission Completion Time Minimization for single link

 Short Term Throughput Maximization for single link with finite battery

 Transmission Completion Time Minimization for single link w/ finite battery

 Extension to fading channels

 Transmission policies with inefficient energy storage
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Transmission Policies with 
Inefficient Energy Storage

 Energy stored in a battery, supercapacitor, . . .

 “Real life” issues:

 [Devillers-Gunduz ‘11]: Leakage and Degradation

 [Tutuncuoglu-Yener ‘12b]: Storage/Recovery Losses
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Storage 
Loss

Leakage
Degradation

Recovery 
Loss



Battery Degradation

 [Devillers-Gunduz ‘11]

 Optimal Policy: Shortest path within narrowing tunnel
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Degradation

E

t0



Battery Leakage

 [Devillers-Gunduz ‘11]

 Optimal Policy: When total energy in an epoch is low, deplete 

energy earlier to reduce leakage.
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Storage/Recovery Losses

 [Tutuncuoglu-Yener ’12b]

 Main Tension:
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Storage 
Loss

Recovery 
Loss

Concavity of r(p): 
Use battery to 

maintain a constant 
power transmission

Battery inefficiency: 
Storing energy in 

battery causes energy 
loss
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h(t)
Transmitter Receiver

Energy storage (ESD)

Emax

s(t)
η u(t)

p(t) = h(t) – s(t) + u(t)

System Model

Rate: r(p(t))

 h(t): Harvested power
 s(t): Stored power
 u(t): Retrieved (used) power
 p(t): Transmit power

 ESD has finite capacity Emax and storage efficiency η.

 Energy Causality:

 Storage Capacity:

Tt,dus
t

 00)()(
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Tt,Edus
t
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 Find optimal energy storage policy that 
maximizes the average transmission rate of 
an energy harvesting transmitter within a 
deadline T.

Average Rate Maximization
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Optimal Power Policy
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 When battery is charging (s(t)>0)

 When battery is discharging (u(t)>0)
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 “Double Threshold Policy”
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Optimal Online Algorithm

Optimal online policy 

turns out to be a 

double threshold 

policy with adaptive 

thresholds (as a fct

of battery states)
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 User has causal energy harvesting information only

 Fix the thresholds throughout the transmission

to satisfy

Near-Optimal Online Algorithm

6/9/2013 IEEE ICC 2013, Budapest, Hungary















         and 

     and 

0)()(
)()(

)()(
)(

max

tEpthp
pthpth

EtEpthp
tp

batouou

osou

batosos

 
 ou

os

p

houp hos dppfppdppfpp
0

)()()()(



Simulations
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Conclusion

• In this tutorial, we covered energy efficient design 
for classical (single charge) networks, as well as 
optimal scheduling policies for one Energy 
Harvesting (rechargeable) transmitter.

• New networking paradigm: energy harvesting nodes
 New design insights arise from new energy 

constraints!
 Lots of open problems related to all layers of the 

network design: e.g. Signal processing/PHY design; 
MAC protocol design ; Channel capacity…
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