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So Far, We Learned...

◮ Single-user communication with an energy harvesting transmitter.

◮ Energy arrives (is harvested) during the communication session

◮ Transmission policy is adapted to energy arrivals

◮ Two dual objectives:
◮ minimize transmission completion time
◮ maximize average throughput
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The Optimal Policy for Emax = ∞

T

T

E0 E3 E4 E5 E6E2E1

∑
Ei

◮ Upper staircase is the cumulative energy arrivals

◮ Feasible energy consumption lies below the staircase

◮ Transmit power remains constant in each epoch

◮ The tightest curve under the cumulative energy arrival staircase
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The Optimal Policy for Emax < ∞

T

T

tightest
  curve

E1E0 E2 E3 E4 E5 E6

∑
Ei

(
∑

Ei − Emax)
+

◮ Upper staircase: energy arrivals

◮ Lower staircase: finite battery constraint (no overflows)

◮ Any feasible energy consumption curve must lie in between

◮ Power remains constant in each epoch

◮ The tightest curve in the feasibility tunnel
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Scheduling in Multi-user Energy Harvesting Systems

◮ Extend the system model to a multi-user setting
◮ Broadcasting with an energy harvesting transmitter

◮ An energy harvesting transmitter sends messages to two users
◮ E.g., a wireless access device sending different messages to users

◮ Multiple access with energy harvesting transmitters
◮ Energy harvesting transmitters communicating with a single receiver
◮ E.g., multiple sensors sending data to a center

5



Broadcasting with an Energy Harvesting Transmitter
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◮ Energy arrives (is harvested) during the communication session.

◮ Assume battery has infinite storage capacity: Emax = ∞

◮ Broadcasting data to two users by adapting to energy arrivals

◮ Objective: minimize the transmission completion time
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Broadcast Channel Model

Tx
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◮ AWGN broadcast channel:

Y1 = X + N1, Y2 = X + N2

where N1 ∼ N (0, 1), N2 ∼ N (0, σ2)

◮ σ2 > 1: 2nd user is degraded

◮ We call 1st user stronger and 2nd user weaker
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Broadcast Channel Model

R2

C2

R1C1

r1 ≤
1

2
log2 (1 + αP)

r2 ≤
1

2
log2

(

1 +
(1 − α)P

αP + σ2

)

◮ We work in the (r1, r2) domain:

P = 22(r1+r2) + (σ2 − 1)22r2 − σ2
, g(r1, r2)

◮ g(r1, r2) is the minimum power required to send at rates (r1, r2)
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Energy Model

0

epoch 1 epoch 4

E0 E1 E2 E3 E4 E5

(B1, B2)

◮ Energy is harvested during the course of communication.

◮ We will consider offline policies.

◮ Energy causality constraints: energy that has not arrived cannot be used

∫ tei

0

g(r1, r2)(τ)dτ ≤
i−1
∑

j=0

Ej , ∀i
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Constraints on the Power Policy

◮ Energy arrivals known deterministically a priori

0 ts1 s2 s3

∑h(t)
i=0 Ei ∫ t

0 g(r1, r2)(τ )dτ

◮ Upper staircase: energy arrivals

◮ Any feasible energy consumption curve must lie below the upper staircase
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Problem Formulation

0

epoch 1 epoch 4 epoch 6

E0 E1 E2 E3 E4 E5

Tmin

(B1, B2)

◮ Minimize transmission completion time of (B1, B2) bits.

◮ By adapting the transmission to the energy arrivals.

◮ Subject to energy causality constraints

min
r1,r2

T

s.t.

∫ t

0

g(r1, r2)(τ)dτ ≤

h(t)
∑

n=0

En, ∀t ≥ 0

∫ T

0

r1(τ)dτ = B1

∫ T

0

r2(τ)dτ = B2
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Dual Problem: Finding the Maximum Departure Region

◮ The maximum departure region D(T ): union of (B1, B2) pairs achievable
by some rate allocation policy that satisfies the energy causality constraint.

◮ D(T ) monotonically increases with T . For example, when T1 < T2 < T3:

B2

B1

D(T1)

D(T3)

D(T2)
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Dual Problem: Finding Maximum Departure Region

(B1, B2)

T < Tmin

D(T )
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Dual Problem: Finding Maximum Departure Region

(B1, B2)

Tmin < T ′

D(T ′)
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Dual Problem: Finding Maximum Departure Region

(B1, B2)

T < Tmin < T ′

D(Tmin)

D(T )

D(T ′)
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Dual Problem: Finding Maximum Departure Region

◮ These problems are dual because: if (B1, B2) bits can be transmitted in
Tmin then (B1, B2) must be in D(Tmin).

(B1, B2)

T < Tmin < T ′

D(Tmin)

D(T )

D(T ′)
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Dual Problem: Maximum Departure Region

◮ Find D(T ) for a given T.

0
T

.......

E0 E1 E2 EK−1

(r12, r22)

ℓ2 ℓK ℓK+1

(r1(K+1), r2(K+1))(r11, r21) (r1K, r2K)

ℓ1

EK

◮ Transmission rates, and power, remain constant between energy harvests.

◮ Denote the rates that go to users as (r1i , r2i ) over epoch i .

◮ The power at epoch i : g(r1i , r2i )

◮ The energy spent during epoch i : g(r1i , r2i )ℓi

◮ The energy causality constraint reduces to constraints on (r1i , r2i ):

k
∑

i=1

g(r1i , r2i )ℓi ≤
k−1
∑

i=0

Ei , k = 1, . . . , K + 1

17



Dual Problem: Maximum Departure Region

◮ D(T ) is a strictly convex region.

◮ Characterize D(T ) by solving optimization problems for all µ1, µ2 ≥ 0:

max
r1,r2

µ1

K+1
∑

i=1

r1iℓi + µ2

K+1
∑

i=1

r2iℓi

s.t.
k
∑

i=1

g(r1i , r2i )ℓi ≤
k−1
∑

i=0

Ei , k = 1, . . . , K + 1

B2

B1

D(T )

(µ1, µ2)
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Dual Problem: Finding the Maximum Departure Region

◮ The Lagrangian function

L = µ1

K+1
∑

i=1

r1iℓi + µ2

K+1
∑

i=1

r2iℓi −
K+1
∑

k=1

λk

(

k
∑

i=1

g(r1i , r2i )ℓi −
k−1
∑

i=0

Ei

)

+
K+1
∑

i=1

γ1i r1i +
K+1
∑

i=1

γ2i r2i

◮ Total power in terms of Lagrange multipliers

Pi = max

{

µ1 + γ1i
∑K+1

k=i
λk

− 1,
µ2 + γ2i
∑K+1

k=i
λk

− σ2

}
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A Structural Property of the Optimal Policy

◮ Optimal total transmit power, {g(r∗1i , r
∗

2i )}
K+1
i=1 , is independent of µ1, µ2.

◮ In particular, it is the same as the optimal single-user transmit power.

B2

B1

D(T )

(µ1, µ2)
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Single User Optimal Policy

◮ Single user optimal policy is found by calculating the tightest curve below
the energy arrival curve:

T

T

E0 E3 E4 E5 E6E2E1

∑
Ei

◮ Slope of the curve is the allocated power

◮ Power is monotonically increasing
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Full Structure of an Optimal Policy

◮ Total transmit power is the same as the single-user case.

◮ The power shares follow a cut-off structure:

◮ Cut-off level Pc

Pc =
µ − 1

σ2 − µ

where µ = µ2
µ1

and 1 < µ < σ2.

◮ If below Pc , then, only transmit to the stronger user

◮ Otherwise, stronger user’s power share is Pc .
◮ Extreme cases:

◮ If µ ≤ 1, only the stronger user’s data is transmitted
◮ If µ ≥ σ2, only the weaker user’s data is transmitted
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The Structure of an Optimal Policy

T

T

T

E0 E3 E4 E5 E6E2E1

Pc

P

∑i
j=0 Ej
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Back to the Transmission Completion Time Minimization Problem

◮ (B1, B2) and {Ei} are given

◮ Find the minimum time to transmit (B1, B2) subject to energy causality.

◮ (B1, B2) point must lie on the boundary of D(Tmin):

(B1, B2)

T < Tmin < T ′

D(Tmin)

D(T )

D(T ′)

◮ Use derived structure of the optimal policy

◮ Transmissions for strong and weak users must end at the same time.
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Algorithm to Find the Optimal Policy

◮ Find P1: the power level allocated at the first epoch

P1

∑
Ei

T̃ Tsi1

P̃1

E0

sK

· · ·

· · ·

EK

t0

E1 E2 E3

s2 s3 s4

E4

A4

A3

A2

A1

s1

(B1, B2)

◮ Set Pc = P1 and calculate

T =
B1

1
2
log (1 + Pc)

◮ Calculate D2(T , Pc): bits sent for weaker user by T treating Pc as noise.
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Algorithm to Find the Optimal Policy

◮ If D2(T , Pc) > B2, decrease Pc .

◮ Otherwise find P2: the next allocated power level. Repeat the procedure

◮ Once D2(T , Pc) = B2, stop.

E0

sK

· · ·

· · ·

EK

t0

E1 E2 E3

s2 s3 s4

E4

s1

(B1, B2)

P

T

P1

P2

Pc
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Broadcast Channel with Finite Emax

Tx

Rx1

Rx2

E

Emax

B1

B2

◮ (B1, B2) bits to be sent and battery capacity Emax < ∞

◮ AWGN broadcast channel:

Y1 = X + N1, Y2 = X + N2

◮ N1 ∼ N (0, 1) and N2 ∼ N (0, σ2) with σ2 > 1

◮ 1st user stronger and 2nd user weaker
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Broadcast Channel with Finite Emax

0

epoch 1 epoch 4

E0 E1 E2 E3 E4 E5

(B1, B2)

◮ Incoming energies are smaller than Emax : Ei ≤ Emax

◮ Energy causality constraints: energy that has not arrived cannot be used

∫ tei

0

g(r1, r2)(u)du ≤
i−1
∑

j=0

Ej , ∀i

◮ No-energy-overflow condition: energy overflow (wasting) is suboptimal

h(t)
∑

j=0

Ej −

∫ t

0

g(r1, r2)(u)du ≤ Emax , ∀t
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Constraints on the Power Policy

0 ts1 s2 s3

Emax

∫ t

0 g(r1, r2)(τ )dτ

∑
Ei

(
∑

Ei − Emax)
+

◮ Energy causality constraints: energy that has not arrived cannot be used
∫ tei

0

g(r1, r2)(u)du ≤
i−1
∑

j=0

Ej , ∀i

◮ No-energy-overflow condition: energy overflow (wasting) is suboptimal

h(t)
∑

j=0

Ej −

∫ t

0

g(r1, r2)(u)du ≤ Emax , ∀t

29



Problem Formulation

0

epoch 1 epoch 4 epoch 6

E0 E1 E2 E3 E4 E5

Tmin

(B1, B2)

◮ Minimize transmission completion time of (B1, B2) bits.

◮ By adapting the transmission to the energy arrivals.

◮ Subject to energy causality and finite battery constraints
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Dual Problem: Finding the Maximum Departure Region

◮ D(T ): union of (B1, B2) pairs achievable by some rate allocation policy
that satisfies the energy causality and no-energy-overflow constraints.

B2

B1

D(T1)

D(T3)

D(T2)
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Dual Problem: Maximum Departure Region

0
T

.......

E0 E1 E2 EK−1

(r12, r22)

ℓ2 ℓK ℓK+1

(r1(K+1), r2(K+1))(r11, r21) (r1K, r2K)

ℓ1

EK

◮ The transmission rates, and hence the transmission power, remain
constant between energy harvests in any optimal policy

◮ The energy causality constraint reduces to constraints on (r1i , r2i ):

k
∑

i=1

g(r1i , r2i )ℓi ≤
k−1
∑

i=0

Ei , k = 1, . . . , K + 1

◮ The no-energy-overflow condition:

k
∑

i=0

Ei −
k
∑

i=1

g(r1i , r2i )ℓi ≤ Emax , k = 1, . . . , K
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Dual Problem: Maximum Departure Region
◮ D(T ) is a strictly convex region.
◮ Characterize D(T ) by solving optimization problems for all µ1, µ2 ≥ 0:

max
r1,r2

µ1

K+1
∑

i=1

r1iℓi + µ2

K+1
∑

i=1

r2iℓi

s.t.

k
∑

i=1

g(r1i , r2i )ℓi ≤
k−1
∑

i=0

Ei , 1 ≤ k ≤ K + 1

k
∑

i=0

Ei −
k
∑

i=1

g(r1i , r2i )ℓi ≤ Emax , 1 ≤ k ≤ K

B2

B1

D(T )

(µ1, µ2)
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Dual Problem: Finding the Maximum Departure Region

◮ The Lagrangian function

L = µ1

K+1
∑

i=1

r1iℓi + µ2

K+1
∑

i=1

r2iℓi −
K+1
∑

k=1

λk

(

k
∑

i=1

g(r1i , r2i )ℓi −
k−1
∑

i=0

Ei

)

−
K
∑

k=1

ηk

(

k
∑

i=0

Ei −
k
∑

i=1

g(r1i , r2i )ℓi − Emax

)

+
K+1
∑

i=1

γ1i r1i +
K+1
∑

i=1

γ2i r2i

◮ Total power in terms of Lagrange multipliers

Pi = max

{

µ1
(

∑K+1
k=i

λk −
∑K

k=i
ηk

) − 1,
µ2

(

∑K+1
k=i

λk −
∑K

k=i
ηk

) − σ2

}
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A Structural Property of the Optimal Policy

◮ Optimal total transmit power, {g(r∗1i , r
∗

2i )}
K+1
i=1 , is independent of µ1, µ2.

◮ In particular, it is the same as the optimal single-user transmit power.

B2

B1

D(T )

(µ1, µ2)
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Full Structure of an Optimal Policy

◮ Total transmit power is the same as the single-user case.

◮ The power shares follow a cut-off structure:

◮ Cut-off level Pc

Pc =
µ − 1

σ2 − µ

where µ = µ2
µ1

and 1 < µ < σ2.

◮ If below Pc , then, only the stronger user

◮ Otherwise, stronger user’s power share is Pc .
◮ Extreme cases:

◮ If µ ≤ 1, only the stronger user’s data is transmitted
◮ If µ ≥ σ2, only the weaker user’s data is transmitted

◮ Powers are not monotonically increasing due to finite Emax .

◮ Need to devise a new algorithm.
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The Structure of an Optimal Policy

T

T

T

EmaxEmax
Emax Emax Emax Emax Emax

E0 E3 E4 E5 E6E2E1

E1 E2 E3 E4 E5 E6E0

Pc

P
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Back to the Transmission Completion Time Minimization Problem

◮ (B1, B2) and {Ei} are given
◮ Find the minimum time to transmit (B1, B2) subject to

◮ energy causality
◮ no-energy-overflow

◮ We divide the positive quadrant in 5 regions as follows

4

5

3

2

1

B2

B1

D(Tmin)
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Algorithm to Find the Optimal Policy

◮ Start with an arbitrary Pc and calculate

T =
B1

1
2
log (1 + Pc)

◮ Assume, WLOG, we start in 1©. Decrease Pc and recalculate T

◮ There are two possible cases.

4

5

3

2

1

B2

B1

D(Tmin)
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Algorithm to Find the Optimal Policy
◮ In case B1 is achieved, iterations on Pc is sufficient.

4

5

3

2

1

B2

B1

D(Tmin)

T

T

Pc

P

P

Pc
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Algorithm to Find the Optimal Policy

◮ Otherwise, iterate Pc and T separately.

◮ Suitable step size updates exist due to continuity.

4

1

2

5

3

B2

B1

D(Tmin)
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Conclusions for the Broadcasting Scenario

◮ Energy harvesting transmitter with infinite and finite capacity battery

◮ Transmission completion time minimization in a broadcast setting

◮ The dual problem: maximization of the departure region.
◮ Obtain the structure such as

◮ the monotonicity of the transmit power
◮ the cut-off power property

◮ Use structural properties to devise an algorithm
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Optimal Packet Scheduling: Multiple Access Channel
◮ AWGN MAC channel Y = X1 + X2 + Z , Z ∼ N(0, 1).
◮ The capacity region is a pentagon denoted as C(P1, P2):

R1 ≤ f (P1), R2 ≤ f (P2), R1 + R2 ≤ f (P1 + P2)

where f (p) = 1
2
log(1 + p).

user 1

user 2

receiver

E

E

B1

B2
Cs

Cs

R2

C2

R1C1
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Problem Formulation

◮ Given (B1, B2), minimize transmission completion time, T .

T

T

E10

E20

E11

. . .

E1(K−1)

E23 E24

E15

E2K

. . .

B2

B1

t0

t0

s1

s1

s2 s3 s4 sK−1 sK

s2 s3 s4 sK−1 sK

◮ Start with the dual problem:

D(T )

B2

D(T ∗)

(B∗

1
, B∗

2
)

B1
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Characterizing D(T )

◮ Transmission rate remains constant between energy harvests.

◮ For any feasible transmit power sequences p1, p2 over [0, T ), the
departure region is a pentagon defined as

B1 ≤
N
∑

n=1

f (p1n)ln

B2 ≤
N
∑

n=1

f (p2n)ln

B1 + B2 ≤
N
∑

n=1

f (p1n + g2n)ln

◮ D(T ) is a union of (B1, B2) and convex.

◮ For any T ′ > T , D(T ) is strictly inside D(T ′).

◮ The boundary points maximize µ1B1 + µ2B2 for some µ1, µ2 ≥ 0.
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µ1 = µ2

◮ The problem becomes maxp1,p2 B1 + B2.

◮ Sum of powers has same “majorization” property as in single-user.

◮ Merge energy arrivals of the users, get the optimal sum powers, p1, . . ., pn

◮ Each feasible sequence of p1n and p2n gives a pentagon.

◮ Union of them is a larger pentagon: dominant faces on the same line.

◮ Need to identify the boundary of this larger pentagon.
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Achieving Corner Points of the Boundary

◮ Maximize B1 s.t. B1 + B2 is maximized at the same time ⇒ point 1.
◮ Equalize the transmit powers of the first user as much as possible
◮ Additionally: both users’ energy constraints are tight if sum power changes.

si1 Tsi2

p12

p11

p13

p14

p15

∑
E1i

· · ·

E2K

t0 s1

E22

s3 s4

E24

sKs2

E10

· · ·

E1K

t0 s1

E11 E13

s2 s3 s4
sK

E20

∑
E1i+E2i

p1

p2

p3

B̄1

B̄2

2

B2

4

3

(B1, B2)

1

B1
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µ1 = 0 or µ2 = 0

◮ Maximize B1 or B2 ⇒ a single-user scenario.

◮ Given p∗

1n, maximize B2: backward/directional waterfilling with base level
p∗

1n ⇒ point 3.

E20

· · ·

EK

t0 s1

E22

s3 s4

E24

sKs2

T

p11

s1 s2 s3 s4

P

E10

· · ·

EK

t0 s1

E11 E13

s2 s3 s4
sK

p12

p14

B̄1

B̄2

2

B2

4

3

(B1, B2)

1

B1
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µ1, µ2 > 0
◮ Each boundary point corresponds to a corner point on some pentagon.
◮ µ1 > µ2 ⇒ achieving points between point 1 and point 3:

max
p1,p2

(µ1 − µ2)
∑

n

f (p1n)ln + µ2

∑

n

f (p1n + p2n)ln

s.t.

j
∑

n=1

p1nln ≤

j−1
∑

n=0

E1n, ∀j : 0 < j ≤ N

j
∑

n=1

p2nln ≤

j−1
∑

n=0

E2n, ∀j : 0 < j ≤ N

2

B2

4

3

(B1, B2)

1

B1
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Generalized Iterative Backward Waterfilling

◮ Solve the problem via generalized iterative backward waterfilling:

◮ Given p∗

2 , solve for p1:

max
p1

(µ1 − µ2)
N
∑

n=1

f (p1n)ln + µ2

N
∑

n=1

f (p1n + p
∗

2n)ln

s.t.

j
∑

n=1

p1nln ≤

j−1
∑

n=0

E1n, 0 < j ≤ N

◮ Once p∗

1 is obtained, we do a backward waterfilling for the second user.

◮ We perform the optimization for both users in an alternating way.

◮ The iterative algorithm converges to the global optimal solution.
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Minimizing T for a Given (B1, B2)

◮ Need to obtain optimal power policy and rate policy at the same time.

◮ First calculate D(t) for t = s1, s2, . . . , sK .

◮ Locate (B1, B2) on the maximum departure region.

◮ If (B1, B2) is outside D(si ) but inside D(si+1) for some si , then,
si < T < si+1.

◮ Solve this optimization problem in two steps.
1. Find a power policy to minimize T s.t (B1, B2) is within D(T ), convex

optimization.
2. Find a feasible rate allocation within the capacity regions, linear

programming.

◮ Complexity is reduced: the number of unknown variables is about half.
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Conclusions for the Multiple Access Scenario

◮ Energy harvesting transmitters sending messages to a single access point.

◮ Transmission completion time minimization in a multiple access scenario.

◮ The dual problem: maximization of the departure region.

◮ Obtain the structure using generalized iterative waterfilling.
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Information Theoretic Analysis of Single-User Energy Harvesting
Communication

◮ Energy is not available up front, arrives randomly in time.

◮ Energy can be saved in the battery for future use.

◮ Transmission is interrupted if battery energy is run out.

◮ What is the highest achievable rate?

Xi Yi

W

Ni

Encoder Decoder
Ŵ

Ei
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Classical AWGN Channel

Xi Yi

W

Ni

Encoder Decoder
Ŵ

◮ AWGN channel:

Y = X + N

◮ Average power constraint:

1

n

n
∑

i=1

X
2
i ≤ P

◮ AWGN capacity formula with an average power constraint P:

C =
1

2
log2 (1 + P)
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Achievability in the Classical AWGN Channel

◮ Generate codebook with i.i.d. Gaussians with zero-mean, variance P − ǫ.

transmit

2nR

w

2
1

1 2 n

w

power = P − ǫ, w.p. 1

W

n21

◮ By SLLN, codewords so generated obey the power constraint w.p. 1,

1

n

n
∑

i=1

X
2
i → P − ǫ, w.p. 1
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Energy Harvesting AWGN Channel Model

Xi Yi

W

Ni

Encoder Decoder
Ŵ

Ei

◮ Code symbols are constrained to the battery energy at each channel use:

k
∑

i=1

X
2
i ≤

k
∑

i=1

Ei , k = 1, 2, . . . , n

◮ Energy harvesting: n constraints.

◮ Average power constraint: a single constraint, k = n.

◮ E [Ei ] = P: average recharge rate.

◮ Battery storage capacity is infinite.
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Achievability in the Energy Harvesting AWGN Channel: Major Concerns

◮ If we generate an i.i.d. Gaussian codebook with zero-mean, variance P − ǫ.

transmit

codeword 
energy

harvested
energy

energy

power = P − ǫ, w.p. 1

W

2nR

w

2
1

2 n

w

n

1 n

1

1

2

◮ How do we design the codebook such that:
◮ all codewords are energy-feasible for all channel uses.

◮ Do we need energy arrival state information:
◮ causally, non-causally or not at all, at the transmitter and/or receiver.
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The Capacity with Energy Harvesting

.       .         .      .      .

+E2

X1

+E1 +En

XnX2

−X
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2 −X

2
n−X

2
1

◮ Upper bound: Average power constrained AWGN capacity:

C ≤
1

2
log (1 + P)

◮ This is an upper bound because:
◮ Average power constraint imposes a single constraint:

1

n

n
∑

i=1

X 2
i ≤

1

n

n
∑

i=1

Ei → P (by SLLN)

◮ While energy harvesting imposes n constraints:

n
∑

i=1

X 2
i ≤

n
∑

i=1

Ei , k = 1, . . . , n

◮ Our contribution: This bound can be achieved.

58



Achieving the Capacity

◮ Probability of error Pe = Pr (E1 ∪ E2):
◮ E1: decoding error
◮ E2: violation of energy constraints

◮ A first approach: Design a codebook that obeys all n energy constraints.

◮ An alternative approach:

Design a simple codebook and show the insignificance of energy shortages.

◮ We will follow the second approach.

◮ Two achievable schemes:

1) Save-and-Transmit scheme

2) Best-Effort-Transmit scheme
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Save-and-Transmit Scheme

◮ Save energy in the first h(n) channel uses, do not transmit.

◮ In the remaining n − h(n) channel uses, send i.i.d. Gaussian signals.

◮ Saving period of h(n) channel uses makes the remaining symbols feasible.

◮ Choose h(n) ∈ o(n) so that saving incurs no loss in rate, i.e., h(n)/n → 0.

. . . . .. . . . .

h(n)1 n

Xh(n)+1 Xh(n)+2 Xn−1 Xn0 0 0

nP

[n − h(n)]P

h(n)P

energy arrival

energy expenditure

60



Save-and-Transmit Scheme

◮ When E [X 2
i ] = P − ǫ,

◮ h(n) ∈ o(n) guarantees no loss in rate.
◮ h(n) → ∞ guarantees sufficient energy storage.
◮ An h(n) that works is h(n) = log(n).

◮ When E [X 2
i ] = P,

◮ Additionally, we need E [eE
γ

i ] < ∞ for some 0 < γ < 1.
◮ Then, we need h(n) > n1/α(log(n))1/γ , for some 1 < α ≤ 2.
◮ An h(n) that works is h(n) =

√
n(log(n))2.

◮ Hence, for E [X 2
i ] ≤ P, there exists an h(n) such that achievable rate:

1

n
I (X n; Y n) =

1

n

n
∑

j=h(n)

I (Xj ; Yj)

=
n − h(n)

2n
log (1 + P)

→
1

2
log(1 + P)
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Best-Effort-Transmit Scheme

◮ Xi : i.i.d. Gaussian.

◮ S(i): battery energy in the ith channel use.

◮ If S(i) ≥ X 2
i , put Xi otherwise put 0 to the channel.

◮ Mismatch between the codewords and the transmitted symbols.

◮ Battery energy updates:

S(i + 1) = S(i) + Ei − X
2
i 1(S(i) ≥ X

2
i )

◮ Since E [X 2
i ] = P − ǫ, only finitely many symbols are infeasible.

◮ Finitely many mismatches. Inconsequential for joint typical decoding.

◮ Rates < 1
2
log(1 + P) are achievable.
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Conclusions So Far

◮ AWGN capacity with i.i.d. recharge process is equal to the capacity with
average power constrained to average recharge rate.

◮ Two-achievable schemes:
◮ Save-and-Transmit scheme
◮ Best-Effort-Transmit scheme

◮ Next:
◮ Energy arrival rate changes in large time slots.
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The Large Time Scale Case

◮ Average recharge rate changes in large time slots.

◮ We consider L time slots.

       

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . 
Ts0 2Ts (L − 1)Ts LTs

Ptr(1) Ptr(2) Ptr(L)

Pin(2) Pin(L)

E(0) E(1) E(2) E(L − 1) E(L)slot 1 slot 2 slot L

Pin(1)
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Optimizing the Average Throughput

◮ We optimize average throughput over L slots subject to energy causality:

max
1

L

L
∑

i=1

1

2
log (1 + Ptr (i))

s.t
ℓ
∑

i=1

Ptr (i) ≤
ℓ
∑

i=1

Pin(i), ℓ = 1, 2, . . . , L

◮ Objective function is Schur-concave.

◮ The solution: most majorized feasible power vector.
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Optimum Power Control Algorithm
◮ Make the transmit power as constant as possible.
◮ Select the feasible line with the minimum slope.
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Numerical Example

◮ Given the input power sequence: Pin(1), Pin(2), . . . , Pin(L).

◮ Use the developed optimum power control algorithm.

◮ Lower bound: no power control.

Tlb =
1

L

L
∑

i=1

1

2
log (1 + Pin(i))

◮ Upper bound: all power is available at time zero.

Tub =
1

2
log

(

1 +
1

L

L
∑

i=1

Pin(i)

)
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Numerical Example: L = 20 Slots

◮ {Pi}
L
i=1 are i.i.d. exponential random variables.
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Conclusions

◮ AWGN capacity with i.i.d. recharge process is equal to the capacity with
average power constrained to average recharge rate.

◮ Two-achievable schemes:
◮ Save-and-Transmit scheme
◮ Best-Effort-Transmit scheme

◮ Optimal power control in a large scale time constrained system.
◮ Optimal power vector: most majorized feasible vector subject to causality.
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