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So Far, We Learned...

◮ Power control with SIR-based QoS guarantees
◮ Suitable for delay-intolerant services, e.g., voice
◮ Satisfy all SIR constraints with minimum transmit power
◮ Leading to energy-efficient communications

◮ Power control for capacity
◮ Suitable for delay-tolerant services, e.g., data
◮ Maximize rate with a given average transmit power
◮ Equivalently, support a given rate with minimum power
◮ Leading to energy-efficient communications
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Capacity-Based Power Control

◮ Fading: random fluctuations in channel gains.

◮ Perfect CSI at both the transmitter and the receiver

◮ Maximize ergodic capacity subject to average power constraints
◮ Main operational difference:

◮ QoS based power control: compensate for channel fading
◮ Capacity-based power control: exploit the channel fading
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Channel Fading
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Channel Fading
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√
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Single-User Fading Channel (Goldsmith-Varaiya’94)

◮ Channel capacity for single user

C =
1

2
log (1 + SNR)

=
1

2
log

(

1 +
p

σ2

)

◮ In the presence of fading, the capacity for a fixed channel state h,

C(h) =
1

2
log

(

1 +
p(h)h

σ2

)

◮ Ergodic (expected) capacity under an average power constraint

max
p(h)

Eh

[
1

2
log

(

1 +
p(h)h

σ2

)]

s.t. Eh [p(h)] ≤ P

p(h) ≥ 0, ∀h
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Optimal Power Allocation using Waterfilling

◮ The Lagrangian function

Eh

[

log

(

1 +
p(h)h

σ2

)]

− λ (Eh [p(h)] − P) +

∫

µ(h)f (h)dh

◮ Optimality conditions

h

p∗(h)h + σ2
+

µ(h)

f (h)
= λ

where f (h) is the PDF of h.

◮ The complementary slackness conditions µ(h)p∗(h) = 0 for all h.

◮ If p∗(h) > 0, we get

p
∗(h) =

1

λ
− σ2

h

◮ Otherwise, p∗(h) = 0.
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Optimal Power Allocation using Waterfilling

◮ Optimal power allocation: waterfilling of power over time

p(h) =

(
1
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Optimal Power Allocation using Waterfilling

◮ Optimal power allocation: waterfilling of power over time
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Optimal Power Allocation using Waterfilling

◮ Optimal power allocation: waterfilling of power over time
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Optimal Power Allocation using Waterfilling

◮ Optimal power allocation: waterfilling of power over time
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Optimal Power Allocation using Waterfilling

◮ Optimal power allocation: waterfilling of power over time
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Differences Between QoS-Based and Capacity-Based Power Control

◮ Single-user system

y =
√

hx + n

◮ SIR-based

p(h)h

σ2
≥ γ ⇔ p(h) =

γσ2

h

◮ Channel inversion; more power if bad channel, less if good channel

◮ Compensate for channel fading via power control

◮ Capacity-based

max Eh

[
1

2
log

(

1 +
p(h)h

σ2

)]

⇒ p(h) =

(
1

λ
− σ2

h

)+

◮ Waterfilling; more power if good channel, less if bad channel

◮ Exploit variations, opportunistic transmission
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Fading Gaussian Multiple Access Channel

y

n
h2

h1x1
user 1

user 2

x2

◮ Channel model
y =

√
h1x1 +

√
h2x2 + n

◮ Simultaneously achievable ergodic rates for both users (R1, R2)

◮ Channel state vector h = (h1, h2)

◮ Adapt powers as functions of h: p1(h) and p2(h)
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Fading Gaussian Multiple Access Channel (Tse-Hanly’98)
◮ Union of pentagons

R1 < E

[
1

2
log

(

1 +
p1(h)h1

σ2

)]

(, C1)

R2 < E

[
1

2
log

(

1 +
p2(h)h2

σ2

)]

(, C2)

R1 + R2 < E

[
1

2
log

(

1 +
p1(h)h1 + p2(h)h2

σ2

)]

(, Cs)

over all feasible power distributions

E [p1(h)] ≤ P1, E [p2(h)] ≤ P2, p1(h) ≥ 0, p2(h) ≥ 0

R1

2R
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Determining the Boundary of the Capacity Region

+ µ
2R 2= C

(R 1
, R 2

)

*

* *

1

R1

2R

µ 1R

◮ Capacity region is a convex region.

◮ To determine the boundary, maximize µ1R1 + µ2R2 for all µ1, µ2 ≥ 0.

◮ Any (R∗
1 , R∗

2 ) on the boundary is a corner of one of the pentagons.

◮ If µ2 > µ1 then the upper corner; if µ1 > µ2 then the lower corner.
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Achieving Arbitrary Rate Tuples on the Boundary
◮ For given µi , maximize Cµ , µ1R1 + µ2R2 s.t. Eh[pi (h)] ≤ Pi , R ∈ C.
◮ Wlog, µ2 > µ1. Given power policy, the optimum R is the upper corner.
◮ The coordinates of the upper corner are:

R2 = C2, R1 = Cs − C2

and

Cµ = µ1(Cs − C2) + µ2C2

= (µ2 − µ1)C2 + µ1Cs

+ µ
2R 2= C

(R 1
, R 2

)

*

* *

1

R1

2R

µ 1R
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Achieving Arbitrary Rate Tuples on the Boundary
◮ Therefore, the optimum power allocation policy is the solution of:

max
p(h)

Eh

[

(µ2 − µ1) log

(

1 +
p2(h)h2

σ2

)

+ µ1 log

(

1 +
p1(h)h1 + p2(h)h2

σ2

)]

s.t. Eh[pi (h)] ≤ Pi , i = 1, 2

pi (h) ≥ 0, ∀ h, i = 1, 2

◮ Objective function is concave, and constraint set is convex in powers.

+ µ
2R 2= C

(R 1
, R 2

)

*

* *

1

R1

2R

µ 1R
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Optimality Conditions

◮ p∗(h) achieves the global maximum of Cµ iff it satisfies the KKTs,

µ1h1

h1p1(h) + h2p2(h) + σ2
≤ λ1, ∀ h

µ1h2

h1p1(h) + h2p2(h) + σ2
+

(µ2 − µ1)h2

h2p2(h) + σ2
≤ λ2, ∀ h

with equality at h, if p1(h) > 0 and p2(h) > 0, respectively.

◮ Solution based on utilities in Tse-Hanly’98.

◮ Solve KKTs iteratively: generalized iterative waterfilling (Kaya-Ulukus)
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Generalized Iterative Waterfilling

◮ Given p2(h), find p1(h) and λ1 such that

µ1h1

h1p1(h) + h2p2(h) + σ2
≤ λ1, ∀ h

with equality at h, if p1(h)> 0.

◮ Waterfilling for user 1 given the power of user 2 contributing to noise

p1(h) =

(
1

λ1
− σ2 + h2p2(h)

h1

)+

◮ Given p1(h), find p2(h) and λ2.

µ1h2

h1p1(h) + h2p2(h) + σ2
+

(µ2 − µ1)h2

h2p2(h) + σ2
≤ λ2, ∀ h

with equality at h, if p2(h) > 0.

◮ A second order equation to solve.

20



Optimal Power Allocation via Generalized Iterative Waterfilling

◮ KKT conditions for the K-user case

k∑

i=1

(µi − µi−1) hk
∑i−1

j=1 pj(h)hj + pk(h)hk + σ2
≤ λk , ∀ h, k = 1, · · · , K

with equality at h, if pk(h) > 0.
◮ Generalized iterative waterfilling

◮ Given pj (h), j < k, find pk (h) and λk such that

k∑

i=1

(µi − µi−1) hk
∑ i−1

j=1 pj (h)hj + pk (h)hk + σ2
≤ λk , ∀ h, k = 1, · · · , K

with equality at h, if pk (h) > 0.

◮ One-user-at-a-time algorithm, converges to the optimum.

◮ A Gauss-Seidel type of iteration.
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Special Case: Sum Capacity (Knopp-Humblet’95)

◮ Ergodic sum capacity (µ1 = µ2 = 1)

max
p(h)

Eh

[

log

(

1 +
p1(h)h1 + p2(h)h2

σ2

)]

s.t. Eh [pi (h)] ≤ Pi , pi (h) ≥ 0, i = 1, 2

◮ KKT conditions

h1

p1(h)h1 + p2(h)h2 + σ2
≤ λ1, ∀ h

h2

p1(h)h1 + p2(h)h2 + σ2
≤ λ2, ∀ h,

with equality at h, if p1(h) > 0 and p2(h) > 0, respectively.

◮ For both users to transmit simultaneously at channel state h = (h1, h2),

h1

h2
=

λ1

λ2

◮ For continuous channel gains, this is a zero-probability event.

◮ Only the strongest (after some scaling) user transmits at any given time.
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Closed-Form Solution

◮ Single-user waterfilling over favorable channel states

pk(h) =

{ (
1

λk
− σ2

hk

)+

, if hk/λk > hj/λj , ∀j 6= k

0, otherwise
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Issue of Simultaneous Transmissions

◮ Sum capacity achieving pentagon: a rectangle (orthogonal transmissions)

R1

2R

R 1+ R 2 = C *

(R 1
, R 2

)* *
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Transmit Regions for Identical Sequences

◮ This result is specific to sum capacity and scalar channel.
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Differences Between QoS-Based and Capacity-Based Power Control in MAC

◮ SIR-based

p1h1

p2h2 + σ2
≥ γ1 ⇐⇒ p1 ≥ γ1

h1

(

p2h2 + σ2
)

, I1(p)

p2h2

p1h1 + σ2
≥ γ2 ⇐⇒ p2 ≥ γ2

h2

(

p1h1 + σ2
)

, I2(p)

p2 > I2(p)

p∗

γ1σ
2

h1

p∗

γ2σ
2

h2

p1 > I1(p)

γ1σ
2

h1

γ2σ
2

h2

◮ Both users transmit simultaneously

◮ More power if bad channels, less if good channels.
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Differences Between QoS-Based and Capacity-Based Power Control in MAC

◮ Sum-capacity-based
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◮ User with the stronger channel transmits

◮ Stronger user transmits with more power at better channels

◮ Multi-user diversity, multi-user opportunistic transmission
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Single-User MIMO Channel (Telatar’99)

Tx Rx

xt

x2

x1

H

y1

y2

yr

◮ Channel gain matrix H: r × t matrix

◮ Transmitted signal t-dim. vector x and received vector r -dim. vector y

y = Hx + n

◮ n is i.i.d. zero-mean Gaussian noise vector with equal variance

◮ H is deterministic or random and known perfectly at the receiver

◮ Average power constraint

E[xT
x] ≤ P
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Single-User MIMO Channel (Telatar’99)

◮ Use singular value decomposition to express H as

H = UDV
T

◮ U and V are unitary matrices, D is a diagonal matrix of singular values

◮ Diagonal entries of D are square roots of the eigenvalues of HHT

◮ Columns of U are the normalized eigenvectors of HHT

◮ Columns of V are the normalized eigenvectors of HTH
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Single-User MIMO Channel (Telatar’99)

◮ Obtain an equivalent channel

y = UDV
T
x + n

◮ Let x̃ = V Tx, ỹ = UTy and ñ = UTn

ỹ = Dx̃ + ñ

◮ ñ is also i.i.d. zero-mean Gaussian
◮ Equivalent channel: min{r , t} parallel channels with (squared) gains di

ỹi =
√

di x̃i + ñi

N (0, 1)

N (0, 1)

N (0, 1)

ỹ1

ỹ2

ỹi

x̃1

x̃2

x̃i

√
d1

√
di

√
d2

29



Single-User MIMO Channel (Telatar’99)

◮ Independent signalling is optimal over parallel channels

◮ Let Pi , E[x̃2
i ], power over the ith parallel channel.

◮ MIMO capacity

max

min{r,t}
∑

i=1

1

2
log (1 + diPi )

s.t.

min{r,t}
∑

i=1

Pi ≤ P

◮ Optimal power allocation: waterfilling

Pi =

(
1

λ
− 1

di

)+
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MIMO Multiple Access Channel

Rx

H2

Hk

H1

Tx1

Tx2

Txk

◮ The received vector at the receiver,

y = H1x1 + H2x2 + n

◮ H1 and H2 are r × t matrices
◮ Additive noise n is i.i.d. Gaussian with covariance I
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Capacity Region of MIMO MAC Channel (Yu-Rhee-Boyd-Cioffi’01)

◮ Q1 = E[x1x
T
1 ] and Q2 = E[x2x

T
2 ] are covariances

◮ Transmit power constraints

tr(Q1) ≤ P1, tr(Q2) ≤ P2

◮ For fixed Q1, Q2, define B(Q1,Q2)

R1 ≤ 1

2
log

∣
∣
∣H1Q1H

T
1 + I

∣
∣
∣

R2 ≤ 1

2
log

∣
∣
∣H2Q2H

T
2 + I

∣
∣
∣

R1 + R2 ≤ 1

2
log

∣
∣
∣H1Q1H

T
1 + H2Q2H

T
2 + I

∣
∣
∣

◮ The capacity region is

C =
⋃

tr(Qi )≤Pi

B(Q1,Q2)
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Boundary of the Capacity Region of MIMO MAC (Yu-Rhee-Boyd-Cioffi’01)

◮ Solve the following wlog for µ1 ≤ µ2

max
Q1,Q2

µ1 log
∣
∣
∣H1Q1H

T
1 + H2Q2H

T
2 + I

∣
∣
∣ + (µ2 − µ1) log

∣
∣
∣H2Q2H

T
2 + I

∣
∣
∣

s.t. tr (Q1) ≤ P1, tr (Q2) ≤ P2

R2

R1

slope = µ−1
µ

A

B

C

D
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Sum Capacity of the MIMO MAC Channel (Yu-Rhee-Boyd-Cioffi’01)
◮ Maximize sum rate

max
Q1,Q2

log
∣
∣
∣H1Q1H

T
1 + H2Q2H

T
2 + I

∣
∣
∣

s.t. tr (Q1) ≤ P1, tr (Q2) ≤ P2

◮ Sum rate optimal allocation Q∗
1 and Q∗

2
◮ Necessary condition:

◮ Q∗
1 is the single user waterfilling over the colored noise H2Q2H

T
2 + I.

◮ Q∗
2 is the single user waterfilling over the colored noise H1Q1H

T
1 + I.

◮ Multi-dimensional water-filling:
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Iterative Waterfilling (Yu-Rhee-Boyd-Cioffi’01)

◮ Perform single-user optimizations: Iterative waterfilling

log
∣
∣
∣H1Q1H

T
1 + H2Q2H

T
2 + I

︸ ︷︷ ︸

effective colored noise

∣
∣
∣

◮ Given Q2, user 1 waterfills over the effective colored noise and updates Q1

Q1 = arg max
Q1

log

∣
∣
∣
∣
∣
H1Q1H

T
1 + H2Q2H

T
2 + I

∣
∣
∣
∣
∣

◮ Given Q1, user 2 waterfills over the effective colored noise and updates Q2

Q2 = arg max
Q2

log
∣
∣
∣H2Q2H

T
2 + H1Q1H

T
1 + I

∣
∣
∣

35



Iterative Waterfilling (Yu-Rhee-Boyd-Cioffi’01)

◮ An illustration of the trajectory followed during the iterative waterfilling

R2

R1

A

B

C

D
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Conclusions So Far

◮ Power adaptation for maximizing the capacity in single-user and MAC
fading channels, and MIMO and MIMO MAC channels

◮ Common tool: waterfilling

◮ Fading channel is equivalent to parallel channels over channel states.

◮ MIMO channel is equivalent to min{t, r} parallel channels.

◮ Fading scalar and MIMO multiple access channels

◮ Sum-rate optimal operating points are reached by iterative waterfilling.

◮ Any arbitrary point is reached by generalized iterative waterfilling.
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Power Adaptation for Energy Minimal Transmission (Uysal-Biyikoglu,
Prabhakar, El Gamal’02)

◮ Rate-power relation in the AWGN channel

R =
1

2
log

(

1 +
P

σ2

)

◮ Energy-per-bit (Epb) in an AWGN channel

Epb =
σ2(22R − 1)

R

◮ Epb monotonically decreases as 1
R
→ ∞

Epb

q = 1
R

σ22ln(2)
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Power Adaptation for Energy Minimal Transmission
◮ Serving bits with slower rates is more energy-efficient.
◮ q: Number of transmissions to send a bit
◮ Codebook of fixed but sufficiently large block length.
◮ Code rate is adapted by changing its average power.

q ≈ 1

R

◮ Given B bits at the transmitter, decreasing transmit power yields
◮ longer transmission durations
◮ smaller transmission energy

◮ This is true for any system with a concave rate-power relation.

Epb

q = 1
R

σ22ln(2)
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Energy Minimal Packet Scheduling

0 T
t1

b1 b2 b3 b4

t4t3t2

◮ Packets arriving at different times, deadline constrained by T

◮ Scheduling packets: τi is the time allocated for packet i

T
0

b1 b2 b3 b4

τ1 τ2 τ3 τ4

◮ Deadline constraint
∑

i

τi ≤ T

◮ Energy of a schedule τ : ω(τ )

◮ Find the energy minimal schedule τ
∗ to send all packets by T

◮ Adapt the transmission times of the packets.

◮ Equivalently, adapt the rate and hence the power.

40



Offline Packet Scheduling

◮ Offline schedule: bit arrival times are known a priori

◮ Bits cannot be served before they arrive at the data buffer: causality

◮ A necessary condition for optimality in bi = b case:

τ∗
i ≥ τ∗

i+1 with
∑

i

τ∗
i = T

◮ The necessity is due to the convexity of ω(τ ).

◮ Assume τi < τi+1 for some i .

◮ This is a contradiction since σi = σi+1 =
τi +τi+1

2
and σj = τj elsewhere

ω(σ) − ω(σ) = ω(τi ) + ω(τi+1) − ω(σi ) − ω(σi+1)

= ω(τi ) + ω(τi+1) − 2ω(
τi + τi+1

2
) < 0

◮ Equate τi subject to feasibility constraints.
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Optimal Offline Packet Scheduling

◮ A schedule with idle intervals is suboptimal.

T0

b1 b2

τ1 τ2
idleidle

=⇒ Not optimal

◮ Equate τi subject to feasibility constraints.

◮ Split the transmission times to the available deadline as much as possible.

T

T

0

0

b1

τ2

b2

τ1

b1

τ1 τ2

b2

=⇒

More equalized

Less equalized

b1 = b2 = B

=⇒
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Optimal Offline Packet Scheduling

◮ The optimal policy has the structure:

τ∗
i = bi max

k∈{1,...,M−ki−1}

∑k

j=1 dki−1+j

∑k−1
j=0 bj

ki = ki−1 + arg max
k∈{1,...,M−ki−1}

∑k

j=1 dki−1+j

∑k−1
j=0 bj

◮ Optimal offline schedule is called lazy scheduling.
◮ The lazy schedule

◮ start slowly and work harder as the deadline approaches

◮ Key reason: convexity of energy per bit in transmission time.
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A Calculus Approach for Energy Minimal Packet Scheduling
(Zafer-Modiano’09)

◮ Uses a geometric framework
◮ Let h(t) be the last time a packet arrived before t

◮

∑h(t)
i=0 Bi is the cumulative data arrival curve

◮ A policy is feasible if its cumulative service curve lies below
∑h(t)

i=0 Bi

◮ The optimal rate policy is the tightest string.

0 T

T

s1 s2 s3

B1 B2 B3

∑h(t)
i=0 Bi

r
∗
1

r
∗
3

r
∗
4

r
∗
2

B0
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Algorithm to Find the Optimal Policy

◮ Connect the points at data arrival times to form lines

◮ Select the line which is feasible and which has minimum slope
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Conclusions

◮ Energy per bit monotonically decreases as 1
R

increases, i.e., R decreases.

◮ The slower the transmission, the more energy-efficient it is.

◮ Scheduling packets that arrive at different times.

◮ Optimal offline schedule has a “majorization” structure.

◮ Serve bits with a rate as constant as possible subject to bit feasibility.
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