Afternoon Session Scheduling in Multi-User Energy Harvesting Networks and Information-Theoretic Treatment of Single-User Energy Harvesting Communication

Şennur Ulukuş Department of Electrical and Computer Engineering University of Maryland

So Far, We Learned...

- ▶ Single-user communication with an energy harvesting transmitter.
- ► Energy arrives (is harvested) during the communication session
- Transmission policy is adapted to energy arrivals
- ► Two dual objectives:
 - minimize transmission completion time
 - maximize average throughput

The Optimal Policy for $E_{max} = \infty$

- ▶ Upper staircase is the cumulative energy arrivals
- ▶ Feasible energy consumption lies below the staircase
- ► Transmit power remains constant in each epoch
- ▶ The tightest curve under the cumulative energy arrival staircase

The Optimal Policy for $E_{max} < \infty$

- Upper staircase: energy arrivals
- Lower staircase: finite battery constraint (no overflows)
- ► Any feasible energy consumption curve must lie in between
- Power remains constant in each epoch
- ► The tightest curve in the feasibility tunnel

Scheduling in Multi-user Energy Harvesting Systems

- Extend the system model to a multi-user setting
- Broadcasting with an energy harvesting transmitter
 - ▶ An energy harvesting transmitter sends messages to two users
 - ▶ E.g., a wireless access device sending different messages to users
- Multiple access with energy harvesting transmitters
 - ▶ Energy harvesting transmitters communicating with a single receiver
 - E.g., multiple sensors sending data to a center

Broadcasting with an Energy Harvesting Transmitter

- ► Energy arrives (is harvested) during the communication session.
- ▶ Assume battery has infinite storage capacity: $E_{max} = \infty$
- Broadcasting data to two users by adapting to energy arrivals
- ► Objective: minimize the transmission completion time

Broadcast Channel Model

AWGN broadcast channel:

$$Y_1 = X + N_1, \quad Y_2 = X + N_2$$

where $\emph{N}_1 \sim \mathcal{N}(0,1)$, $\emph{N}_2 \sim \mathcal{N}(0,\sigma^2)$

- $ightharpoonup \sigma^2 > 1$: 2nd user is degraded
- ▶ We call 1st user stronger and 2nd user weaker

7

Broadcast Channel Model

$$r_1 \le \frac{1}{2} \log_2 (1 + \alpha P)$$
 $r_2 \le \frac{1}{2} \log_2 \left(1 + \frac{(1 - \alpha)P}{\alpha P + \sigma^2} \right)$

• We work in the (r_1, r_2) domain:

$$P = 2^{2(r_1 + r_2)} + (\sigma^2 - 1)2^{2r_2} - \sigma^2 \triangleq g(r_1, r_2)$$

 $ightharpoonup g(r_1,r_2)$ is the minimum power required to send at rates (r_1,r_2)

Energy Model

- ► Energy is *harvested* during the course of communication.
- We will consider offline policies.
- ▶ Energy causality constraints: energy that has not arrived cannot be used

$$\int_0^{t_i^e} g(r_1, r_2)(\tau) d\tau \leq \sum_{j=0}^{i-1} E_j, \quad \forall i$$

Constraints on the Power Policy

Energy arrivals known deterministically a priori

- ▶ Upper staircase: energy arrivals
- ▶ Any feasible energy consumption curve must lie **below the upper staircase**

Problem Formulation

- ▶ Minimize transmission completion time of (B_1, B_2) bits.
- ▶ By adapting the transmission to the energy arrivals.
- Subject to energy causality constraints

- ▶ The maximum departure region $\mathcal{D}(T)$: union of (B_1, B_2) pairs achievable by some rate allocation policy that satisfies the energy causality constraint.
- ▶ $\mathcal{D}(T)$ monotonically increases with T. For example, when $T_1 < T_2 < T_3$:

▶ These problems are dual because: if (B_1, B_2) bits can be transmitted in T_{\min} then (B_1, B_2) must be in $D(T_{\min})$.

▶ Find $\mathcal{D}(T)$ for a given T.

- ► Transmission rates, and power, remain constant between energy harvests.
- ▶ Denote the rates that go to users as (r_{1i}, r_{2i}) over epoch i.
- ▶ The **power** at epoch i: $g(r_{1i}, r_{2i})$
- ▶ The **energy spent** during epoch $i: g(r_{1i}, r_{2i})\ell_i$
- ▶ The energy causality constraint reduces to constraints on (r_{1i}, r_{2i}) :

$$\sum_{i=1}^{k} g(r_{1i}, r_{2i}) \ell_i \leq \sum_{i=0}^{k-1} E_i, \qquad k = 1, \dots, K+1$$

- ▶ $\mathcal{D}(T)$ is a strictly convex region.
- ▶ Characterize $\mathcal{D}(T)$ by solving optimization problems for all $\mu_1, \mu_2 \geq 0$:

$$\max_{\mathbf{r}_{1},\mathbf{r}_{2}} \quad \mu_{1} \sum_{i=1}^{K+1} r_{1i} \ell_{i} + \mu_{2} \sum_{i=1}^{K+1} r_{2i} \ell_{i}$$
s.t.
$$\sum_{i=1}^{k} g(r_{1i}, r_{2i}) \ell_{i} \leq \sum_{i=0}^{k-1} E_{i}, \qquad k = 1, \dots, K+1$$

▶ The Lagrangian function

$$\mathcal{L} = \mu_1 \sum_{i=1}^{K+1} r_{1i} \ell_i + \mu_2 \sum_{i=1}^{K+1} r_{2i} \ell_i - \sum_{k=1}^{K+1} \lambda_k \left(\sum_{i=1}^k g(r_{1i}, r_{2i}) \ell_i - \sum_{i=0}^{K-1} E_i \right) + \sum_{i=1}^{K+1} \gamma_{1i} r_{1i} + \sum_{i=1}^{K+1} \gamma_{2i} r_{2i}$$

▶ Total power in terms of Lagrange multipliers

$$P_i = \max \left\{ \frac{\mu_1 + \gamma_{1i}}{\sum_{k=i}^{K+1} \lambda_k} - 1, \frac{\mu_2 + \gamma_{2i}}{\sum_{k=i}^{K+1} \lambda_k} - \sigma^2 \right\}$$

A Structural Property of the Optimal Policy

- ▶ Optimal total transmit power, $\{g(r_{1i}^*, r_{2i}^*)\}_{i=1}^{K+1}$, is independent of μ_1, μ_2 .
- ▶ In particular, it is the same as the optimal single-user transmit power.

Single User Optimal Policy

► Single user optimal policy is found by calculating the tightest curve below the energy arrival curve:

- Slope of the curve is the allocated power
- ▶ Power is monotonically increasing

Full Structure of an Optimal Policy

- ▶ Total transmit power is the same as the single-user case.
- ▶ The power shares follow a cut-off structure:
- ► Cut-off level P_c

$$P_c = \frac{\mu - 1}{\sigma^2 - \mu}$$

where $\mu = \frac{\mu_2}{\mu_1}$ and $1 < \mu < \sigma^2$.

- ▶ If below P_c , then, only transmit to the stronger user
- Otherwise, stronger user's power share is P_c.
- Extreme cases:
 - If $\mu \leq 1$, only the stronger user's data is transmitted
 - If $\mu \ge \sigma^2$, only the weaker user's data is transmitted

The Structure of an Optimal Policy

Back to the Transmission Completion Time Minimization Problem

- \blacktriangleright (B_1, B_2) and $\{E_i\}$ are given
- ▶ Find the minimum time to transmit (B_1, B_2) subject to energy causality.
- ▶ (B_1, B_2) point must lie on the boundary of $\mathcal{D}(T_{min})$:

- ▶ Use derived structure of the optimal policy
- ► Transmissions for strong and weak users must end at the same time.

Algorithm to Find the Optimal Policy

▶ Find P_1 : the power level allocated at the first epoch

▶ Set $P_c = P_1$ and calculate

$$T = \frac{B_1}{\frac{1}{2}\log\left(1 + P_c\right)}$$

▶ Calculate $D_2(T, P_c)$: bits sent for weaker user by T treating P_c as noise.

Algorithm to Find the Optimal Policy

- ▶ If $D_2(T, P_c) > B_2$, decrease P_c .
- ▶ Otherwise find P_2 : the next allocated power level. Repeat the procedure
- Once $D_2(T, P_c) = B_2$, stop.

Broadcast Channel with Finite E_{max}

- ▶ (B_1, B_2) bits to be sent and battery capacity $E_{max} < \infty$
- ► AWGN broadcast channel:

$$Y_1 = X + N_1, \quad Y_2 = X + N_2$$

- $N_1 \sim \mathcal{N}(0,1)$ and $N_2 \sim \mathcal{N}(0,\sigma^2)$ with $\sigma^2 > 1$
- ▶ 1st user stronger and 2nd user weaker

Broadcast Channel with Finite E_{max}

- ▶ Incoming energies are smaller than E_{max} : $E_i \leq E_{max}$
- Energy causality constraints: energy that has not arrived cannot be used

$$\int_0^{t_i^e} g(r_1, r_2)(u) du \leq \sum_{j=0}^{i-1} E_j, \quad \forall i$$

▶ No-energy-overflow condition: energy overflow (wasting) is suboptimal

$$\sum_{i=0}^{h(t)} E_j - \int_0^t g(r_1, r_2)(u) du \le E_{max}, \quad \forall t$$

Constraints on the Power Policy

► Energy causality constraints: energy that has not arrived cannot be used

$$\int_0^{t_i^e} g(r_1, r_2)(u) du \leq \sum_{i=0}^{i-1} E_j, \quad \forall i$$

▶ No-energy-overflow condition: energy overflow (wasting) is suboptimal

$$\sum_{i=0}^{h(t)} E_j - \int_0^t g(r_1, r_2)(u) du \leq E_{max}, \quad \forall t$$

Problem Formulation

- ▶ Minimize transmission completion time of (B_1, B_2) bits.
- ▶ By adapting the transmission to the energy arrivals.
- Subject to energy causality and finite battery constraints

▶ $\mathcal{D}(T)$: union of (B_1, B_2) pairs achievable by some rate allocation policy that satisfies the energy causality and no-energy-overflow constraints.

- The transmission rates, and hence the transmission power, remain constant between energy harvests in any optimal policy
- ▶ The energy causality constraint reduces to constraints on (r_{1i}, r_{2i}) :

$$\sum_{i=1}^k g(r_{1i}, r_{2i})\ell_i \leq \sum_{i=0}^{k-1} E_i, \qquad k = 1, \dots, K+1$$

► The no-energy-overflow condition:

$$\sum_{i=0}^k E_i - \sum_{i=1}^k g(r_{1i}, r_{2i})\ell_i \leq E_{max}, \qquad k=1,\ldots,K$$

- $\triangleright \mathcal{D}(T)$ is a strictly convex region.
- ▶ Characterize $\mathcal{D}(T)$ by solving optimization problems for all $\mu_1, \mu_2 \geq 0$:

$$\max_{\mathbf{r}_{1},\mathbf{r}_{2}} \quad \mu_{1} \sum_{i=1}^{K+1} r_{1i} \ell_{i} + \mu_{2} \sum_{i=1}^{K+1} r_{2i} \ell_{i}$$
s.t.
$$\sum_{i=1}^{k} g(r_{1i}, r_{2i}) \ell_{i} \leq \sum_{i=0}^{k-1} E_{i}, \ 1 \leq k \leq K+1$$

$$\sum_{i=0}^{k} E_{i} - \sum_{i=1}^{k} g(r_{1i}, r_{2i}) \ell_{i} \leq E_{max}, \ 1 \leq k \leq K$$

$$B_{2}$$

$$(\mu_{1}, \mu_{2})$$

33

 $\mathcal{D}(T)$

 B_1

▶ The Lagrangian function

$$\mathcal{L} = \mu_1 \sum_{i=1}^{K+1} r_{1i} \ell_i + \mu_2 \sum_{i=1}^{K+1} r_{2i} \ell_i - \sum_{k=1}^{K+1} \lambda_k \left(\sum_{i=1}^k g(r_{1i}, r_{2i}) \ell_i - \sum_{i=0}^{K-1} E_i \right) \\ - \sum_{k=1}^K \eta_k \left(\sum_{i=0}^k E_i - \sum_{i=1}^k g(r_{1i}, r_{2i}) \ell_i - E_{max} \right) + \sum_{i=1}^{K+1} \gamma_{1i} r_{1i} + \sum_{i=1}^{K+1} \gamma_{2i} r_{2i}$$

Total power in terms of Lagrange multipliers

$$P_{i} = \max \left\{ \frac{\mu_{1}}{\left(\sum_{k=i}^{K+1} \lambda_{k} - \sum_{k=i}^{K} \eta_{k}\right)} - 1, \frac{\mu_{2}}{\left(\sum_{k=i}^{K+1} \lambda_{k} - \sum_{k=i}^{K} \eta_{k}\right)} - \sigma^{2} \right\}$$

A Structural Property of the Optimal Policy

- ▶ Optimal total transmit power, $\{g(r_{1i}^*, r_{2i}^*)\}_{i=1}^{K+1}$, is independent of μ_1, μ_2 .
- ▶ In particular, it is the same as the optimal single-user transmit power.

Full Structure of an Optimal Policy

- ▶ Total transmit power is the same as the single-user case.
- ► The power shares follow a cut-off structure:
- ► Cut-off level P_c

$$P_c = \frac{\mu - 1}{\sigma^2 - \mu}$$

where $\mu = \frac{\mu_2}{\mu_1}$ and $1 < \mu < \sigma^2$.

- ▶ If below P_c , then, only the stronger user
- Otherwise, stronger user's power share is P_c .
- Extreme cases:

 - ▶ If $\mu \le 1$, only the stronger user's data is transmitted ▶ If $\mu \ge \sigma^2$, only the weaker user's data is transmitted
- **Powers** are not monotonically increasing due to finite E_{max} .
- Need to devise a new algorithm.

The Structure of an Optimal Policy

Back to the Transmission Completion Time Minimization Problem

- \blacktriangleright (B_1, B_2) and $\{E_i\}$ are given
- Find the minimum time to transmit (B_1, B_2) subject to
 - energy causality
 - no-energy-overflow
- ▶ We divide the positive quadrant in 5 regions as follows

Algorithm to Find the Optimal Policy

▶ Start with an arbitrary P_c and calculate

$$T = \frac{B_1}{\frac{1}{2}\log\left(1 + P_c\right)}$$

- ▶ Assume, WLOG, we start in (1). Decrease P_c and recalculate T
- ► There are two possible cases.

Algorithm to Find the Optimal Policy

▶ In case B_1 is achieved, iterations on P_c is sufficient.

Algorithm to Find the Optimal Policy

- ▶ Otherwise, iterate P_c and T separately.
- ► Suitable step size updates exist due to continuity.

Conclusions for the Broadcasting Scenario

- Energy harvesting transmitter with infinite and finite capacity battery
- ► Transmission completion time minimization in a broadcast setting
- ▶ The dual problem: maximization of the departure region.
- ▶ Obtain the structure such as
 - ▶ the monotonicity of the transmit power
 - the cut-off power property
- Use structural properties to devise an algorithm

Optimal Packet Scheduling: Multiple Access Channel

- ▶ AWGN MAC channel $Y = X_1 + X_2 + Z$, $Z \sim N(0, 1)$.
- ▶ The capacity region is a pentagon denoted as $C(P_1, P_2)$:

$$R_1 \leq f(P_1), \quad R_2 \leq f(P_2), \quad R_1 + R_2 \leq f(P_1 + P_2)$$
 where $f(p) = \frac{1}{2} \log(1+p).$

user 2

Problem Formulation

• Given (B_1, B_2) , minimize transmission completion time, T.

► Start with the dual problem:

Characterizing $\mathcal{D}(T)$

- ▶ Transmission rate remains constant between energy harvests.
- ▶ For any feasible transmit power sequences \mathbf{p}_1 , \mathbf{p}_2 over [0, T), the departure region is a pentagon defined as

$$B_1 \leq \sum_{n=1}^{N} f(p_{1n}) I_n$$
 $B_2 \leq \sum_{n=1}^{N} f(p_{2n}) I_n$ $B_1 + B_2 \leq \sum_{n=1}^{N} f(p_{1n} + g_{2n}) I_n$

- $\triangleright \mathcal{D}(T)$ is a union of (B_1, B_2) and convex.
- ▶ For any T' > T, $\mathcal{D}(T)$ is strictly inside $\mathcal{D}(T')$.
- ▶ The boundary points maximize $\mu_1 B_1 + \mu_2 B_2$ for some $\mu_1, \mu_2 \ge 0$.

$$\mu_1 = \mu_2$$

- ▶ The problem becomes $\max_{\mathbf{p}_1,\mathbf{p}_2} B_1 + B_2$.
- ▶ Sum of powers has same "majorization" property as in single-user.
- ▶ Merge energy arrivals of the users, get the optimal sum powers, $p_1, ..., p_n$
- ▶ Each feasible sequence of p_{1n} and p_{2n} gives a pentagon.
- ▶ Union of them is a larger pentagon: dominant faces on the same line.
- ▶ Need to identify the boundary of this larger pentagon.

Achieving Corner Points of the Boundary

- ▶ Maximize B_1 s.t. $B_1 + B_2$ is maximized at the same time \Rightarrow point 1.
 - ▶ Equalize the transmit powers of the first user as much as possible
 - ▶ Additionally: both users' energy constraints are tight if sum power changes.

$$\mu_1 = 0 \text{ or } \mu_2 = 0$$

- ▶ Maximize B_1 or $B_2 \Rightarrow$ a single-user scenario.
- ▶ Given p_{1n}^* , maximize B_2 : backward/directional waterfilling with base level $p_{1n}^* \Rightarrow \text{point } 3$.

$\mu_1, \mu_2 > 0$

- ▶ Each boundary point corresponds to a corner point on some pentagon.
- $\mu_1 > \mu_2 \Rightarrow$ achieving points between point 1 and point 3:

$$\begin{aligned} \max_{\mathbf{p}_{1},\mathbf{p}_{2}} & & (\mu_{1} - \mu_{2}) \sum_{n} f(p_{1n}) I_{n} + \mu_{2} \sum_{n} f(p_{1n} + p_{2n}) I_{n} \\ \text{s.t.} & & \sum_{n=1}^{j} p_{1n} I_{n} \leq \sum_{n=0}^{j-1} E_{1n}, \quad \forall j : 0 < j \leq N \\ & & & \sum_{n=1}^{j} p_{2n} I_{n} \leq \sum_{n=0}^{j-1} E_{2n}, \quad \forall j : 0 < j \leq N \end{aligned}$$

Generalized Iterative Backward Waterfilling

- Solve the problem via generalized iterative backward waterfilling:
- ▶ Given **p**₂*, solve for **p**₁:

$$\max_{\mathbf{p}_{1}} \qquad (\mu_{1} - \mu_{2}) \sum_{n=1}^{N} f(p_{1n}) I_{n} + \mu_{2} \sum_{n=1}^{N} f(p_{1n} + p_{2n}^{*}) I_{n}$$
s.t.
$$\sum_{n=1}^{j} p_{1n} I_{n} \leq \sum_{n=0}^{j-1} E_{1n}, \quad 0 < j \leq N$$

- Once p₁* is obtained, we do a backward waterfilling for the second user.
- We perform the optimization for both users in an alternating way.
- ▶ The iterative algorithm converges to the global optimal solution.

Minimizing T for a Given (B_1, B_2)

- ▶ Need to obtain optimal power policy and rate policy at the same time.
- First calculate $\mathcal{D}(t)$ for $t = s_1, s_2, \dots, s_K$.
- ▶ Locate (B_1, B_2) on the maximum departure region.
- ▶ If (B_1, B_2) is outside $\mathcal{D}(s_i)$ but inside $\mathcal{D}(s_{i+1})$ for some s_i , then, $s_i < T < s_{i+1}$.
- Solve this optimization problem in two steps.
 - 1. Find a power policy to minimize T s.t (B_1, B_2) is within $\mathcal{D}(T)$, convex optimization.
 - Find a feasible rate allocation within the capacity regions, linear programming.
- Complexity is reduced: the number of unknown variables is about half.

Conclusions for the Multiple Access Scenario

- ▶ Energy harvesting transmitters sending messages to a single access point.
- ► Transmission completion time minimization in a multiple access scenario.
- ▶ The dual problem: maximization of the departure region.
- ▶ Obtain the structure using generalized iterative waterfilling.

Information Theoretic Analysis of Single-User Energy Harvesting Communication

- ► Energy is not available up front, arrives randomly in time.
- ▶ Energy can be saved in the battery for future use.
- ▶ Transmission is interrupted if battery energy is run out.
- What is the highest achievable rate?

Classical AWGN Channel

AWGN channel:

$$Y = X + N$$

► Average power constraint:

$$\frac{1}{n}\sum_{i=1}^n X_i^2 \le P$$

► AWGN capacity formula with an average power constraint *P*:

$$C = \frac{1}{2}\log_2\left(1+P\right)$$

Achievability in the Classical AWGN Channel

• Generate codebook with i.i.d. Gaussians with zero-mean, variance $P-\epsilon$.

▶ By SLLN, codewords so generated obey the power constraint w.p. 1,

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}\rightarrow P-\epsilon,\quad \text{w.p. } 1$$

Energy Harvesting AWGN Channel Model

▶ Code symbols are constrained to the battery energy at each channel use:

$$\sum_{i=1}^{k} X_i^2 \le \sum_{i=1}^{k} E_i, \qquad k = 1, 2, \dots, n$$

- ► Energy harvesting: *n* constraints.
- ▶ Average power constraint: a single constraint, k = n.
- ▶ $E[E_i] = P$: average recharge rate.
- ▶ Battery storage capacity is infinite.

Achievability in the Energy Harvesting AWGN Channel: Major Concerns

▶ If we generate an i.i.d. Gaussian codebook with zero-mean, variance $P - \epsilon$.

- ▶ How do we design the codebook such that:
 - ▶ all codewords are energy-feasible for all channel uses.
- ▶ Do we need energy arrival state information:
 - causally, non-causally or not at all, at the transmitter and/or receiver.

The Capacity with Energy Harvesting

▶ Upper bound: Average power constrained AWGN capacity:

$$C \leq \frac{1}{2}\log\left(1+P\right)$$

- ► This is an upper bound because:
 - Average power constraint imposes a single constraint:

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}\leq\frac{1}{n}\sum_{i=1}^{n}E_{i}\rightarrow P\quad\text{(by SLLN)}$$

While energy harvesting imposes n constraints:

$$\sum_{i=1}^n X_i^2 \leq \sum_{i=1}^n E_i, \qquad k = 1, \dots, n$$

Our contribution: This bound can be achieved.

Achieving the Capacity

- ▶ Probability of error $P_e = \Pr(E_1 \cup E_2)$:
 - ► E₁: decoding error
 - ► E2: violation of energy constraints
- ▶ A first approach: Design a codebook that obeys all *n* energy constraints.
- An alternative approach:
 Design a simple codebook and show the insignificance of energy shortages.
- ▶ We will follow the second approach.
- Two achievable schemes:
 - 1) Save-and-Transmit scheme
 - 2) Best-Effort-Transmit scheme

Save-and-Transmit Scheme

- ▶ Save energy in the first h(n) channel uses, do not transmit.
- ▶ In the remaining n h(n) channel uses, send i.i.d. Gaussian signals.
- \triangleright Saving period of h(n) channel uses makes the remaining symbols feasible.
- ▶ Choose $h(n) \in o(n)$ so that saving incurs no loss in rate, i.e., $h(n)/n \to 0$.

Save-and-Transmit Scheme

- ▶ When $E[X_i^2] = P \epsilon$,
 - ▶ $h(n) \in o(n)$ guarantees no loss in rate.
 - ▶ $h(n) \to \infty$ guarantees sufficient energy storage.
 - An h(n) that works is $h(n) = \log(n)$.
- ▶ When $E[X_i^2] = P$,
 - ▶ Additionally, we need $E[e^{E_i^{\gamma}}] < \infty$ for some $0 < \gamma < 1$.
 - ► Then, we need $h(n) > n^{1/\alpha} (\log(n))^{1/\gamma}$, for some $1 < \alpha \le 2$. ► An h(n) that works is $h(n) = \sqrt{n} (\log(n))^2$.
- ▶ Hence, for $E[X_i^2] \le P$, there exists an h(n) such that achievable rate:

$$\frac{1}{n}I(X^n; Y^n) = \frac{1}{n}\sum_{j=h(n)}^n I(X_j; Y_j)$$
$$= \frac{n-h(n)}{2n}\log(1+P)$$
$$\to \frac{1}{2}\log(1+P)$$

Best-Effort-Transmit Scheme

- ► X_i: i.i.d. Gaussian.
- ▶ S(i): battery energy in the *i*th channel use.
- ▶ If $S(i) \ge X_i^2$, put X_i otherwise put 0 to the channel.
- Mismatch between the codewords and the transmitted symbols.
- ► Battery energy updates:

$$S(i+1) = S(i) + E_i - X_i^2 \mathbf{1}(S(i) \ge X_i^2)$$

- ▶ Since $E[X_i^2] = P \epsilon$, only finitely many symbols are infeasible.
- Finitely many mismatches. Inconsequential for joint typical decoding.
- ▶ Rates $< \frac{1}{2} \log(1+P)$ are achievable.

Conclusions So Far

- AWGN capacity with i.i.d. recharge process is equal to the capacity with average power constrained to average recharge rate.
- Two-achievable schemes:
 - Save-and-Transmit scheme
 - ► Best-Effort-Transmit scheme

- Next:
 - ► Energy arrival rate changes in large time slots.

The Large Time Scale Case

- Average recharge rate changes in large time slots.
- ▶ We consider *L* time slots.

Optimizing the Average Throughput

▶ We optimize average throughput over *L* slots subject to energy causality:

$$\begin{aligned} & \max & \frac{1}{L} \sum_{i=1}^{L} \frac{1}{2} \log \left(1 + P_{tr}(i) \right) \\ & \text{s.t.} & \sum_{i=1}^{\ell} P_{tr}(i) \leq \sum_{i=1}^{\ell} P_{in}(i), \qquad \ell = 1, 2, \dots, L \end{aligned}$$

- Objective function is Schur-concave.
- ► The solution: most majorized feasible power vector.

Optimum Power Control Algorithm

- ▶ Make the transmit power as constant as possible.
- ► Select the feasible line with the minimum slope.

Numerical Example

- ▶ Given the input power sequence: $P_{in}(1), P_{in}(2), \dots, P_{in}(L)$.
- ▶ Use the developed optimum power control algorithm.
- ► Lower bound: no power control.

$$T_{lb} = \frac{1}{L} \sum_{i=1}^{L} \frac{1}{2} \log (1 + P_{in}(i))$$

Upper bound: all power is available at time zero.

$$T_{ub} = rac{1}{2}\log\left(1 + rac{1}{L}\sum_{i=1}^{L}P_{in}(i)
ight)$$

Numerical Example: L = 20 Slots

• $\{P_i\}_{i=1}^L$ are i.i.d. exponential random variables.

Conclusions

- AWGN capacity with i.i.d. recharge process is equal to the capacity with average power constrained to average recharge rate.
- Two-achievable schemes:
 - Save-and-Transmit scheme
 - ► Best-Effort-Transmit scheme
- Optimal power control in a large scale time constrained system.
 - Optimal power vector: most majorized feasible vector subject to causality.

References

- J. Yang, O. Ozel and S. Ulukus, Optimal Packet Scheduling in a Broadcast Channel with an Energy Harvesting Transmitter, IEEE International Conference on Communications (ICC), Kyoto, Japan, June 2011
- (2) J. Yang and S. Ulukus, Optimal Packet Scheduling in a Multiple Access Channel with Rechargeable Nodes, IEEE International Conference on Communications(ICC), Kyoto, Japan, June 2011.
- (3) O. Ozel, J. Yang and S. Ulukus, Broadcasting with a Battery Limited Energy Harvesting Rechargeable Transmitter, 9th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), Princeton, NJ, May 2011.
- (4) O. Ozel and S. Ulukus, Information-Theoretic Analysis of an Energy Harvesting Communication System, International Workshop on Green Wireless (W-GREEN) at IEEE Personal, Indoor and Mobile Radio Conference, Istanbul, Turkey, September 2010.