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This dissertation studies the security of wireless interference networks from

an information-theoretic point of view. In this setting, several transmitter-receiver

pairs wish to have secure communication against the eavesdropper(s). The central

goal of this dissertation is to develop a framework based on information-theoretic

principles to determine the complete solutions for the signaling schemes in different

wireless interference networks with large transmit powers, and derive the corre-

sponding fundamental limits in terms of the secure degrees of freedom (s.d.o.f.).

First, we study one-hop wireless networks by considering four fundamental

wireless network structures: Gaussian wiretap channel with helpers, Gaussian broad-

cast channel (BC) with confidential messages, Gaussian interference channel (IC)

with confidential messages, and Gaussian multiple access (MAC) wiretap channel.

The secrecy capacity of the canonical Gaussian wiretap channel does not scale with

the transmit power, and hence, the s.d.o.f. of the Gaussian wiretap channel with

no helpers is zero. We show that the exact s.d.o.f. of the Gaussian wiretap channel

with a helper is 1
2
. Our achievable scheme is based on real interference alignment



and cooperative jamming, which renders the message signal and the cooperative

jamming signal separable at the legitimate receiver, but aligns them perfectly at the

eavesdropper preventing any reliable decoding of the message signal. Our converse is

based on two key lemmas. The first lemma quantifies the secrecy penalty by showing

that the net effect of an eavesdropper on the system is that it eliminates one of the

independent channel inputs. The second lemma quantifies the role of a helper by

developing a direct relationship between the cooperative jamming signal of a helper

and the message rate. We extend this result to the case of M helpers, and show

that the exact s.d.o.f. in this case is M
M+1

. We then generalize this approach to more

general network structures with multiple messages. We show that the sum s.d.o.f. of

the Gaussian BC with confidential messages and M helpers is 1, the sum s.d.o.f. of

the two-user IC with confidential messages is 2
3
, the sum s.d.o.f. of the two-user IC

with confidential messages and M helpers is 1, and the sum s.d.o.f. of the K-user

MAC wiretap channel is K(K−1)
K(K−1)+1

.

Next, we study the sum s.d.o.f. of multi-receiver networks. In this dissertation,

we determine the exact sum s.d.o.f. of the K-user Gaussian IC. We consider three dif-

ferent secrecy constraints: 1) K-user IC with one external eavesdropper (IC-EE), 2)

K-user IC with confidential messages (IC-CM), and 3) K-user IC with confidential

messages and one external eavesdropper (IC-CM-EE). We show that for all of these

three cases, the exact sum secure d.o.f. is K(K−1)
2K−1

. We show converses for IC-EE and

IC-CM, which imply a converse for IC-CM-EE. We show achievability for IC-CM-

EE, which implies achievability for IC-EE and IC-CM. We develop the converses by

relating the channel inputs of interfering users to the reliable rates of the interfered



users, and by quantifying the secrecy penalty in terms of the eavesdroppers’ observa-

tions. Our achievability uses structured signaling, structured cooperative jamming,

channel prefixing, and asymptotic real interference alignment. While the traditional

interference alignment provides some amount of secrecy by mixing unintended sig-

nals in a smaller sub-space at every receiver, in order to attain the optimum sum

s.d.o.f., we incorporate structured cooperative jamming into the achievable scheme,

and intricately design the structure of all of the transmitted signals jointly.

Then, we study the entire s.d.o.f. regions of multi-user network structures. In

this dissertation, we determine the entire s.d.o.f. regions of the K-user MAC wiretap

channel and the K-user IC with secrecy constraints. The converse for the MAC

follows from a middle step in the converse of the sum s.d.o.f. The converse for the IC

includes constraints both due to secrecy as well as due to interference. Although the

portion of the region close to the optimum sum s.d.o.f. point is governed by the upper

bounds due to secrecy constraints, the other portions of the region are governed

by the upper bounds due to interference constraints. Different from the existing

literature, in order to fully understand the characterization of the s.d.o.f. region of

the IC, one has to study the 4-user case, i.e., the 2 or 3-user cases do not illustrate the

generality of the problem. In order to prove the achievability, we use the polytope

structure of the converse region. In both MAC and IC cases, we develop explicit

schemes that achieve the extreme points of the polytope region given by the converse.

Specifically, the extreme points of the MAC region are achieved by an m-user MAC

wiretap channel with K−m helpers, i.e., by setting K−m users’ secure rates to zero

and utilizing them as pure (structured) cooperative jammers. The extreme points



of the IC region are achieved by a (K −m)-user IC with confidential messages, m

helpers, and N external eavesdroppers, for m ≥ 1 and a finite N . As a byproduct

of determining the entire s.d.o.f. regions of MAC and IC channels, we show that the

sum s.d.o.f. is achieved only at one extreme point of the s.d.o.f. region, which is the

symmetric-rate extreme point, for both MAC and IC channel models.

Next, we determine the sum s.d.o.f. of two-unicast layered wireless networks.

Without any secrecy constraints, the sum d.o.f. of this class of networks was shown to

take only one of three possible values: 1, 3
2

and 2, for all network configurations. We

consider the setting where, in addition to being reliably transmitted, each message

is required to be kept information-theoretically secure from the unintended receiver.

We show that the sum s.d.o.f. can only take one of five possible values: 0, 2
3
, 1, 3

2
, 2, for

all network configurations. To determine the sum s.d.o.f., we divide the class of two-

unicast layered networks into several sub-classes, and propose an achievable scheme

based on the specific structure of the networks in each sub-class. Our achievable

schemes are based on real interference alignment, cooperative jamming, interference

neutralization and cooperative jamming neutralization techniques.

Then, we consider the Gaussian wiretap channel with M helpers, where no

eavesdropper channel state information (CSI) is available at the legitimate entities.

One of the key ingredients of our optimal achievable scheme with perfect CSI is to

align cooperative jamming signals with the information symbols at the eavesdropper

to limit the information leakage rate. This requires perfect eavesdropper CSI at the

transmitters. We propose a new achievable scheme in which cooperative jamming

signals span the entire space of the eavesdropper, but are not exactly aligned with



the information symbols. We show that this scheme achieves the same s.d.o.f. of

M
M+1

but does not require any eavesdropper CSI; the transmitters blindly cooperative

jam the eavesdropper.

Next, we study the separability of the parallel MAC wiretap channel. Sep-

arability, when exists, is useful as it enables us to code separately over parallel

channels, and still achieve the optimum overall performance. It is well-known that

the parallel single-user channel, parallel MAC and parallel BC are all separable,

however, the parallel IC is not separable in general. In this dissertation, we show

that, while MAC is separable MAC wiretap channel is not separable in general. We

prove this via a specific linear deterministic MAC wiretap channel. We then show

that even the Gaussian MAC wiretap channel is inseparable in general. Finally, we

show that, when the channel gains are drawn from continuous distributions, and

when the s.d.o.f. region is considered, then the Gaussian MAC wiretap channel is

almost surely separable.

Finally, we study the two-user one-sided IC with confidential messages. In

this IC, in addition to the usual selfishness of the users, the relationship between

the users is adversarial in the sense of both receivers’ desires to eavesdrop on the

communication of the other pair. We develop a game-theoretic model for this setting.

We start with a model where each pair’s payoff is their own secrecy rate. We then

propose a refinement for the payoff function by explicitly accounting for the desire of

the receiver to eavesdrop on the other party’s communication. This payoff function

captures the adversarial relationship between the users better. We determine the

Nash equilibria for the binary deterministic channel for both payoff functions.
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Chapter 1

Introduction

1.1 Overview

In this dissertation, we study secure communications in wireless interference net-

works from an information-theoretic point of view. Security of communication was

first considered by Shannon in [1], where a legitimate pair wishes to have secure

communication in the presence of an eavesdropper over a noiseless channel, leading

to the necessity of secure keys and the one-time-pad encryption method, in that

model. Wyner introduced the noisy wiretap channel, and demonstrated that secure

communication can be attained by stochastic encoding without using any keys, if

the eavesdropper is degraded with respect to the legitimate receiver [2]. Csiszar

and Korner generalized his result to arbitrary, not necessarily degraded, wiretap

channels, and showed that secure communication is still possible, even when the

eavesdropper is not degraded [3]. Csiszar and Korner introduced channel prefix-

ing and rate splitting into the achievable scheme in addition to Wyner’s stochastic

encoding. Leung-Yan-Cheong and Hellman obtained the capacity-equivocation re-

gion of the Gaussian wiretap channel [4], which is degraded. They showed that a

Gaussian input signal is optimum, and in particular, secrecy capacity equals the

difference of the capacities of the legitimate and eavesdropping links in this case.

Multi-user versions of the wiretap channel have been studied recently, e.g.,

1



broadcast channels (BC) with confidential messages [5, 6], multi-receiver wiretap

channels [7–10] (see also a survey on extensions of these to MIMO channels [11]),

two-user interference channels (IC) with confidential messages [5, 12], two-user IC

with external eavesdroppers [13], multiple access (MAC) wiretap channels [14–18],

relay eavesdropper channels [19–24], compound wiretap channels [25, 26]. Since in

most multi-user scenarios it is difficult to obtain the exact secrecy capacity region,

achievable secure degrees of freedom (s.d.o.f.) at high signal-to-noise ratio (SNR)

cases have been studied for several channel structures, such as the K-user Gaussian

IC with confidential messages [27, 28], the K-user IC with external eavesdroppers

[27, 29], the Gaussian wiretap channel with one helper [30–33], the Gaussian MAC

wiretap channel [34, 35], and the wireless X network [36]. In this dissertation, we

focus on the s.d.o.f. of various wireless networks and determine the exact s.d.o.f. for

several different channel models.

In the Gaussian wiretap channel, the secrecy capacity is the difference between

the channel capacities of the transmitter-receiver and the transmitter-eavesdropper

pairs. It is well-known that this difference does not scale with the SNR, and hence

the s.d.o.f. of the Gaussian wiretap channel is zero, indicating a severe penalty due

to secrecy in this case. Fortunately, this does not hold in multi-user scenarios. In

a multi-user wireless network, focusing on a specific transmitter-receiver pair, other

(independent) transmitters can be understood as helpers which can improve the in-

dividual secrecy rate of this specific pair by cooperatively jamming the eavesdropper

[14, 15, 18, 37].1 However, these cooperative jamming signals also limit the decod-

1Note that, if reliability was the only concern, then in order to maximize the reliable rate of a
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ing performance of the legitimate receiver. It is also known that if the helper nodes

transmit independent identically distributed (i.i.d.) Gaussian cooperative jamming

signals in a Gaussian wiretap channel, then the s.d.o.f. is still zero [14, 15, 35, 37].

Such i.i.d. Gaussian signals, while maximally jam the eavesdropper, also maximally

hurt the legitimate user’s decoding capability. Therefore, we expect that strictly

positive s.d.o.f. may be achieved with some weak jamming signals. Confirming this

intuition, [30, 31] achieved positive s.d.o.f. by using nested lattice codes in a Gaus-

sian wiretap channel with a helper.

In this dissertation, we develop a unified framework based on information-

theoretic principles to completely determine s.d.o.f. of several different kinds of wire-

less communication channel models, and provide the corresponding optimal signaling

designs at high SNR. Toward this end, in Chapter 2, we start with the Gaussian

wiretap channel with one helper, which provides us a basic framework to under-

stand the role of an independent transmitter (helper) from an information-theoretic

secrecy point of view in a wireless network. Then, in Chapter 2, we study the sum

s.d.o.f. of one-hop wireless networks by considering three other fundamental network

structures in addition to the Gaussian wiretap channel with helpers: Gaussian BC

with confidential messages, two-user Gaussian IC with confidential messages, and

Gaussian MAC wiretap channel [38–40]. In Chapter 3, we extend our problem set-

ting to a K-user IC, and determine the exact sum s.d.o.f. of the K-user Gaussian IC

with three different secrecy constraints in a unified framework [41, 42]. In Chapter

given transmitter-receiver pair, all other independent transmitters must remain silent. However,
when secrecy in addition to reliability is a concern, then independent helpers can improve the
secrecy rate of a given transmitter-receiver pair by transmitting signals [14, 15, 18, 37].
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4, we broaden our problem formulation and develop a technique to determine the

entire s.d.o.f. regions of K-user Gaussian MAC wiretap channel and K-user IC with

secrecy constraints [43, 44]. In Chapter 5, we consider multi-hop networks and de-

termine the sum s.d.o.f. of two-unicast layered wireless networks [45, 46]. In Chapter

6, we consider the case where eavesdropper’s channel state information (CSI) is not

available at the legitimate entities in an M -helper Gaussian wiretap channel, and

determine the exact s.d.o.f. [47]. In Chapter 7, we consider a parallel Gaussian

MAC wiretap channel, and investigate the optimality of separation: while Gaussian

MAC is known to be separable, we show that, in general, Gaussian MAC wiretap

channel is not separable [48]. Finally, in Chapter 8, we investigate the adversarial

relationship between the transmitter-receiver pairs in a network at a deeper level by

proposing a secrecy game between selfish but rational users by explicitly account-

ing for the desires of the users to keep their own messages secure while achieving

eavesdropping on the other user’s messages [49].

1.2 Outline

In Chapter 2, we obtain the exact s.d.o.f. of several important one-hop Gaussian

network structures. We start by considering the Gaussian wiretap channel with

a single helper, as shown in Figure 1.1. In this channel model, the s.d.o.f. with

i.i.d. Gaussian cooperative signals is zero [37], and strictly positive s.d.o.f. can be

obtained, for instance, by using nested lattice codes [30, 31]. Considering this model

as a special case of other channel models, we can verify that 1
4

s.d.o.f. can be achieved
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Figure 1.1: Gaussian wiretap channel with one helper.

as a symmetric individual rate on the two-user IC with external eavesdroppers [27,

29] and on the MAC wiretap channel [34]. References [50] and [31, Theorem 5.4 on

page 126] showed that with integer lattice codes a s.d.o.f. of 1
2

can be achieved if the

channel gains are irrational algebraic numbers. While such class of channel gains has

zero Lebesgue measure, the idea behind this achievable scheme can be generalized to

much larger set of channel gains. The enabling idea behind this achievable scheme is

as follows: If the cooperative jamming signal from the helper and the message signal

from the legitimate user can be aligned in the same dimension at the eavesdropper,

then the secrecy penalty due to the information leakage to the eavesdropper can

be upper bounded by a constant, while the information transmission rate to the

legitimate user can be made to scale with the transmit power. Following this insight,

we propose an achievable scheme2 based on real interference alignment [51, 52]

and cooperative jamming to achieve 1
2

s.d.o.f. for almost all channel gains. This

constitutes the best known achievable s.d.o.f. for the Gaussian wiretap channel with

2In this chapter, by an achievable scheme, we mean that we design specific forms for the
auxiliary random variables and the channel inputs, and evaluate well-known random-coding based
achievable expressions with our selected random variables.
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a helper. The cooperative jamming signal from the helper can be distinguished from

the message signal at the legitimate receiver by properly designing the structure of

the signals from both transmitters; meanwhile, they can be aligned together at

the observation space of the eavesdropper to ensure undecodability of the message

signal, hence secrecy (see Figure 2.1). Intuitively, the end result of 1
2

s.d.o.f. comes

from the facts that the cooperative jamming signal and the message signal should

be of about the same size to align at the eavesdropper, and they should be separable

at the legitimate receiver, who can decode at most a total of 1 d.o.f. We analyze

the rate and equivocation achieved by this scheme by using the Khintchine-Groshev

theorem of Diophantine approximation in number theory.

For the converse for this channel model, the best known upper bound is 2
3

[31,

Theorem 5.3 on page 126] which was obtained by adding virtual nodes to the system

and using the upper bound developed in [53]. Reference [53] developed upper bounds

for the s.d.o.f. of the multiple-antenna compound wiretap channel by exploring the

correlation between the n-letter observations of a group of legitimate receivers and

a group of eavesdroppers, instead of working with single-letter expressions. Our

converse works with n-letter observations as well. Our converse has two key steps.

First, we upper bound the secrecy rate by the difference of the sum of differential

entropies of the channel inputs of the legitimate receiver and the helper and the

differential entropy of the eavesdropper’s observation. This shows that, the secrecy

penalty due to the eavesdropper’s observation is tantamount to eliminating one of

the independent channel inputs. As a result, the final upper bound involves only the

differential entropy of the channel input of the independent helper. In the second
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Figure 1.2: Gaussian wiretap channel with M helpers.

step, we develop a relationship between the cooperative jamming signal from the

independent helper and the message rate. The goal of the cooperative jamming

signal is to further confuse the eavesdropper. However, the cooperative jamming

signal appears in the channel output of the legitimate user also. Intuitively, if

the legitimate user is to reliably decode the message signal which is mixed with

the cooperative jamming signal, there must exist a constraint on the cooperative

jamming signal. Our second step identifies this constraint by developing an upper

bound on the differential entropy of the cooperative jamming signal in terms of the

message rate. These two steps give us an upper bound of 1
2

s.d.o.f. for the Gaussian

wiretap channel with a helper, which matches our achievable lower bound. This

concludes that the exact s.d.o.f. of the Gaussian wiretap channel with a helper is 1
2

for almost all channel gains.

We then generalize our result to the case of M independent helpers; see Fig-

ure 1.2. We show that the exact s.d.o.f. in this case is M
M+1

. Our achievability

extends our original achievability for the one-helper case in the following manner:
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Figure 1.3: Gaussian BC with confidential messages and M = 1 helper.

The transmitter sends its message by employing M independent sub-messages, and

the M helpers send independent cooperative jamming signals. Each cooperative

jamming signal is aligned with one of the M sub-messages at the eavesdropper to

ensure secrecy (see Figure 2.2). Therefore, each sub-message is protected by one

of the M helpers. Our converse is an extension of the converse in the one-helper

case. In particular, we upper bound the secrecy rate by the difference of the sum

of the differential entropies of all of the channel inputs and the differential entropy

of the eavesdropper’s observation. The secrecy penalty due to the eavesdropper’s

observation eliminates one of the channel inputs, which we choose as the legitimate

user’s channel input. We then utilize the relationship we developed between the dif-

ferential entropy of each of the cooperative jamming signals and the message rate.

The upper bound so developed matches the achievability lower bound, giving the

exact s.d.o.f. for the M -helper case.

As an important extension of the single-message one-helper problem, we con-

sider the BC with confidential messages and one-helper (see Figure 1.3), where a

transmitter wishes to send two messages securely to two users on a BC while keep-
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ing each message secure from the unintended receiver. Without a helper, the sum

s.d.o.f. of this channel model is zero. We show that with one helper, the exact sum

s.d.o.f. is 1. The sum s.d.o.f. remains the same as more helpers are added. The

achievability for the one-helper case is as follows: The transmitter sends the chan-

nel input by putting two messages on different rational dimensions. Meanwhile, the

cooperative jamming signal from the helper is designed in such a way that it aligns

with the unintended message, but leaves the intended message intact, at each re-

ceiver (see Figure 2.3). The converse for this case follows from the converse without

any secrecy constraints for the Gaussian BC, which is 1.

Cooperative jamming based achievable schemes are intuitive for the indepen-

dent helper problems due to the fact that the helpers do not have messages of their

own. Such schemes can be extended to multiple-transmitter (with independent mes-

sages) settings, such as, IC with confidential messages and MAC wiretap channel,

etc. All previous works extended this approach in the following way: Each trans-

mitter simply sends one message signal, and the message signals from all of the

transmitters are aligned together at the eavesdropper. Due to the mixture of the

message signals, the eavesdropper is confused regarding any one of the message sig-

nals, and a positive s.d.o.f. is achievable. However, this approach is sub-optimal. To

achieve optimal s.d.o.f., we need to design the structure of the channel inputs more

carefully. We propose the following transmission structure: Besides the message

carrying signal, each transmitter also sends a cooperative jamming signal.3 The ex-

3This addition of a cooperative jamming signal to the message carrying signal can be interpreted
as channel prefixing [3] which introduces a further randomization from the message carrying signal
to the channel input on top of stochastic encoding [2] which maps every message to multiple
codewords.
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Figure 1.4: Two-user Gaussian IC with confidential messages.

act number and the structure of the message signals and the cooperative jamming

signals depend on the specific network structure.

For the two-user Gaussian IC with confidential messages (see Figure 1.4),

previously known lower bounds for the sum s.d.o.f. are 1
3

[36] and 0 [27], which

come from the general results for the K-user case: K−1
2K−1

[36] and K(K−2)
2K−2

[27]. The

individual s.d.o.f. of 1
2

achieved in [50] and [31, Theorem 5.4 on page 126] in the

context of the wiretap channel with a helper (for the class of algebraic irrational

channel gains) can also be understood as a lower bound for the sum s.d.o.f. for

the two-user IC with confidential messages. We show that, by using interference

alignment and cooperative jamming at both transmitters, we can achieve a sum

s.d.o.f. of 2
3

for almost all channel gains, which is better than all previously known

achievable s.d.o.f. We design an achievable scheme in which each transmitter sends

a mixed signal containing the message signal and a cooperative jamming signal.

These two components have the same signaling structure, and are separable at the

intended receiver. Furthermore, the cooperative jamming signal is perfectly aligned

with the message signal from the other transmitter (see Figure 2.4).4 Our converse

4An interesting observation here is that each transmitter jams its own receiver to protect the
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Figure 1.5: Two-user Gaussian IC with confidential messages and M helpers.

starts with considering transmitter 2 as a helper for transmitter-receiver pair 1. In

contrast to the single-message case, since transmitter 2 also intends to deliver a

message W2 to receiver 2, in the second step, we treat transmitter 1 as the helper

for the transmitter-receiver pair 2 and upper bound the differential entropy of its

channel input by using its relationship with the message rate of W2. The converse

matches the achievability lower bound, giving the exact s.d.o.f. for the two-user IC

with confidential messages as 2
3
.

We then generalize this result to the case with one helper, i.e., two-user Gaus-

sian IC with confidential messages and one helper (see Figure 1.5). We show that

a sum s.d.o.f. of 1 is achievable. The structure of the channel inputs in the corre-

sponding achievable scheme is simpler than in the cases of previous channel models.

Each transmitter sends a signal carrying its message. With probability one, these

message of the other transmitter. This scheme achieves the largest (optimum) sum s.d.o.f. for the
system.
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Figure 1.6: K-user MAC wiretap channel.

two signals are not in the same rational dimension at the receivers. On the other

hand, the cooperative jamming signal from the helper can be aligned with the un-

intended message at each receiver while leaving the intended message intact (see

Figure 2.5). The converse for this case follows from the converse without any se-

crecy constraints for the two-user Gaussian IC [54], which is 1. This concludes that

the exact sum s.d.o.f. of the two-user Gaussian IC with confidential messages and

one helper is 1. Since utilizing one helper is sufficient to achieve the upper bound,

the sum s.d.o.f. remains the same for arbitrary M helpers.

For the K-user MAC wiretap channel (see Figure 1.6), the best known lower

bound for the sum s.d.o.f. is K−1
K

[34] which gives 1
2

forK = 2. In addition, forK = 2,

the individual s.d.o.f. of 1
2

achieved in [50] and [31, Theorem 5.4 on page 126] in the

context of the wiretap channel with a helper (for the class of algebraic irrational

channel gains) can also be understood as a lower bound for the sum s.d.o.f. for

the two-user MAC wiretap channel. We show that, by using interference alignment

and cooperative jamming at all transmitters simultaneously, we can achieve a sum

12



s.d.o.f. of K(K−1)
K(K−1)+1

for the K-user MAC wiretap channel, for almost all channel

gains, which is better than all previously known achievable s.d.o.f. In particular, for

K = 2, our achievable scheme gives a sum s.d.o.f. of 2
3
. In order to obtain this sum

s.d.o.f., we need a more detailed structure for each channel input. Each transmitter

sends a mixed signal containing the message signal and a cooperative jamming

signal. Specifically, each transmitter divides its own message intoK−1 sub-messages

each of which having the same structure as the cooperative jamming signal. By

such a scheme, the total K cooperative jamming signals from the K transmitters

span the whole space at the eavesdropper’s observation, in order to hide each one

of the message signals from the eavesdropper. On the other hand, to maximize

the sum s.d.o.f., the cooperative jamming signals from all of the transmitters are

aligned in the same dimension at the legitimate receiver to occupy the smallest

space (see Figure 2.6). Our converse is a generalization of our converse used in

earlier channel models. We first show that the sum secrecy rate is upper bounded

by the sum of differential entropies of all channel inputs except the one eliminated

by the eavesdropper’s observation. Then, we consider each channel input as the

jamming signal for all other transmitters and upper bound its differential entropy

by using its relationship with the sum rate of the messages belonging to all other

transmitters. This gives us a matching converse and shows that the exact sum

s.d.o.f. for this channel model is K(K−1)
K(K−1)+1

.

In Chapter 3, we focus on the K-user IC with secrecy constraints, and de-

termine its exact sum s.d.o.f. The K-user Gaussian IC with secrecy constraints

consists of K transmitter-receiver pairs each wishing to have secure communication

13



Z (if there is any)

W1

W2

YK

Y1 Ŵ1

Y2 Ŵ2
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Figure 1.7: K-user Gaussian IC with secrecy constraints.

over a Gaussian IC; see Figure 1.7. We consider three different secrecy constraints:

1) K-user IC with one external eavesdropper (IC-EE), where K transmitter-receiver

pairs wish to have secure communication against an external eavesdropper, see Fig-

ure 1.8(a). 2) K-user IC with confidential messages (IC-CM), where there are no

external eavesdroppers, but each transmitter-receiver pair wishes to secure its com-

munication against the remaining K − 1 receivers, see Figure 1.8(b). 3) K-user IC

with confidential messages and one external eavesdropper (IC-CM-EE), which is a

combination of the previous two cases, where each transmitter-receiver pair wishes

to secure its communication against the remaining K − 1 receivers and the external

eavesdropper, see Figure 1.8(c).

Reference [28] showed that nested lattice codes and layered coding are use-

ful in providing positive sum s.d.o.f. for the K-user IC-CM; their result gave a sum

s.d.o.f. of less than 3
4

for K = 3. Reference [27] used interference alignment to achieve

a sum s.d.o.f. of K(K−2)
2K−2

for the K-user IC-CM, which gave 3
4

for K = 3. Based on

the same idea, [27, 29] achieved a sum s.d.o.f. of K(K−1)
2K

for the K-user IC-EE, which
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ŴK

Z

YK

Y1 Ŵ1
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−2Ŵ2

WK
−K

Z

YK

Y1 WK
−1Ŵ1
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Figure 1.8: The receiver sides of the three channel models: (a) K-user IC-EE, (b)
K-user IC-CM, and (c) K-user IC-CM-EE, where WK

−i is the whole message set but
Wi.

gave 1 for K = 3. The approach used in [27, 29] is basically to evaluate the secrecy

performance of the interference alignment technique [55] devised originally for the

K-user IC without any secrecy constraints. Since the original interference alignment

scheme puts all of the interfering signals into the same reduced-dimensionality sub-

space at a receiver, it naturally provides a certain amount of secrecy to those signals

as an unintended byproduct, because the interference signals in this sub-space create

uncertainty for one another and make it difficult for the receiver to decode them.

However, since the end-goal of [55] is only to achieve reliable decoding of the trans-

mitted messages at their intended receivers, the d.o.f. it provides is sub-optimal

when both secrecy and reliability of messages are considered.

The exact sum s.d.o.f. of the two-user IC-CM is obtained to be 2
3

in Chapter 2.

It is shown that while interference alignment is a key ingredient in achieving positive

s.d.o.f., a more intricate design of the signals is needed to achieve the simultaneous

end-goals of reliability at the desired receivers and secrecy at the eavesdroppers. In

particular, in Chapter 2, each transmitter sends both message carrying signals, as
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well as cooperative jamming signals.

In Chapter 3, we generalize the results in Chapter 2 to the case of K-user IC,

for K > 2. Our generalization has three main components:

1. While Chapter 2 considered IC-CM only, we consider both IC-CM and IC-EE

and their combination IC-CM-EE in a unified framework. To this end, we show

converses separately for IC-EE and IC-CM, which imply a converse for IC-CM-

EE; and we show achievability for IC-CM-EE, which implies achievability for

IC-EE and IC-CM. The achievability and converse meet giving an exact sum

s.d.o.f. of K(K−1)
2K−1

for all three models.

2. For achievability: In the case of two-user IC-CM in Chapter 2, each message

needs to be delivered reliably to one receiver and needs to be protected from

another receiver. This requires alignment at two receivers, which is achieved

in Chapter 2 by simply choosing transmission coefficients properly, which can-

not be extended to the K-user case here. In the K-user IC-CM-EE case, we

need to deliver each message to a receiver, while protecting it from K other re-

ceivers. This requires designing signals in order to achieve alignment at K+ 1

receivers simultaneously: at one receiver (desired receiver) we need alignment

to ensure that the largest space is made available to message carrying signals

for their reliable decodability, and at K other receivers, we need to align coop-

erative jamming signals with message carrying signals to protect them. These

requirements create two challenges: i) aligning multiple signals simultaneously

at multiple receivers, and ii) upper bounding the information leakage rates by
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suitable functions which can be made small. We overcome these challenges by

using an asymptotical approach [52], where we introduce many signals that

carry each message and align them simultaneously at multiple receivers only

order-wise (i.e., align most of them, but not all of them), and by developing

a method to upper bound the information leakage rate by a function which

can be made small. In contrast to the constant upper bound for the informa-

tion leakage rate in Chapter 2, here the upper bound is not constant, but a

function which can be made small. This is due to the non-perfect (i.e., only

asymptotical) alignment.

3. For the converse: To the best of our knowledge, the only known upper bound

for the sum s.d.o.f. of the K-user IC with secrecy constraints is K
2

, which is the

upper bound with no secrecy constraints [55]. The upper bounding technique

for the two-user IC-CM in Chapter 2 considers one single confidential message

against the corresponding unintended receiver each time, since in that case

the eavesdropping relationship is straightforward: for each message there is

only one eavesdropper and for each eavesdropper there is only one confidential

message. However, in the case of K-user IC, each message is required to be

kept secret against multiple eavesdroppers and each eavesdropper is associated

with multiple unintended messages. To develop a tight converse, we focus on

the eavesdropper as opposed to the message. In the converse for IC-EE, we

consider the sum rate of all of the messages eavesdropped by the external

eavesdropper. We sequentially apply the role of a helper lemma in Chapter
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2 to each transmitter by treating its signal as a helper to another specific

transmitter. In the converse for IC-CM, for each receiver (which also is an

eavesdropper), we consider the sum rate of all unintended messages, and again

apply the role of a helper lemma in a specific structure.

In Chapter 4, we investigate the s.d.o.f. structures of multi-user wireless net-

works in more depth by studying the s.d.o.f. regions of MAC wiretap channel and

IC with secrecy constraints. We start with the MAC wiretap channel, where mul-

tiple legitimate transmitters wish to have secure communication with a legitimate

receiver in the presence of an eavesdropper; see Figure 1.6. The converse for the

sum s.d.o.f. is developed in Chapter 2 using two lemmas: the secrecy penalty lemma

and the role of a helper lemma. The achievability for the sum s.d.o.f. in Chapter 2

is based on real interference alignment [51, 52] and structured cooperative jamming

[15] with an emphasis on simultaneous alignments at both the legitimate receiver

and the eavesdropper. We develop the converse for the entire region by starting

from a middle step in the converse proof of Chapter 2. While Chapter 2 developed

asymmetric upper bounds for the secure rates, since the sum s.d.o.f. was achieved

by symmetric rates in Chapter 2, we summed up the asymmetric upper bounds to

get a single symmetric upper bound to match the achievability. We revisit the con-

verse proof in Chapter 2 and develop a converse for the entire region by keeping the

developed asymmetric upper bounds. Therefore, the converse proofs developed in

Chapter 2 to obtain a converse for the sum s.d.o.f. suffice to obtain a tight converse

for the entire region.
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The converse region for the s.d.o.f. problem has a general polytope structure,

as opposed to the non-secrecy counterpart for the MAC which has a polymatroid

structure [56]. Polytope is a bounded polyhedron, which is an intersection of a finite

number of half-spaces. Such definition is called a half-space representation, which

is exactly the way our converse is expressed. In order to show the achievability of

the polytope region, we need to show the achievability of boundaries of all of the

half-spaces, which is inefficient. We use Minkowski theorem [57, Theorem 2.4.5]

which states that the polytope region discussed in Chapter 4 can be represented by

the convex hull of all of its extreme points, which there are only finitely many. We,

therefore, first determine the extreme points of this converse (polytope) region, and

then develop an achievable scheme for each extreme point of the converse region;

the achievability of the entire region then follows from time-sharing. In particular,

each extreme point of the converse region is achieved by an m-user MAC wiretap

channel with K −m helpers, for m = 1, . . . , K, i.e., by setting K −m users’ secure

rates to zero and utilizing them as pure (structured) cooperative jammers.

We then consider the IC with secrecy constraints; see Figure 1.7. In particular,

we consider three different secrecy constraints in a unified framework as in Chapter 3:

IC-EE, IC-CM, and IC-CM-EE. The converse for the sum s.d.o.f. (the sum s.d.o.f. is

the same for all three models) is developed in Chapter 3 by using the secrecy penalty

lemma and the role of a helper lemma in a certain way, and then by summing

up the obtained asymmetric upper bounds into a single symmetric upper bound.

The achievability for the sum s.d.o.f. in Chapter 3 is based on asymptotical real

interference alignment [52] to enable simultaneous alignment at multiple receivers.
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In order to develop a converse for the entire region for the IC case, in Chapter

4, similar to the MAC case, we start by re-examining the converse proof in Chapter

3 for the sum s.d.o.f. However, unlike the MAC case, the original steps used for the

sum s.d.o.f. are not tight for the characterization of the entire region. There are

two reasons for this: First, in the case of the MAC wiretap channel, since there is a

single legitimate receiver, each transmitter (helper/interferer) impacts the total rate

of all other legitimate transmitters at the legitimate receiver, and therefore, there

is a single manner in which the role of a helper lemma is applied. In the IC case,

there are many different ways in which the role of a helper lemma can be invoked as

there are multiple receivers. In this case, by pairing up helpers (interferers) and the

receivers we obtain (K−1)K upper bounds; even after removing the redundancies, we

get
((

K
K−1

))
=
(

2K−2
K−1

)
upper bounds. In order to obtain the tightest subset of these

upper bounds, we choose the most binding pairing of the helpers/interferers and the

receivers. In particular, we do not apply the next one (i.e., k = i− 1 and k = i+ 1)

selection of helpers/interferers as we have done in (3.33) and (3.61) in Chapter 3.

Instead, we choose all of the transmitters as interfering with a single transmitter-

receiver pair; see (4.92) and (4.108) in Chapter 4. This yields the tightest upper

bounds. Second, we observe that, when we study the s.d.o.f. region, we need to

consider the non-secrecy upper bounds for the underlying IC [54, 55] as additional

upper bounds. We note that such upper bounds are not binding for the case of

MAC wiretap channel s.d.o.f. region, or the MAC and IC sum s.d.o.f. converses. In

fact, such non-secrecy upper bounds for the IC are not binding even for the cases of

K = 2 or K = 3. We observe that these upper bounds are needed for the IC with
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secrecy constraints starting with K ≥ 4. To the best of our knowledge, this is the

first time in network information theory that K = 2 or K = 3 do not capture the

most generality of the problem, and we need to study K = 4 to observe a certain

multi-user phenomenon to take effect.

The converse region for the IC with secrecy constraints has a polytope structure

as well, and similar to the MAC wiretap channel case, we need to determine the

extreme points of this polytope region. However, different from the MAC wiretap

channel case, the converse region consists of two classes of upper bounds, due to

secrecy and due to interference. This makes it difficult to identify the extreme

points of the converse polytope. Finding the extreme points is related to finding

full-rank sub-matrices from an overall matrix of size 2K + K(K − 1)/2. Since

there are approximately KK such matrices, an exhaustive search is intractable, and

therefore we investigate the consistency of the upper bounds, which reduces the

possible number of sub-matrices to examine. After determining the extreme points

of the converse polytope, we develop an achievable scheme for each extreme point.

In particular, each extreme point of the converse region is achieved by a (K −m)-

user IC-CM with m helpers and N independent external eavesdroppers, for m ≥ 1

and finite N .

Finally, after characterizing the entire s.d.o.f. regions of the MAC and IC with

secrecy constraints, as a byproduct of our results in Chapter 4, we note that the

sum s.d.o.f. is achieved only at one extreme point of the s.d.o.f. region, which is the

symmetric-rate extreme point, for both MAC and IC channel models.

In Chapter 5, we consider a two-unicast layered network (see Figure 1.9) where
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Figure 1.9: An example two-unicast layered network.

two transmitters wish to have reliable and secure communication with their respec-

tive receivers simultaneously, by utilizing a layered network in between. The two-

layer (i.e., single-hop) version of this network is an IC, whose capacity is unknown

in general; it is known only in certain special cases, e.g., a class of deterministic

ICs [58], a class of strong ICs [59–61], a class of degraded ICs [62]. The degrees

of freedom (d.o.f.) characterizations have been found for the IC in several different

settings, e.g., [51, 52, 55, 63]. In particular, the sum d.o.f. of a fully connected

two-user IC is 1 [54]. Recently, reference [64] showed that, if the source-destination

pairs are connected, then with probability one, the sum d.o.f. of two-unicast layered

Gaussian networks can take only one of three possible values: 1, 3
2

and 2.

We extend this line of work to include security in addition to reliability for

the end-to-end users. To determine the sum d.o.f. of two-unicast layered networks,

reference [64] divided all network structures into five cases: A, A′, B, B′ and C, and

found the sum d.o.f. in each case. In particular, the sum d.o.f. of all networks in

cases A and A′ is 1, in cases B and B′ is 2, and in case C is 3
2
. The main challenge of
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determining the sum secure d.o.f. is in cases A and A′. In the first part of Chapter

5, we show that although for these two cases the sum d.o.f. is exactly 1, the sum

s.d.o.f. can take one of three possible values: 0, 2
3

and 1. To determine the s.d.o.f. in

all possible cases, we further divide the layered networks in case A and A′ into five

sub-cases, e.g., A1 through A5. In the first four sub-cases, we explicitly utilize the

properties of the layered network in each sub-case, and either find a node and employ

it to protect the communication by having it perform cooperative jamming [14, 15]

against the unintended receiver, or use the interference neutralization technique [65]

to neutralize the message signal at the unintended destination and even neutralize

the cooperative jamming signal at the intended receiver to mimic the wiretap channel

with cooperative jamming. Achievable schemes we develop based on these two

techniques match the corresponding upper bounds, giving the exact sum s.d.o.f. for

the layered networks in these four sub-cases.

In the last sub-case of the cases A and A′, i.e., in A5, we note that there is an

independence structure in the last layer of the network before the destination nodes.

Specifically, the nodes in this last layer have mutually independent observations,

and therefore as transmitters in the last hop of the network, they can only send

independent signals. Due to this independence structure, we cannot simply utilize

cooperative jamming and/or interference neutralization to achieve the optimal sum

s.d.o.f., which makes this sub-case most challenging. To overcome this difficulty,

we first reduce this problem into two simplest equivalent channel models, which are

(P1) the two-user Gaussian IC with confidential messages and M ≥ 0 helper(s)

and (P2) the Gaussian BC with confidential messages and M ≥ 1 helper(s). In
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Chapter 2, we have shown that 2
3

is the exact sum s.d.o.f. for the two-user Gaussian

IC with confidential messages, i.e., for the case M = 0 in (P1), and 1 is the exact

sum s.d.o.f. for the cases M ≥ 1 in (P1) and (P2). Utilizing these results in the

context of this two-unicast layered network, we are able to provide a complete sum

s.d.o.f. characterization for all two-unicast layered networks in cases A and A′.

For the cases B and B′, reference [64] showed that the trivial upper bound of 2

for the sum d.o.f. can be achieved by either obtaining a diagonal end-to-end transfer

matrix with non-zero diagonal entries, or by constructing a 2 × 2 × 2 condensed

interference network in which the d.o.f.-optimal achievable scheme is based on real

interference alignment [66]. For the first scenario, we have secrecy for free, due

to the diagonal nature of the end-to-end transfer matrix. For the second scenario,

we propose a modified achievable scheme for the 2 × 2 × 2 interference network to

achieve the upper bound of 2 for the sum s.d.o.f. The challenge in the equivocation

calculation in this case is that we need to provide a precise performance analysis

in terms of both reliability and secrecy. In this case, the nodes in the middle

layer of the 2 × 2 × 2 interference network perform hard decisions to decode the

original channel inputs from the previous layer. If these hard decisions have no error,

then due to the special construction of the channel inputs based on interference

neutralization and interference alignment, the messages are secure. However, if

errors occur during decoding in the middle layer, then the mixed signals containing

both messages observed by both destination nodes may leak information. To show

the optimality of the proposed achievable scheme, we observe that the message rate

scales with logP , but the probability of hard decision error decreases exponentially
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fast with P , which makes the information leakage rate negligible at high SNR.

Finally, reference [64] showed that all layered networks in case C can be oper-

ated in a time-sharing mode between two networks which belong to cases B and B′,

i.e., after selecting a temporary node d′ in the network, in both modes, we can find

a sub-network which has the structure of case B or case B′ to transmit 2 sum d.o.f.

reliably, in which, node d′ is one of the destinations for the first mode, which stores

the information and serves as the source node in the second mode. Therefore, on

average, we can achieve 3
2

sum d.o.f. To achieve 3
2

sum s.d.o.f. for case C, we study

all possibilities for the layered network in this case, and find a node to cooperatively

jam the unintended receiver to protect the messages.

In Chapter 6, we revisit the Gaussian wiretap channel with M helpers in

Chapter 2 (see Figure 1.2). In Chapter 2, we show that the exact s.d.o.f. of the

Gaussian wiretap channel with M helpers is M
M+1

. This result is derived under the

assumption that the eavesdropper’s CSI is available at the transmitters. In Chapter

6, we show that the same s.d.o.f. can be achieved even when the eavesdropper’s

CSI is unknown at the legitimate transmitters. This result is practically significant

because, generally, it is difficult or impossible to obtain the eavesdropper’s CSI.

Since the upper bound developed in Chapter 2 is valid for this case also, we thus

determine the exact s.d.o.f. of the Gaussian wiretap channel with M helpers with no

eavesdropper CSI as M
M+1

. The achievable scheme in the case of no eavesdropper CSI

in Chapter 6 is significantly different than the achievable scheme with eavesdropper

CSI developed in Chapter 2.

In particular, in Chapter 2, the legitimate transmitter divides its message into
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M sub-messages and sends them on M different irrational dimensions. Each one

of the helpers sends a cooperative jamming signal. The message signals and the

cooperative jamming signals are sent in such a way that: 1) the cooperative jam-

ming signals are aligned at the legitimate receiver in the same irrational dimension,

so that they occupy the smallest possible space at the legitimate receiver to enable

the decodability of the message signals, and 2) each cooperative jamming signal is

aligned exactly in the same irrational dimension with one of the message signals

at the eavesdropper to protect it (see Figure 2.2). In Chapter 2, we use insights

from [30, 31, 50] to show that, when a cooperative jamming signal is aligned with a

message signal in the same irrational dimension at the eavesdropper, this alignment

protects the message signal, and limits the information leakage rate to the eaves-

dropper by a constant which does not depend on the transmit power. Meanwhile,

due to the alignment of the cooperative jamming signals in a small space at the

legitimate receiver, the information rate to the legitimate receiver can be made to

scale with the transmit power. We use this real interference alignment [51, 52] based

approach to achieve a s.d.o.f. of M
M+1

for almost all channel gains, and develop a

converse to show that it is in fact the s.d.o.f. capacity.

The achievable scheme in Chapter 6 again divides the message into M sub-

messages. Each one of the helpers sends a cooperative jamming signal. As a major

difference from the achievable scheme in Chapter 2, in this achievable scheme, the

legitimate transmitter also sends a cooperative jamming signal (see Figure 6.1). In

this case, the message signals and the cooperative jamming signals are sent in such

a way that: 1) all M + 1 cooperative jamming signals are aligned at the legitimate
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receiver in the same irrational dimension, and 2) all cooperative jamming signals

span the entire space at the eavesdropper to limit the information leakage to the

eavesdropper. We use insights from [67], which developed a new achievable scheme

that achieved the same s.d.o.f. as in [53] without eavesdropper CSI, to show that the

information leakage to the eavesdropper is upper bounded by a function, which can

be made arbitrarily small. On the other hand, since the cooperative jamming signals

occupy the smallest space at the legitimate receiver, the information rate to the

legitimate receiver can be made to scale with the transmit power. In this achievable

scheme, we let the legitimate transmitter and the helpers blindly cooperative jam the

eavesdropper. Because of the inefficiency of blind cooperative jamming, in Chapter

6, we need to use more cooperative jamming signals than in Chapter 2, i.e., in

Chapter 2 we use a total of M cooperative jamming signals from the helpers, while

in Chapter 6 we use M + 1 cooperative jamming signals, one of which coming from

the legitimate transmitter.

In Chapter 7, we study the separability of parallel MAC wiretap channel.

Separability, when exists, is useful as it enables us to code separately over parallel

channels, and still achieve the optimum overall performance. It is well-known that

the parallel single-user channel [68], parallel MAC [56] and parallel BC [69] are all

separable, however, the parallel IC is not separable in general [70–73]. In particular,

reference [70] studied the two-user one-sided ergodic fading IC and showed that

separation can be strictly sub-optimal in certain cases. Reference [71] studied the

separability in a parallel Gaussian IC, and showed that the parallel Gaussian IC

is not always separable by presenting a specific example where joint encoding over
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the parallel channels outperforms individually optimal encoding in each parallel

channel. Reference [72] further confirmed the inseparability of the parallel IC by

examining the topological IC where the parallel channels correspond to different

network topologies some of which had asymmetric connectivity. Recently, reference

[73] showed that even symmetric parallel ICs are inseparable by characterizing the

capacity region of parallel symmetric linear deterministic ICs.

In Chapter 7, we consider the MAC wiretap channel, which is a combination of

a MAC to the legitimate receiver and a MAC to the eavesdropper. The MAC wiretap

channel was introduced in [14, 15] and studied further in [16, 18, 30, 34, 35, 74, 75].

Even though, in the absence of any secrecy constraints, MAC is the most well-

understood multi-user channel model [68], its wiretap version is significantly more

complex. The secrecy capacity region of the MAC wiretap channel is still unknown

today, and its s.d.o.f. region has been fully characterized in Chapter 2 and Chapter

4. In Chapter 7, we focus on the separability of the parallel MAC wiretap channel

and show that it is not separable in general. Intuitively, this can be attributed

to the observation that, even though MAC wiretap channel is composed of MAC

legitimate and eavesdropping links, as a whole, it resembles the IC more, as it has

two independent transmitters and two independent receivers.

To show the inseparability of the parallel MAC wiretap channel, we construct

a specific linear deterministic MAC wiretap channel in each component channel. We

find the exact secrecy capacity of each of these component MAC wiretap channels,

and then determine the optimum secrecy rates achievable by separate encoding. This

step is challenging as the secrecy capacity of MAC wiretap channels is unknown in
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general; we provide a specific achievability and converse for the capacity of each of

the component channels. We then provide an encoding scheme that codes over the

parallel channels which outperforms the optimum separable scheme.

Next, we consider the parallel Gaussian MAC wiretap channel. Since the

secrecy capacity region of the general MAC wiretap channel, including the Gaussian

MAC wiretap channel, is unknown but the exact s.d.o.f. region is known due to

Chapter 4, we investigate the sum s.d.o.f. of parallel Gaussian MAC wiretap channels

and prove that it is inseparable. This implies the inseparability of the secrecy region

as well. Next, we observe that, if the different channel gains which give rise to

different parallel channels are drawn independently from continuous distributions,

then the channel gain configurations which give rise to inseparability fall into a set

with zero Lebesgue measure. To confirm this observation, and prove the almost

sure s.d.o.f. separability of parallel Gaussian MAC wiretap channels, we consider

the flat channel, where we put the individual n channel uses of each component

channel into a single 2n channel uses. We utilize the converse techniques in Chapter

2 and Chapter 4 to show the separability in this case. Finally, we note that, while

inseparability in s.d.o.f. implies inseparability in the secrecy capacity, separability in

s.d.o.f. does not imply separability in secrecy capacities. The almost sure separability

proved for the parallel Gaussian MAC wiretap channel in Chapter 7 holds only for

the s.d.o.f., which is the pre-log factor of the secrecy capacity, and is a weaker

measure of separability.

In Chapter 8, we study a secrecy game on interference networks. In the IC,

multiple users share the transmission medium, and simultaneously wish to have
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Figure 1.10: One-sided IC with confidential messages.

reliable communication with their respective receivers. In order to achieve a par-

ticular rate point on the capacity region of the IC, the transmitter-receiver pairs

need to jointly choose encoding and decoding schemes, and cooperate to agree on

the particular operating rate point, and coordinate their actions, e.g., time-sharing.

In actual interference networks, such kinds of cooperations may not be practi-

cal or agreeable by the users. It is reasonable to assume that all transmitter-receiver

pairs in the network are selfish and rational. Moreover, each pair is only interested

in transmitting their messages at the maximum reliable rate. Consequently, the

information-theoretic capacity region may not be fully achievable. Reference [76]

made this intuition precise by considering the IC from a game-theoretic point of

view, and found the Nash equilibrium operating points on the capacity region, es-

pecially focusing on the binary deterministic IC and the Gaussian IC. Taking the

reliable communication rate for each transmitter as its payoff function, [76] showed

that, in a non-cooperative game, two transmitters agree only on a subset of the

capacity region of the IC, which forms the set of Nash equilibria.

In Chapter 8, we focus on the two-user one-sided IC with confidential messages,
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in which one transmitter-receiver pair is interference-free as shown in Figure 1.10.

The best known achievable secrecy rate region for the IC with confidential messages

was developed in [5]. As in the case of ICs without secrecy constraints, in [5],

the two transmitter-receiver pairs need to jointly choose encoding and decoding

schemes and further cooperate and coordinate their actions to achieve a secrecy

rate pair in this region. In addition, the achievable scheme in [5] requires that

the parties trust each other in that they will not unilaterally change their encoding-

decoding schemes. Hence, even if it was known, secrecy capacity region might not be

sufficient to understand the adversarial relationship in this network. Reference [77],

addressed the issue of trust. In [77], the transmitters can deviate from their transmit

strategies. In their definition of robust-secrecy [77], a transmitter can deviate from

its strategy, however, arbitrary deviations are not allowed; a transmitter can only

deviate to a strategy if the new strategy does not injure the performance of the

other transmitter-receiver pair in terms of reliability. When the transmitters are

selfish, such kind of behavior may not be guaranteed. Selfish transmitters would

care only about their own reliability and secrecy of their own messages. Such selfish

transmitters may choose any strategy to maximize the secrecy rate of their own

private message, which may hurt the other user’s performance.

To develop a model to characterize the adversarial relationship between the

two pairs, we only assume that the two transmitter-receiver pairs are selfish and

rational; other than these two, they are free to choose any transmission strategy

to maximize their own payoff. Under these assumptions, in Chapter 8, we give

a formal definition of the game on ICs with confidential messages and define the
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Nash equilibrium in the secrecy rate region. We first consider the case where the

payoff function is the reliable secrecy rate of each user. We analyze the binary

deterministic IC for this payoff function. This analysis reveals that some of the Nash

equilibrium secrecy rate pairs are achieved only by self-jamming of a transmitter of

its own receiver. This hurts the eavesdropping ability of its own receiver, which in

fact is one of the interests of the receivers. Among all the strategies achieving the

same secrecy rate, a transmitter-receiver pair is more likely to choose the one that

allows the receiver to more strongly eavesdrop on the other pair. To overcome this

difficulty, we propose a refinement to the equilibrium. Specifically, we modify the

payoff function by incorporating an information leakage measure to it in addition

to the secure reliable rate. We find the Nash equilibria with both payoff functions.

In Chapter 9, we provide conclusions of this dissertation.
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Chapter 2

Sum Secure Degrees of Freedom of One-hop Wireless Networks

2.1 Introduction

In this chapter, we study the sum s.d.o.f. of one-hop wireless networks. We start

with the simplest channel model toward this goal, which is the Gaussian wiretap

channel with one helper. The secrecy capacity of the canonical Gaussian wiretap

channel does not scale with the transmit power, and hence, the s.d.o.f. of the Gaus-

sian wiretap channel with no helpers is zero. It has been known that a strictly

positive s.d.o.f. can be obtained in the Gaussian wiretap channel by using a helper

which sends structured cooperative signals. In this chapter, we first show that the

exact s.d.o.f. of the Gaussian wiretap channel with a helper is 1
2
. Our achievable

scheme is based on real interference alignment and cooperative jamming, which

renders the message signal and the cooperative jamming signal separable at the

legitimate receiver, but aligns them perfectly at the eavesdropper preventing any

reliable decoding of the message signal. Our converse is based on two key lemmas.

The first lemma quantifies the secrecy penalty by showing that the net effect of an

eavesdropper on the system is that it eliminates one of the independent channel

inputs. The second lemma quantifies the role of a helper by developing a direct

relationship between the cooperative jamming signal of a helper and the message

rate of the legitimate transmitter.
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Channel model (Sum) s.d.o.f.

Wiretap channel with one helper 1
2

Wiretap channel with M helpers M
M+1

Broadcast channel with CM and M helpers 1

Two-user interference channel with CM 2
3

Two-user interference channel with CM and M helpers 1

K-user multiple access wiretap channel K(K−1)
K(K−1)+1

Table 2.1: Summary of the main results of this chapter (“CM” stands for confidential
messages).

We extend this result to the case of M helpers, and show that the exact

s.d.o.f. in this case is M
M+1

. We then generalize this approach to more general network

structures with multiple messages. We show that the sum s.d.o.f. of the Gaussian

BC with confidential messages and M helpers is 1, the sum s.d.o.f. of the two-user IC

with confidential messages is 2
3
, the sum s.d.o.f. of the two-user IC with confidential

messages and M helpers is 1, and the sum s.d.o.f. of the K-user MAC wiretap

channel is K(K−1)
K(K−1)+1

.

Table 2.1 summarizes the main results of this chapter in a tabular form.

2.2 System Model and Definitions

In this chapter, we consider four fundamental channel models: wiretap channel with

helpers, BC with confidential messages and helpers, two-user IC with confidential

messages and helpers, and MAC wiretap channel. In this section, we give the channel

models and relevant definitions. All the channels are additive white Gaussian noise
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(AWGN) channels. All the channel gains are time-invariant, and independently

drawn from continuous distributions.

2.2.1 Wiretap Channel with Helpers

The Gaussian wiretap channel with helpers (see Figure 1.2) is defined by,

Y1 = h1X1 +
M+1∑
j=2

hjXj +N1 (2.1)

Y2 = g1X1 +
M+1∑
j=2

gjXj +N2 (2.2)

where Y1 is the channel output of the legitimate receiver, Y2 is the channel output

of the eavesdropper, X1 is the channel input of the legitimate transmitter, Xi, for

i = 2, . . . ,M + 1, are the channel inputs of the M helpers, hi is the channel gain

of the ith transmitter to the legitimate receiver, gi is the channel gain of the ith

transmitter to the eavesdropper, and N1 and N2 are two independent zero-mean

unit-variance Gaussian random variables. All channel inputs satisfy average power

constraints, E [X2
i ] ≤ P , for i = 1, . . . ,M + 1.

Transmitter 1 intends to send a message W , uniformly chosen from a set W ,

to the legitimate receiver (receiver 1). The rate of the message is R
4
= 1

n
log |W|,

where n is the number of channel uses. Transmitter 1 uses a stochastic function

f :W → X1 to encode the message, where X1
4
= Xn

1 is the n-length channel input.1

The legitimate receiver decodes the message as Ŵ based on its observation Y1. A

1We use boldface letters to denote n-length vector signals, e.g., X1
4
= Xn

1 , Y1
4
= Y n

1 , Y2
4
= Y n

2 ,
etc.
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secrecy rate R is said to be achievable if for any ε > 0 there exists an n-length

code such that receiver 1 can decode this message reliably, i.e., the probability of

decoding error is less than ε,

Pr
[
W 6= Ŵ

]
≤ ε (2.3)

and the message is kept information-theoretically secure against the eavesdropper,

1

n
H(W |Y2) ≥ 1

n
H(W )− ε (2.4)

i.e., that the uncertainty of the message W , given the observation Y2 of the eaves-

dropper, is almost equal to the entropy of the message. The supremum of all achiev-

able secrecy rates is the secrecy capacity Cs and the s.d.o.f., Ds, is defined as

Ds
4
= lim

P→∞

Cs
1
2

logP
(2.5)

Note that Ds ≤ 1 is an upper bound. To avoid trivial cases, we assume that

h1 6= 0 and g1 6= 0. Without the independent helpers, i.e., M = 0, the secrecy

capacity of the Gaussian wiretap channel is known [4]

Cs =
1

2
log
(
1 + h2

1P
)
− 1

2
log
(
1 + g2

1P
)

(2.6)

and from (2.5) the s.d.o.f. is zero. Therefore, we assume M ≥ 1. If there exists

a j (j = 2, . . . ,M + 1) such that hj = 0 and gj 6= 0, then a lower bound of 1
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s.d.o.f. can be obtained for this channel by letting this helper jam the eavesdropper

by i.i.d. Gaussian noise of power P and keeping all other helpers silent. This lower

bound matches the upper bound, giving the s.d.o.f. On the other hand, if there

exists a j (j = 2, . . . ,M + 1) such that hj 6= 0 and gj = 0, then this helper can be

removed from the channel model without affecting the secure d.o.f. Therefore, in

the rest of the chapter, for the case of Gaussian wiretap channel with M helpers,

we assume that M ≥ 1 and hj 6= 0 and gj 6= 0 for all j = 1, · · · ,M + 1.

2.2.2 Broadcast Channel with Confidential Messages and Helpers

The Gaussian BC with confidential messages and helpers (see Figure 1.3 for one

helper) is defined by,

Y1 = h1X1 +
M+1∑
j=2

hjXj +N1 (2.7)

Y2 = g1X1 +
M+1∑
j=2

gjXj +N2 (2.8)

In this model, transmitter 1 has two independent messages, W1 and W2, intended

for receivers 1 and 2, respectively. Messages W1 and W2 are independently and

uniformly chosen from sets W1 and W2, respectively. The rates of the messages

are R1
4
= 1

n
log |W1| and R2

4
= 1

n
log |W2|. Transmitter 1 uses a stochastic function

f :W1 ×W2 → X1 to encode the messages. The messages are said to be confiden-

tial if only the intended receiver can decode each message, i.e., each receiver is an

eavesdropper for the other. Transmitters 2, · · · ,M + 1 are the independent helpers.
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Similar to (2.3) and (2.4), we define the reliability and secrecy of the messages as,

Pr[W1 6= Ŵ1] ≤ ε (2.9)

Pr[W2 6= Ŵ2] ≤ ε (2.10)

1

n
H(W1|Y2) ≥ 1

n
H(W1)− ε (2.11)

1

n
H(W2|Y1) ≥ 1

n
H(W2)− ε (2.12)

The sum s.d.o.f. for this channel model is defined as

Ds,Σ
4
= lim

P→∞
sup

R1 +R2

1
2

logP
(2.13)

where the supremum is over all achievable secrecy rate pairs (R1, R2).

2.2.3 Interference Channel with Confidential Messages and Helpers

The two-user Gaussian IC with confidential messages and helpers (see Figure 1.5)

is defined by,

Y1 = h1,1X1 + h2,1X2 +
M+2∑
j=3

hj,1Xj +N1 (2.14)

Y2 = h1,2X1 + h2,2X2 +
M+2∑
j=3

hj,2Xj +N2 (2.15)

where X1, X2, · · · , XM+2, N1 and N2 are mutually independent.

One special, but important, case is the two-user Gaussian IC with confidential
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messages, i.e., M = 0, which is shown in Figure 1.4 and defined by,

Y1 = h1,1X1 + h2,1X2 +N1 (2.16)

Y2 = h1,2X1 + h2,2X2 +N2 (2.17)

In the two-user IC with confidential messages, each transmitter wishes to send

a confidential message to its own receiver. Transmitter 1 has message W1 uniformly

chosen from setW1. The rate of the message is R1
4
= 1

n
log |W1|. Transmitter 1 uses

a stochastic function f1 :W1 → X1 to encode the message. Similarly, transmitter 2

has message W2 (independent of W1) uniformly chosen from setW2. The rate of the

message is R2
4
= 1

n
log |W2|. Transmitter 2 uses a stochastic function f2 :W2 → X2

to encode the message. The messages are said to be confidential if only the intended

receiver can decode each message, i.e., each receiver is an eavesdropper for the other.

Transmitters 3, · · · ,M + 2 are the independent helpers. Similar to (2.3) and (2.4),

we define the reliability and secrecy of the messages as,

Pr[W1 6= Ŵ1] ≤ ε (2.18)

Pr[W2 6= Ŵ2] ≤ ε (2.19)

1

n
H(W1|Y2) ≥ 1

n
H(W1)− ε (2.20)

1

n
H(W2|Y1) ≥ 1

n
H(W2)− ε (2.21)
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The sum s.d.o.f. for this channel model is defined as

Ds,Σ
4
= lim

P→∞
sup

R1 +R2

1
2

logP
(2.22)

where the supremum is over all achievable secrecy rate pairs (R1, R2).

2.2.4 Multiple Access Wiretap Channel

The K-user Gaussian MAC wiretap channel (see Figure 1.6) is defined by,

Y1 =
K∑
i=1

hiXi +N1 (2.23)

Y2 =
K∑
i=1

giXi +N2 (2.24)

In this channel model, each transmitter i has a message Wi intended for the legiti-

mate receiver whose channel output is Y1. All of the messages are independent. Mes-

sage Wi is uniformly chosen from set Wi. The rate of message i is Ri
4
= 1

n
log |Wi|.

Transmitter i uses a stochastic function fi : Wi → Xi to encode its message. All

of the messages are needed to be kept secret from the eavesdropper, whose channel

output is Y2.

Similar to (2.3), the reliability of the messages is defined by

Pr
[
(W1, · · · ,WK) 6= (Ŵ1, · · · , ŴK)

]
≤ ε (2.25)
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and similar to (2.4) the secrecy constraint (for the entire message set) is defined as

1

n
H(W1,W2, · · · ,WK |Y2) ≥ 1

n
H(W1,W2, · · · ,WK)− ε (2.26)

Note that this definition implies the secrecy for any subset of the messages, including

individual messages, i.e.,

1

n
I(WS; Y2) =

1

n
I(W1,W2, · · · ,WK ; Y2)− 1

n
I(WSc ; Y2|WS) (2.27)

≤ 1

n
I(W1,W2, · · · ,WK ; Y2) (2.28)

≤ ε (2.29)

for any S ⊂ {1, · · · , K}. The sum s.d.o.f. for this channel model is defined as

Ds,Σ
4
= lim

P→∞
sup

∑K
i=1 Ri

1
2

logP
(2.30)

where the supremum is over all achievable secrecy rate tuples (R1, · · · , RK).

2.3 General Converse Results and Preliminaries

In this section, we give two lemmas, Lemmas 2.1 and 2.2, that will be used in the

converse proofs and another lemma, Lemma 2.3, that will be used in the achievability

proofs in later sections.
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2.3.1 Secrecy Penalty

Consider the channel model formulated in Section 2.2.1, where transmitter 1 wishes

to have secure communication with receiver 1, in the presence of an eavesdropper

(receiver 2) and M helpers (transmitters 2 through M+1). We propose a general up-

per bound for the secrecy rate between transmitter 1 and receiver 1 by working with

n-letter signals, and introducing new mutually independent Gaussian random vari-

ables {Ñi}Mi=1 which are zero-mean and of variance σ̃2
i where σ̃2

i < min(1/h2
i , 1/g

2
i ),

and are independent of all other random variables. Each vector Ñi is an i.i.d. se-

quence of Ñi.

In the following lemma, we give a general upper bound for the secrecy rate.

This lemma states that the secrecy rate of the legitimate pair is upper bounded by

the difference of the sum of differential entropies of all channel inputs (perturbed

by small noise) and the differential entropy of the eavesdropper’s observation; see

(2.31). This upper bound can further be interpreted as follows: If we consider

the eavesdropper’s observation as the secrecy penalty, then the secrecy penalty is

tantamount to the elimination of one of the channel inputs in the system; see (2.32).

Lemma 2.1 The secrecy rate of the legitimate pair is upper bounded as

nR ≤
M+1∑
i=1

h(X̃i)− h(Y2) + nc (2.31)

≤
M+1∑
i=1,i 6=j

h(X̃i) + nc′ (2.32)

where X̃i = Xi + Ñi for i = 1, · · · ,M + 1, and Ñi is an i.i.d. sequence (in time) of
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random variables Ñi which are independent Gaussian random variables with zero-

mean and variance σ̃2
i with σ̃2

i < min(1/h2
i , 1/g

2
i ). In addition, c and c′ are constants

which do not depend on P , and j ∈ {1, · · · ,M + 1} can be arbitrary.

Proof: We use notation ci, for i ≥ 1, to denote constants which are indepen-

dent of the power P . We start as follows:

nR = H(W ) = H(W |Y1) + I(W ; Y1) (2.33)

≤ I(W ; Y1) + nc1 (2.34)

≤ I(W ; Y1)− I(W ; Y2) + nc2 (2.35)

where we used Fano’s inequality and the secrecy constraint in (2.4). By providing

Y2 to receiver 1, we further upper bound nR as

nR ≤ I(W ; Y1,Y2)− I(W ; Y2) + nc2 (2.36)

= I(W ; Y1|Y2) + nc2 (2.37)

= h(Y1|Y2)− h(Y1|Y2,W ) + nc2 (2.38)

≤ h(Y1|Y2) + nc3 (2.39)
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where (2.39) is due to

h(Y1|Y2,W ) ≥ h(Y1|X1,X2, · · · ,XM+1,Y2,W ) (2.40)

= h(N1|X1,X2, · · · ,XM+1,Y2,W ) (2.41)

= h(N1) (2.42)

=
n

2
log 2πe (2.43)

which is independent of P . Here, (2.42) is due to the fact that N1 is independent

of (X1, X2, · · · , XM+1, Y2,W ).

In the next step, we introduce random variables X̃i which are noisy versions of
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the channel inputs X̃i = Xi + Ñi for i = 1, · · · ,M + 1. Thus, starting from (2.39),

nR ≤ h(Y1|Y2) + nc3 (2.44)

= h(Y1,Y2)− h(Y2) + nc3 (2.45)

= h(X̃1, X̃2, · · · , X̃M+1,Y1,Y2)

− h(X̃1, X̃2, · · · , X̃M+1|Y1,Y2)− h(Y2) + nc3 (2.46)

≤ h(X̃1, X̃2, · · · , X̃M+1,Y1,Y2)

− h(X̃1, X̃2, · · · , X̃M+1|Y1,Y2,X1,X2, · · · ,XM+1)− h(Y2) + nc3 (2.47)

≤ h(X̃1, X̃2, · · · , X̃M+1,Y1,Y2)

− h(Ñ1, Ñ2, · · · , ÑM+1|Y1,Y2,X1,X2, · · · ,XM+1)− h(Y2) + nc3 (2.48)

= h(X̃1, X̃2, · · · , X̃M+1,Y1,Y2)− h(Ñ1, Ñ2, · · · , ÑM+1)− h(Y2) + nc3

(2.49)

≤ h(X̃1, X̃2, · · · , X̃M+1,Y1,Y2)− h(Y2) + nc4 (2.50)

= h(X̃1, X̃2, · · · , X̃M+1) + h(Y1,Y2|X̃1, X̃2, · · · , X̃M+1)− h(Y2) + nc4 (2.51)

≤ h(X̃1, X̃2, · · · , X̃M+1)− h(Y2) + nc5 (2.52)

=
M+1∑
i=1

h(X̃i)− h(Y2) + nc5 (2.53)

where (2.49) is due to the fact that (Ñ1, Ñ2, · · · , ÑM+1) is independent of (Y1, Y2,

X1, X2, · · · ,XM+1) and (2.52) is due to h(Y1,Y2|X̃1, X̃2, · · · , X̃M+1) ≤ nc6. The

intuition behind this is that, given all (slightly noisy versions of) the channel inputs,

(at high SNR) the channel outputs can be reconstructed.2 To show this formally, we

2By reconstructed, we mean that the conditional differential entropy
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have

h(Y1,Y2|X̃1, X̃2, · · · , X̃M+1)

≤ h(Y1|X̃1, X̃2, · · · , X̃M+1) + h(Y2|X̃1, X̃2, · · · , X̃M+1) (2.54)

= h

(
M+1∑
i=1

hi(X̃i − Ñi) + N1

∣∣∣∣∣X̃1, X̃2, · · · , X̃M+1

)

+ h

(
M+1∑
i=1

gi(X̃i − Ñi) + N2

∣∣∣∣∣X̃1, X̃2, · · · , X̃M+1

)
(2.55)

= h

(
−

M+1∑
i=1

hiÑi + N1

∣∣∣∣∣X̃1, X̃2, · · · , X̃M+1

)

+ h

(
−

M+1∑
i=1

giÑi + N2

∣∣∣∣∣X̃1, X̃2, · · · , X̃M+1

)
(2.56)

≤ h

(
−

M+1∑
i=1

hiÑi + N1

)
+ h

(
−

M+1∑
i=1

giÑi + N2

)
(2.57)

4
= nc6 (2.58)

which completes the proof of (2.31).

Finally, we show (2.32). To this end, fixing a j, which can be arbitrary, we

express Y2 in a stochastically equivalent form Ỹ2, i.e.,

Y2 = gjXj +
M+1∑
i=1,i 6=j

giXi + N2 (2.59)

Ỹ2 = gjX̃j +
M+1∑
i=1,i 6=j

giXi + N′2 (2.60)

have the same distribution, where N′2 is an i.i.d. sequence of a random variable N ′2

which is Gaussian with zero-mean and variance (1 − g2
j σ̃

2
j ), and is independent of

h(Y1,Y2|X̃1, X̃2, · · · , X̃M+1) does not grow with P .
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all other random variables. Then, we have

h(Y2) = h(Ỹ2) (2.61)

= h

(
gjX̃j +

M+1∑
i=1,i 6=j

giXi + N′2

)
(2.62)

≥ h
(
gjX̃j

)
(2.63)

= n log |gj|+ h(X̃j) (2.64)

where (2.63) is due to the differential entropy version of [68, Problem 2.14]. Substi-

tuting this into (2.31) gives us (2.32). 2

2.3.2 Role of a Helper

Intuitively, a cooperative jamming signal from a helper may potentially increase the

secrecy of the legitimate transmitter-receiver pair by creating extra equivocation at

the eavesdropper. However, if the helper creates too much equivocation, it may

also hurt the decoding performance of the legitimate receiver. Since the legitimate

receiver needs to decode message W by observing Y1, there must exist a constraint

on the cooperative jamming signal of the helper. To this end, we develop a con-

straint on the differential entropy of (the noisy version of) the cooperative jamming

signal of any given helper, helper j in (2.65), in terms of the differential entropy of

the legitimate user’s channel output and the message rate H(W ), in the following

lemma. The inequality in this lemma, (2.65), can alternatively be interpreted as an

upper bound on the message rate, i.e., on H(W ), in terms of the difference of the
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differential entropies of the channel output of the legitimate receiver and the chan-

nel input of the jth helper; in particular, the higher the differential entropy of the

cooperative jamming signal the lower this upper bound will be. This motivates not

using i.i.d. Gaussian cooperative jamming signals which have the highest differential

entropy.

Finally, we note as an aside that, since this upper bound is derived based on the

reliability of the legitimate user’s decoding (not involving any secrecy constraints),

it can be used in d.o.f. calculations in settings not involving secrecy. We show an

application of this lemma in a non-secrecy context by developing an alternative proof

for the multiplexing gain of the K-user Gaussian IC, which was originally proved in

[54], in Appendix 2.12.1.

Lemma 2.2 For reliable decoding at the legitimate receiver, the differential entropy

of the input signal of helper j, Xj, must satisfy

h(Xj + Ñ) ≤ h(Y1)−H(W ) + nc (2.65)

where c is a constant which does not depend on P , and Ñ is a new Gaussian noise

independent of all other random variables with σ2
Ñ
< 1

h2j
, and Ñ is an i.i.d. sequence

of Ñ .

Proof: To reliably decode the message at the legitimate receiver, we must
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have

nR = H(W ) ≤ I(X1; Y1) (2.66)

= h(Y1)− h(Y1|X1) (2.67)

= h(Y1)− h
(
M+1∑
i=2

hiXi + N1

)
(2.68)

≤ h(Y1)− h (hjXj + N1) (2.69)

≤ h(Y1)− h
(
hjXj + hjÑ

)
(2.70)

= h(Y1)− h
(
Xj + Ñ

)
+ nc (2.71)

where (2.69) and (2.70) are due to the differential entropy version of [68, Problem

2.14]. In going from (2.69) to (2.70), we also used the infinite divisibility of Gaussian

distribution and expressed N1 in its stochastically equivalent form as N1 = hjÑ +

N′ where N′ is an i.i.d. sequence of random variable N ′ which is Gaussian with

zero-mean and appropriate variance, and which is independent of all other random

variables. 2

Note that, although we develop the inequality in (2.65) for the message of

transmitter-receiver pair 1, this result also holds for the message of any transmitter-

receiver pair in a multiple-message setting provided that the zero-mean Gaussian

noise Ñ has an appropriately small variance.
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2.3.3 Real Interference Alignment

In this subsection, we review pulse amplitude modulation (PAM) and real interfer-

ence alignment [51, 52], similar to the review in [53, Section III]. The purpose of this

subsection is to illustrate that by using real interference alignment, the transmission

rate of a PAM scheme can be made to approach the Shannon achievable rate at high

SNR. This provides a universal and convenient way to design capacity-achieving sig-

nalling schemes at high SNR by using PAM for different channel models as will be

done in later sections.

2.3.3.1 Pulse Amplitude Modulation

For a point-to-point scalar Gaussian channel,

Y = X + Z (2.72)

with additive Gaussian noise Z of zero-mean and variance σ2, and an input power

constraint E [X2] ≤ P , assume that the input symbols are drawn from a PAM

constellation,

C(a,Q) = a {−Q,−Q+ 1, . . . , Q− 1, Q} (2.73)

where Q is a positive integer and a is a real number to normalize the transmit power.

Note that, a is also the minimum distance dmin(C) of this constellation, which has
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the probability of error

Pr(e) = Pr
[
X 6= X̂

]
≤ exp

(
−d

2
min

8σ2

)
= exp

(
− a2

8σ2

)
(2.74)

where X̂ is an estimate for X obtained by choosing the closest point in the constel-

lation C(a,Q) based on observation Y .

The transmission rate of this PAM scheme is

R = log(2Q+ 1) (2.75)

since there are 2Q + 1 signalling points in the constellation. For any small enough

δ > 0, if we choose Q = P
1−δ
2 and a = γP

δ
2 , where γ is a constant independent of

P , then

Pr(e) ≤ exp

(
−γ

2P δ

8σ2

)
and R ≥ 1− δ

2
logP (2.76)

and we can have Pr(e) → 0 and R → 1
2

logP as P → ∞. That is, we can have

reliable communication at rates approaching 1
2

logP .

Note that the PAM scheme has small probability of error (i.e., reliability) only

when P goes to infinity. For arbitrary P , the probability of error Pr(e) is a finite

number. Similar to the steps in [52, 78], we connect the PAM transmission rate to

the Shannon rate in the following derivation. We note that Shannon rate of I(X;Y )
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is achieveable with arbitrary reliability using a random codebook:

R′ = I(X;Y ) (2.77)

≥ I(X; X̂) (2.78)

= H(X)−H(X|X̂) (2.79)

= log(2Q+ 1)−H(X|X̂) (2.80)

≥ log(2Q+ 1)− 1− Pr(e) log(2Q+ 1) (2.81)

≥
[
1− Pr(e)

]1− δ
2

logP − 1 (2.82)

where we use the Markov chain X → Y → X̂ and bound H(X|X̂) using Fano’s

inequality. Therefore, we can achieve the rate in (2.82) with arbitrary reliability,

where for any fixed P , Pr(e) in (2.82) is the probability of error of the PAM scheme

given in (2.76), which is a well-defined function of P . For a finite P , while Pr(e) may

not be arbitrarily small, the rate achieved in (2.82), which is smaller than the rate

of PAM in (2.75), is achieved arbitrarily reliably. We finally note that as P goes to

infinity Pr(e) goes to zero exponentially, and from (2.82), both PAM transmission

rate and the Shannon achievable rate have the same asymptotical performance, i.e.,

PAM transmission rate has 1 Shannon d.o.f.
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2.3.3.2 Real Interference Alignment

This PAM scheme for the point-to-point scalar channel can be generalized to mul-

tiple data streams. Let the transmit signal be

x = aTb =
L∑
i=1

aibi (2.83)

where a1, . . . , aL are rationally independent real numbers3 and each bi is drawn

independently from the constellation C(a,Q) in (2.73). The real value x is a com-

bination of L data streams, and the constellation observed at the receiver consists

of (2Q+ 1)L signal points.

By using the Khintchine-Groshev theorem of Diophantine approximation in

number theory, [51, 52] bounded the minimum distance dmin of points in the re-

ceiver’s constellation: For any δ > 0, there exists a constant kδ, such that

dmin ≥
kδa

QL−1+δ
(2.84)

for almost all rationally independent {ai}Li=1, except for a set of Lebesgue measure

zero. Since the minimum distance of the receiver constellation is lower bounded,

with proper choice of a and Q, the probability of error can be made arbitrarily small,

with rate R approaching 1
2

logP . This result is stated in the following lemma, as in

[53, Proposition 3].

Lemma 2.3 ([51, 52]) For any small enough δ > 0, there exists a positive constant

3a1, . . . , aL are rationally independent if whenever q1, . . . , qL are rational numbers then∑L
i=1 qiai = 0 implies qi = 0 for all i.
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γ, which is independent of P , such that if we choose

Q = P
1−δ

2(L+δ) and a = γ
P

1
2

Q
(2.85)

then the average power constraint is satisfied, i.e., E [X2] ≤ P , and for almost all

{ai}Li=1, except for a set of Lebesgue measure zero, the probability of error is bounded

by

Pr(e) ≤ exp
(
−ηγP δ

)
(2.86)

where ηγ is a positive constant which is independent of P .

Furthermore, as a simple extension, if bi are sampled independently from dif-

ferent constellations Ci(a,Qi), the lower bound in (2.84) can be modified as

dmin ≥
kδa

(maxiQi)L−1+δ
(2.87)

2.4 Wiretap Channel with One Helper

In this section, we consider the Gaussian wiretap channel with one helper as for-

mulated in Section 2.2.1 for the case M = 1. In this section, we will show that the

s.d.o.f. is 1
2

for almost all channel gains as stated in the following theorem. The con-

verse follows from the general secrecy penalty upper bound in Section 2.3.1 and the

cooperative jamming signal upper bound in Section 2.3.2. The achievability is based

on cooperative jamming with discrete signaling and real interference alignment.

Theorem 2.1 The s.d.o.f. of the Gaussian wiretap channel with one helper is 1
2

for
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almost all channel gains.

2.4.1 Converse

We start with (2.32) of Lemma 2.1 with M = 1 and by choosing j = 1,

nR ≤
M+1∑
i=1,i 6=j

h(X̃i) + nc′ (2.88)

= h(X̃2) + nc′ (2.89)

≤ h(Y1)−H(W ) + nc7 (2.90)

≤ n

2
logP −H(W ) + nc8 (2.91)

where (2.90) is due to Lemma 2.2. By noting H(W ) = nR and using (2.5), (2.91)

implies that

Ds ≤
1

2
(2.92)

which concludes the converse part of the theorem.

2.4.2 Achievable Scheme

To show the achievability by interference alignment, we slightly change the notation.

Let X̄1
4
= g1X1, X̄2

4
= g2X2, α

4
= h1/g1, and β

4
= h2/g2. Then, the channel model
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becomes

Y1 = αX̄1 + βX̄2 +N1 (2.93)

Y2 = X̄1 + X̄2 +N2 (2.94)

Here X̄1 is the input signal carrying the message W of the legitimate transmitter and

X̄2 is the cooperative jamming signal from the helper. Our goal is to properly design

X̄1 and X̄2 such that they are distinguishable at the legitimate receiver, meanwhile

they align together at the eavesdropper. To prevent decoding of the message signal

at the eavesdropper, we need to make sure that the cooperative jamming signal

occupies the same dimensions as the message signal at the eavesdropper; on the

other hand, we need to make sure that the legitimate receiver is able to decode X̄2,

which in fact, is not useful. Intuitively, secrecy penalty is almost half of the signal

space, and we should be able to have a s.d.o.f. of 1
2
. This is illustrated in Figure 2.1,

and proved formally in the sequel.

We choose both of the input symbols X̄1 and X̄2 independent and uniformly

distributed over the same PAM constellation in (2.73). Since X̄2 is an i.i.d. sequence

and is independent of X̄1, the following secrecy rate is always achievable [3]

Cs ≥ I(X̄1;Y1)− I(X̄1;Y2) (2.95)

In order to show that Ds ≥ 1
2
, it suffices to prove that this lower bound provides

1
2

s.d.o.f. To this end, we need to find a lower bound for I(X̄1;Y1) and an upper
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X̄2

X̄1 X̄2

X̄1

h1

h2

g1

g2

X1

X2

Y1

Y2

X̄1

X̄2

Figure 2.1: Illustration of interference alignment for the Gaussian wiretap channel
with one helper.

bound for I(X̄1;Y2). It is clear that

H(X̄1) = H(X̄2) = log |C(a,Q)| = log(2Q+ 1) (2.96)

Also, note that, besides the additive Gaussian noise, the observation at receiver 1 is

a linear combination of X̄1 and X̄2, i.e.,

Y1 −N1 = αX̄1 + βX̄2 (2.97)

where α and β are rationally independent real numbers almost surely.

By Lemma 2.3, for any small enough δ > 0, there exists a positive constant γ,

which is independent of P , such that if we choose Q = P
1−δ

2(2+δ) and a = γP
1
2/Q then

the average power constraint is satisfied and the probability of error is bounded by

Pr
[
X̄1 6= X̂1

]
≤ exp

(
−ηγP δ

)
(2.98)

where ηγ is a positive constant which is independent of P and X̂1 is the estimate for

X̄1 obtained by choosing the closest point in the constellation based on observation
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Y1.

By Fano’s inequality and the Markov chain X̄1 → Y1 → X̂1, we know that

H(X̄1|Y1) ≤ H(X̄1|X̂1) (2.99)

≤ 1 + exp
(
−ηγP δ

)
log(2Q+ 1) (2.100)

which means that

I(X̄1;Y1) = H(X̄1)−H(X̄1|Y1) (2.101)

≥
[
1− exp

(
−ηγP δ

)]
log(2Q+ 1)− 1 (2.102)

On the other hand,

I(X̄1;Y2) ≤ I(X̄1; X̄1 + X̄2) (2.103)

= H(X̄1 + X̄2)−H(X̄2|X̄1) (2.104)

= H(X̄1 + X̄2)−H(X̄2) (2.105)

≤ log(4Q+ 1)− log(2Q+ 1) (2.106)

≤ log
4Q+ 1

2Q+ 1
(2.107)

≤ 1 (2.108)

where (2.106) is due to the fact that entropy of the sum X̄1 + X̄2 is maximized by

the uniform distribution which takes values over a set of cardinality 4Q+ 1.
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Combining (2.102) and (2.108), we have

Cs ≥ I(X̄1;Y1)− I(X̄1;Y2) (2.109)

≥
[
1− exp

(
−ηγP δ

)]
log(2Q+ 1)− 2 (2.110)

=
[
1− exp

(
−ηγP δ

)]
log
(

2P
1−δ

2(2+δ) + 1
)
− 2 (2.111)

=
1− δ

(2 + δ)

(
1

2
logP

)
+ o(logP ) (2.112)

where the o(·) is the little-o function. If we choose δ arbitrarily small, then we can

achieve 1
2

s.d.o.f., which concludes the achievability part of the theorem.

2.5 Wiretap Channel with M Helpers

In this section, we consider the Gaussian wiretap channel with M helpers as for-

mulated in Section 2.2.1 for general M > 1. In this section, we will show that the

s.d.o.f. is M
M+1

for almost all channel gains as stated in the following theorem. This

shows that even though the helpers are independent, the s.d.o.f. increases monoton-

ically with the number of helpers M . The converse follows from the general secrecy

penalty upper bound in Section 2.3.1 and the cooperative jamming signal upper

bound in Section 2.3.2. The achievability is based on cooperative jamming of M

helpers with discrete signaling and real interference alignment.

Theorem 2.2 The s.d.o.f. of the Gaussian wiretap channel with M helpers is M
M+1

for almost all channel gains.
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2.5.1 Converse

We again start with (2.32) of Lemma 2.1 with the selection of j = 1

nR ≤
M+1∑
i=1,i 6=j

h(X̃i) + nc′ (2.113)

=
M+1∑
i=2

h(X̃i) + nc′ (2.114)

≤M [h(Y1)−H(W )] + nc9 (2.115)

where (2.115) is due to Lemma 2.2 for each jamming signal X̃i, i = 2, · · · ,M + 1.

By noting H(W ) = nR, (2.115) implies that

(M + 1)nR ≤Mh(Y1) + nc9 (2.116)

≤M
(n

2
logP

)
+ nc10 (2.117)

which further implies from (2.5) that

Ds ≤
M

M + 1
(2.118)

which concludes the converse part of the theorem.

2.5.2 Achievable Scheme

Let {V2, V3, · · · , VM+1, U2, U3, · · · , UM+1} be mutually independent discrete random

variables, each of which uniformly drawn from the same PAM constellation C(a,Q)
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in (2.73), where a and Q will be specified later. We choose the input signal of the

legitimate transmitter as

X1 =
M+1∑
k=2

gk
g1hk

Vk (2.119)

and the input signal of the jth helper, j = 2, · · · ,M + 1, as

Xj =
1

hj
Uj (2.120)

Then, the observations of the receivers are

Y1 =
M+1∑
k=2

h1gk
g1hk

Vk +

(
M+1∑
j=2

Uj

)
+N1 (2.121)

Y2 =
M+1∑
k=2

gk
hk

(
Vk + Uk

)
+N2 (2.122)

The intuition here is as follows. We use M independent sub-signals Vk, k =

2, · · · ,M + 1, to represent the signals carrying the original message W . The input

signal X1 is a linear combination of Vks. To cooperatively jam the eavesdropper,

each helper k aligns the cooperative jamming signal Uk in the same dimension as the

sub-signal Vk at the eavesdropper. At the legitimate receiver, all of the cooperative

jamming signals Uks are well-aligned such that they occupy a small portion of the

signal space. Since, almost surely,
{

1, h1g2
g1h2

, h1g3
g1h3

, · · · , h1gM+1

g1hM+1

}
are rationally indepen-

dent, signals
{
V2, V3, · · · , VM+1,

∑M+1
j=2 Uj

}
can be distinguished by the legitimate

receiver. As an example, the case of M = 2 is shown in Figure 2.2.

Since, for each j 6= 1, Xj is an i.i.d. sequence and independent of X1, the
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Figure 2.2: Illustration of interference alignment for the Gaussian wiretap channel
with M helpers. Here, M = 2.

following secrecy rate is achievable [3]

Cs ≥ I(X1;Y1)− I(X1;Y2) (2.123)

Now, we first bound the probability of decoding error. Note that the space

observed at receiver 1 consists of (2Q+ 1)M(2MQ+ 1) points in M + 1 dimensions,

and the sub-signal in each dimension is drawn from a constellation of C(a,MQ).

Here, we use the property that C(a,Q) ⊂ C(a,MQ). By Lemma 2.3, for any small

enough δ > 0 and for almost all rationally independent
{

1, h1g2
g1h2

, h1g3
g1h3

, · · · , h1gM+1

g1hM+1

}
,

except for a set of Lebesgue measure zero, there exists a positive constant γ, which

is independent of P , such that if we choose Q = P
1−δ

2(M+1+δ) and a = γP
1
2/Q then the

average power constraint is satisfied and the probability of error is bounded by

Pr
[
X1 6= X̂1

]
≤ exp

(
−ηγP δ

)
(2.124)

where ηγ is a positive constant which is independent of P and where X̂1 is the

estimate of X1 by choosing the closest point in the constellation based on observation
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Y1.

By Fano’s inequality and the Markov chain X1 → Y1 → X̂1, we know that

H(X1|Y1) ≤ H(X1|X̂1) (2.125)

≤ 1 + exp
(
−ηγP δ

)
log(2Q+ 1)M (2.126)

which means that

I(X1;Y1) = H(X1)−H(X1|Y1) (2.127)

≥
[
1− exp

(
ηγP

δ
)]

log(2Q+ 1)M − 1 (2.128)

On the other hand,

I(X1;Y2) ≤ I

(
X1;

M+1∑
k=2

gk
hk

(Vk + Uk)

)
(2.129)

= H

(
M+1∑
k=2

gk
hk

(Vk + Uk)

)
−H

(
M+1∑
k=2

gk
hk

(Vk + Uk)
∣∣∣X1

)
(2.130)

= H

(
M+1∑
k=2

gk
hk

(Vk + Uk)

)
−H

(
M+1∑
k=2

gk
hk
Uk

)
(2.131)

≤ log(4Q+ 1)M − log(2Q+ 1)M (2.132)

≤M log
4Q+ 1

2Q+ 1
(2.133)

≤M (2.134)

where (2.132) is due to the fact that entropy of the sum
∑M+1

k=2
gk
hk

(Vk + Uk) is

maximized by the uniform distribution which takes values over a set of cardinality
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(4Q+ 1)M .

Combining (2.128) and (2.134), we have

Cs ≥ I(X1;Y1)− I(X1;Y2) (2.135)

≥
[
1− exp

(
−ηγP δ

)]
log(2Q+ 1)M − (M + 1) (2.136)

≥
[
1− exp

(
−ηγP δ

)]
log(2P

1−δ
2(M+1+δ) + 1)M − (M + 1) (2.137)

=
M(1− δ)

(M + 1 + δ)

(
1

2
logP

)
+ o(logP ) (2.138)

where o(·) is the little-o function. If we choose δ arbitrarily small, then we can

achieve M
M+1

s.d.o.f., which concludes the achievability part of the theorem.

2.6 Broadcast Channel with Confidential Messages and M Helpers

In this section, we consider the Gaussian BC with confidential messages and M

helpers formulated in Section 2.2.2. When there are no helpers, i.e., M = 0, due

to the degradedness of the underlying Gaussian BC, one of the users (stronger)

has the secrecy capacity which is equal to the secrecy capacity of the Gaussian

wiretap channel, and the other user (weaker) has zero secrecy capacity. Therefore,

for both users, the s.d.o.f. is zero, implying that the sum s.d.o.f. of the system is

zero. Therefore, we consider the case M ≥ 1. In this section, we will show that the

sum s.d.o.f. is 1 for any M ≥ 1, as stated in the following theorem.

Theorem 2.3 The sum s.d.o.f. of the Gaussian broadcast channel with confidential

messages and M ≥ 1 helpers is 1 for almost all channel gains.
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2.6.1 Converse

An immediate upper bound for the s.d.o.f. of this problem is 1, i.e., Ds,Σ ≤ 1 for

any M . This comes from the fact that the d.o.f. for the Gaussian BC without any

secrecy constraints is 1, and this constitutes an upper for the sum s.d.o.f. also.

2.6.2 Achievable Scheme

In the following, we will show that a sum s.d.o.f. of 1 can be achieved for the case of

M = 1. Since the achievable scheme with a single helper achieves the upper bound

Ds,Σ ≤ 1, the sum s.d.o.f. for all M ≥ 1 is 1. Therefore, if we have more than one

helper, then all but one helper may remain silent.

We use the equivalent channel expression in (2.93) and (2.94). Let V1, V2

and U be three mutually independent random variables which are identically and

uniformly distributed over the constellation C(a,Q) in (2.73), where a and Q will

be specified later. We assign channel inputs as X̄1 = V1 + β
α
V2 and X̄2 = U . Then,

the observations at the two receivers are:

Y1 = αV1 + β(V2 + U) +N1 (2.139)

Y2 = (V1 + U) +
β

α
V2 +N2 (2.140)

We use two independent variables V1 and V2 to be the signals carrying the messages

W1 and W2 that go to the two receivers. In order to ensure that the messages are

kept secure against the unintended receiver, we align the cooperative jamming signal
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Figure 2.3: Illustration of interference alignment for the Gaussian BC with confi-
dential messages and one helper.

U from the helper in the dimension of V2 at receiver 1, and in the dimension of V1

at receiver 2. This is illustrated in Figure 2.3.

Since X̄2 is an i.i.d. sequence, the following secrecy rate pair is achievable [5,

Theorem 4]

R1 ≥ I(V1;Y1)− I(V1;Y2|V2) (2.141)

R2 ≥ I(V2;Y2)− I(V2;Y1|V1) (2.142)

By Lemma 2.3, it is easy to verify that receiver i can decode Vi, for i = 1, 2

with arbitrarily small probability of decoding error with probability one, i.e., for any

small enough δ > 0 and for almost all rationally independent {α, β}, except for a set

of Lebesgue measure zero, there exists a positive constant γ, which is independent

of P , such that if we choose Q = P
1−δ

2(2+δ) , a = γP
1
2/Q then the average power

constraint is satisfied and the probability of error is bounded by

Pr
[
Vi 6= V̂i

]
≤ exp

(
−ηγP δ

)
(2.143)
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where ηγ is a positive constant which is independent of P and V̂i is the estimate for

Vi by choosing the closest point in the constellation based on observation Yi.

By Fano’s inequality and the Markov chain Vi → Yi → V̂i, we know that

H(Vi|Yi) ≤ H(Vi|V̂i) (2.144)

≤ 1 + exp
(
−ηγP δ

)
log(2Q+ 1) (2.145)

which means that

I(Vi;Yi) = H(Vi)−H(Vi|Yi) (2.146)

≥
[
1− exp

(
−ηγP δ

)]
log(2Q+ 1)− 1 (2.147)

=
1− δ
2 + δ

(
1

2
logP

)
+ o(logP ) (2.148)

for i = 1 or 2.

On the other hand, for i = 1, we have

I(V1;Y2|V2) ≤ I

(
V1;V1 + U +

β

α
V2

∣∣∣V2

)
(2.149)

= H(V1 + U)−H(U) (2.150)

≤ 1 (2.151)
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Similarly, for i = 2, we have

I(V2;Y1|V1) ≤ I
(
V2;αV1 + β(V2 + U)

∣∣∣V1

)
(2.152)

= H(V2 + U)−H(U) (2.153)

≤ 1 (2.154)

which implies that the following sum secrecy rate is achievable

R1 +R2 ≥
2− 2δ

2 + δ

(
1

2
logP

)
+ o(logP ) (2.155)

If we choose δ small enough, then we can have Ds,Σ ≥ 1. Combining this with the

upper bound Ds,Σ ≤ 1, we conclude that

Ds,Σ = 1 (2.156)

for almost all channel gains.

2.7 Two-User Interference Channel with Confidential Messages and

No Helpers

In this section, we consider the two-user Gaussian IC with confidential messages

formulated in Section 2.2.3 for the case of no helpers, i.e., M = 0. The case of

M ≥ 1 will be presented in Section 2.8. For the case of no helpers, we show that

the sum s.d.o.f. is 2
3

as stated in the following theorem.
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Theorem 2.4 The sum s.d.o.f. of the two-user Gaussian interference channel with

confidential messages is 2
3

for almost all channel gains.

2.7.1 Converse

We first start with (2.31) of Lemma 2.1 to upper bound the individual rate R1 of

message W1

nR1 ≤ h(X̃1) + h(X̃2)− h(Y2) + nc (2.157)

≤ h(X̃1) + h(Y1)−H(W1)− h(Y2) + nc11 (2.158)

≤ h(Y2)−H(W2) + h(Y1)−H(W1)− h(Y2) + nc12 (2.159)

where (2.158) is due to applying Lemma 2.2 for h(X̃2) and (2.159) is due to applying

Lemma 2.2 once again for h(X̃1). By noting that H(W1) = nR1 and H(W2) = nR2,

from (2.159), we have

2nR1 + nR2 ≤ h(Y1) + nc12 (2.160)

We use the same method to get a symmetric upper bound on the individual rate R2

of message W2 as

nR1 + 2nR2 ≤ h(Y2) + nc13 (2.161)
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Then, combining (2.160) and (2.161), we get

3(nR1 + nR2) ≤ h(Y1) + h(Y2) + nc14 (2.162)

≤ 2
(n

2
logP

)
+ nc15 (2.163)

which means

Ds,Σ ≤
2

3
(2.164)

which concludes the converse part of the theorem.

2.7.2 Achievable Scheme

Let {V1, U1, V2, U2} be mutually independent discrete random variables. Each of

them is uniformly and independently drawn from the same constellation C(a,Q)

in (2.73), where a and Q will be specified later. Here, the role of Vi is the signal

carrying message Wi, and the role of Ui is the cooperative jamming signal to help

the transmitter-receiver pair j 6= i. We choose the input signals of the transmitters

as:

X1 = V1 +
h2,1

h1,1

U1 (2.165)

X2 = V2 +
h1,2

h2,2

U2 (2.166)
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With these input signal selections, observations of the receivers are

Y1 = h1,1V1 + h2,1

(
U1 + V2

)
+
h2,1h1,2

h2,2

U2 +N1 (2.167)

Y2 = h2,2V2 + h1,2

(
U2 + V1

)
+
h2,1h1,2

h1,1

U1 +N2 (2.168)

Since, for each i and j 6= i, Vi and Ui are not in the same dimension at both receivers,

we align Ui in the dimension of Vj at receiver i such that Vj is secure and Vi can

occupy a larger space. This is illustrated in Figure 2.4.

By [5, Theorem 2], we know that the following secrecy rate pair is achievable

R1 ≥ I(V1;Y1)− I(V1;Y2|V2) (2.169)

R2 ≥ I(V2;Y2)− I(V2;Y1|V1) (2.170)

For receiver 1, by Lemma 2.3, for any small enough δ > 0 and for almost all

rationally independent
{
h1,1, h2,1,

h2,1h1,2
h2,2

}
, except for a set of Lebesgue measure

zero, there exists a positive constant γ, which is independent of P , such that if we

choose Q = P
1−δ

2(3+δ) and a = γP
1
2/Q then the average power constraint is satisfied

and the probability of error is bounded by

Pr
[
V1 6= V̂1

]
≤ exp

(
−ηγP δ

)
(2.171)

where ηγ is a positive constant which is independent of P and V̂1 is the estimate of

V1 by choosing the closest point in the constellation based on observation Y1.
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Figure 2.4: Illustration of interference alignment for the two-user Gaussian IC with
confidential messages (no helpers).

To lower bound the achievable rate R1, we first note that

I(V1;Y1) ≥ I(V1; V̂1) (2.172)

= H(V1)−H(V1|V̂1) (2.173)

≥
[
1− exp

(
−ηγP δ

)]
log(2Q+ 1)− 1 (2.174)

=
1− δ
3 + δ

(
1

2
logP

)
+ o(logP ) (2.175)

On the other hand,

I(V1;Y2|V2) ≤ I(V1;Y2, U1|V2) (2.176)

= I(V1;Y2|V2, U1) (2.177)

≤ I (V1;h1,2(U2 + V1)|V2, U1) (2.178)

= H(U2 + V1)−H(U2) (2.179)

≤ log(4Q+ 1)− log(2Q+ 1) (2.180)

≤ 1 (2.181)
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Combining (2.175) and (2.181), we obtain

R1 ≥ I(V1;Y1)− I(V1;Y2|V2) (2.182)

≥ 1− δ
3 + δ

(
1

2
logP

)
+ o(logP ) (2.183)

By applying this same analysis to rate R2, we can obtain a symmetric result for R2.

Then, by choosing δ arbitrarily small, we can achieve 2
3

sum s.d.o.f.

2.8 Two-User Interference Channel with Confidential Messages and

M Helpers

In this section, we consider the two-user Gaussian IC with confidential messages

formulated in Section 2.2.3 for the general case of M ≥ 1 helpers. For this general

case, we show that the sum s.d.o.f. is 1 as stated in the following theorem.

Theorem 2.5 The sum s.d.o.f. of the two-user Gaussian interference channel with

confidential messages and M ≥ 1 helpers is 1 for almost all channel gains.

2.8.1 Converse

An immediate upper bound for the s.d.o.f. of this problem is 1, i.e., Ds,Σ ≤ 1 for any

M . This comes from the fact that the d.o.f. for the two-user IC without any secrecy

constraints is 1, and this constitutes an upper for the sum s.d.o.f. also. The fact that

the d.o.f. of the two-user IC is 1 was first proved in [54]. We provide an alternative

proof to this fact using the techniques developed in this chapter in Appendix 2.12.1.
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2.8.2 Achievable Scheme

In the following, we will show that a sum s.d.o.f. of 1 can be achieved for the case of

M = 1. Since the achievable scheme with a single helper achieves the upper bound

Ds,Σ ≤ 1, the sum s.d.o.f. for all M ≥ 1 is 1. Therefore, if we have more than one

helper, then all but one helper may remain silent.

Let {V1, V2, U} be mutually independent discrete random variables. Each of

them is uniformly and independently drawn from the same constellation C(a,Q)

in (2.73), where a and Q will be specified later. Here, the role of Vi is the signal

carrying message Wi, and the role of U is the cooperative jamming signal from the

helper. We choose the input signals of the transmitters as:

X1 =
h3,2

h1,2

V1 (2.184)

X2 =
h3,1

h2,1

V2 (2.185)

X3 = U (2.186)

With these input signal selections, observations of the receivers are

Y1 =
h3,2h1,1

h1,2

V1 + h3,1

(
U + V2

)
+N1 (2.187)

Y2 =
h3,1h2,2

h2,1

V2 + h3,2

(
U + V1

)
+N2 (2.188)

For each i and j 6= i, we align U in the dimension of Vj at receiver i such that Vj is

secure and Vi can be decoded. This is illustrated in Figure 2.5.
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Figure 2.5: Illustration of interference alignment for the two-user Gaussian IC with
confidential messages and one helper.

Since U is an i.i.d. sequence, by [5, Theorem 2], we know that the following

secrecy rate pair is achievable

R1 ≥ I(V1;Y1)− I(V1;Y2|V2) (2.189)

R2 ≥ I(V2;Y2)− I(V2;Y1|V1) (2.190)

For receiver 1, by Lemma 2.3, for any small enough δ > 0 and for almost all rationally

independent
{
h3,2h1,1
h1,2

, h3,1

}
, except for a set of Lebesgue measure zero, there exists

a positive constant γ, which is independent of P , such that if we choose Q = P
1−δ

2(2+δ)

and a = γP
1
2/Q then the average power constraint is satisfied and the probability

of error is bounded by

Pr
[
V1 6= V̂1

]
≤ exp

(
−ηγP δ

)
(2.191)

where ηγ is a positive constant which is independent of P and V̂1 is the estimate of

V1 by choosing the closest point in the constellation based on the observation Y1.
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To lower bound the achievable rate R1, we first note that

I(V1;Y1) ≥ I(V1; V̂1) (2.192)

= H(V1)−H(V1|V̂1) (2.193)

≥
[
1− exp

(
−ηγP δ

)]
log(2Q+ 1)− 1 (2.194)

=
1− δ
2 + δ

(
1

2
logP

)
+ o(logP ) (2.195)

On the other hand,

I(V1;Y2|V2) ≤ I
(
V1;h3,2(U + V1)|V2

)
(2.196)

= H(U + V1)−H(U) (2.197)

≤ log(4Q+ 1)− log(2Q+ 1) (2.198)

≤ 1 (2.199)

Combining (2.195) and (2.199), we obtain

R1 ≥ I(V1;Y1)− I(V1;Y2|V2) (2.200)

≥ 1− δ
2 + δ

(
1

2
logP

)
+ o(logP ) (2.201)

By applying this same analysis to rate R2, we can obtain a symmetric result for R2.

Then, by choosing δ arbitrarily small, we can achieve 1 sum s.d.o.f. for almost all

channel gains for the M = 1 case.
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2.9 K-User Multiple Access Wiretap Channel

In this section, we consider the K-user MAC wiretap channel formulated in Sec-

tion 2.2.4. We show that the sum s.d.o.f. of this channel is K(K−1)
K(K−1)+1

as stated in

the following theorem.

Theorem 2.6 The sum s.d.o.f. of the K-user Gaussian multiple access wiretap

channel is K(K−1)
K(K−1)+1

for almost all channel gains.

2.9.1 Converse

We start with the sum rate and derive an upper bound similar to Lemma 2.1

n
K∑
i=1

Ri =
K∑
i=1

H(Wi) = H(WK
1 ) (2.202)

≤ I(WK
1 ; Y1,Y2)− I(WK

1 ; Y2) + nc15 (2.203)

= I(WK
1 ; Y1|Y2) + nc15 (2.204)

≤ I(XK
1 ; Y1|Y2) + nc15 (2.205)

= h(Y1|Y2)− h(Y1|Y2,X
K
1 ) + nc15 (2.206)

= h(Y1|Y2)− h(N1|Y2,X
K
1 ) + nc15 (2.207)

= h(Y1|Y2)− h(N1) + nc15 (2.208)

≤ h(Y1|Y2) + nc16 (2.209)

= h(Y1,Y2)− h(Y2) + nc17 (2.210)

= h(X̃1, X̃2, · · · , X̃K ,Y1,Y2)

− h(X̃1, X̃2, · · · , X̃K |Y1,Y2)− h(Y2) + nc17 (2.211)
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where (2.208) is due to the fact that N1 is independent of (Y2,X
K
1 ). Besides,

WK
1

4
= {Wj}Kj=1 and, for each j, X̃j = Xj +Ñj. Here Ñj is an i.i.d. sequence and Ñj

is a Gaussian noise with variance σ2
j < min(1/h2

j , 1/g
2
j ). Also, {Ñj}Kj=1 are mutually

independent, and are independent of all other random variables. Thus,

n

K∑
i=1

Ri = h(X̃1, X̃2, · · · , X̃K ,Y1,Y2)− h(X̃1, X̃2, · · · , X̃K |Y1,Y2)

− h(Y2) + nc17 (2.212)

≤ h(X̃1, X̃2, · · · , X̃K ,Y1,Y2)

− h(X̃1, X̃2, · · · , X̃K |Y1,Y2,X1,X2, · · · ,XK)− h(Y2) + nc17 (2.213)

≤ h(X̃1, X̃2, · · · , X̃K ,Y1,Y2)

− h(Ñ1, Ñ2, · · · , ÑK |Y1,Y2,X1,X2, · · · ,XK)− h(Y2) + nc17 (2.214)

= h(X̃1, X̃2, · · · , X̃K ,Y1,Y2)− h(Ñ1, Ñ2, · · · , ÑK)

− h(Y2) + nc17 (2.215)

≤ h(X̃1, X̃2, · · · , X̃K ,Y1,Y2)− h(Y2) + nc18 (2.216)

= h(X̃1, X̃2, · · · , X̃K) + h(Y1,Y2|X̃1, X̃2, · · · , X̃K)

− h(Y2) + nc18 (2.217)

≤ h(X̃1, X̃2, · · · , X̃K)− h(Y2) + nc19 (2.218)

=
K∑
j=1

h(X̃j)− h(Y2) + nc20 (2.219)

≤
K∑
j=2

h(X̃j) + nc21 (2.220)
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where (2.215) is due to the fact that ÑK
1 is independent of (Y1,Y2,X

K
1 ), (2.218)

follows similar to (2.52), and (2.220) is due to

h(X̃1) ≤ h(g1X1 + N2) + nc22 ≤ h(Y2) + nc22 (2.221)

which is similar to going from (2.31) to (2.32) in Lemma 2.1 by using derivations in

(2.59)-(2.64).

On the other hand, for each j, we have a bound similar to Lemma 2.2

∑
i 6=j

H(Wi) = H(W 6=j) (2.222)

≤ I(W 6=j; Y1) + nc23 (2.223)

≤ I

(∑
i 6=j

hiXi; Y1

)
+ nc23 (2.224)

= h (Y1)− h
(

Y1

∣∣∣∣∣∑
i 6=j

hiXi

)
+ nc23 (2.225)

= h (Y1)− h (hjXj + N1) + nc23 (2.226)

≤ h(Y1)− h(X̃j) + nc24 (2.227)

whereW6=j
4
= {Wi}Ki=1\{Wj} which forms the Markov chainW6=j→X 6=j→

∑
i 6=j hiXi

→ Y1. Therefore, for each j, we have

h(X̃j) ≤ h(Y1)−
∑
i 6=j

H(Wi) + nc24 (2.228)
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Now, continuing from (2.220) and incorporating (2.228), we have

n
K∑
i=1

Ri ≤
K∑
j=2

h(X̃j) + nc25 (2.229)

≤
K∑
j=2

[
h(Y1)−

∑
i 6=j

H(Wi)

]
+ nc26 (2.230)

Noting that H(Wi) = nRi, this is equivalent to,

nR1 + (K − 1)
K∑
j=1

nRj ≤ (K − 1)h(Y1) + nc26 (2.231)

We then apply this upper bound for each i by eliminating a different h(X̃i)

each time in the same way that it was done for h(X̃1) in (2.221) and have K upper

bounds in total:

nRi + (K − 1)
K∑
j=1

nRj ≤ (K − 1)h(Y1) + nc26, i = 1, · · · , K (2.232)

Thus,

[
K(K − 1) + 1

] K∑
j=1

nRj ≤ K(K − 1)h(Y1) + nc27 (2.233)

≤ K(K − 1)
(n

2
logP

)
+ nc28 (2.234)

that is,

Ds,Σ ≤
K(K − 1)

K(K − 1) + 1
(2.235)
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which concludes the converse part of the theorem.

2.9.2 Achievable Scheme

In the Gaussian wiretap channel with M helpers, our achievability scheme divided

the message signal into M parts, and each one of the M helpers protected a part

at the eavesdropper. On the other hand, in the IC with confidential messages, since

each user had its own message to send, each transmitter sent a combination of a

message and a cooperative jamming signal. We combine these two approaches to

propose the following achievability scheme in this K-user MAC wiretap channel.

Each transmitter i divides its message into (K − 1) mutually independent sub-

signals. In addition, each transmitter i sends a cooperative jamming signal Ui. At

the eavesdropper Y2, each sub-signal indexed by (i, j), where j ∈ {1, · · · , K}\{i},

is aligned with a cooperative jamming signal Ui. At the legitimate receiver Y1, all

of the cooperative jamming signals are aligned in the same dimension to occupy as

small a signal space as possible. This scheme is illustrated in Figure 2.6 for the case

of K = 3.

We use in total K2 mutually independent random variables which are

Vi,j, i, j ∈ {1, · · · , K}, j 6= i (2.236)

Uk, k ∈ {1, · · · , K} (2.237)

Each of them is uniformly and independently drawn from the same constellation

C(a,Q) in (2.73), where a and Q will be specified later. For each i ∈ {1, · · · , K},

81



V3

U1

U1 U2 U3

U2

U3

V1

V2

X1

X2

Y1

Y2

X3

V1

U2

V2

U3

V3

V1 V2 V3

U1

Figure 2.6: Illustration of interference alignment for the K-user MAC wiretap chan-
nel. Here, K = 3.

we choose the input signal of transmitter i as

Xi =
K∑

j=1,j 6=i

gj
gihj

Vi,j +
1

hi
Ui (2.238)

With these input signal selections, observations of the receivers are

Y1 =
K∑
i=1

K∑
j=1,j 6=i

gjhi
gihj

Vi,j +

[
K∑
k=1

Uk

]
+N1 (2.239)

Y2 =

[
K∑
i=1

K∑
j=1,j 6=i

gj
hj
Vi,j

]
+

K∑
j=1

gj
hj
Uj +N2 (2.240)

=
K∑
j=1

gj
hj

[
Uj +

K∑
i=1,i 6=j

Vi,j

]
+N2 (2.241)

By [34, Theorem 1], we can achieve the following sum secrecy rate

sup
K∑
i=1

Ri ≥ I(V;Y1)− I(V;Y2) (2.242)

where V
4
= {Vi,j : i, j ∈ {1, · · · , K}, j 6= i}.

82



Now, we first bound the probability of decoding error. Note that the space

observed at receiver 1 consists of (2Q+ 1)K(K−1)(2KQ+ 1) points in K(K − 1) + 1

dimensions, and the sub-signal in each dimension is drawn from a constellation of

C(a,KQ). Here, we use the property that C(a,Q) ⊂ C(a,KQ). By Lemma 2.3,

for any small enough δ > 0 and for almost all rationally independent factors in Y1

except for a set of Lebesgue measure zero, there exists a positive constant γ, which

is independent of P , such that if we choose Q = P
1−δ

2(K(K−1)+1+δ) and a = γP
1
2/Q then

the average power constraint is satisfied and the probability of error is bounded by

Pr
[
V 6= V̂

]
≤ exp

(
−ηγP δ

)
(2.243)

where ηγ is a positive constant which is independent of P and V̂ is the estimate of

V by choosing the closest point in the constellation based on observation Y1.

By Fano’s inequality and the Markov chain V→ Y1 → V̂, we know that

H(V|Y1) ≤ H(V|V̂) (2.244)

≤ 1 + exp
(
−ηγP δ

)
log(2Q+ 1)K(K−1) (2.245)

which means that

I(V;Y1) = H(V)−H(V|Y1) (2.246)

≥
[
1− exp

(
−ηγP δ

)]
log(2Q+ 1)K(K−1) − 1 (2.247)
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On the other hand,

I(V;Y2) ≤ I

(
V;

K∑
j=1

gj
hj

[
Uj +

K∑
i=1,i 6=j

Vi,j

])
(2.248)

= H

(
K∑
j=1

gj
hj

[
Uj +

K∑
i=1,i 6=j

Vi,j

])
−H

(
K∑
j=1

gj
hj

[
Uj +

K∑
i=1,i 6=j

Vi,j

] ∣∣∣∣∣V
)

(2.249)

= H

(
K∑
j=1

gj
hj

[
Uj +

K∑
i=1,i 6=j

Vi,j

])
−H

(
K∑
j=1

gj
hj
Uj

)
(2.250)

≤ K log
2KQ+ 1

2Q+ 1
(2.251)

≤ K logK (2.252)

where (2.250) is due to the fact that entropy is maximized by the uniform distribu-

tion which takes values over a set of cardinality (2KQ+ 1)K .

Combining (2.247) and (2.252), we obtain

sup
K∑
i=1

Ri ≥ I(V;Y1)− I(V;Y2) (2.253)

≥
[
1− exp

(
−ηγP δ

)]
log(2Q+ 1)K(K−1) − 1−K logK (2.254)

=
K(K − 1)(1− δ)
K(K − 1) + 1 + δ

(
1

2
logP

)
+ o(logP ) (2.255)

where o(·) is the little-o function. If we choose δ arbitrarily small, then we can

achieve K(K−1)
K(K−1)+1

sum s.d.o.f. for almost all channel gains.
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2.10 Discussion

2.10.1 CSI of the External Eavesdropper

The results in this chapter are all critically dependent on the availability of all chan-

nel state information (CSI) at all entities. We utilize this CSI information to design

the transmitter signals so that they align at the legitimate receiver and the eaves-

dropper in a certain desired manner. Availability of legitimate receiver’s CSI can be

justified by the feedback links. Availability of the eavesdropper CSI can be justified

only when the eavesdropper is also a legitimate user of the system, as in the case

of IC with confidential messages. For the case of external eavesdroppers, generally,

the CSI of the eavesdropper link will not be available, as the eavesdropper will not

feed her CSI back, and even when she does, she will not be truthful. Therefore,

studying the case where eavesdropper CSI is not available is practically important

(and also theoretically challenging). There have been some recent results on this

topic [27, 47, 67, 79]; see also, e.g., [80, 81], for the multiple-input multiple-output

(MIMO) setting.

References [27, 79] utilized interference alignment to obtain s.d.o.f. for ergodic

fading channel models with secrecy constraints. Although it is infeasible to put all of

the signals into the same sub-space at the eavesdropper without eavesdropper CSI,

the total d.o.f. the eavesdropper can observe is limited to 1. Since mixing signals

together already provides a certain amount of secrecy to those signals, even when

the eavesdropper CSI is not known at the transmitter(s), s.d.o.f. can be obtained

as shown in [27, 79].
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More recently, references [67] and Chapter 6 introduce the concept of blind

cooperative jamming to deal with the absence of eavesdropper CSI in a system

where the legitimate receiver CSI is available. In such a system, [67] and Chapter

6 let all cooperative jamming signals span the entire space at the eavesdropper to

limit the information leakage to the eavesdropper, while aligning the cooperative

jamming signals in the same dimension at the legitimate receiver using only the

legitimate receiver CSI. More specifically, as an extension of this work, Chapter 6

will show that with the new blind cooperative jamming scheme, for the M -helper

wiretap channel described in Section 2.2.1 and analyzed in Section 2.5, the same

s.d.o.f. of M
M+1

can be achieved with no eavesdropper CSI and only with legitimate

receiver CSI. Since this is also an upper bound, this implies that the exact s.d.o.f. of

such as system is M
M+1

. However, the problem remains open in all other channel

models, including the MAC wiretap channel.

2.10.2 Discontinuity of the Secure d.o.f. in the Channel Gain Space

We next comment on the term “for almost all channel gains” that appears in all

achievability proofs in this chapter. This term is due to real interference alignment

[51, 52], which is based on Diophantine approximation in number theory. The field

of Diophantine approximation in number theory deals with approximation of real

numbers with rational numbers. [51, Theorem 1 (Khintchine-Groshev)] states that

such approximation, which is closely related to our decoding problem, has a lower

bound except for a set A with zero Lebesgue measure. The set Q of all rational
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numbers (channel gains) falls into the set A. In addition, even some sets of irra-

tional numbers (channel gains) also fall into this subset. For example, consider the

Gaussian wiretap channel with one helper. If the channel between the transmitters

and the eavesdropper is stochastically degraded with respect to the channel between

the transmitters and the legitimate receiver, then the coefficients α and β in (2.97)

are equal, which results this case falling into the set Q of rational channel gains4

and thereby falling into the set A, even though they are irrational numbers. In

fact, the exact s.d.o.f. for this case is known to be zero due to [14]. This leads to an

interesting observation: the s.d.o.f. is discontinuous along the whole α = β line in

the channel gain space, in addition to at all rational number points. We note that

the s.d.o.f. with rational channel gains remains unknown. We also remark that a

similar discontinuity phenomenon was investigated without secrecy constraints in

[78]. For the K-user fully-connected Gaussian IC, it is widely known that the sum

d.o.f. is K/2 for almost all channel gains [55]. However, in [78], the d.o.f. for any

Gaussian IC with nonzero rational channel gains is shown to be strictly smaller than

K/2.

2.10.3 Complex Channel Gains

In the literature, wireless communication channels are generally modeled either as

time-varying or time-invariant (constant), and channel gains are modeled either to

come from complex numbers or real numbers. Generally, converse proofs carry over

to one another in these domains. In the complex case, the scaling of rates with

4This is due to the approximation nature of the decoding problem (see [51, Eqn. (8)]).
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1
2

logP needs to be replaced with logP due to real and imaginary components.

Achievability techniques also carry over from one setting to another. To the best of

our knowledge, there almost always exists a one-to-one connection between inter-

ference alignment for time-varying complex channels (with symbol extension) and

time-invariant channels (with real interference alignment). Examples include: the

K-user Gaussian interference channels in [55] and [52]; the K-user Gaussian inter-

ference compound wiretap channel in [27, Section IV] and [29]; and the 2 × 2 × 2

interference channel in [66, Section III.A] and [66, Section III.B]. The channel mod-

els we have investigated in this chapter fall into the class of time-invariant (constant)

real channel gains. However, we believe that the techniques and results in this chap-

ter can be applied to the models with time-varying and/or complex channel gains.

In addition, [31, Theorem 5.6 on page 154] provided an interesting achievable scheme

achieving the same 0.5 s.d.o.f. for the Gaussian wiretap channel with a helper where

the channel gains are complex and constant.

2.11 Conclusions

In this chapter, we determined the s.d.o.f. of several fundamental channel models in

one-hop wireless networks. We first considered the Gaussian wiretap channel with

one helper. While the helper needs to create interference at the eavesdropper, it

should not create too much interference at the legitimate receiver. Our approach

is based on understanding this trade-off that the helper needs to strike. To that

purpose, we developed an upper bound that relates the entropy of the cooperative
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jamming signal from the helper and the message rate. In addition, we developed an

achievable scheme based on real interference alignment which aligns the cooperative

jamming signal from the helper in the same dimension as the message signal. This

ensures that the information leakage rate is upper bounded by a constant which

does not scale with the power. In addition, to help the legitimate user decode

the message, our achievable scheme renders the message signal and the cooperative

jamming signal distinguishable at the legitimate receiver. This essentially implies

that the message signal can occupy only half of the available space in terms of

the d.o.f. Consequently, we showed that the exact s.d.o.f. of the Gaussian wiretap

channel with one helper is 1
2

by these matching achievability and converse proofs. We

then generalized our achievability and converse techniques to the Gaussian wiretap

channel with M helpers, Gaussian BC with confidential messages and helpers, two-

user Gaussian IC with confidential messages and helpers, and K-user Gaussian

MAC wiretap channel. In the multiple-message settings, transmitters needed to

send a mix of their own messages and cooperative jamming signals, which can be

interpreted as applying channel prefixing. We determined the exact s.d.o.f. in all of

these system models.
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2.12 Appendix

2.12.1 An Alternative Proof for the Multiplexing Gain of the K-User

Gaussian Interference Channel

The original proof for this setting is given by [54]. Here, we provide an alternative

proof for the K = 2 case by using Lemma 2.2, and then extend it to the case of

general K.

For K = 2, the channel model for the two-user Gaussian IC is

Y1 = h1,1X1 + h2,1X2 +N1 (2.256)

Y2 = h1,2X1 + h2,2X2 +N2 (2.257)
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We start with the definition of the sum rate

nR1 + nR2 = H(W1,W2) (2.258)

= H(W1,W2|Y1,Y2) + I(W1,W2; Y1,Y2) (2.259)

≤ I(W1,W2; Y1,Y2) + nc29 (2.260)

= h(Y1,Y2)− h(Y1,Y2|W1,W2) + nc29 (2.261)

≤ h(Y1,Y2)− h(Y1,Y2|X1,X2,W1,W2) + nc29 (2.262)

≤ h(Y1,Y2) + nc30 (2.263)

= h(X̃1, X̃2,Y1,Y2)− h(X̃1, X̃2|Y1,Y2) + nc30 (2.264)

≤ h(X̃1, X̃2,Y1,Y2)− h(X̃1, X̃2|Y1,Y2,X1,X2) + nc30 (2.265)

≤ h(X̃1, X̃2,Y1,Y2) + nc31 (2.266)

= h(X̃1, X̃2) + h(Y1,Y2|X̃1, X̃2) + nc31 (2.267)

≤ h(X̃1, X̃2) + nc32 (2.268)

where the last inequality follows similar to (2.52) after a derivation similar to (2.54)-

(2.58), and, for each j, X̃j = Xj + Ñj. Here Ñj is an i.i.d. sequence of Ñj, which

is Gaussian with variance σ2
j < min(1/h2

j,1, 1/h
2
j,2). Also, {Ñj}Kj=1 are mutually

independent, and are independent of all other random variables.

Then, we apply Lemma 2.2 to characterize the interference fromX1 to transmitter-
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receiver pair 2 and from X2 to transmitter-receiver pair 1

nR1 + nR2 ≤ h(X̃1, X̃2) + nc32 (2.269)

≤ h(X̃1) + h(X̃2) + nc32 (2.270)

≤ h(Y2)−H(W2) + h(Y1)−H(W1) + nc33 (2.271)

By noting that H(W1) = nR1 and H(W2) = nR2, we have

2(nR1 + nR2) ≤ h(Y2) + h(Y1) + nc33 (2.272)

≤ 2
(n

2
logP

)
+ nc34 (2.273)

which implies that

DΣ
4
= lim

P→∞
sup

R1 +R2

1
2

logP
≤ 1 (2.274)

i.e., the multiplexing gain of the two-user Gaussian IC is not greater than 1. By the

argument in [54, Proposition 1], we can conclude that the multiplexing gain of the

K-user Gaussian IC is at most K
2

.
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Chapter 3

Sum Secure Degrees of Freedom of K-User Gaussian Interference

Channels: A Unified View

3.1 Introduction

In Chapter 2, we have studied the sum s.d.o.f. of one-hop wireless networks. The

common property of the networks studied in Chapter 2 is that, in all cases, there are

two receivers. In this chapter, we consider networks with more than two receivers,

and generalize the upper bounding techniques in Chapter 2 to these settings, and

develop corresponding achievable schemes. In particular, in this chapter, we con-

sider K-user Gaussian IC, and determine its exact sum s.d.o.f. We consider three

different secrecy constraints: IC-EE, IC-CM, and IC-CM-EE. We show that for all of

these three cases, the exact sum s.d.o.f. is K(K−1)
2K−1

. We show converses for IC-EE and

IC-CM, which imply a converse for IC-CM-EE. We show achievability for IC-CM-

EE, which implies achievability for IC-EE and IC-CM. We develop the converses by

relating the channel inputs of interfering users to the reliable rates of the interfered

users, and by quantifying the secrecy penalty in terms of the eavesdroppers’ observa-

tions. Our achievability uses structured signaling, structured cooperative jamming,

channel prefixing, and asymptotic real interference alignment. While the traditional

interference alignment provides some amount of secrecy by mixing unintended sig-
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nals in a smaller sub-space at every receiver, in order to attain the optimum sum

s.d.o.f., we incorporate structured cooperative jamming into the achievable scheme,

and intricately design the structure of all of the transmitted signals jointly.

3.2 System Model, Definitions and the Result

The input-output relationships for a K-user Gaussian IC with secrecy constraints

(Figure 1.7) are given by

Yi =
K∑
j=1

hjiXj +Ni, i = 1, . . . , K (3.1)

Z =
K∑
j=1

gjXj +NZ (3.2)

where Yi is the channel output of receiver i, Z is the channel output of the external

eavesdropper (if there is any), Xi is the channel input of transmitter i, hji is the

channel gain of the jth transmitter to the ith receiver, gj is the channel gain of

the jth transmitter to the eavesdropper (if there is any), and {N1, . . . , NK , NZ}

are mutually independent zero-mean unit-variance Gaussian random variables. All

the channel gains are time-invariant, and independently drawn from continuous

distributions. We further assume that all hji are non-zero, and all gj are non-

zero if there is an external eavesdropper. All channel inputs satisfy average power

constraints, E [X2
i ] ≤ P , for i = 1, . . . , K.

Each transmitter i intends to send a message Wi, uniformly chosen from a set

Wi, to receiver i. The rate of the message is Ri
4
= 1

n
log |Wi|, where n is the number
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of channel uses. Transmitter i uses a stochastic function fi :Wi → Xi to encode the

message, where Xi
4
= Xn

i is the n-length channel input of user i. We use boldface

letters to denote n-length vector signals, e.g., Xi
4
= Xn

i , Yj
4
= Y n

j , Z
4
= Zn, etc. The

legitimate receiver j decodes the message as Ŵj based on its observation Yj. A rate

tuple (R1, . . . , RK) is said to be achievable if for any ε > 0, there exist joint n-length

codes such that each receiver j can decode the corresponding message reliably, i.e.,

the probability of decoding error is less than ε for all messages,

max
j

Pr
[
Wj 6= Ŵj

]
≤ ε (3.3)

and the corresponding secrecy requirement is satisfied. We consider three different

secrecy requirements:

1) In IC-EE, Figure 1.8(a), all of the messages are kept information-theoretically

secure against the external eavesdropper,

1

n
H(W1, . . . ,WK |Z) ≥ 1

n
H(W1, . . . ,WK)− ε (3.4)

2) In IC-CM, Figure 1.8(b), all unintended messages are kept information-theo-

retically secure against each receiver,

1

n
H(WK

−i|Yi) ≥
1

n
H(WK

−i)− ε, i = 1, . . . , K (3.5)

where WK
−i
4
= {W1, . . . ,Wi−1,Wi+1, . . . ,WK}.
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3) In IC-CM-EE, Figure 1.8(c), all of the messages are kept information-theoretically

secure against both the K− 1 unintended receivers and the eavesdropper, i.e.,

we impose both secrecy constraints in (3.4) and (3.5).

The supremum of all sum achievable secrecy rates is the sum secrecy capacity

Cs,Σ, and the sum s.d.o.f., Ds,Σ, is defined as

Ds,Σ
4
= lim

P→∞

Cs,Σ
1
2

logP
= lim

P→∞
sup

R1 + · · ·+RK

1
2

logP
(3.6)

The main result of this chapter is stated in the following theorem.

Theorem 3.1 The sum s.d.o.f. of the K-user IC-EE, IC-CM, and IC-CM-EE is

K(K−1)
2K−1

for almost all channel gains.

3.3 Preliminaries

3.3.1 Role of a Helper Lemma

For completeness, we repeat Lemma 2.2 in Chapter 2 here, which is called role of

a helper lemma. In Chapter 2, there is only one legitimate receiver, whereas in this

chapter, there are K legitimate receivers. While (2.65) in Lemma 2.2 is written for

receiver 1, (3.7) in the following lemma is written for any kth receiver. This lemma

identifies a constraint on the signal of a given transmitter, based on the decodability

of another transmitter’s message at its intended receiver.

Lemma 3.1 For reliable decoding of the kth transmitter’s signal at the kth receiver,
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the channel input of transmitter i 6= k, Xi, must satisfy

h(Xi + Ñ) ≤ h(Yk)− nRk + nc (3.7)

where c is a constant which does not depend on P , and Ñ is a new Gaussian random

variable independent of all other random variables with σ2
Ñ
< 1

h2ik
, and Ñ is an

i.i.d. sequence of Ñ .

Lemma 3.1 gives an upper bound on the differential entropy of (a noisy ver-

sion of) the signal of any given transmitter, transmitter i in (3.7), in terms of the

differential entropy of the channel output and the message rate nRk = H(Wk), of

a user k, based on the decodability of message Wk at its intended receiver. The

inequality in this lemma, (3.7), can alternatively be interpreted as an upper bound

on the message rate, i.e., on nRk, in terms of the difference of the differential en-

tropies of the channel output of a receiver k and the channel input of a transmitter

i; in particular, the higher the differential entropy of the signal coming from user

i, the lower this upper bound will be on the rate of user k. This motivates not

using i.i.d. Gaussian signals which have the highest differential entropy. Also note

that this lemma does not involve any secrecy constraints, and is based only on the

decodability of the messages at their intended receivers.
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3.4 Converse for IC-EE

In this section, we develop a converse for the K-user IC-EE (see Figure 1.8(a))

defined in (3.1) and (3.2) with the secrecy constraint (3.4). We start with the sum

rate:

n
K∑
i=1

Ri =
K∑
i=1

H(Wi) = H(WK
1 ) (3.8)

≤ I(WK
1 ; YK

1 )− I(WK
1 ; Z) + nc34 (3.9)

≤ I(WK
1 ; YK

1 ,Z)− I(WK
1 ; Z) + nc34 (3.10)

= I(WK
1 ; YK

1 |Z) + nc34 (3.11)

≤ I(XK
1 ; YK

1 |Z) + nc34 (3.12)

= h(YK
1 |Z)− h(YK

1 |Z,XK
1 ) + nc34 (3.13)

= h(YK
1 |Z)− h(NK

1 |Z,XK
1 ) + nc34 (3.14)

≤ h(YK
1 |Z) + nc35 (3.15)

= h(YK
1 ,Z)− h(Z) + nc35 (3.16)

where WK
1

4
= {Wj}Kj=1, XK

1

4
= {Xj}Kj=1, YK

1

4
= {Yj}Kj=1, and all the cis in this

chapter are constants which do not depend on P .

For each j, we introduce X̃j = Xj + Ñj, where Ñj is an i.i.d. sequence of Ñj

which is a zero-mean Gaussian random variable with variance σ2
j < min(mini 1/h

2
ji,

1/g2
j ). Also, {Ñj}Kj=1 are mutually independent, and are independent of all other
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random variables. Continuing from (3.16),

n
K∑
i=1

Ri ≤ h(X̃K
1 ,Y

K
1 ,Z)− h(X̃K

1 |YK
1 ,Z)− h(Z) + nc35 (3.17)

≤ h(X̃K
1 ,Y

K
1 ,Z)− h(X̃K

1 |XK
1 ,Y

K
1 ,Z)− h(Z) + nc35 (3.18)

= h(X̃K
1 ,Y

K
1 ,Z)− h(ÑK

1 )− h(Z) + nc35 (3.19)

≤ h(X̃K
1 ,Y

K
1 ,Z)− h(Z) + nc36 (3.20)

= h(X̃K
1 ) + h(YK

1 ,Z|X̃K
1 )− h(Z) + nc36 (3.21)

≤ h(X̃K
1 )− h(Z) + nc37 (3.22)

where X̃K
1

4
= {X̃j}Kj=1, and the last inequality is due to the fact that h(YK

1 ,Z|X̃K
1 ) ≤

nc′, i.e., given all the channel inputs (disturbed by small Gaussian noises), the

channel outputs can be reconstructed, which is shown as follows

h(YK
1 ,Z|X̃K

1 )

≤
[

K∑
j=1

h(Yj|X̃K
1 )

]
+ h(Z|X̃K

1 ) (3.23)

=

[
K∑
j=1

h

(
K∑
i=1

hij(X̃i − Ñi) + Nj

∣∣∣∣∣X̃K
1

)]
+ h

(
K∑
i=1

gi(X̃i − Ñi) + NZ

∣∣∣∣∣X̃K
1

)

(3.24)

=

[
K∑
j=1

h

(
−

K∑
i=1

hijÑi + Nj

∣∣∣∣∣X̃K
1

)]
+ h

(
−

K∑
i=1

giÑi + NZ

∣∣∣∣∣X̃K
1

)
(3.25)

≤
[

K∑
j=1

h

(
−

K∑
i=1

hijÑi + Nj

)]
+ h

(
−

K∑
i=1

giÑi + NZ

)
(3.26)

4
= nc38 (3.27)
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Next, we note

h(X̃j) ≤ h(gjXj + NZ) + nc39 ≤ h(Z) + nc39, j = 1, . . . , K (3.28)

where the inequalities are due to the differential entropy version of [68, Problem

2.14]. Inserting (3.28) into (3.22), for any j = 1, . . . , K, we get

n

K∑
i=1

Ri ≤ h(X̃K
1 )− h(Z) + nc3 (3.29)

≤
K∑
i=1

h(X̃i)− h(Z) + nc3 (3.30)

≤
K∑

i=1,i 6=j
h(X̃i) + nc40 (3.31)

which means that the net effect of the presence of an eavesdropper is to eliminate

one of the channel inputs; we call this the secrecy penalty.

We apply the role of a helper lemma, Lemma 3.1, to each X̃i with k = i + 1

(for i = K, k = 1), in (3.31) as

n

K∑
i=1

Ri ≤ h(X̃1) + h(X̃2) + · · ·+ h(X̃j−1) + h(X̃j+1) + · · ·+ h(X̃K) + nc41

(3.32)

≤ [h(Y2)− nR2] + [h(Y3)− nR3] + · · ·+ [h(Yj)− nRj]

+ [h(Yj+2)− nRj+2] + · · ·+ [h(YK)− nRK ] + [h(Y1)− nR1] + nc42

(3.33)
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By noting that h(Yi) ≤ n
2

logP + nc′i for each i, we have

2n
K∑
i=1

Ri ≤ (K − 1)
(n

2
logP

)
+ nR(j+1) mod K + nc43 (3.34)

for j = 1, . . . , K. Therefore, we have a total of K bounds in (3.34) for j = 1, . . . , K.

Summing these K bounds, we obtain:

(2K − 1)n
K∑
i=1

Ri ≤ K(K − 1)
(n

2
logP

)
+ nc44 (3.35)

which gives

Ds,Σ ≤
K(K − 1)

2K − 1
(3.36)

completing the converse for IC-EE.

3.5 Converse for IC-CM

In this section, we develop a converse for the K-user IC-CM (see Figure 1.8(b)). We

focus on the secrecy constraint (3.5) at a single receiver, say j, as an eavesdropper,
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and start with the sum rate corresponding to all unintended messages at receiver j:

n
K∑

i=1,i 6=j
Ri =

K∑
i=1,i 6=j

H(Wi) = H(WK
−j) (3.37)

≤ I(WK
−j; Y

K
−j)− I(WK

−j; Yj) + nc45 (3.38)

≤ I(WK
−j; Y

K
−j,Yj)− I(WK

−j; Yj) + nc45 (3.39)

= I(WK
−j; Y

K
−j|Yj) + nc45 (3.40)

≤ I(XK
−j; Y

K
−j|Yj) + nc45 (3.41)

= h(YK
−j|Yj)− h(YK

−j|Yj,X
K
−j) + nc45 (3.42)

≤ h(YK
−j|Yj)− h(YK

−j|Yj,X
K
1 ) + nc45 (3.43)

= h(YK
−j|Yj)− h(NK

−j|Yj,X
K
1 ) + nc45 (3.44)

≤ h(YK
−j|Yj) + nc46 (3.45)

= h(YK
−j,Yj)− h(Yj) + nc46 (3.46)

= h(YK
1 )− h(Yj) + nc46 (3.47)

where WK
−j
4
= {Wi}Ki=1,i 6=j is the message set containing all unintended messages with

respect to receiver j, XK
−j
4
= {Xi}Ki=1,i 6=j and YK

−j
4
= {Yi}Ki=1,i 6=j.

For each j, we introduce X̃j = Xj + Ñj, where Ñj is an i.i.d. sequence of

Ñj which is a zero-mean Gaussian random variable with variance σ2
j < mini 1/h

2
ji.

Also, {Ñj}Kj=1 are mutually independent, and are independent of all other random
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variables. Continuing from (3.47),

n
K∑

i=1,i 6=j
Ri ≤ h(X̃K

1 ,Y
K
1 )− h(X̃K

1 |YK
1 )− h(Yj) + nc46 (3.48)

≤ h(X̃K
1 ,Y

K
1 )− h(X̃K

1 |YK
1 ,X

K
1 )− h(Yj) + nc46 (3.49)

= h(X̃K
1 ,Y

K
1 )− h(ÑK

1 )− h(Yj) + nc46 (3.50)

≤ h(X̃K
1 ,Y

K
1 )− h(Yj) + nc47 (3.51)

= h(X̃K
1 ) + h(YK

1 |X̃K
1 )− h(Yj) + nc47 (3.52)

≤ h(X̃K
1 )− h(Yj) + nc48 (3.53)

where the last inequality is due to the fact that h(YK
1 |X̃K

1 ) ≤ nc′, i.e., given all the

channel inputs (disturbed by small Gaussian noises), the channel outputs can be

reconstructed, which is shown as follows

h(YK
1 |X̃K

1 ) ≤
K∑
j=1

h(Yj|X̃K
1 ) (3.54)

=
K∑
j=1

h

(
K∑
i=1

hij(X̃i − Ñi) + Nj

∣∣∣∣∣X̃K
1

)
(3.55)

=
K∑
j=1

h

(
−

K∑
i=1

hijÑi + Nj

∣∣∣∣∣X̃K
1

)
(3.56)

≤
K∑
j=1

h

(
−

K∑
i=1

hijÑi + Nj

)
(3.57)

4
= nc49 (3.58)

We apply the role of a helper lemma, Lemma 3.1, to each X̃i with k = i + 1
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(for i = K, k = 1), in (3.53) as

n
K∑

i=1,i 6=j
Ri ≤ h(X̃K

1 )− h(Yj) + nc14 (3.59)

≤
K∑
i=1

h(X̃i)− h(Yj) + nc14 (3.60)

≤
K−1∑
i=1

[
h(Yi+1)− nRi+1

]
+
[
h(Y1)− nR1

]
− h(Yj) + nc50 (3.61)

=
K∑
i=1

[
h(Yi)− nRi

]
− h(Yj) + nc50 (3.62)

By noting that h(Yi) ≤ n
2

logP + nc′i for each i, we have

nRj + 2n
K∑

i=1,i 6=j
Ri ≤

K∑
i=1,i 6=j

h(Yi) + nc50 (3.63)

≤ (K − 1)
(n

2
logP

)
+ nc51 (3.64)

for j = 1, . . . , K. Therefore, we have a total of K bounds in (3.64) for j = 1, . . . , K.

Summing these K bounds, we obtain:

(2K − 1)n
K∑
i=1

Ri ≤ K(K − 1)
(n

2
logP

)
+ nc52 (3.65)

which gives

Ds,Σ ≤
K(K − 1)

2K − 1
(3.66)

completing the converse for IC-CM.
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3.6 Achievability

In this section, we provide achievability for theK-user IC-CM-EE (see Figure 1.8(c)),

which will imply achievability for K-user IC-EE and K-user IC-CM. We will prove

that, for almost all channel gains, a sum s.d.o.f. lower bound of

Ds,Σ ≥
K(K − 1)

2K − 1
(3.67)

is achievable for the K-user IC-CM-EE.

3.6.1 Background

In this section, we will summarize the achievability scheme for the two-user IC-

CM in Section 2.7, Chapter 2, motivate the need for simultaneous alignment of

multiple signals at multiple receivers in this K-user case, and provide an example of

simultaneously aligning two signals at two receivers via asymptotic real alignment

[52]. We provide the general achievable scheme for K > 2 in Section 3.6.2 via

cooperative jamming and asymptotic real alignment, and show that it achieves the

sum s.d.o.f. in (3.67) via a detailed performance analysis in Section 3.6.3.

In the achievable scheme for K = 2 in Chapter 2, four mutually independent

discrete random variables {V1, U1, V2, U2} are employed (see Figure 2.4 in Chapter 2).

Each of them is uniformly and independently drawn from the discrete constellation

C(a,Q) given in (2.73). The role of Vi is to carry message Wi, and the role of Ui

is to cooperatively jam receiver i to help transmitter-receiver pair j, where j 6= i,
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for i, j = 1, 2. By carefully selecting the transmit coefficients, U1 and V2 are aligned

at receiver 1, and U2 and V1 are aligned at receiver 2; and therefore, U1 protects

V2, and U2 protects V1. By this signalling scheme, information leakage rates are

upper bounded by constants, and the message rates are made to scale with power

P , reaching the s.d.o.f. capacity of the two-user IC-CM which is 2
3
.

Here, for the K-user IC-CM-EE, we employ a total of K2 random variables,

Vij, i, j = 1, . . . , K, j 6= i (3.68)

Uk, k = 1, . . . , K (3.69)

which are illustrated in Figure 3.1 for the case of K = 3. The scheme proposed here

has two major differences from Chapter 2, Section 2.7: 1) Instead of using a single

random variable to carry a message, we use a total of K−1 random variables to carry

each message. For transmitter i, K−1 random variables {Vij}j 6=i, each representing a

sub-message, collectively carry message Wi. 2) Rather than protecting one message

at one receiver, each Uk simultaneously protects a portion of all sub-messages at

all required receivers. More specifically, Uk protects {Vik}i 6=k,i6=j at receivers j, and

at the eavesdropper (if there is any). For example, in Figure 3.1, U1 protects V21

and V31 where necessary. In particular, U1 protects V21 at receivers 1, 3 and the

eavesdropper; and it protects V31 at receivers 1, 2 and the eavesdropper. As a

technical challenge, this requires U1 to be aligned with the same signal, say V21,

at multiple receivers simultaneously, i.e., at receivers 1, 3 and the eavesdropper.

These particular alignments are circled by ellipsoids in Figure 3.1. We do these
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Figure 3.1: Illustration of alignment for 3-user IC-CM-EE. U1 and V21 are marked
to emphasize their simultaneous alignment at Y1, Y3 and Z.

simultaneous alignments using asymptotic real alignment technique proposed in [52]

and used in [29, 53].

For illustration purposes, in the rest of this section, we demonstrate how we

can align two signals at two receivers simultaneously; in particular, we will align U1

with V21 at Y1 and Y3, simultaneously. Towards this end, we will further divide the

random variable V21, which represents a sub-message, into a large number of random

variables denoted as V21
4
= {v21t : t = 1, . . . , |T1|}. We then send each one of these

random variables after multiplying it with one of the coefficients in the following set

which serves as the set of dimensions :

T1 =
{
hr1111 h

r21
21 h

r13
13 h

r23
23 : r11, r21, r13, r23 ∈ {1, . . . ,m}

}
(3.70)

107



where m is a large constant. To perform the alignment, we let U1 have the same

detailed structure as V21, i.e., U1 is also divided into a large number of random

variables as U1
4
= {u1t : t = 1, . . . , |T1|}. At receiver 1, the elements of U1 from

transmitter 1 occupy the dimensions h11T1 and the elements of V21 from transmitter

2 occupy the dimensions h21T1. Although these two sets are not the same, their

intersection contains nearly as many elements as T1, i.e.,

|h11T1 ∩ h21T1| = m2(m− 1)2 ≈ m4 = |T1| (3.71)

when m is large, i.e., almost all elements of U1 and V21 are asymptotically aligned

at receiver 1. The same argument applies for receiver 3. At receiver 3, the elements

of U1 from transmitter 1 occupy the dimensions h13T1 and the elements of V21 from

transmitter 2 occupy the dimensions h23T1. Again, although these two sets are not

the same, their intersection contains nearly as many elements as T1. Therefore,

almost all elements of U1 and V21 are aligned at receivers 1 and 3, simultaneously.

These simultaneous alignments are depicted in Figure 3.2. In the following section,

we use this basic idea to align multiple signals at multiple receivers simultaneously.

This will require a more intricate design of signals and dimensions.

3.6.2 General Achievable Scheme via Asymptotic Alignment

Here, we give the general achievable scheme for the K-user IC-CM-EE. Let m be

a large constant. Let us define sets Ti, for i = 1, . . . , K, which will represent
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Figure 3.2: Illustration of alignment at multiple receivers.

dimensions as follows:

Ti
4
=

{
hriiii

(
K∏

j,k=1,j 6=k
h
rjk
jk

)(
K∏
j=1

g
sj
j

)
: rjk, sj ∈ {1, . . . ,m}

}
(3.72)

Let Mi be the cardinality of Ti. Note that all Mi are the same, thus we denote them

as M ,

M
4
= m1+K(K−1)+K = mK2+1 (3.73)

For each transmitter i, for j 6= i, let tij be the vector containing all the elements

in the set Tj. Therefore, tij is an M -dimensional vector containing M rationally

independent real numbers in Tj. The sets tij will represent the dimensions along

which message signals are transmitted. In particular, for any given (i, j) with i 6= j,

tij will represent the dimensions in which message signal Vij is transmitted. In

addition, for each transmitter i, let t(i) be the vector containing all the elements

in the set Ti. Therefore, t(i) is an M -dimensional vector containing M rationally

independent real numbers in Ti. The sets t(i) will represent the dimensions along

which cooperative jamming signals are transmitted. In particular, for any given i, t(i)

will represent the dimensions in which cooperative jamming signal Ui is transmitted.
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Let us define a KM dimensional vector bi by stacking tij and t(i) as

bTi =
[
tTi1, . . . , t

T
i,i−1, t

T
i,i+1, . . . , t

T
iK , t

T
(i)

]
(3.74)

Then, transmitter i generates a vector ai, which contains a total of KM discrete

signals each identically and independently drawn from C(a,Q). For convenience,

we partition this transmitted signal as

aTi =
[
vTi1, . . . ,v

T
i,i−1,v

T
i,i+1, . . . ,v

T
iK ,u

T
i

]
(3.75)

where vij represents the information symbols in Vij, and ui represents the cooper-

ative jamming signal in Ui. Each of these vectors has length M , and therefore, the

total length of ai is KM . The channel input of transmitter i is

xi = aTi bi (3.76)

Before we investigate the performance of this signalling scheme in Section 3.6.3,

we analyze the structure of the received signal at the receivers. Without loss of

generality we will focus on receiver 1; by symmetry, a similar structure will exist

at all other receivers. We observe that in addition to the additive Gaussian noise,

receiver 1 receives all the vectors vjk for all j, k (j 6= k) and ui for all i. All of

these signals get multiplied with the corresponding channel gains before they arrive

at receiver 1. Due to the specific signalling structure used at the transmitters, and

the multiplications with different channel gains over the wireless communication
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channel, the signals arrive at the receiver lying in various different dimensions.

To see the detailed structure of the received signals at the receivers, let us

define T̃i as a superset of Ti, as follows

T̃i
4
=

{
hriiii

(
K∏

j,k=1,j 6=k
h
rjk
jk

)(
K∏
j=1

g
sj
j

)
: rjk, sj ∈ {1, . . . ,m+ 1}

}
(3.77)

The information symbols coming from transmitter 1 are in vectors v12,v13,

. . ., v1K which are multiplied by coefficients in t12, t13, . . . , t1K before they are sent.

These coefficients come from sets T2, T3, . . . , TK , respectively. After going through

the channel, all of these coefficients get multiplied by h11. Therefore, the receiving

coefficients of v12,v13, . . . ,v1K are h11t12, h11t13, . . . , h11t1K , which are the dimen-

sions in the sets h11T2, h11T3, . . . , h11TK , respectively. By construction, since each Ti

has powers of hii in it (but no hjj), these dimensions are separate. These correspond

to separate boxes of V12 and V13 at receiver 1 in Figure 3.1 for the example case of

K = 3.

On the other hand, all of the cooperative jamming signals from all of the trans-

mitters u1,u2, . . . ,uK come to receiver 1 with received coefficients h11t(1), h21t(2),

. . ., hK1t(K), which are the dimensions in the sets h11T1, h21T2, . . . , hK1TK , respec-

tively. We note that all of these dimensions are separate among themselves, and they

are separate from the dimensions of the message signals coming from transmitter 1.

That is, all of the dimensions in h11T2, h11T3, . . . , h11TK and h11T1, h21T2, . . . , hK1TK

are all mutually different, again owing to the fact that each Ti contains powers of

hii in it. These correspond to separate boxes of V12, V13, U1, U2 and U3 at receiver
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1 in Figure 3.1 for the example case of K = 3.

Next, we note that each ui is aligned together with all of the vji coming from

the jth transmitter, with j 6= i and j 6= 1, at receiver 1. Note that ui occupies

dimensions hi1Ti and vji (for any j 6= i and j 6= 1) occupies dimensions hj1Ti at

receiver 1. From the arguments in Section 3.6.1, ui and vji (with j 6= i and j 6= 1)

are asymptotically aligned. More formally, we note that ui occupies dimensions hi1Ti

which is contained in T̃i. Similarly, all vji, with j 6= i and j 6= 1, occupy dimensions

hj1Ti, respectively, which are all contained in T̃i. Therefore, ui and all vji (with j 6= i

and j 6= 1) are all aligned along T̃i. These alignments are shown as U1 being aligned

with V21 and V31; U2 being aligned with V32; and U3 being aligned with V23 at receiver

1 in Figure 3.1 for the example case of K = 3. Further, we note that, since only Ti

and T̃i contain powers of hii, the dimensions h11T2, h11T3, . . . , h11TK , T̃1, T̃2, . . . , T̃K

are all separable. This implies that all the elements in the set

R1
4
=

(
K⋃
j=2

h11Tj

)⋃(
K⋃
j=2

T̃j

)⋃
T̃1 (3.78)

are rationally independent, and thereby the cardinality of R1 is

MR
4
= |R1| = (K − 1)m1+K(K−1)+K +K(m+ 1)1+K(K−1)+K (3.79)

= (K − 1)mK2+1 +K(m+ 1)K
2+1 (3.80)
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3.6.3 Performance Analysis

We will compute the secrecy rates achievable with the asymptotic alignment based

scheme proposed in Section 3.6.2 by using the following theorem.

Theorem 3.2 For K-user interference channels with confidential messages and one

external eavesdropper, the following rate region is achievable

Ri ≥ I(Vi;Yi)− max
j∈K0,−i

I(Vi;Yj|V K
−i), i = 1, . . . , K (3.81)

where for convenience we denote Z by Y0, V K
−i
4
= {Vj}Kj=1,j 6=i and K0,−i = {0, 1, . . . , i−

1, i+ 1, . . . , K}. The auxiliary random variables {Vi}Ki=1 are mutually independent,

and for each i, we have the following Markov chain Vi → Xi → (Y1, . . . , YK).

In developing the achievable rates in Theorem 3.2, we focus on a single trans-

mitter, say i, and consider the compound setting associated with message Wi, where

this message needs to be secured against a total of K eavesdroppers, with K − 1 of

them being the other legitimate receivers (j 6= i) and the remaining one being the

external eavesdropper (j = 0). A proof of this theorem is given in Appendix 3.8.1.

We apply Theorem 3.2 to our alignment based scheme proposed in Section 3.6.2

by selecting Vi used in (3.81) as

Vi
4
= (vTi1, . . . ,v

T
i,i−1,v

T
i,i+1, . . . ,v

T
iK) (3.82)

for i = 1, . . . , K. For any δ > 0, if we choose Q = P
1−δ

2(MR+δ) and a = γP
1
2

Q
, based on

Lemma 2.3 in Chapter 2, the probability of error of estimating Vi based on Yi can
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be upper bounded by a function decreasing exponentially fast in P , by choosing a

γ, a positive constant independent of P to normalize the average power of the input

signals, as

0 < γ ≤ 1∑
t∈bi |t|

=
1∑K

i=1

∑
ti∈Ti |ti|

(3.83)

Furthermore, by Fano’s inequality, we can conclude that

I(Vi;Yi) ≥
(K − 1)mK2+1(1− δ)

MR + δ

(
1

2
logP

)
+ o(logP ) (3.84)

=
(K − 1)(1− δ)

K − 1 +K
(
1 + 1

m

)K2+1
+ δ

mK2+1

(
1

2
logP

)
+ o(logP ) (3.85)

where o(·) is the little-o function. This provides a lower bound for the first term in

(3.81).

Next, we need to derive an upper bound for the second item in (3.81), i.e,

the secrecy penalty. For any i ∈ K = {1, . . . , K} and j ∈ K−i = {1, . . . , i − 1, i +

1, . . . , K}, by the Markov chain Vi → (
∑K

k=1 hkjXkj, V
K
−i)→ Yj,

I(Vi;Yj|V K
−i) ≤ I

(
Vi;

K∑
k=1

hkjXk

∣∣∣V K
−i

)
(3.86)

= H

(
K∑
k=1

hkjXk

∣∣∣V K
−i

)
−H

(
K∑
k=1

hkjXk

∣∣∣V K
1

)
(3.87)
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where V K
1 = {V1, . . . , VK}. The first term in (3.87) can be rewritten as

H

(
K∑
k=1

hkjXk

∣∣∣V K
−i

)
= H

 K∑
k=1

hkju
T
k t(k) +

K∑
k=1
k 6=i

hijv
T
iktik

 (3.88)

= H

hijuTi t(i) +
K∑
k=1
k 6=i

[
hijv

T
iktik + hkju

T
k t(k)

] (3.89)

Note that, for a given k, the vectors tik and t(k) represent the same dimensions Tk,

and hij, hkj ∈ Tk for all k 6= i, which implies that hijTk, hkjTk ∈ T̃k. In addition, for

each k, we note that a large part of the two sets hijTk and hkjTk are the same, i.e.,

∣∣∣hijTk⋂hkjTk

∣∣∣ = mK2−1(m− 1)2 4= Mδ (3.90)

115



Therefore, the first term in (3.87) can be further upper bounded as

H

(
K∑
k=1

hkjXk

∣∣∣V K
−i

)

= H

hijuTi t(i) +
K∑
k=1
k 6=i

[
hijv

T
iktik + hkju

T
k t(k)

] (3.91)

≤ log
[
(2Q+ 1)M(4Q+ 1)(K−1)Mδ(2Q+ 1)2(K−1)(M−Mδ)

]
(3.92)

≤ log
[
QM+(K−1)Mδ+2(K−1)(M−Mδ)

]
+ o(logP ) (3.93)

≤ [M + (K − 1)Mδ + 2(K − 1)(M −Mδ)] (1− δ)
(K − 1)mK2+1 +K(m+ 1)K2+1 + δ

(
1

2
logP

)
+ o(logP ) (3.94)

≤

{
1 + (K − 1)

(
1− 1

m

)2
+ 2(K − 1)

[
1−

(
1− 1

m

)2
]}

(1− δ)

K − 1 +K
(
1 + 1

m

)K2+1
+ δ

mK2+1

(
1

2
logP

)

+ o(logP ) (3.95)

The second term in (3.87) is exactly the entropy of {uk}Kk=1 vectors, i.e.,

H

(
K∑
k=1

hkjXk|V K
1

)
= H

(
K∑
k=1

hkju
T
k t(k)

)
(3.96)

= log(2Q+ 1)KM (3.97)

=
KmK2+1(1− δ)

(K − 1)mK2+1 +K(m+ 1)K2+1 + δ

(
1

2
logP

)
+ o(logP ) (3.98)

=
K(1− δ)

K − 1 +K
(
1 + 1

m

)K2+1
+ δ

mK2+1

(
1

2
logP

)
+ o(logP )

(3.99)
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Substituting (3.95) and (3.99) into (3.87), we get

I(Vi;Yj|V K
−i)

≤ H

(
K∑
k=1

hkjXk

∣∣∣V K
−i

)
−H

(
K∑
k=1

hkjXk

∣∣∣V K
1

)
(3.100)

≤

{
1 + (K − 1)

(
1− 1

m

)2
+ 2(K − 1)

[
1−

(
1− 1

m

)2
]
−K

}
(1− δ)

K − 1 +K
(
1 + 1

m

)K2+1
+ δ

mK2+1

(
1

2
logP

)

+ o(logP ) (3.101)

≤ K 2m−1
m2 (1− δ)

K − 1 +K
(
1 + 1

m

)K2+1
+ δ

mK2+1

(
1

2
logP

)
+ o(logP ) (3.102)

We note that by choosing m large enough, the factor before the 1
2

logP term can be

made arbitrarily small. Due to the non-perfect (i.e., only asymptotical) alignment,

the upper bound for the information leakage rate is not a constant as in Section 2.7,

(2.181), but a function which can be made to approach zero d.o.f.

For any i ∈ K and j = 0, i.e., Y0 = Z the external eavesdropper, we should

derive a new upper bound for the second term in (3.87), i.e., I(Vi;Z|V K
−i). By similar

steps, we have

I(Vi;Z|V K
−i) ≤ I

(
Vi;

K∑
k=1

gkXk

∣∣∣V K
−i

)
(3.103)

= H

(
K∑
k=1

gkXk

∣∣∣V K
−i

)
−H

(
K∑
k=1

gkXk

∣∣∣V K
1

)
(3.104)

= H

(
K∑
k=1

gkXk

∣∣∣V K
−i

)
−H

(
K∑
k=1

gku
T
k t(k)

)
(3.105)

= H

(
K∑
k=1

gkXk

∣∣∣V K
−i

)
− log(2Q+ 1)KM (3.106)
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Here, we need to upper bound the first item in (3.106). We first observe that

H

(
K∑
k=1

gkXk

∣∣∣V K
−i

)
= H

 K∑
k=1

gku
T
k t(k) +

K∑
k=1
k 6=i

giv
T
iktik

 (3.107)

= H

giuTi t(i) +
K∑
k=1
k 6=i

[
gku

T
k t(k) + giv

T
iktik

] (3.108)

Firstly, note that, t(k) and tik represent the same set Tk. Therefore, for different k,

the dimensions are distinguishable. Secondly, due to reasons similar to (3.90), we

conclude that

H

(
K∑
k=1

gkXk

∣∣∣V K
−i

)
= H

giuTi t(i) +
K∑
k=1
k 6=i

[
gku

T
k t(k) + giv

T
iktik

] (3.109)

≤ log
[
(2Q+ 1)M(4Q+ 1)(K−1)Mδ(2Q+ 1)2(K−1)(M−Mδ)

]
(3.110)

≤ log
[
QM+(K−1)Mδ+2(K−1)(M−Mδ)

]
+ o(logP ) (3.111)

≤ [M + (K − 1)Mδ + 2(K − 1)(M −Mδ)] (1− δ)
(K − 1)mK2+1 +K(m+ 1)K2+1 + δ

(
1

2
logP

)
+ o(logP ) (3.112)

Substituting (3.112) into (3.106), we attain an upper bound which is the same as

the upper bound for I(Vi;Yj|V K
−i), i.e.,

I(Vi;Z|V K
−i) ≤

K 2m−1
m2 (1− δ)

K − 1 +K
(
1 + 1

m

)K2+1
+ δ

mK2+1

(
1

2
logP

)
+ o(logP ) (3.113)
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Substituting (3.85), (3.102), and (3.113) into (3.81), we obtain a lower bound

for the achievable secrecy rate Ri as

Ri ≥
[
(K − 1)−K

(
2m−1
m2

)]
(1− δ)

K − 1 +K
(
1 + 1

m

)K2+1
+ δ

mK2+1

(
1

2
logP

)
+ o(logP ) (3.114)

By choosing m→∞ and δ → 0, we can achieve secrecy sum rates arbitrarily close

to K−1
2K−1

(
1
2

logP
)
, thereby achieving the sum s.d.o.f. lower bound in (3.67).

3.7 Conclusions

In this chapter, we studied secure communications in K-user Gaussian interference

networks from an information-theoretic point of view, and addressed three impor-

tant channel models: IC-EE, IC-CM and their combination IC-CM-EE in a unified

framework. We showed that, for all three models, the sum s.d.o.f. is exactly K(K−1)
2K−1

.

Our achievability is based on structured signalling, structured cooperative jamming,

channel prefixing and asymptotic real interference alignment. The key insight of the

achievability is to carefully design the structure of all of the signals at the transmit-

ters so that the signals are received at both legitimate receivers and eavesdroppers in

the most desirable manner from a secure communication point of view. In particu-

lar, cooperative jamming signals protect information carrying signals via alignment,

and the information carrying signals are further aligned to maximize s.d.o.f.
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3.8 Appendix

3.8.1 Proof of Theorem 3.2

We first provide an outline of the proof. Our proof will combine and extend tech-

niques from [5] and [25]. Our approach has three main components. First, as in [5],

we condition the mutual information representing the secrecy leakage rate on the

signals that carry the messages of other transmitter-receiver pairs. That is, for any

given i, we condition the subtracted mutual information term in (3.81) on V K
−i . This

creates enhanced eavesdroppers. If we can guarantee secrecy against these enhanced

eavesdroppers, we can guarantee secrecy against the original eavesdroppers. More

specifically, for the leakage rate of message of transmitter i at receiver j, with j 6= i,

we use

I(Vi;Yj|V K
−i) = I(Vi;Yj, V

K
−i)

4
= I(Vi; Ỹj) (3.115)

where Ỹj
4
= (Yj, V

K
−i) is the output of an enhanced eavesdropper with respect to

message Wi. Second, as in [25], we consider the secrecy rate achievable against the

strongest enhanced eavesdropper for each message. Therefore, as argued in [25, Ap-

pendex A], if we can guarantee a secrecy rate against the strongest eavesdropper, we

can guarantee this secrecy rate against the original eavesdroppers. More specifically,

let Y (i) be an element of the set {Y1, . . . , Yk, Z}\{Yi} such that

I(Vi;Y
(i)|V K

−i) = max
j∈K0,−i

(Vi;Yj|V K
−i) (3.116)
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That is, Y (i) is the strongest eavesdropper with respect to transmitter i. The achiev-

able rate in (3.81) considers the strongest eavesdropper for each message. Therefore,

for each transmitter i, we construct a compound wiretap code as in [25]. Third, we

prove secrecy for each message Wi, via the following equivocation inequality

1

n
H(Wi|Y(i),VK

−i) ≥
1

n
H(Wi)− ε(i), i = 1, . . . , K (3.117)

for some arbitrarily small number ε(i). Here, as in the main body of the chapter, we

denote n-length sequences with boldface letters. The secrecy constraints in (3.117)

fit the created equivalent view of the channel better. As we show next, secrecy

constraints in (3.117) imply our original secrecy constraints in (3.4) and (3.5).

Towards this end, first note that, for each i,

1

n
H(Wi|Yj,V

K
−i) ≥

1

n
H(Wi|Y(i),VK

−i) ≥
1

n
H(Wi)− ε(i) (3.118)

for all j ∈ K0,−i since Y (i) is the strongest eavesdropper with respect to transmitter

i and by using the enhanced eavesdropper argument in [25, Appendix A]. Then, the

fact that (3.117) for all i implies the original secrecy constraints in (3.4) and (3.5)
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follows from the following derivation:

H(WK
−j|Yj) ≥ H(WK

−j|Yj,Wj) (3.119)

≥
∑
i 6=j

H(Wi|Yj,W
K
−i) (3.120)

≥
∑
i 6=j

H(Wi|Yj,V
K
−i,W

K
−i) (3.121)

=
∑
i 6=j

H(Wi|Yj,V
K
−i) (3.122)

≥
∑
i 6=j

H(Wi|Y(i),VK
−i) (3.123)

≥
∑
i 6=j

[
H(Wi)− nε(i)

]
(3.124)

= H(WK
−j)− nε(−j) (3.125)

where (3.122) is due to the Markov chain WK
−i → (Yj,V

K
−i)→ Wi. Similarly,

H(WK |Z) ≥
∑
i

H(Wi|Z,WK
−i) (3.126)

≥
∑
i

H(Wi|Z,VK
−i,W

K
−i) (3.127)

=
∑
i

H(Wi|Z,VK
−i) (3.128)

≥
∑
i

H(Wi|Y(i),VK
−i) (3.129)

≥
∑
i

[
H(Wi)− nε(i)

]
(3.130)

= H(WK)− nε(Z) (3.131)
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where ε(Z) is small for sufficiently large n.

We start by choosing the following rates for the secure and confusion messages

of transmitter i:

Ri = I(Vi;Yi)− I(Vi;Y
(i)|V K

−i)− ε (3.132)

Rc
i = I(Vi;Y

(i)|V K
−i)− ε (3.133)

Transmitter i generates 2n(Ri+R
c
i ) independent sequences each with probability

p(vi) =
n∏
t=1

p(vit) (3.134)

and constructs a codebook as

Ci
4
=
{

vi(wi, w
c
i ) : wi ∈ {1, . . . , 2nRi}, wci ∈ {1, . . . , 2nR

c
i}
}

(3.135)

To transmit a message wi, transmitter i chooses an element vi from the sub-codebook

Ci(wi)

Ci(wi)
4
=
{

vi(wi, w
c
i ) : wci ∈ {1, . . . , 2nR

c
i}
}

(3.136)

and generates a channel input sequence based on

p(xi|vi) (3.137)

Due to the code construction, we have Ri+Rc
i < I(Vi;Yi), for all i. Therefore,
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for sufficiently large ni, we can find a codebook such that the probability of error at

the corresponding receiver i can be upper bounded by an arbitrarily small number,

i.e., Pr(ei)
(ni) ≤ ε. Then, let n = maxi ni, which gives maxi Pr(ei)

(n) ≤ ε.

For the equivocation calculation, we consider the following conditional entropy

as discussed before:

H(Wi|Y(i),VK
−i) = H(Wi,Y

(i)|VK
−i)−H(Y(i)|VK

−i) (3.138)

= H(Wi,Vi,Y
(i)|VK

−i)−H(Vi|Wi,Y
(i),VK

−i)

−H(Y(i)|VK
−i) (3.139)

= H(Wi,Vi|VK
−i) +H(Y(i)|Wi,Vi,V

K
−i)−H(Vi|Wi,Y

(i),VK
−i)

−H(Y(i)|VK
−i) (3.140)

= H(Wi,Vi|VK
−i)−H(Vi|Wi,Y

(i),VK
−i)

+H(Y(i)|Vi,V
K
−i)−H(Y(i)|VK

−i) (3.141)

where the last equality is due to the Markov chain Wi → (Vi,V
K
−i)→ Y(i).

The first term in (3.141) is exactly the entropy of codebook Ci

H(Vi) = n(Ri +Rc
i ) (3.142)

To bound the second term in (3.141), we have the following observation: Given

the message Wi = wi and the received sequences Y(i) = y(i) and genie-aided se-

quences VK
−i = vK−i, receiver Y (i) can decode the codeword vi(wi, w

c
i ) with arbitrar-

ily small probability of error λ(wi)
(n) as n gets very large. More formally: by giving
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Wi = wi,V
K
−i = vK−i, receiver Y (i) decodes Vi if there is a unique wci such that

(
vi(wi, w

c
i ),y

(i)
)
∈ T (n)

ε (PV1,Y (i)|V K−i) (3.143)

Otherwise, the receiver declares an error. Without loss of generality, we assume that

vi(wi, w
c
1) is sent and denote the event

{
(vi(wi, w

c
j),y

(i)) ∈ T (n)
ε (PV1,Y (i)|V K−i)

}
as Ej.

Therefore, the probability of error λ(wi)
(n) can be bounded as

λ(wi)
(n) ≤ Pr(Ec

1) +
∑
j 6=1

Pr(Ej) (3.144)

where the probability here is conditioned on the event that vi(wi, w
c
1) is sent. By

joint typicality, we know that Pr(Ec
1) ≤ ε1 for sufficiently large n, and

Pr(Ej) ≤ 2nH(Vi,Y
(i)|V K−i)−nH(Vi)−nH(Y (i)|V K−i)−nε2 = 2−nI(VI ;Y (i)|V K−i)−nε2 (3.145)

Hence,

λ(wi)
(n) ≤ ε1 + 2nR

c
i2−nI(VI ;Y (i)|V K−i)−nε2 (3.146)

Note that Rc
i = I(Vi;Y

(i)|V K
−i) − ε. Therefore, we can conclude that λ(wi)

(n) ≤ ε3

for sufficiently large n, which by Fano’s inequality further implies that

H(Vi|Wi,Y
(i),VK

−i) =
∑

Wi=wi,Y(i)=y(i),VK
−i=vK−i

H(Vi|wi,y(i),vK−i) ≤ nε4 (3.147)
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The third term in (3.141) can be lower bounded as follows:

H(Y(i)|Vi,V
K
−i) =

∑
vi,vK−i

Pr(Vi = vi)Pr(VK
−i = vK−i)H(Y(i)|Vi = vi,V

K
−i = vK−i)

(3.148)

≥
∑

(vi,vK−i)∈T
(n)
ε (P

Vi,V
K
−i

)

[
Pr(Vi = vi)Pr(VK

−i = vK−i)

H(Y(i)|Vi = vi,V
K
−i = vK−i)

]
(3.149)

≥
∑

(vi,vK−i)∈T
(n)
ε (P

Vi,V
K
−i

)

[
Pr(Vi = vi)Pr(VK

−i = vK−i)

∑
(a,b)∈Vi×VK−i

N(a, b|vi,vK−i)
∑

y(i)∈Y(i)

−p(y(i)|a, b) log p(y(i)|a, b)
]

(3.150)

≥
∑

(vi,vK−i)∈T
(n)
ε (P

Vi,V
K
−i

)

[
Pr(Vi = vi)Pr(VK

−i = vK−i)

∑
(a,b)∈Vi×VK−i

n
(

Pr(Vi = a, V K
−i = b)− ε5

)
∑

y(i)∈Y(i)

−p(y(i)|a, b) log p(y(i)|a, b)
]

(3.151)

≥
∑

(vi,vK−i)∈T
(n)
ε (P

Vi,V
K
−i

)

n
[
Pr(Vi = vi)Pr(VK

−i = vK−i)

·H(Y (i)|Vi, V K
−i)− ε6

]
(3.152)

≥ (1− ε7)nH(Y (i)|Vi, V K
−i)− nε8 (3.153)

≥ nH(Y (i)|Vi, V K
−i)− nε9 (3.154)
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To compute the forth term in (3.141), we define

Ŷ(i) =


Y(i), if (vK−i,y

(i)) ∈ T (n)
ε (PV K−i,Y (i))

arbitrary, otherwise

(3.155)

Then, we obtain

H(Y(i)|VK
−i) =

∑
vK−i

Pr(VK
−i = vK−i)H(Y(i)|VK

−i = vK−i) (3.156)

≤
∑
vK−i

Pr(VK
−i = vK−i)H(Y(i), Ŷ(i)|VK

−i = vK−i) (3.157)

=
∑
vK−i

Pr(VK
−i = vK−i)

[
H(Ŷ(i)|VK

−i = vK−i) +H(Y(i)|VK
−i = vK−i, Ŷ

(i))
]

(3.158)

≤ nH(Y (i)|V K
−i) + nε10 +

∑
vK−i

[
Pr(VK

−i = vK−i)H(Y(i)|VK
−i = vK−i, Ŷ

(i))
]

(3.159)

Combining Fano’s inequality and the fact that

Pr(Y(i) 6= Ŷ(i)) ≤ Pr
{

(VK
−i,Y

(i)) 6∈ T (n)
ε (PV K−i,Y (i))

}
(3.160)

is arbitrarily small for sufficiently large n, (3.159) implies

H(Y(i)|VK
−i) ≤ nH(Y (i)|V K

−i) + nε10 + nε11 (3.161)

Substituting (3.142), (3.147), (3.154), and (3.161) into (3.141), we conclude
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that

H(Wi|Y(i),VK
−i) ≥ H(Wi)− nε(i) (3.162)

where ε(i) is small for sufficiently large n, which completes the proof.
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Chapter 4

Secure Degrees of Freedom Region of Wireless Networks: The

Polytope Structure

4.1 Introduction

In Chapters 2 and 3, we have studied the sum s.d.o.f. of multiple-transmitter

multiple-receiver one-hop wireless networks. In this chapter, we study the entire

s.d.o.f. regions of two important multi-user wireless network structures: The K-

user Gaussian MAC wiretap channel and K-user IC with secrecy constraints. The

converse for the MAC follows from a middle step in the converse of the sum s.d.o.f. in

Chapter 2. The converse for the IC includes constraints both due to secrecy as well

as due to interference. In order to prove the achievability, we use the polytope

structure of the converse regions. In both MAC and IC cases, we develop explicit

schemes that achieve the extreme points of the polytope regions given by the con-

verse. Specifically, the extreme points of the MAC region are achieved by an m-user

MAC wiretap channel with K − m helpers. The extreme points of the IC region

are achieved by a (K − m)-user IC with confidential messages, m helpers, and N

external eavesdroppers, for m ≥ 1 and a finite N .
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4.2 System Model, Definitions and the Result

4.2.1 K-user Gaussian MAC Wiretap Channel

The K-user Gaussian MAC wiretap channel (see Figure 1.6) is:

Y1 =
K∑
i=1

hiXi +N1 (4.1)

Y2 =
K∑
i=1

giXi +N2 (4.2)

where Y1 is the channel output of the legitimate receiver, Y2 is the channel output of

the eavesdropper, Xi is the channel input of transmitter i, hi and gi are the channel

gains of transmitter i to the legitimate receiver and the eavesdropper, respectively,

andN1 andN2 are independent Gaussian random variables with zero-mean and unit-

variance. All channel gains are independently drawn from continuous distributions,

and are time-invariant throughout the communication session. We further assume

that all hi and gi are non-zero. All channel inputs satisfy average power constraints,

E [X2
i ] ≤ P , for i = 1, . . . , K.

Each transmitter i has a message Wi intended for the legitimate receiver. For

each i, message Wi is uniformly and independently chosen from set Wi. The rate of

message i is Ri
4
= 1

n
log |Wi|. Transmitter i uses a stochastic function fi :Wi → Xi

where the n-length vector Xi
4
= Xn

i denotes the ith user’s channel input in n channel

uses. All messages are needed to be kept secret from the eavesdropper. A secrecy

rate tuple (R1, . . . , RK) is said to be achievable if for any ε > 0 there exist n-length

codes such that the legitimate receiver can decode the messages reliably, i.e., the
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probability of decoding error is less than ε

Pr
[
(W1, . . . ,WK) 6= (Ŵ1, . . . , ŴK)

]
≤ ε (4.3)

and the messages are kept information-theoretically secure against the eavesdropper

1

n
H(W1, . . . ,WK |Y2) ≥ 1

n
H(W1, . . . ,WK)− ε (4.4)

where Ŵ1, . . . , ŴK are the estimates of the messages based on observation Y1, where

Y1
4
= Y n

1 and Y2
4
= Y n

2 .

The s.d.o.f. region is defined as:

D =
{

d : (R1, . . . , RK) is achievable and di
4
= lim

P→∞

Ri

1
2

logP
, i = 1, . . . , K

}
(4.5)

The sum s.d.o.f. is defined as:

Ds,Σ
4
= lim

P→∞
sup

∑K
i=1 Ri

1
2

logP
(4.6)

where the supremum is over all achievable secrecy rate tuples (R1, . . . , RK). The sum

s.d.o.f. of the K-user Gaussian MAC wiretap channel is characterized in Theorem

2.6 of Chapter 2 as K(K−1)
K(K−1)+1

. In this chapter, we characterize the s.d.o.f. region of

the K-user Gaussian MAC wiretap channel in the following theorem.

Theorem 4.1 The s.d.o.f. region D of the K-user Gaussian MAC wiretap channel

131



is the set of all d satisfying

Kdi + (K − 1)
K∑

j=1,j 6=i
dj ≤ K − 1, i = 1, . . . , K (4.7)

di ≥ 0, i = 1, . . . , K (4.8)

for almost all channel gains.

4.2.2 K-user Gaussian IC with Secrecy Constraints

The K-user Gaussian IC with secrecy constraints (see Figure 1.7) is:

Yi =
K∑
j=1

hjiXj +Ni, i = 1, . . . , K (4.9)

Z =
K∑
j=1

gjXj +NZ (4.10)

where Yi is the channel output of receiver i, Z is the channel output of the external

eavesdropper (if there is any), Xi is the channel input of transmitter i, hji is the

channel gain of the jth transmitter to the ith receiver, gj is the channel gain of

the jth transmitter to the eavesdropper (if there is any), and {N1, . . . , NK , NZ}

are mutually independent zero-mean unit-variance Gaussian random variables. All

channel gains are independently drawn from continuous distributions, and are time-

invariant throughout the communication session. We further assume that all hji are

non-zero, and all gj are non-zero if there is an external eavesdropper. All channel

inputs satisfy average power constraints, E [X2
i ] ≤ P , for i = 1, . . . , K.
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Each transmitter i intends to send a message Wi, uniformly chosen from a set

Wi, to receiver i. The rate of message i is Ri
4
= 1

n
log |Wi|, where n is the number

of channel uses. Transmitter i uses a stochastic function fi : Wi → Xi to encode

the message, where Xi
4
= Xn

i is the n-length channel input of user i. The legitimate

receiver j decodes the message as Ŵj based on its observation Yj. A secrecy rate

tuple (R1, . . . , RK) is said to be achievable if for any ε > 0, there exist joint n-length

codes such that each receiver j can decode the corresponding message reliably, i.e.,

the probability of decoding error is less than ε for all messages,

max
j

Pr
[
Wj 6= Ŵj

]
≤ ε (4.11)

and the corresponding secrecy requirement is satisfied. We consider three different

secrecy requirements:

1) In IC-EE, Figure 1.8(a), all of the messages are kept information-theoretically

secure against the external eavesdropper,

1

n
H(W1, . . . ,WK |Z) ≥ 1

n
H(W1, . . . ,WK)− ε (4.12)

2) In IC-CM, Figure 1.8(b), all unintended messages are kept information-theo-

retically secure against each receiver,

1

n
H(WK

−i|Yi) ≥
1

n
H(WK

−i)− ε, i = 1, . . . , K (4.13)
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where WK
−i
4
= {W1, . . . ,Wi−1,Wi+1, . . . ,WK}.

3) In IC-CM-EE, Figure 1.8(c), all of the messages are kept information-theoretically

secure against both the K− 1 unintended receivers and the eavesdropper, i.e.,

we impose both secrecy constraints in (4.12) and (4.13).

The s.d.o.f. region and the sum s.d.o.f. are defined as in (4.5) and (4.6). The

sum s.d.o.f. of the K-user IC-EE, IC-CM, and IC-CM-EE is characterized in Theo-

rem 3.1 of Chapter 3 as K(K−1)
2K−1

. In this chapter, we characterize the s.d.o.f. region

of the K-user IC-EE, IC-CM, and IC-CM-EE in the following theorem.

Theorem 4.2 The s.d.o.f. region D of K-user IC-EE, IC-CM, and IC-CM-EE is

the set of all d satisfying

Kdi +
K∑

j=1,j 6=i
dj ≤ K − 1, i = 1, . . . , K (4.14)

∑
i∈V

di ≤ 1, ∀ V ⊆ {1, . . . , K}, |V | = 2 (4.15)

di ≥ 0, i = 1, . . . , K (4.16)

for almost all channel gains.
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4.3 Preliminaries

4.3.1 Polytope Structure and Extreme Points

Let X ⊆ Rn. The convex hull of X, Co(X), is the set of all convex combinations of

the points in X:

Co(X)
4
=

{∑
i

λixi | xi ∈ X,
∑
i

λi = 1, λi ∈ R, and λi ≥ 0, ∀i
}

(4.17)

A set P ⊆ Rn is a polyhedron if there is a system of finitely many inequalities

Hx ≤ h such that

P =
{
x ∈ Rn | Hx ≤ h

}
(4.18)

A set P ⊆ Rn is a polytope if there is a finite set X ⊆ Rn such that P = Co(X).

Then, we have the following theorem.

Theorem 4.3 ([57, Theorem 3.1.3]) Let P ⊆ Rn. Then, P is a bounded poly-

hedron if only if P is a polytope.

Therefore, if P ⊆ Rn is a polytope, then it is a convex hull of some finite set

X. By the properties of the convex hull of a finite set X, P is a bounded, closed,

convex set. Since P is a subset of the Euclidean space, P is a compact convex set.

An extreme point is formally defined as follows.

Definition 4.1 (Extreme point) Let P ⊆ Rn. An x ∈ P is an extreme point if
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there are no y, z ∈ P \ {x} such that x = λy + (1 − λ)z for any λ ∈ (0, 1). Then,

Ex(P ) is the set of all extreme points of P .

Theorem 4.4 (Minkowski, 1910. [57, Theorem 2.4.5]) Let P ⊆ Rn be a com-

pact convex set. Then,

P = Co(Ex(P )). (4.19)

Minkowski theorem plays an important role in this chapter, since it tells that, instead

of studying the polytope P itself, for certain problems, e.g., achievability proofs, we

can simply concentrate on all extreme points Ex(P ). Finally, the following theorem

helps us find all extreme points of a polytope P efficiently: We select any n linearly

independent active/tight boundaries and check whether they give a point in the

polytope P .

Theorem 4.5 ([82, Theorem 7.2(b)]) x ∈ Rn is an extreme point of polyhedron

P (H,h) if and only if Hx ≤ h and H′x = h′ for some n × (n + 1) sub-matrix

(H′,h′) of (H,h) with rank(H′) = n.

4.4 S.d.o.f. Region of K-User MAC Wiretap Channel

In this section, we study the K-user MAC wiretap channel defined in Section 4.2.1

and prove the s.d.o.f. region stated in Theorem 4.1. We first illustrate the regions

for K = 2 and K = 3 cases as examples. We then provide the converse in Section

4.4.1, investigate the s.d.o.f. region in terms of its extreme points in Section 4.4.2,

and show the achievability of each extreme point in Section 4.4.3.
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Figure 4.1: The s.d.o.f. region of the K = 2-user MAC wiretap channel.

For K = 2, the s.d.o.f. region in Theorem 4.1 becomes

D =
{

d : 2d1 + d2 ≤ 1,

d1 + 2d2 ≤ 1,

d1, d2 ≥ 0
}

(4.20)

and is shown in Figure 4.1. The extreme points of this region are: (0, 0), (1
2
, 0), (0, 1

2
),

and (1
3
, 1

3
). In order to provide the achievability of the region, it suffices to provide

the achievability of these extreme points. In fact, the achievabilities of (1
2
, 0), (0, 1

2
)

were proved in Chapter 2, Section 2.4 in the helper setting and the achievability

of (1
3
, 1

3
) was proved in Chapter 2, Section 2.9. Note that (1

3
, 1

3
) is the only sum

137



0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 ←    (0, 2/5, 2/5)

↓ (2/5, 2/5, 0)

  (2/5, 0, 2/5) →

Figure 4.2: The s.d.o.f. region of the K = 3-user MAC wiretap channel.

s.d.o.f. optimum point.

For K = 3, the s.d.o.f. region in Theorem 4.1 becomes

D =
{

d : 3d1 + 2d2 + 2d3 ≤ 2,

2d1 + 3d2 + 2d3 ≤ 2,

2d1 + 2d2 + 3d3 ≤ 2,

d1, d2, d3 ≥ 0
}

(4.21)

and is shown in Figure 4.2. The extreme points of this region are:

138



(0, 0, 0)

(2/3, 0, 0), (0, 2/3, 0), (0, 0, 2/3)

(2/5, 2/5, 0), (2/5, 0, 2/5), (0, 2/5, 2/5)

(2/7, 2/7, 2/7)

which correspond to the maximum individual s.d.o.f. (see Gaussian wiretap channel

with two helpers in Chapter 2, Section 2.5), the maximum sum of pair of s.d.o.f. (see

two-user Gaussian MAC wiretap channel with one helper, proved in Section 4.4.3),

and the maximum sum s.d.o.f. (see three-user Gaussian MAC wiretap channel in

Chapter 2, Section 2.9). Note that (2
7
, 2

7
, 2

7
) is the only sum s.d.o.f. optimum point.

4.4.1 Converse

The converse simply follows from a key inequality in the proof in Chapter 2, Section

2.9. We re-examine (2.232) in Chapter 2:

nRi + (K − 1)
K∑
j=1

nRj ≤ (K − 1)h(Y1) + nci, i = 1, . . . , K (4.22)

where all {ci} in this chapter are constants independent of P .

Clearly, (4.22) is not symmetric. However, the lower bound derived in Section

2.9 was achieved by a symmetric scheme. Therefore, in Section 2.9, in order to
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obtain a matching upper bound, we summed up (4.22) for all i to obtain:

[K(K − 1) + 1]
K∑
j=1

nRj ≤ K(K − 1)h(Y1) + nc′ (4.23)

≤ K(K − 1)
n

2
logP + nc′′ (4.24)

which provided the desired upper bound for the sum s.d.o.f.

Ds,Σ ≤
K(K − 1)

K(K − 1) + 1
(4.25)

which is the converse for Theorem 2.6.

In fact, (4.22) provides more information than what is needed for the sum

s.d.o.f. only. In this chapter, we start from (4.22)

nRi + (K − 1)
K∑
j=1

nRj ≤ (K − 1)
(n

2
logP

)
+ nci, i = 1, . . . , K (4.26)

divide by n
2

logP and take the limit P →∞ on both sides to obtain,

di + (K − 1)
K∑
j=1

dj ≤ K − 1, i = 1, . . . , K (4.27)

that is,

Kdi + (K − 1)
K∑

j=1,j 6=i
dj ≤ K − 1, i = 1, . . . , K (4.28)

which concludes the converse proof of Theorem 4.1.
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4.4.2 Polytope Structure and Extreme Points

To prove that the region D in Theorem 4.1 is tight (i.e., achievable), we first express

it in terms of its extreme points, explicitly characterize all of its extreme points, and

develop a scheme to achieve each of its extreme points.

The region in Theorem 4.1 is a polytope, which is a convex hull of some finite

set X, as discussed in Section 4.3.1. By the properties of the convex hull of a finite

set X, D is a bounded, closed, convex set. Since D ⊂ RK , D is a compact convex

set. From Minkowski theorem, the polytope D in Theorem 4.1 is a convex hull of its

extreme points. Then, in order to prove that D is tight, it suffices to prove that each

extreme point of D is achievable. Then, from convexification through time-sharing,

all points in D are achievable.

In order to speak of the polytope, we re-write the constraints in (4.7) and (4.8)

as

Kdi + (K − 1)
K∑

j=1,j 6=i
dj ≤ K − 1, i = 1, . . . , K (4.29)

−di ≤ 0 i = 1, . . . , K (4.30)

Then, we write all the left hand sides of (4.29) and (4.30) as an N ×K matrix H

with corresponding right hand sides forming an N -length column vector h, i.e., all

points d in D satisfy

Hd ≤ h (4.31)

where N
4
= 2K. By Theorem 4.5, exploring all extreme points of D is equivalent to

141



finding all sub-matrices (HJ ,hJ) of (H,h), such that

rank(HJ) = K (4.32)

and

HJd = hJ , and Hd ≤ h (4.33)

where HJ is a sub-matrix of H with rows indexed by the index set J , and hJ is the

sub-vector of h with rows indexed by J .

Let d ∈ D be a non-zero extreme point of D. Define a subset S ⊆ {1, . . . , N}

as

S
4
=
{
si
4
= s(i) : Hsid = hsi is Kdi + (K − 1)

K∑
j=1,j 6=i

dj = K − 1, i = 1, . . . , K
}

(4.34)

where s(i) is a function of the coordinate i with the value as the row index of H

corresponding to the active boundaries in (4.29). Similarly, define the set Z ⊆

{1, . . . , N} as

Z
4
=
{
zi
4
= z(i) : Hzid = hzi is di = 0, i = 1, . . . , K

}
(4.35)

where z(i) is a function of the coordinate i with the value as the row index of H
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corresponding to the active boundaries in (4.30). Clearly, S and Z are disjoint, i.e.,

S ∩ Z = φ (4.36)

For any row index set J , which corresponds to a set of active boundaries for d, we

have

J = S ∪ Z (4.37)

For example, for the three-user case, K = 3, according to (4.29) and (4.30),

we have H and h as

H =



3 2 2

2 3 2

2 2 3

−1 0 0

0 −1 0

0 0 −1



, h =



2

2

2

0

0

0



(4.38)

If the equalities with i = 1, 2 hold in (4.29) and the equality with i = 3 holds in

(4.30), then the corresponding sets S, Z, J are

S = {s1, s2} = {1, 2}, Z = {z3} = {6}, J = S ∪ Z = {1, 2, 6} (4.39)
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with the row-index functions

si = s(i) = i (4.40)

zi = z(i) = i+ 3 (4.41)

In this example, it is easy to check that

rank(HJ) = rank




3 2 2

2 3 2

0 0 −1



 = 3 = K (4.42)

and the solution given by HJd = hJ is

d =

(
2

5
,
2

5
, 0

)
(4.43)

which satisfies (4.33). Therefore, this is an extreme point.

For the general case, we have the following theorem.

Theorem 4.6 A point d ∈ D of Theorem 4.1 is an extreme point if and only if it

is equal to, up to element reordering,

(
∆, . . . ,∆︸ ︷︷ ︸
m items

, 0, . . . , 0︸ ︷︷ ︸
(K−m) items

)
, 0 ≤ m ≤ K (4.44)

where

∆ =
K − 1

m(K − 1) + 1
(4.45)
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Proof: First, for any m, 0 ≤ m ≤ K, let the point d be as in (4.44). It is

easy to check that the sub-matrix (HJ ,hJ), where

J =
{
si : 1 ≤ i ≤ m

}
∪
{
zj : m+ 1 ≤ j ≤ K

}
(4.46)

satisfies all the conditions in Theorem 4.5, which means that d is an extreme point.

In order to show the other direction, we need to show that any extreme point

d has the structure in (4.44) for some m, 0 ≤ m ≤ K. To this end, we find the

sub-matrix in Theorem 4.5.

If |Z| = K, due to (4.30), the sub-matrix HZ is simply a diagnoal matrix

with −1s on the diagonal, and consequently, rank(HZ) = K. Then, the solution of

HZd = hZ is 0, which satisfies (4.33). This extreme point corresponds to the case

m = 0 in Theorem 4.6.

In the rest of the proof, we focus on non-zero extreme points, i.e., |Z| < K.

Due to (4.29), it is easy to verify that HS has |S| rows with rank(HS) = |S| where

S is defined in (4.34). In order to make rank(HJ) = rank(HS∪Z) = K, we need at

least K − |S| more rows from H, i.e., |Z| ≥ K − |S|. If S is empty, then |Z| ≥ K,

which contradicts the assumption |Z| < K. Therefore, S is non-empty, i.e., |S| ≥ 1.

First, we claim that

di = dk, ∀si, sk ∈ S (4.47)

If |S| = 1, there is nothing to prove, and we are done with the proof of (4.47). If
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|S| > 1, consider any si, sk ∈ S, i 6= k. By the definition of S, we have

(K − 1)dk +Kdi + (K − 1)
∑
l 6=i,k

dl = K − 1 (4.48)

(K − 1)di +Kdk + (K − 1)
∑
l 6=i,k

dl = K − 1 (4.49)

which implies that di = dk for any si, sk ∈ S, providing (4.47) for |S| ≥ 1.

Next, we claim

di > 0, ∀si ∈ S (4.50)

If |S| = K, due to (4.47), (4.50) is trivially true since we are focusing on a non-zero

extreme point. If |S| < K, then we observe that

di ≥ dj, ∀si ∈ S, sj 6∈ S (4.51)

which indicates that for any si ∈ S the corresponding element in vector d is the

largest one, i.e., di = maxk dk, which implies (4.50). Hence, it now suffices to show

(4.51). We prove it by contradiction. Assume that there exists a coordinate j such

that sj 6∈ S and dj is strictly larger than di for any si ∈ S. By the definition of S in

146



(4.34), we have

K − 1 = Kdi + (K − 1)dj + (K − 1)
K∑

l=1,l 6=i,j
dl (4.52)

< Kdi + (K − 1)dj + (K − 1)
K∑

l=1,l 6=i,j
dl + (dj − di) (4.53)

= Kdj + (K − 1)di + (K − 1)
K∑

l=1,l 6=i,j
dl (4.54)

which contradicts the constraint (4.29). Therefore, we must have (4.51) and conse-

quently (4.50).

Finally, denote m
4
= |S|, and, without loss of generality, assume that S = {si :

1 ≤ i ≤ m}. By (4.50) and the definition of Z in (4.35), we note that zj ∈ Z only

if sj 6∈ S. Together with the constraint |Z| ≥ K − |S| = K −m, we conclude that

we must have Z = {zj : m + 1 ≤ j ≤ K}, i.e., dj = 0 for m + 1 ≤ j ≤ K. Thus,

rank(HS∪Z) = K, and, by (4.47), the solution given by the corresponding equations

can be characterized as (4.44), which satisfies (4.33), completing the proof. 2

4.4.3 Achievability

The previous section showed that the converse region is a polytope with extreme

points which have m coordinates all equal to ∆ given in (4.45), and the remaining

K −m coordinates all equal to zero. It is clear that zero vector is an extreme point

in D and is trivially achievable. The rest of the achievability proof focuses on non-

zero extreme points. In this section, we prove that each of these extreme points is
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achievable. Without loss of generality, we prove that the s.d.o.f. point of

d =
(

∆, . . . ,∆︸ ︷︷ ︸
m items

, 0, . . . , 0︸ ︷︷ ︸
(K−m) items

)
(4.55)

is achievable for all 1 < m < K with ∆ in (4.45). By symmetry, this proves the

achievability of all extreme points. Note that m = K is shown in Chapter 2, Section

2.9, and m = 1 is shown in Chapter 2, Section 2.5.

Theorem 4.7 The extreme point d ∈ D given in (4.55) is achieved by m-user

Gaussian MAC wiretap channel with K −m helpers for almost all channel gains.

Proof: Consider the m-user Gaussian MAC wiretap channel with K − m

helpers where transmitter i, i = 1, . . . ,m, has confidential message Wi intended for

the legitimate receiver and the remaining K −m transmitters serve as independent

helpers without messages of their own.

In order to achieve the extreme point d in (4.55), transmitter i, i = 1, . . . ,m,

divides its message into K−1 mutually independent sub-messages. Each transmitter

sends a linear combination of signals that carry the sub-messages. In addition to

message carrying signals, all transmitters also send cooperative jamming signals

Ui, i = 1, . . . , K, respectively. The messages are sent in such a way that all of

the cooperative jamming signals are aligned in a single dimension at the legitimate

receiver, occupying the smallest possible space at the legitimate receiver, and hence

allowing for the reliable decodability of the message carrying signals. In addition,

each cooperative jamming signal is aligned with at most K − 1 message carrying
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signals at the eavesdropper to limit the information leakage rate to the eavesdropper.

An example of K = 3, m = 2, and K −m = 1 is given in Figure 4.3.

More specifically, we use a total of m(K−1)+K mutually independent random

variables

Vij, i ∈ {1, . . . ,m}, j ∈ {1, · · · , K} \ {i} (4.56)

Uk, k ∈ {1, · · · , K} (4.57)

where {Vij}j 6=i denote the message carrying signals and Ui denotes the cooperative

jamming signal sent from transmitter i. In particular, Vij carries the jth sub-message

of transmitter i. Each of these random variables is uniformly and independently

drawn from the same discrete constellation C(a,Q) given in (2.73), where a and Q

will be specified later. We choose the input signals of the transmitters as

Xi =
K∑

j=1,j 6=i

gj
hjgi

Vij +
1

hi
Ui, i ∈ {1, . . . ,m} (4.58)

Xj =
1

hj
Uj, j ∈ {m+ 1, . . . , K} (4.59)

With these input selections, observations of the receivers are

Y1 =

[
m∑
i=1

K∑
j=1,j 6=i

(
gjhi
hjgi

Vij

)]
+

(
K∑
k=1

Uk

)
+N1 (4.60)
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Figure 4.3: Illustration of secure interference alignment for the s.d.o.f. triple
(2/5, 2/5, 0) for the two-user MAC wiretap channel with one helper; K = 3 and

m = 2. Here, we define Vi
4
= {Vij : j = 1, 2, 3, j 6= i} for i = 1, 2.

and

Y2 =
K∑
j=1

gj
hj

(
Uj +

m∑
i=1,i 6=j

Vij

)
+N2 (4.61)

where the terms inside the parentheses in (4.60) and (4.61) are aligned.

By [34, Theorem 1], we can achieve the following sum secrecy rate for the m

users

sup
m∑
i=1

Ri ≥ I(V;Y1)− I(V;Y2) (4.62)

where V
4
= {Vij : i ∈ {1, . . . ,m}, j ∈ {1, · · · , K} \ {i}}.

By Lemma 2.3 in Chapter 2, for any δ > 0, if we choose Q = P
1−δ

2(m(K−1)+1+δ)

and a = γP
1
2/Q, where γ is a constant independent of P to meet the average power

constraint, then

Pr
[
V 6= V̂

]
≤ exp

(
−βP δ

)
(4.63)
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for some constant β > 0 (independent of P ), where V̂ is the estimate of V by

choosing the closest point in the constellation based on observation Y1. This means

that we can have Pr[V 6= V̂]→ 0 as P →∞.

By Fano’s inequality and the Markov chain V→ Y1 → V̂, we know that

H(V|Y1) ≤ H(V|V̂) (4.64)

≤ 1 + exp
(
−βP δ

)
log(2Q+ 1)m(K−1) (4.65)

= o(logP ) (4.66)

where o(·) is the little-o function. This means that

I(V;Y1) = H(V)−H(V|Y1) (4.67)

= log(2Q+ 1)m(K−1) −H(V|Y1) (4.68)

≥ log(2Q+ 1)m(K−1) − o(logP ) (4.69)

On the other hand, we can bound the second term in (4.62) as

I(V;Y2) ≤ I (V;Y2 −N2) (4.70)

=
K∑
j=1

H

(
Uj +

m∑
i=1,i 6=j

Vij

)
−H (U1, . . . , UK) (4.71)

≤ K log
2KQ+ 1

2Q+ 1
(4.72)

≤ K logK (4.73)

= o(logP ) (4.74)
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where (4.72) is due to the fact that entropy of each Uj +
∑m

i=1,i 6=j Vij is maximized

by the uniform distribution which takes values over a set of cardinality 2KQ+ 1.

Combining (4.69) and (4.74), we obtain

sup
m∑
i=1

Ri ≥ I(V;Y1)− I(V;Y2) (4.75)

≥ log(2Q+ 1)m(K−1) − o(logP ) (4.76)

=
m(K − 1)(1− δ)
m(K − 1) + 1 + δ

(
1

2
logP

)
+ o(logP ) (4.77)

By choosing δ arbitrarily small, we can achieve the sum s.d.o.f. of m(K−1)
m(K−1)+1

for

almost all channel gains, which implies that the s.d.o.f. tuple of

(
(K − 1)

m(K − 1) + 1
, . . . ,

(K − 1)

m(K − 1) + 1︸ ︷︷ ︸
m item(s)

, 0, . . . , 0︸ ︷︷ ︸
K−m item(s)

)
(4.78)

is achievable by symmetry, which is (4.55). 2

4.5 S.d.o.f. Region of K-User IC with Secrecy Constraints

In this section, we study the K-user IC with secrecy constraints defined in Section

4.2.2 and prove the s.d.o.f. region stated in Theorem 4.2. To this end, we consider

both IC-CM and IC-EE and their combination IC-CM-EE in a unified framework.

We first illustrate the regions for K = 2, 3, 4 cases as examples. The purpose of

presenting K = 4 as an example is to show that, unlike the MAC case, starting

with K = 4 interference constraints become effective and binding. We then provide

152



converses separately for IC-EE and IC-CM in Section 4.5.1 and Section 4.5.2, re-

spectively, which imply a converse for IC-CM-EE. Finally, we show the achievability

for IC-CM-EE, which implies the achievability for IC-EE and IC-CM. Specifically,

we investigate the s.d.o.f. region in terms of its extreme points in Section 4.5.3 and

show the general achievability in Section 4.5.4.

For K = 2, the s.d.o.f. region in Theorem 4.2 becomes

D =
{

d : 2d1 + d2 ≤ 1,

d1 + 2d2 ≤ 1,

d1, d2 ≥ 0
}

(4.79)

which is as same as (4.20), and is shown in Figure 4.1. Note that (4.15) is not

necessary for the two-user case, since summing the bounds 2d1+d2 ≤ 1 and d1+2d2 ≤

1 up gives a new bound

d1 + d2 ≤
2

3
(4.80)

which is the result in Theorem 3.1 and makes the constraint in (4.15) strictly loose.

In order to provide the achievability, it suffices to check that the extreme

points (0, 0), (1
2
, 0), (0, 1

2
), and (1

3
, 1

3
) are achievable. In fact, the achievabilities of

(1
2
, 0), (0, 1

2
) are similar to Chapter 2, Section 2.4 and will be shown in Section 4.5.3.

The achievability of (1
3
, 1

3
) was proved in Chapter 3. Note that (1

3
, 1

3
) is the only

sum s.d.o.f. optimum point.
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For K = 3, the s.d.o.f. region in Theorem 4.2 becomes

D =
{

d : 3d1 + d2 + d3 ≤ 2,

d1 + 3d2 + d3 ≤ 2,

d1 + d2 + 3d3 ≤ 2,

d1, d2, d3 ≥ 0
}

(4.81)

and (4.15) is not necessary for the three-user case, either. This is because, due to

the positiveness of each element in d, from the first two inequalities in (4.81), we

have

3d1 + d2 ≤ 3d1 + d2 + d3 ≤ 2 (4.82)

d1 + 3d2 ≤ d1 + 3d2 + d3 ≤ 2 (4.83)

Summing the left hand sides up of (4.82) and (4.83) gives us

d1 + d2 ≤ 1 (4.84)

which is (4.15) with V = {1, 2}, and we have (4.15) for free from (4.81).
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The extreme points of this region are:

(0, 0, 0)

(2/3, 0, 0), (0, 2/3, 0), (0, 0, 2/3)

(1/2, 1/2, 0), (1/2, 0, 1/2), (0, 1/2, 1/2)

(2/5, 2/5, 2/5)

which correspond to the maximum individual s.d.o.f. (see Gaussian wiretap channel

with two helpers in Chapter 2, Section 2.5 and Section 4.5.3), the maximum sum of

pair of s.d.o.f. (proved in Section 4.5.3), and the maximum sum s.d.o.f. (see three-

user Gaussian IC-CM-EE in Chapter 3). Note that, (1
2
, 1

2
) is the maximum sum

d.o.f. for a two-user IC without secrecy constraints, and (2
5
, 2

5
, 2

5
) is the only sum

s.d.o.f. optimum point.
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For K = 4, the s.d.o.f. region in Theorem 4.2 becomes

D =
{

d : 4d1 + d2 + d3 + d4 ≤ 3,

d1 + 4d2 + d3 + d4 ≤ 3,

d1 + d2 + 4d3 + d4 ≤ 3,

d1 + d2 + d3 + 4d4 ≤ 3,

d1 + d2 ≤ 1,

d1 + d3 ≤ 1,

d1 + d4 ≤ 1,

d2 + d3 ≤ 1,

d2 + d4 ≤ 1,

d3 + d4 ≤ 1,

d1, d2, d3, d4 ≥ 0
}

(4.85)

The extreme points of this region are:

(0, 0, 0)

(3/4, 0, 0, 0), (0, 3/4, 0, 0), (0, 0, 3/4, 0), (0, 0, 0, 3/4)

(2/3, 1/3, 0, 0) up to element reordering

(1/2, 1/2, 1/2, 0), (1/2, 1/2, 0, 1/2), (1/2, 0, 1/2, 1/2), (0, 1/2, 1/2, 1/2)

(3/7, 3/7, 3/7, 3/7)
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Here, in contrast to the two-user and three-user cases, (4.15) is absolutely necessary.

For example, the point (3
5
, 3

5
, 0, 0) satisfies (4.14), but not (4.15). In fact, it cannot

be achieved, and (4.15) is strictly needed to enforce that fact.

Regarding the region in Theorem 4.2, as illustrated in the examples above, we

provide a few general comments here:

1) Although (4.15) only states the constraints for all pairs of rates, due to the

same argument in [55], it can equivalently be stated as
∑

i∈V di ≤ |V |
2

for all

|V | ≥ 2. We note that, when |V | = K, the corresponding upper bound is

strictly loose due to Theorem 3.1 in Chapter 3, and that is why such bounds

were not needed in Chapter 3, where sum s.d.o.f. was characterized.

2) As shown in the examples, when K = 2 or 3, (4.15) is not necessary. When

K ≥ 4, we need both (4.14) and (4.15) to completely characterize the region

D. Neither of them can be removed from the theorem. For example, the all

1
2

vector, (1
2
, 1

2
, . . . , 1

2
), satisfies (4.15), but not (4.14). On the other hand, the

point (K−1
K+1

, K−1
K+1

, 0, 0, . . ., 0), which has only two non-zero elements, satisfies

(4.14), but not (4.15) for any K ≥ 4. Therefore, (4.15) emerges only when

K ≥ 4. To the best of our knowledge, this is the first time that K = 2 or

K = 3 do not represent the most generality of a multi-user problem, and we

need to go up to K = 4 for this phenomenon to appear.

3) Different portions of the region D are governed by different upper bounds. To

see this, we can study the structure of the extreme points of D, since D is the

convex hull of them. The sum s.d.o.f. tuple, which is symmetric and has no zero
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elements, is governed by the upper bounds in (4.14) due to secrecy constraints.

However, as will be shown in Theorem 4.8 in Section 4.5.3, all other extreme

points have zeros as some elements, and therefore are governed by the upper

bounds in (4.15) due to interference constraints in [54, 55]. An explanation

can be provided as follows: When some transmitters do not have messages to

transmit, we may employ them as “helpers”. Even though secrecy constraint

is considered in our problem, with the help of the “helpers”, the effect due to

the existence of the eavesdropper in the network can be eliminated. Hence,

the s.d.o.f. region is dominated by interference in this case.

4.5.1 Converse for K-User IC-EE

The constraint in (4.15) follows from the non-secrecy constraints on the K-user IC

in [54, 55]. We note that this same constraint is valid for the converse proof of

IC-CM in the next section as well.

In order to prove (4.14) in Theorem 4.2, we re-examine (3.31) in Chapter

3. Originally, we applied Lemma 3.1 in Chapter 3 by treating the signal from

transmitter j as the unintended noise to its neighboring transmitter-receiver pair

j − 1, i.e., for any i = 1, . . . , K,

n
K∑
j=1

Rj ≤
K∑

j=1,j 6=i
h(X̃j) + nc53 (4.86)

≤ [h(YK)− nRK ] + [h(Y1)− nR1] + · · ·+ [h(Yi−2)− nRi−2]

+ [h(Yi)− nRi] + · · ·+ [h(YK−1)− nRK−1] + nc54 (4.87)
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By noting that h(Yj) ≤ n
2

logP + nc′j for each j, we have

2n
K∑
j=1

Rj ≤ (K − 1)
n

2
logP + nRi + nc55 (4.88)

Therefore, we have a total of K bounds for i = 1, . . . , K. Summing these K bounds,

we obtained:

(2K − 1)n
K∑
j=1

Rj ≤ K(K − 1)
n

2
logP + nc56 (4.89)

which gave

Ds,Σ ≤
K(K − 1)

2K − 1
(4.90)

completing the converse proof for the sum s.d.o.f. of IC-EE in Theorem 3.1 in Chap-

ter 3.

Here, we continue from (3.31) and re-interpret it as:

n
K∑
j=1

Rj ≤
K∑

j=1,j 6=i
h(X̃j) + nc57 (4.91)

≤ [h(Yi)− nRi] + · · ·+ [h(Yi)− nRi]︸ ︷︷ ︸
K−1 items

+nc58 (4.92)

= (K − 1)h(Yi)− (K − 1)nRi + nc58 (4.93)

≤ (K − 1)
(n

2
logP

)
− (K − 1)nRi + nc59 (4.94)

where i ∈ {1, . . . , K} is arbitrary. Here, the second inequality means that we apply
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Lemma 3.1 in Chapter 3 by treating the signal from all transmitters j 6= i as the

unintended noise to the transmitter-receiver pair i.

Rearranging the terms in (4.94), dividing both sides by n
2

logP , and taking

the limit P →∞ on both sides, we obtain

Kdi +
K∑

j=1,j 6=i
dj ≤ K − 1, i = 1, . . . , K (4.95)

which is (4.14) in Theorem 4.2, completing the converse proof for IC-EE.

4.5.2 Converse for K-User IC-CM

When we studied the sum s.d.o.f. of IC-CM, we applied Lemma 3.1 in Chapter 3

to (3.53) by treating the signal from transmitter j as the unintended noise to its

neighbor transmitter-receiver pair j + 1, i.e., for any i = 1, . . . , K

n
K∑

j=1,j 6=i
Rj ≤

K∑
j=1

h(X̃j)− h(Yi) + nc60 (4.96)

≤
[
K−1∑
j=1

[
h(Yj+1)− nRj+1

]]
+
[
h(Y1)− nR1

]
− h(Yi) + nc61 (4.97)

=
K∑
j=1

[
h(Yj)− nRj

]
− h(Yi) + nc61 (4.98)

By noting that h(Yj) ≤ n
2

logP + nc′j for each j, we have

nRi + 2n
K∑

j=1,j 6=i
Rj ≤

K∑
j=1,j 6=i

h(Yj) + nc61 (4.99)

≤ (K − 1)
n

2
logP + nc62 (4.100)
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Therefore, we have a total of K bounds for i = 1, . . . , K. Summing these K bounds,

we obtained

(2K − 1)n
K∑
j=1

Rj ≤ K(K − 1)
n

2
logP + nc63 (4.101)

which gave

Ds,Σ ≤
K(K − 1)

2K − 1
(4.102)

completing the converse proof for the sum s.d.o.f. of IC-CM in Theorem 3.1 in

Chapter 3.

Here, we continue from (3.53) and re-interpret it as follows: For any i ∈

{1, . . . , K}, we select

k
4
=


i− 1, if i ≥ 2

K, if i = 1

(4.103)
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and then have

n
K∑

j=1,j 6=i
Rj ≤

[
K∑
j=1

h(X̃j)

]
− h(Yi) + nc64 (4.104)

≤ h(X̃k) +

[
K∑

j=1,j 6=k
h(X̃j)

]
− h(Yi) + nc65 (4.105)

≤ h(Yi)− nRi +

[
K∑

j=1,j 6=k
h(X̃j)

]
− h(Yi) + nc66 (4.106)

=

[
K∑

j=1,j 6=k
h(X̃j)

]
− nRi + nc66 (4.107)

≤ [h(Yk)− nRk] + · · ·+ [h(Yk)− nRk]︸ ︷︷ ︸
K−1 items

−nRi + nc67 (4.108)

= (K − 1)h(Yk)− (K − 1)nRk − nRi + nc67 (4.109)

≤ (K − 1)
(n

2
logP

)
− (K − 1)nRk − nRi + nc67 (4.110)

which is

(K − 1)nRk + n
K∑
j=1

Rj ≤ (K − 1)
(n

2
logP

)
+ nc67 (4.111)

Here, inequality (4.106) means that we apply Lemma 3.1 in Chapter 3 by treating

the signal from transmitter k as the unintended noise to the transmitter-receiver

pair i. Similarly, inequality (4.108) means that we apply Lemma 3.1 by treating the

signal from transmitter j 6= k as the unintended noise to the transmitter-receiver

pair k.

Rearranging the terms in (4.111), dividing both sides by n
2

logP , and taking
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the limit P →∞ on both sides, we obtain

Kdk +
K∑

j=1,j 6=k
dj ≤ K − 1, k = 1, . . . , K (4.112)

which is (4.14) in Theorem 4.2, completing the converse proof for IC-CM.

4.5.3 Polytope Structure and Extreme Points

Similar to the discussion and approach in the MAC problem in Section 4.4.2, it is

easy to see that the region D characterized by Theorem 4.2 is a polytope, which is

equal to the convex combinations of all extreme points of D due to Theorem 4.4.

Therefore, in order to show the tightness of region D, it suffices to prove that all

extreme points of D are achievable.

We first assume that K ≥ 3, and determine the structure of all extreme points

of D in the following theorem.

Theorem 4.8 For the K-dimensional region D, K ≥ 3, in Theorem 4.2, any ex-
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treme point must be a point with one of the following structures:

(0, 0, . . . , 0), (4.113)(K − 1− p
K − p ,

1

K − p, . . . ,
1

K − p︸ ︷︷ ︸
p items

, 0, . . . , 0︸ ︷︷ ︸
m items

)
, K − 2 ≥ p ≥ 0,m = K − 1− p ≥ 1

(4.114)( 1

2
, . . . ,

1

2︸ ︷︷ ︸
p′ items

, 0, . . . , 0︸ ︷︷ ︸
m′ items

)
, K − 2 ≥ p′ ≥ 3,m′ ≥ 1, p′ +m′ = K ≥ 5 (4.115)

( K − 1

2K − 1
,
K − 1

2K − 1
, . . . ,

K − 1

2K − 1

)
(4.116)

up to element reordering.

The proof of Theorem 4.8 is provided in Appendix 4.7.1.

Now, in order to show the tightness of region D, it suffices to show the achiev-

ability for each structure in Theorem 4.8. Clearly, the zero vector in (4.113) is

trivially achievable. The symmetric tuple in (4.116) is achievable due to Chapter

3. Therefore, it remains to show the achievability of the structures in (4.114) and

(4.115).

In order to address the achievabilities of (4.114) and (4.115), we formulate a

new channel model as a (p+1)-user IC-CM-EE channel with m independent helpers

and N independent external eavesdroppers. The formal definition of this channel

model is given in Section 4.5.4. Then, we have the following theorem.

Theorem 4.9 For the (p+ 1)-user IC-CM-EE channel with m independent helpers

and N independent external eavesdroppers, as far as p ≥ 0, m ≥ 1, and N is finite,
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the following s.d.o.f. tuple is achievable:

( m

m+ 1
,

1

m+ 1
,

1

m+ 1
, . . . ,

1

m+ 1︸ ︷︷ ︸
p items

)
(4.117)

for almost all channel gains.

The proof of Theorem 4.9 is provided in Section 4.5.4.

Here, we provide a few comments about Theorem 4.9. Theorem 4.9 provides

quite general results, and subsumes some other known cases:

1) The result in Chapter 2, Section 2.5 is a special case of Theorem 4.9 with

p = 0,m ≥ 1, N = 1.

2) (4.114) is a special case of Theorem 4.9 with p ≥ 0,m = K − 1− p ≥ 1, N =

m+ 1.

3) (4.115) is a byproduct of Theorem 4.9: By choosing p = p′ − 1,m = 1, N =

m′ + 1, we know that with just one helper, the following s.d.o.f. tuple is

achievable: ( 1

2
,
1

2
, . . . ,

1

2︸ ︷︷ ︸
p′ items

, 0
)

(4.118)

Now, if we add m′−1 more independent helpers into the network, (4.115) can

be achieved trivially.

Therefore, with the help of Theorem 4.9, each structure in Theorem 4.8 can

be achieved, which provides the achievability proof for Theorem 4.2 for K ≥ 3.
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Finally, we address the K = 2 case. In this case, the region D character-

ized by (4.14)-(4.16) in Theorem 4.2 is given by (4.79). In order to provide the

achievability, it suffices to prove that the extreme points (1
2
, 0), (0, 1

2
), and (1

3
, 1

3
) are

achievable. The achievability of (1
3
, 1

3
) was proved in Chapter 3. The achievabilities

of (1
2
, 0), (0, 1

2
) are the special cases of Theorem 4.9 with p = 0,m = 1, N = 2.

4.5.4 Achievability

The (p+1)-user IC-CM-EE channel with m independent helpers and N independent

external eavesdroppers is

Yi =

p+1+m∑
j=1

hjiXj +Ni, i = 1, . . . , p+ 1 (4.119)

Zk =

p+1+m∑
j=1

gjkXj +Nzk , k = 1, . . . , N (4.120)

where Yi is the channel output of receiver i, Zk is the channel output of exter-

nal eavesdropper k, Xj is the channel input of transmitter j, hji is the channel

gain of the jth transmitter to the ith receiver, gjk is the channel gain of the jth

transmitter to the kth eavesdropper, and {N1, . . . , Np+1, Nz1 , . . . , NzN} are mutu-

ally independent zero-mean unit-variance Gaussian random variables. All channel

gains are independently drawn from continuous distributions, and are time-invariant

throughout the communication session. We further assume that all hji and gjk are

non-zero. All channel inputs satisfy average power constraints, E
[
X2
j

]
≤ P , for

j = 1, . . . , p+ 1 +m.
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Transmitter j, j = p+2, . . . , p+1+m, is an independent helper in the network.

On the other hand, each transmitter i, i = 1, . . . , p+ 1, has a message Wi intended

for the receiver Yi. A rate tuple (R1, . . . , Rp+1) is said to be achievable if for any

ε > 0, there exist joint n-length codes such that each receiver i can decode the

corresponding message reliably, i.e., the probability of decoding error is less than ε

for all messages,

max
i

Pr
[
Wi 6= Ŵi

]
≤ ε (4.121)

where Ŵi is the estimation based on its observation Yi. The secrecy constraints are

defined as follows:

1

n
H(W p+1

−i |Yi) ≥
1

n
H(W p+1

−i )− ε, i = 1, . . . , p+ 1 (4.122)

1

n
H(W1, . . . ,Wp+1|Zk) ≥

1

n
H(W1, . . . ,Wp+1)− ε, k = 1, . . . , N (4.123)

where W p+1
−i

4
= {W1, . . . ,Wp+1}\{Wi}. A s.d.o.f. tuple (d1, . . . , dp+1) is achievable if

there exists an achievable rate tuple (R1, . . . , Rp+1) such that

di = lim
P→∞

Ri

1
2

logP
(4.124)

for i = 1, . . . , p+ 1.

Now, we prove Theorem 4.9, i.e., for p ≥ 0, m ≥ 1, and N is finite, the
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following s.d.o.f. tuple is achievable:

( m

m+ 1
,

1

m+ 1
,

1

m+ 1
, . . . ,

1

m+ 1︸ ︷︷ ︸
p items

)
(4.125)

for almost all channel gains.

The purpose of Theorem 4.9 is to prove the achievability of the structure

(4.114) in Theorem 4.8. As shown in (4.114), we partition the transmitters into

three groups: 1) the first group consists of only one transmitter with the largest

s.d.o.f., K−1−p
K−p , which is no smaller than 1

2
, 2) the second group consists of p ≥ 0

transmitters with the same s.d.o.f., 1
K−p , which is no larger than 1

2
, and 3) the third

group consists of m ≥ 1 transmitters serving as independent helpers. Therefore,

in (4.125), we consider the p + 1-user IC with m helpers where K = p + 1 + m.

Therefore, (4.125) and Theorem 4.9 show the achievability of (4.114). We know

from remark 2) above that the achievability of (4.115) is a byproduct of Theorem

4.9. Also, (4.113) is trivially achieved, and the achievability of (4.116) is shown in

Chapter 3. Therefore, we focus on Theorem 4.9, from this point on.

The technique we use in the proof of Theorem 4.9 is asymptotical interference

alignment and cooperative jamming. The alignment scheme is illustrated in Fig-

ure 4.4 with m = 3, p = 2, N = 1. In Figure 4.4, we partition the transmitters into

three groups, which are {X1} as the first group, p = 2 other transmitters {X2, X3}

as the second group, and m = 3 helpers as the third group. From the perspective of

Y1 and the eavesdropper Z, due to the existence of independent helpers, the align-

ment signaling design is similar to that in wiretap channel with helpers in Chapter
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Figure 4.4: Illustration of secure interference alignment of Theorem 4.9 with m =
3, p = 2, N = 1.

2, Figure 2.2. However, from the perspective of Y2, Y3, and the eavesdropper Z, the

alignment signaling design is similar to that in the IC in Chapter 3, Figure 3.1. This

suggests that the signalling scheme that achieves on arbitrary extreme point of the

s.d.o.f. region is in between the signalling scheme that achieves the sum s.d.o.f. of

IC-CM-EE in Chapter 3 and the signalling scheme used in the helper network in

Chapter 2, Section 2.5. Furthermore, if we let p = 0, the signaling scheme in Fig-

ure 4.4 would be almost identical to Figure 2.2. However, we cannot let m → 0.

As far as the number of independent helper(s) in Figure 4.4, m, is non-zero, in con-

trast to the scheme in Figure 3.1, the legitimate transmitters in the first and second
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groups do not use use superposition code to send cooperative jamming signals by

themselves, however, in Chapter 3 for IC-CM-EE without helpers, each legitimate

transmitter needed to send both message signals and a cooperative signal. Note that

in Figure 4.4 here, legitimate transmitters {X1, X2, X3} do not send any cooperative

jamming signals (shaded boxes).

Here, we give the general achievable scheme. Let l be a large constant. Let us

define a set T1 which will represent dimensions as follows:

T1
4
=


 ∏

(j,k)∈L
h
rjk
jk

( N∏
k=1

p+1+m∏
j=1

g
sjk
jk

)
: rjk, sjk ∈ {1, . . . , l}

 (4.126)

where L contains almost all pairs corresponding to the cross-link channel gains

L =
{

(j, k) : j ∈ {2, . . . , p+ 2}, k = 1
}

∪
{

(j, k) : j ∈ {1, . . . , p+ 1 +m}, k ∈ {2, . . . , p+ 1}, j 6= k
}

(4.127)

Clearly, starting from the second helper Xp+3, if there exists any, the cross-link

channel gains to the first legitimate receiver Y1 are not in the set L. Therefore, we

define the sets {Tj}mj=2

Tj =
1

hp+1+j,1

T1, j = 2, . . . ,m (4.128)

Let Mi be the cardinality of Ti, i = 1, . . . ,m. Note that all Mi are the same, thus
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we denote them as M ,

M
4
= l|L|+N(p+1+m) = lθ (4.129)

where θ
4
= (p+ 1 +m)p+ p+N(p+ 1 +m) + 1.

Let tij and t(j) be the vector containing all the elements in the set Tj for

any possible i. Therefore, tij and t(j) are M -dimensional vectors containing M

rationally independent real numbers in Tj. The sets tij and t(j) will represent the

dimensions along which message signals are transmitted. In particular, as illustrated

in Figure 4.4, for each legitimate transmitter i, i = 1, . . . , p+ 1, the message signal

Vi1 is transmitted in dimensions ti1. In order to asymptotically align U1 from the

first helper Xp+2 with all Vi1s, the cooperative jamming signal U1 is transmitted in

dimensions t(1). Similarly, for the first transmitter X1, the message signal V1j, j =

2, . . . ,m, is transmitted in dimensions t1j. Since we want to align the cooperative

jamming signal Uj from the helper Xp+1+j with V1j one by one, the jamming signal

Uj is transmitted in dimensions t(j).

Let us define an mM dimensional vector b1 by stacking ti1s as

bT1 =
[
tT11, t

T
12, . . . , t

T
1m

]
(4.130)

Then, transmitter 1 generates a vector a1, which contains a total of mM discrete

signals each identically and independently drawn from C(a,Q) given in (2.73). For
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convenience, we partition this transmitted signal as

aT1 =
[
vT11,v

T
12, . . . ,v

T
1m

]
(4.131)

where v1j represents the information symbols in V1j. Each of these vectors has length

M , and therefore, the total length of a1 is mM . The channel input of transmitter

1 is

x1 = aT1 b1 (4.132)

Similarly, for the second group transmitters Xi, i = 2, . . . , p + 1, let bi be

bi = ti1. Then, transmitter i generates a vector ai = vi1, which contains a total of

M discrete signals each identically and independently drawn from C(a,Q) given in

(2.73). The channel input of transmitter i is

xi = aTi bi = vTi1ti1, i = 2, . . . , p+ 1 (4.133)

Finally, for the third group transmitters Xk, k = p+ 2, . . . , p+ 1 +m, serving

as the helpers, let bk be bk = t(k−p−1). Then, helper k generates a vector uk−p−1

representing the cooperative jamming signal in Uk−p−1, which contains a total of

M discrete signals each identically and independently drawn from C(a,Q) given in

(2.73). The channel input of transmitter k is

xk = uTk−p−1bk = uTk−p−1t(k−p−1), k = p+ 2, . . . , p+ 1 +m (4.134)
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Before we investigate the performance of this signalling scheme, we analyze

the structure of the received signals at the receivers. To see the detailed dimension

structure of the received signals at the receivers, let us define T̃i as a superset of Ti,

as follows

T̃1
4
=


 ∏

(j,k)∈L
h
rjk
jk

( N∏
k=1

p+1+m∏
j=1

g
sjk
jk

)
: rjk, sjk ∈ {1, . . . , l + 1}

 (4.135)

T̃j =
1

hp+1+j,1

T̃1, j = 2, 3, . . . ,m (4.136)

where L is defined in (4.127) and the cardinalities of all Ti sets are the same and are

denoted as M̃ = (l + 1)θ. Also, it is easy to check that since pair (p+ 1 + j, 1) 6∈ L

for j ≥ 2, we must have

T̃i ∩ T̃j = φ (4.137)

for all i 6= j.

We first focus on receiver 1, which has the channel output

y1 =

p+1+m∑
i=1

hi1x1 + n1 (4.138)
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Substituting (4.132), (4.133) and (4.134) into (4.138), we get

y1 = h11x1 +

p+1∑
j=2

hj1xj +

p+1+m∑
k=p+2

hk1xk + n1 (4.139)

= h11

(
m∑
i=1

vT1it1i

)
+

(
p+1∑
j=2

hj1v
T
j1tj1

)
+

(
p+1+m∑
k=p+2

hk1u
T
k−p−1t(k−p−1)

)
+ n1

(4.140)

=
(
vT11h11t11

)
+
(
vT12h11t12

)
+ . . .+

(
vT1mh11t1m

)
+
( p+1∑
j=2

hj1v
T
j1tj1 +

p+1+m∑
k=p+2

hk1u
T
k−p−1t(k−p−1)

)
+ n1 (4.141)

Since vij and uk−p−1 are integer signals in C(a,Q), it suffices to study their dimen-

sions. In addition, note that tij and t(j) represent the same dimensions in Tj defined

in (4.126) and (4.128). It is easy to verify that

hj1T1 ⊆ T̃1, j = 2, . . . , p+ 1 (4.142)

hk1Tk−p−1 ⊆ T̃1, k = p+ 2, . . . , p+ 1 +m (4.143)

which implies that except the intended message signals v1i, i = 1, . . . ,m, all un-

intended signals including message signals and cooperative jamming signals are all

transmitted in the dimensions belonging to T̃1. On the other hand, for intended

signals,

h11T1 ⊂ h11T̃1 (4.144)

h11Ti ⊆ h11T̃i =
h11

hp+1+i,1

T̃1, i = 2, . . . ,m (4.145)
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Note that the pair (p+ 1 + i, 1) 6∈ L for i ≥ 2 which implies that

h11T̃i ∩ h11T̃j = φ (4.146)

for all i, j ∈ {1, . . . ,m}, i 6= j. Furthermore, (1, 1) 6∈ L either, which implies that

h11T̃i ∩ T̃1 = φ, i ∈ {1, . . . ,m} (4.147)

Together with (4.146), this indicates that the dimensions are separable as suggested

by the parentheses in (4.141) and also the Y1 side of Figure 4.4, which further implies

that all the elements in the set

R1
4
=

(
m⋃
j=1

h11T̃j

)
∪ T̃1 (4.148)

are rationally independent, and thereby the cardinality of R1 is

MR
4
= |R1| = (m+ 1)M̃ = (m+ 1)(l + 1)θ (4.149)

For the legitimate receivers Yi, i = 2, . . . , p + 1, without loss of generality, we

focus on receiver 2; by symmetry, a similar structure will exist at all other receivers.
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We observe that

y2 = h12x1 +

p+1∑
j=2

hj2xj +

p+1+m∑
k=p+2

hk2xk + n2 (4.150)

= h12

(
m∑
i=1

vT1it1i

)
+

(
p+1∑
j=2

hj2v
T
j1tj1

)
+

(
p+1+m∑
k=p+2

hk2u
T
k−p−1t(k−p−1)

)
+ n2

(4.151)

=
(
h22v

T
21t21

)
+
(
vT11h12t11 +

p+1∑
j=3

vTj1hj2tj1 + uT1 hp+2,2t(1)

)
+
(
vT12h12t12 + uT2 hp+3,2t(2)

)
+ . . .+

(
vT1mh12t1m + uTmhp+1+m,2t(m)

)
+ n2

(4.152)

Similarly, we observe that in the second set of parentheses of (4.152), since ti1 and

t(1) represent the same dimensions in T1 for all i, we have

hi2T1 ⊆ T̃1, i ∈ {1, . . . , p+ 2}, i 6= 2 (4.153)

Starting from the third set of parentheses of (4.152), we have

h12Tj ⊆ T̃j (4.154)

hp+1+j,2Tj ⊆ T̃j (4.155)

for all j = 2, . . . ,m. In addition, since the pair (2, 2) 6∈ L, we can infer that

h22T1 ⊆ h22T̃1 (4.156)
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and

h22T̃1 ∩ T̃j (4.157)

for j = 1, . . . ,m. Together with (4.137), this indicates that the dimensions are sep-

arable as suggested by the parentheses in (4.152) and also the Y2 side of Figure 4.4,

which further implies that all the elements in the set

R2
4
=

(
m⋃
j=1

T̃j

)
∪ h22T̃1 (4.158)

are rationally independent, and thereby the cardinality of R2 is MR in (4.149).

For the external eavesdropper Zk, we note that

zk = g1kx1 +

p+1∑
j=2

gjkxj +

p+1+m∑
i=p+2

gikxi + nzk (4.159)

= g1k

(
m∑
i=1

vT1it1i

)
+

(
p+1∑
j=2

gjkv
T
j1tj1

)
+

(
p+1+m∑
i=p+2

giku
T
i−p−1t(i−p−1)

)
+ nzk

(4.160)

=
(
vT11g1kt11 +

p+1∑
j=2

vTj1gjktj1 + uT1 gp+2,kt(1)

)
+
(
vT12g1kt12 + uT2 gp+3,kt(2)

)
+ . . .+

(
vT1mg1kt1m + uTmgp+1+m,kt(m)

)
+ nzk

(4.161)

In the first set of parentheses of (4.161), since ti1 and t(1) represent the same di-

mensions in T1 for all i, we have

gikT1 ⊆ T̃1, i ∈ {1, . . . , p+ 2} (4.162)
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Starting from the second set of parentheses of (4.161), we have

g1kTj ⊆ T̃j (4.163)

gp+1+j,kTj ⊆ T̃j (4.164)

for all j = 2, . . . ,m. Due to (4.137), this indicates that the dimensions are separable

as suggested by the parentheses in (4.161) and also the Z side of Figure 4.4, which

further implies that all the elements in the set

RZ
4
=

(
m⋃
j=1

T̃j

)
(4.165)

are rationally independent, and thereby the cardinality of RZ is MRZ

MRZ

4
= |RZ | = mM̃ = m(l + 1)θ (4.166)

We will compute the secrecy rates achievable with the asymptotic alignment

based scheme proposed above by using the following theorem.

Theorem 4.10 (Chapter 3, Theorem 3.1) For K ′-user interference channels with

confidential messages, the following rate region is achievable

Ri ≥ I(Vi;Yi)− max
j∈K′−i

I(Vi;Y
′
j |V K′

−i ), i = 1, . . . , K ′ (4.167)

where V K′
−i

4
= {Vj}K′j=1,j 6=i and K′−i = {1, . . . , i − 1, i + 1, . . . , K ′}. The auxiliary

random variables {Vi}K′i=1 are mutually independent, and for each i, we have the
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following Markov chain Vi → X ′i → (Y ′1 , . . . , Y
′
K′).

We can reinterpret Theorem 4.10 as follows: For the (p + 1)-user IC-CM-

EE with m helpers and N external eavesdroppers, since each independent helper’s

contribution is the same as noise to both items in (4.167), which depend only on

marginal distributions, we can treat the (p + 1)-user IC-CM-EE channel as a (p +

1 + N)-user IC-CM with N new transmitters which keep silent, i.e., Vi and X ′i,

i = p+ 2, . . . , p+ 1 +N , are equal to zero, and

p(y′1, . . . , y
′
p+1+N |x′1, . . . , x′p+1+N) = p(y1, . . . , yp+1, z1, . . . , zN |x1, . . . , xp+1) (4.168)

where x′ and y′ are the transmitter and receiver of the (p+ 1 +N)-user IC-CM and

x, y, z are the entities of the original (p+ 1)-user IC-CM-EE with m helpers and N

external eavesdropper.

We thereby first select Vi as

V1
4
= a1 (4.169)

Vi
4
= vi1 i = 2, . . . , p+ 1 (4.170)

where a1 is defined in (4.131). Then, we evaluate the (4.167) for i = 1, . . . , p+ 1.

For i = 1, by Lemma 2.3 in Chapter 2, for any δ > 0, if we choose Q = P
1−δ

2(MR+δ)

and a = γ1P
1
2

Q
, the probability of error of estimating V1 as Ṽ1 based on Y1 can be

upper bounded by

Pr(e1) ≤ exp
(
−ηγ1P δ

)
(4.171)
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Furthermore, by Fano’s inequality, we can conclude that

I(V1;Y1) ≤ I(V1; Ṽ1) (4.172)

= H(V1)−H(V1|Ṽ1) (4.173)

≥ mM(1− δ)
MR + δ

(
1

2
logP

)
+ o(logP ) (4.174)

=
m(1− δ)

(m+ 1)
(
1 + 1

l

)θ
+ δ

lθ

(
1

2
logP

)
+ o(logP ) (4.175)

where o(·) is the little-o function. This provides a lower bound for the first term in

(4.167) with i = 1.

Next, we need to derive an upper bound for the second item in (4.167), i.e,

the secrecy penalty, for i = 1. For and j ∈ {2, . . . , p+ 1}, by the Markov chain,

V1 →
(
p+1∑
k=1

hkjXkj, V
p+1

2

)
→ Yj (4.176)

we have

I(V1;Yj|V p+1
2 ) ≤ I

(
V1;

p+1∑
k=1

hkjXk

∣∣∣V p+1
2

)
(4.177)

= H

(
p+1∑
k=1

hkjXk

∣∣∣V p+1
2

)
−H

(
p+1∑
k=1

hkjXk

∣∣∣V p+1
1

)
(4.178)

The first term in (4.178) can be rewritten as

H

(
p+1∑
k=1

hkjXk

∣∣∣V p+1
2

)
= H

[
m∑
i=k

(
vT1kh1jt1k + uTk hp+1+k,jt(k)

)]
(4.179)
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Note that there are in total mMR rational dimensions each taking value from

C(a, 2Q). Regardless of the distribution in each rational dimension, the entropy

is maximized by uniform distribution, i.e.,

H

(
p+1∑
k=1

hkjXk

∣∣∣V p+1
2

)
≤ log

[
(2Q+ 1)mM̃

]
=
mM̃(1− δ)
MR + δ

(
1

2
logP

)
+ o(logP )

(4.180)

The second term in (4.178) is

H

(
p+1∑
k=1

hkjXk

∣∣∣V p+1
1

)
= H

[
m∑
i=k

(
uTk hp+1+k,jt(k)

)]
= log

[
(2Q+ 1)mM

]
(4.181)

=
mM(1− δ)
MR + δ

(
1

2
logP

)
+ o(logP ) (4.182)

Substituting (4.180) and (4.182) into (4.178), we get

I(V1;Yj|V p+1
2 ) ≤ m(M̃ −M)(1− δ)

MR + δ

(
1

2
logP

)
+ o(logP ) (4.183)

We note that

ξ
4
=
m(M̃ −M)(1− δ)

MR + δ
=
m(M̃ −M)(1− δ)

(m+ 1)M̃ + δ
(4.184)

=
m
[
(l + 1)θ − lθ

]
(1− δ)

(m+ 1)(l + 1)θ + δ
(4.185)

=
m
[∑θ−1

k=0

(
θ
k

)
lk
]

(1− δ)
(m+ 1)(l + 1)θ + δ

(4.186)

The maximum power of l in the numerator is θ− 1 and is less than the power θ of l
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in the denominator. This implies that when m and δ are fixed, by choosing l large

enough, the factor before the 1
2

logP term in (4.183), ξ, can be made arbitrarily

small. Due to the non-perfect (i.e., only asymptotical) alignment, the upper bound

for the information leakage rate is not a constant as in Chapter 2, but a function

which can be made to approach zero d.o.f.

Similarly, we can derive the following

I(V1;Zk|V p+1
2 ) ≤ ξ

(
1

2
logP

)
+ o(logP ) (4.187)

where Zk, k = 1, . . . , N , is the external eavesdropper. Substituting (4.175), (4.183)

and (4.187) into (4.167), we obtain a lower bound for the achievable secrecy rate R1

as

R1 ≥
[

m(1− δ)
(m+ 1)

(
1 + 1

l

)θ
+ δ

lθ

− ξ
](

1

2
logP

)
+ o(logP ) (4.188)

Similarly, it is easy to derive that

Ri ≥
[

(1− δ)
(m+ 1)

(
1 + 1

l

)θ
+ δ

lθ

− ξ′
](

1

2
logP

)
+ o(logP ) (4.189)

for i = 2, . . . , p + 1 and ξ′ can be made arbitrarily small. By choosing l → ∞ and

δ → 0, we can achieve a s.d.o.f. tuple arbitrarily close to

( m

m+ 1
,

1

m+ 1
, . . . ,

1

m+ 1︸ ︷︷ ︸
p items

,
)

(4.190)

which is (4.117), completing the proof of Theorem 4.9.
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4.6 Conclusions

In this chapter, we determined the entire s.d.o.f. regions of the K-user MAC wiretap

channel, K-user IC-EE, K-user IC-CM, and K-user IC-CM-EE. The converse for the

MAC directly followed from the results in Chapter 2, Section 2.9. The converse for

the IC was shown to be dominated by secrecy constraints and interference constraints

in different parts. To show the tightness and achieve the regions characterized by the

converses, we provided a general method to investigate this class of channels, whose

s.d.o.f. regions have a polytope structure. We provided the equivalence between the

extreme points in the polytope structure and the rank of sub-matrices containing

all active upper bounds associated with each extreme point. Then, we achieved

each extreme point by relating it to a specific channel model. More specifically,

each extreme point of the MAC region can be achieved by an m-user MAC wiretap

channel with K −m helpers, i.e., by setting K −m users’ secure rates to zero and

utilizing them as pure (structured) cooperative jammers. On the other hand, each

asymmetric extreme point of the IC region can be achieved by a (p+1)-user IC-CM

with m helpers, and N external eavesdroppers.

4.7 Appendix

4.7.1 Proof of Theorem 4.8

Regarding Theorem 4.8, first, we have few comments:

1) (4.115) will not be possible until K ≥ 5 due to the constraint K − 2 ≥ p′ ≥ 3.
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2) The point in (4.115) with p′ = K − 1, i.e., (1/2, 1/2, . . . , 1/2, 0), is actually an

extreme point, but since (4.114) with p = K − 2 also includes it, we classify it

as (4.114) here.

3) Assume that we allow p′ = 2 in (4.115) with K ≥ 5. Then, the point becomes

d1 =

(
1

2
,
1

2
, 0, 0, . . . , 0

)
(4.191)

However, this is just the middle point of two points in (4.114). More specif-

ically, by choosing p = 1 in (4.114), we have d′1 = (K−2
K−1

, 1
K−1

, 0, 0, . . . , 0) and

d′′1 = ( 1
K−1

, K−2
K−1

, 0, 0, . . . , 0) (by swapping the first two elements in d′1). Here

d′1 6= d′′1 due to K ≥ 5, and also it is easy to check that d1 = 1
2
(d′1 + d′′1),

which means that d1 is not an extreme point.

Now, we start the proof of Theorem 4.8. In order to speak of a polytope, we

re-write (4.16) as

−di ≤ 0, i = 1, . . . , K (4.192)

Then, we can write all the left hand sides of (4.14), (4.15), (4.192) as an N × K

matrix H with corresponding right hand sides forming an N -length column vector

h, i.e., all points d in D satisfy

Hd ≤ h (4.193)
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where N
4
= 2K +

(
K
2

)
= 2K + K(K−1)

2
. For any extreme point d ∈ D, let J(d) be a

set such that

J(d) =
{
l : Hld = hl, l ∈ {1, . . . , N}

}
(4.194)

where Hl is the lth row of H and hl is the lth element of h. Therefore, J(d)

represents all active boundaries. The remaining rows satisfy

Hld < hl (4.195)

for l 6∈ J .

For convenience, denote by HJ the sub-matrix of H with rows indexed by

J
4
= J(d). Similarly denote by hJ the sub-vector of h with rows indexed by J . In

order to find all extreme points in D, by Theorem 4.5 in Section 4.3.1, we need to find

all K×(K+1) sub-matrices (H′,h′) of (H,h) with rank(H′) = K such that Hd ≤ h

and H′d = h′, which is also equivalent to finding all index sets J representing the

active boundaries such that Hd ≤ h, HJd = hJ , and rank(HJ) = K.

For convenience of presentation, we always partition the set J as a union of

mutually exclusive sets S, P and Z, i.e.,

J = S ∪ P ∪ Z (4.196)
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We denote by S the row indices representing the active boundaries in (4.14)

S
4
=
{
si
4
= s(i) : Hsid = hsi is (K − 1)di +

K∑
j=1

dj = K − 1, i = 1, . . . , K
}

(4.197)

where si stands for the function s(i) of the coordinate i with the value as the row

index of H corresponding to the active boundaries (K−1)di+
∑K

j=1 dj = K−1. Thus,

we have a one-to-one mapping between the row index and the function si
4
= s(i),

i.e., if the row index si ∈ J , we know exactly the ith upper bound in (4.14) is

active; on the other hand, if we know the coordinate i, we can determine the unique

corresponding row index in H by the mapping s : i 7→ si.

Similarly, we denote by P the row indices representing the active boundaries

in (4.15)

P
4
=
{
pV

4
= p(V ) : HpV d = hpV is

∑
i∈V

di = 1, V ⊆ {1, . . . , K}, |V | = 2
}

(4.198)

where the value of pV is the corresponding row index of H.

Finally, denote by Z the row indices representing the active boundaries in

(4.192)

Z
4
=
{
zi
4
= z(i) : Hzid = hzi is di = 0, i = 1, . . . , K

}
(4.199)

where the value of zi is the corresponding row index of H.
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There are approximately in total

(
N

K

)
≈
(
K+2

2

)K
eK√

2πK
(4.200)

possible selections of K equations in (4.193) for large K. In order for this search

to have a reasonable complexity, we need to investigate the structure of D more

carefully. We identify the following simple properties for the extreme points in the

following lemmas.

Lemma 4.1 Let d be a non-zero extreme point in D. Then, it must satisfy the

following properties:

1) maxk dk ≤ K−1
K

.

2) At most one element, if there is any, in d is strictly larger than 1
2
.

3) If there exists an element, say di, which is equal to 1
2
, then, dj ≤ di = 1

2
for all j.

4) If |S| ≥ 2 and ∀si, sj ∈ S, where i 6= j, then 0 < di = dj ≤ 1
2
.

5) If si ∈ S, then dj ≤ di for all j. Or, equivalently, if |S| ≥ 1 and si ∈ S, then

di = maxj=1,...,K dj. Or, equivalently, if |S| ≥ 1 and di = maxj=1,...,K dj, then si ∈ S.

6) If maxi di >
1
2
, then |S| ≤ 1.

The proof of Lemma 4.1 is provided in Appendix 4.7.2. In addition to the

properties of the elements of the extreme points, we also need some results regarding

the rank of the sub-matrices. It is easy to verify that a trivial necessary condition

for rank(HJ) = K is |S| + |P | + |Z| ≥ K. More formally, we have the following

lemma.
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Lemma 4.2 For an extreme point d, rank(HJ) = K only if

rank(HS∪P ) + |Z| ≥ K (4.201)

Lemma 4.3 Let d be a non-zero extreme point of D. If |P | ≥ 1 and maxk dk >
1
2
,

then there exists a coordinate i∗ such that

K − 1

K
≥ di∗ = max

k
dk >

1

2
(4.202)

and a non-empty set

U ′
4
=
{
j : dj = 1− di∗ > 0

}
(4.203)

with cardinality m′
4
= |U ′| = |P | and

P = P ′
4
=
{
pV : V = {i∗, j}, j ∈ U ′

}
(4.204)

In addition, S is either empty or

S = {si∗} (4.205)

Futhermore,

rank(HS∪P ) = |P |+ 1{|S|≥1} (4.206)

where 1{·} is the indicator function.

Lemma 4.4 Let d be a non-zero extreme point of D. If |P | ≥ 1 and maxk dk ≤ 1
2
,
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then there exists a non-empty set

U ′′ =
{
i : di =

1

2

}
(4.207)

with cardinality m′′
4
= |U ′′| ≥ 2, and

P = P ′′
4
=
{
pV : V = {k, j}, k 6= j, and k, j ∈ U ′′

}
(4.208)

with rank

rank(HP ) =


m′′, |P | > 1

1, |P | = 1

(4.209)

In addition, S is either empty or

S =
{
si : i ∈ U ′′

}
(4.210)

Futhermore,

rank(HS∪P ) =


1, |P | = 1 & |S| = 0

m′′ + 1{|S|≥1}, otherwise

(4.211)

The proofs of Lemmas 4.2, 4.3, and 4.4 are provided in Appendix 4.7.2.

Now, we are ready to prove Theorem 4.8.
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Case: |Z| = K. Clearly, rank(HZ) = K and only the zero vector satisfies

H0 ≤ h (4.212)

HZ0 = hZ (4.213)

Thus, 0 is an extreme point of D, which is (4.113). Therefore, in the remaining

discussion we focus on non-zero points and |Z| < K.

Case: |P | = 0. Since |Z| < K, by Lemma 4.2, |S| ≥ 1.

If |S| = 1, then again by Lemma 4.2, |Z| = K − 1. By property 5) of Lemma

4.1, S = {si} for some i and Z = {zj : j 6= i}. The extreme point d has the

structure (4.114) with p = 0.

If |S| = K, then by property 4) of Lemma 4.1, Z = φ, and the corresponding

extreme point is (4.116).

If 2 ≤ |S| < K, due the positiveness implied by property 4) of Lemma 4.1

and the cardinality constraint by Lemma 4.2, the only consistent Z, which gives a

solution for HJd = hJ , is

Z =
{
zj : sj 6∈ S

}
(4.214)

Denote by x any di for si ∈ S. Then, we have

Kx+ (|S| − 1)x = K − 1 (4.215)

190



which implies that

x =
K − 1

K − 1 + |S| (4.216)

Since P is empty, x must satisfy x < 1
2

due to |S| ≥ 2 and property 4) of Lemma 4.1.

Substituting (4.216) into x < 1
2

gives |S| > K−1, which contradicts the assumption

|S| < K. Therefore, the solution given by HJd = hJ , where J = S ∪ Z, violates

(4.195).

Case: |P | ≥ 1 and maxk dk >
1
2
. First of all, due to the positiveness implied by

(4.202) and (4.203), the consistent set Z must satisfy

Z ⊆
{
zk : k 6∈ {i∗} ∪ U ′

}
(4.217)

which implies |Z| ≤ K − |U ′| − 1 = K − |P | − 1.

If S is empty, by Lemma 4.3, rank(HS∪P ) = |P |, which implies

rank(HS∪P ) + |Z| < K (4.218)

which implies that rank(HJ) < K, which does not give any extreme point, by

Lemma 4.2.

Therefore, S is non-empty and determined by (4.205). In addition, Lemma

4.3 gives

rank(HS∪P ) = |P |+ 1 (4.219)
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If |P | = K− 1, due to (4.203) and (4.205), we have the equality in (4.14) hold

for i∗, i.e.,

Kdi∗ + (K − 1)(1− di∗) = K − 1 (4.220)

which leads to di∗ = 0 contradicting (4.202).

Therefore, |P | < K − 1. Then, the consistent set Z satisfying Lemma 4.2 is

Z =
{
zk : k 6∈ {i∗} ∪ U ′

}
(4.221)

In addition, due to (4.203) and (4.205), we have the equality in (4.14) hold for i∗,

i.e.,

Kdi∗ + |P |(1− di∗) = K − 1 (4.222)

which implies that

di∗ =
K − 1− |P |
K − |P | (4.223)

Since di∗ = maxk dk >
1
2
, we have

|P | < K − 2 (4.224)
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The solution of this choice is exactly (4.114) with 1 ≤ p < K − 2, and it satisfies

(4.193).

Case: |P | ≥ 1 and maxk dk ≤ 1
2
. If S is empty, then by Lemma 4.4,

rank(HS∪P ) =


m′′, |P | > 1

1, |P | = 1

(4.225)

wherem′′ is the cardinality of the U ′′ defined in (4.207). Sincem′′ ≥ 2, for both cases,

rank(HS∪P ) ≤ m′′. Due to the positiveness of the element in U ′′, |Z| ≤ K − m′′.

Therefore, by Lemma 4.2, the cardinality of Z can only take the value |Z| = K−m′′,

i.e.,

dj = 0, ∀j 6∈ U ′′ (4.226)

Also, Lemma 4.2 implies that |P | > 1 and m′′ > 2; otherwise, rank(HS∪P ) + |Z| =

1 + |Z| ≤ 1 +K −m′′ ≤ K − 1 < K.

Therefore, the elements in d are either 1
2

or 0, and the number of 1
2
s is m′′.

Note that S is empty. Therefore, for any i ∈ U ′′, we must have the equality in (4.14)

not hold, i.e.,

K

2
+ (m′′ − 1)

1

2
< K − 1 (4.227)

which indicates that

m′′ < K − 1 (4.228)

Combining with the condition m′′ > 2 gives an extreme point that has the structure

(4.115).
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It remains to discuss the case where S is non-empty. By Lemma 4.4, S is

determined by (4.210) and

rank(HS∪P ) = m′′ + 1 (4.229)

If m′′ = K − 1, then the only solution is given by choosing Z = {zj : j 6∈ U ′′}

with |Z| = 1, which is the structure in (4.114) with p = K − 2.

If m′′ < K − 1, then rank(HS∪P ) < K. By Lemma 4.2 and the positiveness

implied by U ′′ with cardinality m′′, Z must satisfy

K −m′′ ≥ |Z| ≥ K − rank(HS∪P ) = K −m′′ − 1 > 0 (4.230)

i.e., Z is not empty and the extreme point d has either K − m′′ − 1 or K − m′′

zero(s). On the other hand, d also has in total m′′ 1
2
s due to the definition of U ′′ in

(4.207). If |Z| = K −m′′, then the extreme point d has the following form

di =


1
2
, i ∈ U ′′

0, i 6∈ U ′′
(4.231)

and we must have the equality in (4.14) hold for some i ∈ U ′′, i.e.,

K

2
+ (m′′ − 1)

1

2
= K − 1 (4.232)
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which is not valid since m′′ < K − 1. Therefore, the equations corresponding to the

selection of J are inconsistent. On the other hand, if |Z| = K −m′′ − 1, then the

extreme point d has the following form

di =



1
2
, i ∈ U ′′

0, zi ∈ Z

x, otherwise

(4.233)

where 0 < x < 1
2
. Again, we must have the equality in (4.14) hold for some i ∈ U ′′,

i.e.,

K

2
+ (m′′ − 1)

1

2
+ x = K − 1 (4.234)

which implies that

x =
K − 1−m′′

2
(4.235)

Substituting this formula into 0 < x < 1
2

leads to

K − 2 < m′′ < K − 1 (4.236)

which is not possible since m′′ is an integer, which completes the proof of Theorem

4.8.

195



4.7.2 Proofs of Lemma 4.1 through 4.4

4.7.2.1 Proof of Lemma 4.1

We prove all the properties one by one.

1) The constraint (4.14) and the positiveness constraint in (4.16) imply that for any

coordinate i, we have

Kdi ≤ Kdi +
∑
j 6=i

dj = K − 1 (4.237)

i.e., di ≤ K−1
K

for any i. Therefore, maxk dk ≤ K−1
K

.

2) We prove by contradiction. Assume that we have distinct coordinates, i, j, such

that di, dj >
1
2

in d. Then, the set V
4
= {i, j} with |V | = 2 violates the constraint

in (4.15). Therefore, this contraction implies that at most one element, if any, in d

is strictly larger than 1
2
.

3) Similarly, assume that there exists a j such that dj >
1
2
. Since di = 1

2
by

assumption, di + dj > 1, which violates constraint (4.15). This implies that dj ≤

di = 1
2

for all j.

4) Let i, j ∈ S and i 6= j. Due to the definition of S, si, sj ∈ S, i.e., from (4.197)

Kdi + dj +
K∑

k=1,k 6=i,j
dk = K − 1 (4.238)

Kdj + di +
K∑

k=1,k 6=i,j
dk = K − 1 (4.239)

which implies (K−1)di = (K−1)dj. Since K−1 > 0, di = dj. Furthermore, due to
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property 2), both are no larger than 1
2
, and due to property 3), for any k, dk ≤ di.

If di = 0, then the point d is the zero vector, which contradicts the assumption that

d is a non-zero extreme point in D. Therefore, di = dj > 0.

5) The three equivalent statements in this property are simply from three different

perspectives addressing the same fact that the coordinates of d, which are associated

with the elements in S, are the most significant coordinates. We will prove the first

statement and then prove the equivalence of them.

We prove the first statement of property 5) by contraction. Assume that there

exists a j such that dj > di. Then, consider the following expression (for K ≥ 3)

Kdj + di +
K∑

k=1,k 6=i,j
dk = dj + di + (K − 1)dj +

K∑
k=1,k 6=i,j

dk (4.240)

> dj + di + (K − 1)di +
K∑

k=1,k 6=i,j
dk (4.241)

= Kdi +
K∑

k=1,k 6=i
dk (4.242)

= K − 1 (4.243)

where the last equality is due to the assumption si ∈ S. This result violates the

constraint (4.14). Therefore, for all j, dj ≤ di.

Next, we prove the second statement of property 5) using the first statement.

This is trivially true because the assumption |S| ≥ 1 and si ∈ S implies that, by

the first statement, di ≥ dj for all j, i.e., di = maxj dj.

Then, we prove the third statement of property 5) using the second statement.

By assumption, let di = maxk dk. However, assume that si 6∈ S. This implies that
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there exists another coordinate j, j 6= i such that sj ∈ S (since |S| ≥ 1) and thereby

by the second statement dj = maxk dk = di. Then, consider

Kdi + dj +
K∑

k=1,k 6=i,j
dk = Kdj + di +

K∑
k=1,k 6=i,j

dk = K − 1 (4.244)

where the last equality is due to sj ∈ S. This implies that si must belong to S by

definition in (4.197), i.e., si ∈ S, which contradicts the assumption that si 6∈ S.

Finally, we prove the first statement of property 5) using the third statement.

We prove this by contradiction as well. As stated in the condition of the first

statement, si ∈ S , this means |S| ≥ 1. Assume that there exists at least one

element which is strictly larger than di. Pick the largest one among them and

denote it by dj. Clearly, j 6= i and dj = maxk dk > di. By the third statement,

sj ∈ S. Then, |S| ≥ 2 and by property 4) di = dj, which contradicts the assumption

dj > di.

6) We prove |S| ≤ 1 by contraction. Assume that |S| ≥ 2. Due to property 4)

and the second statement of property 5), we have two distinct j, k ∈ S such that

1
2
≥ dj = dk = maxi di >

1
2
, which leads to a contradiction. Thus, |S| ≤ 1.

4.7.2.2 Proof of Lemma 4.2

It is straightforward that

rank(HZ) = |Z| (4.245)
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since there are in total |Z| 1s in the sub-matrix HZ and the row index and column

index of any two 1s are different. Since (S ∪ P ) ∩ Z = φ, we have

K = rank(HJ) = rank(HS∪P∪Z) ≤ rank(HS∪P ) + rank(HZ) (4.246)

4.7.2.3 Proof of Lemma 4.3

If |P | = 1, then P = {pV } for a unique V = {i, j} with |V | = 2. If di = dj, then

di = dj = 1
2

and maxk dk ≤ 1
2

due to property 3) of Lemma 4.1, which contradicts

the condition maxk dk > 1
2
. Therefore, di 6= dj. Without loss of generality, let

di > dj, then di >
1
2

and i is the i∗ required in Lemma 4.3 due to property 2) of

Lemma 4.1. By property 1) of Lemma 4.1, dj = 1 − di∗ > 0, thus j ∈ U ′. If there

exists any k, k 6= j, such that dk = 1 − di∗ , then clearly V ′
4
= {i∗, k} 6= V , but

pV ′ ∈ P , which contradicts the condition |P | = 1. Hence, U ′ = {j} and P satisfies

(4.204).

If |P | ≥ 2, assume that V1 = {i, j}, V2 = {x, y}, V1 6= V2, and pV1 , pV2 ∈ P .

Without loss of generality, let di = maxk∈{i,j,x,y} dk. If di <
1
2
, then dj+di < 1, which

contradicts pV1 ∈ P . If di = 1
2
, then due to property 3) of Lemma 4.1, maxk dk ≤ 1

2
,

which contradicts the condition maxk dk >
1
2
. Therefore, di = maxk∈{i,j,x,y} dk >

1
2

and i is the i∗ required in Lemma 4.3. For any pV ∈ P , let V = {a, b} and assume

da ≥ db. If da = 1
2
, this leads to a contradiction of di∗ >

1
2

due to property 3) of

Lemma 4.1. Thus, da >
1
2
. Due to property 2) of Lemma 4.1, the coordinate a

must be i∗, i.e., a = i∗. Then, db = 1− di∗ > 0 and that is true for any pV . Hence,
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|P | = |U ′| and (4.204) are trivially true.

If S is empty, we have a sub-matrix which has the form (by removing all

columns containing all zeros and rearranging the columns)

HS∪P = HP
·

=



1 1 0 0 . . . 0

1 0 1 0 . . . 0

...
...

...
...

. . .
...

1 0 0 0 . . . 1


(4.247)

where the number of rows is |P | = |U ′|, the number of columns is |P | + 1, and

the index of the first column corresponds to i∗ and the indices of other columns

correspond to U ′ defined in (4.203). Therefore, rank(HS∪P ) = |P | and we are done.

If S is not empty, due to (4.202) and property 6) of Lemma 4.1, |S| = 1.

Furthermore, due to property 5) of Lemma 4.1, si∗ ∈ S, which is (4.205). Note that

HS is a K-length row vector containing no zeros. If |P |+ 1 < K, then HS has more

columns than the sub-matrix on the right hand side of (4.247). HS∪P = |P | + 1 is

true. If |P |+ 1 = K, then

HP∪S =



1 1 0 0 . . . 0

1 0 1 0 . . . 0

...
...

...
...

. . .
...

1 0 0 0 . . . 1

K 1 1 1 . . . 1


4
= M(K) (4.248)
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where M(n) is n× n square matrix as in (4.248), where n ≥ 2. Therefore, HP∪S =

M(K). If we denote f(n)
4
= det[M(n)], then it is easy to write the recursive formula

as

f(n) = (−1)n − f(n− 1), K ≥ 3 (4.249)

f(2) = 1−K (4.250)

which gives that f(n) = (−1)n(n−K−1), i.e., det HP∪S = detM(K) = (−1)K+1 6=

0 and rank(HP∪S) = |P |+ 1 = K, which completes the proof.

4.7.2.4 Proof of Lemma 4.4

If maxk dK < 1
2
, then |P | = 0, which contradicts the assumption |P | ≥ 1. Therefore,

maxk dK = 1
2
, which implies |U ′′| ≥ 1. Assume that i∗ ∈ U ′′. Due to property 3) of

Lemma 4.1, dj ≤ di∗ = 1
2

for all j. If maxk 6=i∗ dk <
1
2
, then we cannot find a set V

such that |V | = 2 and
∑

k∈V dk = 1, i.e., |P | = 0, which contradicts the assumption

|P | ≥ 1. Thus, |U ′′| ≥ 2. Then, P ′′ defined in (4.208) satisfies P ′′ ⊆ P . On the

other hand, for any coordinate pair (k′, j′) such that k′ 6= j′ and p{k′,j′} ∈ P , since

dk′ , dj′ ≤ 1
2
, we must have dk′ = dj′ = 1

2
, and by definition of U ′′, k′, j′ ∈ U ′′, which

implies p{k′,j′} ∈ P ′′. Therefore, P = P ′′.

If S is empty, then HP = 1 if |P | = 1 and we are. If S is empty but |P | > 1,

the index set of the columns of HP , which contains nonzero elements, is U ′′ due to

(4.208). Therefore, rank(HP ) ≤ |U ′′| = m′′. In order to study the rank, we remove
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the columns containing all zeros and rearrange the columns. Assume that

U ′′ =
{
i1, i2, . . . , im′′

}
(4.251)

where i1 = i∗. Then, consider a m′′ ×m′′ sub-matrix of HP

HJ ′′
·

=



1 1 0 0 0 . . . 0

1 0 1 0 0 . . . 0

1 0 0 1 0 . . . 0

...
...

...
...

...
. . .

...

1 0 0 0 0 . . . 1

0 1 1 0 0 . . . 0



(4.252)

where

J ′′
4
= {pV : V = {i∗, ij}, j = 2, 3, . . . ,m′′} ∪ {p{i2,i3}} ⊆ P (4.253)

It is easy to verify that det HJ ′′ = (−1)m
′′ × 2 6= 0, therefore rank(HJ ′′) = m′′, i.e.,

rank(HP ) = m′′. This completes the proof of the case where S is empty.

Assume that |S| ≥ 1, by property 5) of Lemma 4.1, S must have the form of

(4.210). If |P | = 1, m′′ = |U ′′| = 2. Then, the 3 ×K matrix HP∪S must have the
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structure

HP∪S=


1 1 0 0 0 . . . 0

K 1 1 1 1 . . . 1

1 K 1 1 1 . . . 1

 (4.254)

where the indices of the first two columns belong to U ′′. Clearly, HP∪S = 3 = m′′+1

since m′′ = 2.

If |P | > 1, by using the J ′′ in (4.253), we have

HJ ′′∪S =



1 1 0 0 . . . 0 0 0 . . . 0

1 0 1 0 . . . 0 0 0 . . . 0

...
...

...
...

. . .
...

...
...

. . .
...

1 0 0 0 . . . 1 0 0 . . . 0

0 1 1 0 . . . 0 0 0 . . . 0

K 1 1 1 . . . 1 1 1 . . . 1

1 K 1 1 . . . 1 1 1 . . . 1

...
...

...
...

. . .
...

...
...

. . .
...

1 1 1 1 . . . K 1 1 . . . 1



(4.255)

Due to [83, Section 2.2, Problem 7],

rank(HP∪S) = rank(HJ ′′∪S) = rank(HJ ′′) + 1 = m′′ + 1 (4.256)

which completes the proof.
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Chapter 5

Sum Secure Degrees of Freedom of Two-Unicast Layered Wireless

Networks

5.1 Introduction

In this chapter, we examine a class of multiple-hop wireless networks, which have two

source nodes, two destination nodes, and a layered network between them. There-

fore, we extend the one-hop results in Chapter 2 to the case of multi-hop networks.

We determine the sum s.d.o.f. of two-unicast layered wireless networks. Without

any secrecy constraints, the sum d.o.f. of this class of networks was studied by [64]

and shown to take only one of three possible values: 1, 3
2

and 2, for all network

configurations. We consider the setting where, in addition to being reliably trans-

mitted, each message is required to be kept information-theoretically secure from

the unintended receiver. We show that the sum s.d.o.f. can only take one of five

possible values: 0, 2
3
, 1, 3

2
, 2, for all network configurations. To determine the sum

s.d.o.f., we divide the class of two-unicast layered networks into several sub-classes,

and propose an achievable scheme based on the specific structure of the networks

in each sub-class. Our achievable schemes are based on real interference alignment,

cooperative jamming, interference neutralization and cooperative jamming neutral-

ization techniques.
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5.2 Definitions and Notations

Let V be the node set and E ⊂ V ×V be the edge set. A two-unicast layered network

N = (G,L2) is a directed graph G = (V,E) with two source-destination pairs

L2 = {(s1, d1), (s2, d2)} ⊂ V ×V . The network has a layered structure which means

that the node set V can be partitioned into r mutually disjoint subsets V1, V2, · · · , Vr,

denoting the nodes in each layer, such that V1 = {s1, s2}, Vr = {d1, d2} and

E ⊂
r−1⋃
i=1

Vi × Vi+1 (5.1)

Since each node only belongs to one layer and each layer has an index, we define the

index function l(v) as the index of the layer containing the node v, i.e., v ∈ Vl(v).

Next, we give several definitions on graphs.

Definition 5.1 (Path) A path Pv1,vk is an ordered set of nodes {v1, v2, · · · , vk}

provided that (vi, vi+1) ∈ E for i = 1, 2, · · · , k − 1. Further, we denote u ; v if

there exists at least one path Pu,v from u to v.

Two paths are disjoint provided that the two sets of nodes are disjoint. To avoid

the trivial cases, we always assume that s1 ; d1 and s2 ; d2. In contrast to the

assumption in [64], we cannot remove nodes v which do not belong to any path,

since we may employ them to perform cooperative jamming.

Definition 5.2 For a subset of nodes S ⊂ V , we denote by G[S] the graph induced

by S on G provided that G[S] = (S,Es) where Es = {(v, u) ∈ E : v, u ∈ S}.

Reference [64] defines interference and manageable interference as follows:
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Definition 5.3 (Interference) For i = 1 or 2, a node v /∈ Psi,di causes interfer-

ence on Psi,di and we write v
I
; Psi,di if there exist a node u ∈ Psi,di such that

(v, u) ∈ E and a path Psj ,v such that Psi,di and Psj ,v are disjoint.

In Definition 5.3 and in the sequel, we use the notation j = ī to denote the index

of the other transmitter-receiver pair, i.e., i = 1, j = 2 or i = 2, j = 1. In order

to characterize the interference from another pair, the number of nodes causing

interference is defined as follows:

ni(G[S], Psi,di)
4
= ni(G[S])

4
=
∣∣∣{v ∈ S : v

I
; Psi,di ,

∃Psj ,v ⊂ S and Psi,di ∩ Psj ,v = φ}
∣∣∣ (5.2)

for some subset S ⊂ V and (Ps1,d1 ∪ Ps2,d2) ⊂ S.

Definition 5.4 (Manageable interference) Two disjoint paths Ps1,d1 and Ps2,d2

have manageable interference if we can find S ⊂ V , such that (Ps1,d1∪Ps2,d2) ⊂ S,

n1(G[S]) 6= 1 and n2(G[S]) 6= 1.

An example two-unicast layered network is shown in Figure 1.9. This network

has r = 5 layers and two disjoint paths Ps1,d1 = {s1, u1, u2, u3, d1} and Ps2,d2 =

{s2, w1, w2, w3, d2}. Node t1 causes interference on Ps2,d2 , since we can find w2 ∈

Ps2,d2 such that (t1, w2) ∈ E and a path Ps1,t1 = {s1, t1} such that Ps1,t1 and Ps2,d2 are

disjoint. This implies that n2(G[V ]) = 1. It is also easy to see that n1(G[V ]) = 1 due

to node t2. However, if we choose S = V \{t1, t2}, then, for the graph G[S] induced

by S, n1(G[S]) = n2(G[S]) = 0. By definition, Ps1,d1 and Ps2,d2 have manageable
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interference.

Regarding the channel model, each node v observes the signals through a

memoryless additive Gaussian channel, i.e.,

Yv =
∑

u:(u,v)∈E
hv,uXu +Nv (5.3)

where Nv is an additive zero-mean unit-variance Gaussian noise and Xu is the input

signal sent from node u provided that the edge (u, v) exists. All the channel gains hv,u

in the network are fixed during the communication session and known at all nodes.

Channel gains are independently drawn from continuous distributions. The input

signal of each node u, Xu, satisfies an average power constraint P , i.e., E[X2
u] ≤ P .

The source node s1 has a message W1 uniformly chosen from set W1 for des-

tination d1. The rate of the message is R1
4
= 1

n
log |W1|. The source node s1 uses

a stochastic function f1 : W1 → Xn
s1

to encode the message, where n is the num-

ber of channel uses. Similarly, source node s2 has message W2 (independent of

W1) uniformly chosen from set W2 for destination d2. The rate of the message is

R2
4
= 1

n
log |W2|. Source node s2 uses a stochastic function f2 :W2 → Xn

s2
to encode

the message. The messages are said to be transmitted reliably and securely if only

the intended destination node can decode each message, i.e., each destination node

is an eavesdropper for the other. Formally, for i = 1 or 2, a secrecy rate Ri is said

to be achievable if for any ε > 0 there exists an n-length code such that destination

node di can decode the message as Ŵi reliably based on its observation Y n
di

, i.e., the
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probability of decoding error is less than ε,

Pr
[
Wi 6= Ŵi

]
≤ ε (5.4)

and the message is kept information-theoretically secure against the other receiver,

1

n
H(Wi|Y n

dj
) ≥ 1

n
H(Wi)− ε (5.5)

This definition implicitly implies that the source nodes trust all the interme-

diate relay nodes, but the unintended destination node. The sum s.d.o.f. is defined

as:

Ds,Σ = lim
P→∞

sup
R1 +R2

1
2

logP
(5.6)

where the supremum is over all achievable secrecy rate pairs (R1, R2). The sum

d.o.f. of two-unicast layered networks was found in [64] as:

Theorem 5.1 (Sum d.o.f. of two-unicast networks [64]) For a two-unicast lay-

ered Gaussian network N = (G = (V,E), L2 = {(s1, d1), (s2, d2)}) where the channel

gains are chosen according to independent continuous distributions, with probability

1, DΣ is given by

A) 1, if N contains a node v whose removal disconnects di from {si, sj} and sj from

{di, dj}, for i = 1 or 2, j = ī,

A′) 1, if N contains an edge (v2, v1) such that the removal of v1 disconnects di from

{si, sj} and the removal of v2 disconnects sj from {di, dj}, for i = 1 or 2, j = ī,

B) 2, if N contains two disjoint paths Ps1,d1 and Ps2,d2 with manageable interference,
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B′) 2, if N or any sub-network does not contain two disjoint paths Ps1,d1 and Ps2,d2,

but is not in case (A),

C) 3/2, in all other cases.

By considering secrecy for the end-to-end users in addition to reliability, the

main result of this chapter is the characterization of the sum s.d.o.f. of two-unicast

layered networks as stated in the following theorem.

Theorem 5.2 (Sum s.d.o.f. of two-unicast networks) For a two-unicast lay-

ered Gaussian network N = (G = (V,E), L2 = {(s1, d1), (s2, d2)}) where the channel

gains are chosen according to independent continuous distributions, with probability

1, Ds,Σ can take one of the following five possible values: 0, 2
3
, 1, 3

2
, 2.

We will prove Theorem 5.2 in the following three sections. In particular, in

Section 5.3, we will show that for two-unicast layered networks in cases A and A′,

the sum s.d.o.f. can take one of three values: 0, 2
3
, 1. Next, in Section 5.4, we will

show that for two-unicast layered networks in cases B and B′, the sum s.d.o.f. is 2.

Finally, in Section 5.5, we will show that for two-unicast layered networks in case

C, the sum s.d.o.f. is 3
2
.

In order to prove Theorem 5.2, we characterize the penultimate layer Vr−1,

i.e., the last layer of the network before the layer of destinations, as:

Vr−1 = G1 ∪G2 ∪G3 ∪G4 (5.7)
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where Gis are mutually disjoint sets defined as follows:

G1 = {u ∈ Vr−1 : (u, d1) ∈ E and (u, d2) ∈ E} (5.8)

G2 = {u ∈ Vr−1 : (u, d1) ∈ E and (u, d2) /∈ E} (5.9)

G3 = {u ∈ Vr−1 : (u, d1) /∈ E and (u, d2) ∈ E} (5.10)

G4 = {u ∈ Vr−1 : (u, d1) /∈ E and (u, d2) /∈ E} (5.11)

That is, we group the nodes in the penultimate layer Vr−1 into four disjoint sets:

G1 through G4. These are the sets of nodes that may or may not be connected to

the destinations: G1 is the set of all nodes in this layer which are connected to both

destinations, G2 is the set of all nodes that are connected to the first destination

(d1) but not to the second destination (d2), G3 is the set of all nodes which are

connected to the second destination (d2) but not to the first destination (d1), and

G4 is the set of nodes that are not connected to d1 or d2. Since the last layer Vr only

contains d1, d2, it is safe to remove the nodes belonging to G4 from the network.

For the rest of this chapter, we assume that the cardinality of set G4 is zero, i.e.,

|G4| = 0.

5.3 Sum Secure d.o.f. for Cases A and A′

In this section, we consider two-unicast layered networks in cases A and A′, i.e.,

each network N contains an edge (v2, v1) such that removal of v1 disconnects di

from {si, sj} and removal of v2 disconnects sj from {di, dj}, for i = 1 or 2, j = ī. If
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v1 = v2, then the “edge” downgrades to a node, and this is case A; otherwise, this

is case A′.

The sum d.o.f. capacity is DΣ = 1 for this case, which is an upper bound for

the sum s.d.o.f., Ds,Σ. We present our results by dividing all the networks in cases

A and A′ into 5 sub-cases, A1 through A5. We implicitly mean that, for each i, the

sub-case Ai does not include the setting in Aj for any j < i, i.e., the sub-case A2

does not include the setting in A1, the sub-case A3 does not include the settings in

A1 or A2, etc. We start with a sub-case (sub-case A1) where there exists at least

one node in G2 or G3, i.e., |G2| ≥ 1 or |G3| ≥ 1. In this case, cooperative jamming

is sufficient to achieve 1 secure d.o.f. if there exists a helper in the set G2 ∪ G3. If

the union of G2 and G3 is empty, then all the nodes in layer Vr−1 are connected

to both destinations, i.e., Vr−1 = G1. Since the signals from any node in G1 are

received by both destination nodes, we investigate the structure of the network and

the set G1 to find the exact sum s.d.o.f. based on interference neutralization and

real interference alignment in sub-cases A2 through A5. Our result for cases A and

A′ is stated in the following theorem.

Theorem 5.3 With probability 1, the sum s.d.o.f. of layered networks in cases A

and A′ is

Ds,Σ =


0 if |G1| = 1 and |G2 ∪G3| = 0

2
3

(∗)

1 o.w.

(5.12)

where the condition (∗) is either of the following two conditions:
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1. (C1) r = 2 and |G2 ∪G3| = 0,

2. (C2) r ≥ 3, |G1| = 2, |G2 ∪ G3| = 0, for each w there exists at most one

uw ∈ G1 such that w ; uw, and the layered network is not in case A.

We can interpret Theorem 5.3 in the following way. The first condition |G1| = 1

and |G2 ∪ G3| = 0 means that Vr−1 = G1 = {u} has only one node u which is

connected to both d1 and d2. Both destinations receive almost the same signals

at high SNR, which implies that Ds,Σ = 0. This case is considered in detail in

Section 5.3.2. Next, condition (C1), i.e., r = 2 and |G2 ∪ G3| = 0, implies that

|G1| = 2 due to the assumption V1 = {s1, s2}. Therefore, this layered network is a

fully-connected two-user Gaussian IC with confidential messages, for which the sum

s.d.o.f. is 2
3

due to Chapter 2. Such networks belong to case A′. Since this result

follows from Chapter 2, we will not consider it further in the following sub-sections.

Next, condition (C2) is a variant of condition (C1), thereby the corresponding Ds,Σ

is also 2
3
. We will show this in Section 5.3.5. For all other network configurations,

Ds,Σ is 1. We will give the corresponding achievable schemes in Sections 5.3.1, 5.3.3,

5.3.4, and 5.3.5.

5.3.1 Sub-case A1: Ds,Σ = 1 if |G2| ≥ 1 or |G3| ≥ 1.

Without loss of generality, we prove Ds,Σ = 1 for the setting |G3| ≥ 1. The same

argument can be applied to |G2| ≥ 1. The cardinality of set G3 is nonzero which

means that there exists at least one node u ∈ G3. There are two possibilities. The

first possibility is that we can find some node u ∈ G3 and u belongs to the path
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Ps2,d2 . Since by definition the edge (u, d1) does not exist, if the message signal of

the transmitter-receiver pair 2 is going through the path Ps2,d2 , by keeping other

nodes in the network silent, there is no information leakage to d1, i.e., this message

(message W2) is secure and Ds,Σ = 1.

If we cannot find such node u (which is the second possibility), then we can

utilize node u to perform cooperative jamming. Transmitter 1 transmits a message

carrying 1 d.o.f. along the existing path Ps1,d1 . All nodes on this path, except the

node s̃ ∈ Vr−1, simply relay the signal. Node u, which is connected to d2 only,

sends i.i.d. Gaussian cooperative jamming signal [14, 15] with average power P ,

which is independent of message W1, to ensure the secrecy of the message from

transmitter-receiver pair 1. The final hop becomes a Gaussian wiretap channel with

an independent helper which is only connected to the eavesdropper. Due to the

fact that the signal from node u is an artificial i.i.d. Gaussian noise, the source-

destination pair (s̃, d1) can achieve the (maximum) secrecy rate, which is known

[4]

1

2
log
(
1 + h2

d1,s̃
P
)
− 1

2
log

(
1 +

h2
d2,s̃

P

1 + h2
d2,u

P

)
(5.13)

and from (5.6) the s.d.o.f. is Ds,Σ = 1.

5.3.2 Sub-case A2: Ds,Σ = 0 if |G1| = 1.

In this section, we consider the sub-case A2 and prove that Ds,Σ = 0. After ruling

out the setting in sub-case A1, the setting of layered networks in A2 is |G1| = 1

and |G2| = |G3| = 0. First, note that |G2| = |G3| = 0 implies |G1| ≥ 1 due to
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the existence of Psi,di for some i. Furthermore, if |G1| = 1 and |G2| = |G3| = 0,

this indicates that Vr−1 = G1 = {u} has only one node u which is connected to

both d1 and d2. The last hop of the layered network in this sub-case is a Gaussian

BC with confidential messages, in which the transmitter is node u, and d1, d2 are

the two receivers. The sum s.d.o.f. is 0: due to the degradedness of the underlying

Gaussian BC, one of the users (stronger) has the secrecy capacity which is the

secrecy capacity of the Gaussian wiretap channel, and the other user (weaker) has

zero secrecy capacity. It is well-known that the secrecy capacity of the Gaussian

wiretap channel does not scale with logP , therefore, for both users, the s.d.o.f. is

zero, implying that the sum s.d.o.f. is zero. This concludes that Ds,Σ = 0 if |G1| = 1

and |G2| = |G3| = 0.

5.3.3 Sub-case A3: Ds,Σ = 1 if there exist two distinct nodes u1, u2 ∈

G1 and a source node s such that s; u1 and s; u2.

In this section, we consider the sub-case A3 in which layer Vr−1 contains several

nodes, which are connected to both destinations. In addition, by excluding the

settings in A1 and A2, we note that the layered networks in A3 must have |G1| ≥ 2

and |G2| = |G3| = 0. Since the condition (C1), i.e., r = 2 and |G2 ∪ G3| = 0, has

already been discussed and excluded in the present discussion, we know that the

networks with |G1| ≥ 2 and |G2| = |G3| = 0 must have at least three layeres, i.e.,

r ≥ 3.

We propose an achievable scheme for this sub-case based on interference neu-
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tralization [65]. The source node s, say si, which connects to u1 and u2, sends the

message signal carrying 1 d.o.f. to its destination. All the nodes on the two paths

Psi,u1 and Psi,u2 just relay the signal. The two nodes u1 and u2 perform amplify-

and-forward with factors α1 and α2, respectively. The values of α1 and α2 will be

specified later. All other nodes, including sj, do not send/relay signals.

To show the achievable sum s.d.o.f. for this scheme, we construct the condensed

network [64] with three key layers as shown in Figure 5.1. Then, the end-to-end

transfer matrix T = [Ti, Tj]
T from si to di, dj satisfies

 Ydi

Ydj

 = TXsi +

 Ñ1

Ñ2



=

 αih̃ihi,i + αjh̃jhi,j

αih̃ihj,i + αjh̃jhj,j

Xsi +

 Ñ1

Ñ2

 (5.14)

where Ñ1 and Ñ2 are effective dependent noises with finite variances. However, they

are independent of the message signal due to the linear construction.

If we choose αi = 1 and αj = −(h̃ihj,i)/(h̃jhj,j), then the signal Xsi from the

source node si is perfectly canceled at the destination node dj due to the fact Tj = 0,

which also makes the observation Y n
dj

at dj and Wi independent, i.e., I(Wi;Y
n
dj

) = 0.

This indicates that message Wi is secure. On the other hand, for reliability, the

probability that di can decode Wi with arbitrarily small probability of decoding
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si di

dj
uj

ui
h̃i

h̃j

hi,i

hi,j

hj,j

hj,i

Figure 5.1: The condensed network for si ; u1 and si ; u2.

error is

P (Ti 6= 0) = P

(
h̃ihi,i − h̃jhi,j

h̃ihj,i

h̃jhj,j
6= 0

)

= P (hj,jhi,i − hi,jhj,i 6= 0) = 1 (5.15)

which means that Ds,Σ = 1 with probability one.

5.3.4 Sub-case A4: Ds,Σ = 1 if there exist two distinct nodes u1, u2 ∈

G1 and a node w such that w ; u1 and w ; u2.

In this section, we show that, if there is a node which is connected to at least

two nodes in G1, even though it is not a source node, we still can achieve 1 sum

s.d.o.f. After excluding all previous sub-cases, in addition to the definition of A4,

the layered networks in this sub-case must have the following properties: |G1| ≥ 2

and |G2| = |G3| = 0, r ≥ 3, and, for each source node si (i = 1, 2), there exists one

and only one ũi ∈ G1 such that si ; ũi.

For sub-case A4, we propose the following achievable scheme. For any source

node, say si, and a path Psi,u, where u ∈ G1, the source node si sends the message

216



signal carrying 1 d.o.f. to node u. All the nodes on path Psi,u just relay the signal.

Node u encodes the message according to a secrecy capacity achieving code, which

will be specified later, and sends the codeword to di. The special node w sends

artificial i.i.d. Gaussian random noise with average power aP to jam the unintended

destination dj through the two nodes u1 and u2. The linear factor a is a constant

to coordinate with the nodes in the network such that all the channel inputs satisfy

the power constraint. The value of a depends on the network topology, but not on

power P . All the nodes on two paths Pw,u1 , Pw,u2 relay the signals. Nodes u1 and u2

perform amplify-and-forward with factors α1 and α2, respectively. All other nodes,

including sj, do not send/relay signals.

The intuition behind this achievable scheme is similar to the previous sub-case.

However, we carefully choose the factors α1 and α2 to neutralize the artificial noise

at the legitimate destination di, and thereby utilize node w to perform cooperative

jamming. After removing all unnecessary nodes, there are only two possibilities

for sub-case A4 as shown in Figure 5.2. If ui = ũi as shown in Figure 5.2(a),

then this node ui has to relay the message carrying signal and also the jamming

signal. After scaling all signals in the network with a constant factor to satisfy the

average power constraint, ui sends a superposition of the two signals. Under this

setting, we disregard the difference between the two possibilities and thereby focus

on the cooperative jamming signal. In both condensed networks in Figure 5.2, if

we consider the source node si as the transmitter, di as the legitimate receiver, and

dj as the eavesdropper, the networks are equivalent to Gaussian wiretap channels

with dependent noises. Due to the fact that the secrecy capacity depends only on
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di

dj
uj

hi,i

hi,j

hj,j

hj,i

w

si

h̃j

h̃i

ui(= ũi)

di

dj
uj

ui
hi,i

hi,j

hj,j

hj,i

w
h̃j

h̃i

si

ũi

Figure 5.2: The two possible condensed networks for the sub-case A4: w ; u1 and
w ; u2.

the marginal distributions (but not on the joint), to show that 1 sum s.d.o.f. is

achievable, it suffices to prove that with proper design of αi and αj, the jamming

noise with average power aP from node w can be perfectly canceled at the legitimate

receiver di, but not at the eavesdropper dj.

Consider the end-to-end transfer matrix T = [Ti, Tj]
T from w to di, dj:

 Y w
di

Y w
dj

 = TNw +

 Ñ1

Ñ2



=

 αih̃ihi,i + αjh̃jhi,j

αih̃ihj,i + αjh̃jhj,j

Nw +

 Ñ1

Ñ2

 (5.16)
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If we choose αi = 1 and αj = −(h̃ihi,i)/(h̃jhi,j), then Ti = 0 and receiver di will have

a clean view of the signal from si. Meanwhile, the probability that Tj is non-zero is

P (Tj 6= 0) = P (hj,jhi,i − hi,jhj,i 6= 0) = 1 (5.17)

which concludes that Ds,Σ = 1 with probability one for sub-case A4.

5.3.5 Sub-case A5: All other settings in cases A and A′.

In this section, we consider the layered networks in cases A and A′, which are not

in any of the previous sub-cases. In this sub-case, by excluding the settings of all

previous sub-cases, we know that |G1| ≥ 2 and |G2| = |G3| = 0, the number of layers

r ≥ 3, and there is an independence structure in layer Vr−1. By an independence

structure, we mean that all the channel inputs from nodes belonging to G1 = Vr−1

in the last hop must be mutually independent. This is because, for each node w in

the network before Vr−1, there exists at most one uw ∈ G1 such that w ; uw.

Since we can precisely characterize the structure of the layered network in this

sub-case, we claim that Ds,Σ = 2
3

if condition (C2) is satisfied and is 1 otherwise.

The proof is developed in three steps. The first step is to explore the structure of

the network. The second step is to reduce the network to an equivalent Gaussian

BC with confidential messages and M ≥ 1 helper(s) or a two-user Gaussian IC with

confidential messages and M ≥ 0 helper(s). The final step is to use the s.d.o.f. results

in Chapter 2.

First, we show that Ds,Σ = 1 if the network belongs to case A. Let si ; ui
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and sj ; uj for some ui, uj ∈ Vr−1. We prove ui = uj by contradiction. Assuming

ui 6= uj. Since, by the definition of case A, removal of v disconnects di from s1, s2, we

must have si ; v. Again, since the removal of v disconnects sj from d1, d2, it must

be that sj ; v ; uj, which implies si ; v ; uj, i.e., si ; uj and si ; ui, which

is sub-case A3. This leads to a contradiction. Denote u
4
= ui = uj. Then, for each

other node ũ ∈ G1, ũ 6= u, we must have si 6; ũ, sj 6; ũ. The condensed network is

shown in Figure 5.3(a), which is equivalent to the channel model in Figure 5.3(b).

Due to the Markov chain Wi,Wj → Y n
u → Y n

di
, Y n

dj
, node u can decode messages

Wi and Wj with arbitrarily small probability of error, which implies that DΣ = 1

in the first dashed box of Figure 5.3(b). The bottleneck for the sum s.d.o.f. is the

second box, which is a Gaussian BC with confidential messages and M independent

helpers. Here M = |G1| − 1 ≥ 1. Finally, by utilizing real interference alignment

based scheme in Chapter 2, we know that the sum s.d.o.f. of a Gaussian BC with

confidential messages and M ≥ 1 helper(s) is 1 with probability one. Hence, for

the networks belonging to the intersection of case A5 and case A, Ds,Σ is 1 with

probability one.

Second, we consider the networks in which si and sj connect to different nodes

in layer Vr−1. We show that these networks belong to case A′. We again prove this by

contradiction. Let si ; ui and sj ; uj for some ui, uj ∈ Vr−1. If ui = uj
4
= u, then

due to the independence structure, these networks are equivalent to the network

shown in Figure 5.3. Clearly, the removal of u disconnects d1 from {s1, s2} and

s2 from {d1, d2}. By definition, this is case A. This leads to a contradiction, and

si and sj connect to different nodes in layer Vr−1. The condensed network of this
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(a)

(b)

sj

u
si di

dj
ũ1

ũ|G1|−1

u
di

dj

ũ|G1|−1

ũ1

si

sj

Figure 5.3: The condensed network for the equivalent Gaussian BC of the sub-case
A5.

setting as shown in Figure 5.4 also becomes two concatenated networks, in which

the sum s.d.o.f is dominated by the last hop due to the independence structure in

layer Vr−1. The last hop is a two-user Gaussian IC with confidential messages and

M independent helpers. Here M = |G1| − 2 ≥ 0. Finally, due to Chapter 2, we

know the sum s.d.o.f. of this hop:

Ds,Σ =


2
3

if M = 0

1 if M ≥ 1

(5.18)
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where M = 0 corresponds to condition (C2) which gives a two-user Gaussian IC

with confidential messages, and M ≥ 1 corresponds to the same channel model with

M ≥ 1 independent helpers.

5.4 Sum Secure d.o.f. for Cases B and B′

In this section, we consider the layered networks in cases B and B′. As proven

in [64], for all network configurations belonging to cases B and B′, two achievable

schemes are sufficient to achieve 2 sum d.o.f., where we either use a simple amplify-

and-forward scheme to make the end-to-end transfer matrix diagonal with non-zero

diagonal entries, i.e.,

 Yd1

Yd2

 =

 β1 0

0 β2


 Xs1

Xs2

+

 N eff
1

N eff
2

 (5.19)

or find a 2×2×2 condensed interference sub-network in the original layered network.

In this section, we will show that the sum s.d.o.f is the same as the sum d.o.f., i.e.,

Ds,Σ = 2.

For the diagonal end-to-end transfer matrix, the operations of the nodes in

the middle layers are either to perform amplify-and-forward or be silent, therefore,

the effective noises are independent of the input signals. Moreover, due to the

fact that the end-to-end transfer matrix is diagonal, for each i = 1 or 2, we have

I(Wi;Y
n
dj

) = 0, i.e., there is no information leakage from the source node to the

unintended destination node even when the effective noises at the destination nodes
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ũ1

sj

si di

dj

ui

uj

ũ|G1|−2

Figure 5.4: The condensed network for the equivalent Gaussian IC of the sub-case
A5.

are dependent. By interference neutralization, for this class of networks, the sum

s.d.o.f. is exactly equal to the sum d.o.f., which is 2.

For the 2 × 2 × 2 IC, which is a cascade of two fully connected one-hop ICs,

[66] employed interference neutralization and real interference alignment to achieve

2 sum d.o.f. Here, we use this idea to design the auxiliary random variables for the

2 × 2 × 2 interference channel, construct the channel inputs, and show that it can

asymptotically achieve 2 sum s.d.o.f.

Theorem 5.4 For 2× 2× 2 Gaussian interference channels with confidential mes-

sages, the sum s.d.o.f. is 2, with probability one.

The proof of this theorem is given in Appendix. Based on this result, for the 2×2×2

condensed interference sub-network in the original layered network, we simply treat

all nodes except the nodes belonging to this sub-network as silent nodes and utilize

this achievable scheme. Note that although the equivalent interference sub-network

has dependent noises at each node, due to the fact that the noises are independent
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of the message and have finite variances, the difference between these two models

will not affect the performance in terms of reliability or security. Therefore, in both

cases, the upper bound of 2 sum s.d.o.f. is achievable, i.e., Ds,Σ = 2.

5.5 Sum Secure d.o.f. for Case C

In this section, we consider the layered networks in case C. The converse for this

case is Ds,Σ ≤ DΣ ≤ 3
2

from [64]. The achievability scheme proposed in [64] operates

in two modes: First, a temporary node d′ is chosen. In both modes, we could find a

sub-network which has two disjoint paths with manageable interference to transmit

2 sum d.o.f. Node d′ is one of the destinations of the first mode, which stores the

information and serves as the source node in the second mode.

An example of case C is shown in Figure 5.5. The network in both modes are

the same. In each mode, the solid lines show the links over which information is

transmitted, and dashed lines show the edges that are not used. In this example,

node d′1 is the temporary node, which is the last node on path Ps1,d1 before the

interference. In the first mode, source s1 sends message W1 to node d′1 and s2 sends

message W2 to destination d2. Since the two paths Ps1,d′1 and Ps2,d2 are disjoint and

interference free, 2 sum d.o.f. worth of information can be sent reliably and node

d′1 stores message W1. In the second mode, d′1 forwards message W1 to d1 and s2

sends a new message W̃2 to d2. Since the sub-network in solid lines between source

nodes (d′1, s2) and destination nodes (d1, d2) form a layered network in case B, the

sum d.o.f. is 2. Finally, by choosing the number of channel uses in both modes to
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First Mode

Second Mode

s2

s1 d1

d2

d′1 w1

w2

s2

s1 d1

d2

d′1

Figure 5.5: The condensed network for an example of case C. Solid lines show the
edges over which signals are transmitted. Dashed lines show the edges that are not
used in that mode.

be the same, the achieved overall sum d.o.f. is 3
2
.

Reference [64] concluded that all network configurations in case C can be

classified into two sub-cases C1 and C2. Further, in each sub-case, there are up to

two different settings for the layered networks, which are given in Figures 5.5 and

5.6 for sub-case C1, and Figures 5.7 and 5.8 for sub-case C2. All other networks in

case C have the same structure, and the same achievable scheme can be applied.

In this section, we provide modified schemes for each setting of each sub-case to

incorporate security in addition to reliability. In each case, we will achieve a sum

s.d.o.f that is the same as the sum d.o.f., i.e., Ds,Σ = DΣ = 3
2
.
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5.5.1 Modified Scheme for Figure 5.5

We modify the achievable scheme described above to meet the secrecy constraint.

The only issue of the original scheme is that the signal sent by w2 in the first mode

could be captured by the destination node d1 if d1 is in the next layer after w2. To

solve this problem, we use node w1 on the path Ps1,d1 and in the same layer as w2

to jam the destination node d1. Then, this hop simply becomes a Gaussian wiretap

channel with a cooperative jammer, where the cooperative jammer is connected to

the unintended receiver, but not to the intended receiver. This network has 1 s.d.o.f.,

i.e., node w2 decodes the message it received and transmits the message based on

a wiretap codebook to keep the message secure against the unintended destination

d1.

5.5.2 Modified Scheme for Figure 5.6

The other setting for layered networks in sub-case C1 is shown in Figure 5.6. In

the first mode, the source pair (s1, s2) transmits (W1,W2) to the destination pair

(d1, d
′
2), where d′2 is the temporary node to store message W2. Clearly, Ps1,d1 and

Ps2,d′2 are disjoint paths with manageable interference, i.e., case B. We can transmit

W1 to d1 and W2 to d′2 reliably and achieve 2 sum d.o.f. In the second mode, s1

transmits a new message W̃1 to d1 and d′2 forwards message W2 it received in the

first mode to d2. This scheme can achieve 3
2

sum d.o.f., but the messages are not

securely transmitted. The reason is that, in the first mode, if the destination node

d2 is in the next layer of w, it can receive a mixed signal from w, which contains
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First Mode

d1s1

v

w

d2s2

u1

d′2

d1s1

v u1

w

d2s2

d′2

Figure 5.6: The condensed network for an example of case C. Solid lines show the
edges over which signals are transmitted. Dashed lines show the edges that are not
used in that mode.

both W1 and W2.

To ensure the secrecy of both messages, we need to modify the achievable

scheme and form an effective Gaussian wiretap channel with finite-variance noises.

To this end, node d′2 sends pure Gaussian noise with average power P to jam the

unintended receiver d2. Signals from s2 through different paths are canceled at d1

due to the amplify-and-forward scheme used in case B. Since d2 can decode W2 after

the second mode, it is safe to assume that in the first mode the signal relayed by

node w does not contain the channel input of s2. Therefore, the source-destination

pair (s1, d1) forms a wiretap channel, where d2 is the eavesdropper. Since the secrecy

capacity depends only on the marginal distribution of Xs1 , Yd1 , Yd2 , but not the joint
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distribution, with the help of cooperative jamming from d′2, we can always achieve 1

s.d.o.f. for the condensed wiretap channel even when the effective Gaussian additive

noises at d1 and d2 are dependent.

5.5.3 Modified Scheme for Figure 5.7

The first setting of sub-case C2 is shown in Figure 5.7. For the disjoint paths

Ps1,d1 and Ps2,d2 in layered networks of sub-case C2, there always exists a direct

interference, i.e., two nodes v1 and v2 satisfy v1 ∈ Ps1,d1 , v2 ∈ Ps2,d2 and (v2, v1) ∈ E

which implies v2
I
; Ps1,d1 . Meanwhile, as proven in [64], for this sub-case, there

also exists a path Qs1,d1 such that Qs1,d1 ∩ Ps2,d2 = φ and v1 6∈ Qs1,d1 . This implies

v1 6= d1, and the d′2 6= d2, where d′2 is the temporary node on the path Ps2,d2 and in

the same layer with v1.

To achieve 3
2

sum s.d.o.f., we use the following modified achievable scheme. In

the first mode, s1 transmits message W1 along the path Qs1,d1 to d1, and s2 transmits

message W2 along the path Ps2,d′2 . If d2 = v4 which may receive the signal from v3,

we can always find a node on the path Ps2,d2 to cooperatively jam d2 due to the fact

d′2 6= d2. In the second mode, s1 transmits a new message W̃1 along the path Ps1,d1

to d1, and d′2 relays message W2 stored in the first mode along the path Pd′2,d2 . The

two paths Ps1,d1 and Pd′2,d2 are interference free, and therefore, the transmission is

reliable and secure.
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First Mode
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s1 d1
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Qs1,d1
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s1 d1
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v1

d′2

Qs1,d1

Figure 5.7: The condensed network for one of two cases in C2. Solid lines show the
edges over which signals are transmitted. Dashed lines show the edges that are not
used in that mode.

5.5.4 Modified Scheme for Figure 5.8

The second setting of sub-case C2 is shown in Figure 5.8. The temporary node d′2 is

chosen to be v1. In this configuration, we also have v1 = d′2 6= d1 and l(d2) > l(v2)+1.

In the first mode, s1 transmits message W1 along the path Qs1,d1 to d1, and s2

transmits message W2 along the path Ps2,d′2 . This sub-network belongs to case B,

which has 2 sum d.o.f. Since d′2 6= d1 and d2 is not in the next layer of v2, by keeping

v1 silent, messages W1 and W2 are secure. In the second mode, s1 transmits a new

message W̃1 along the path Ps1,d1 to d1, and s2 transmits message W2 along the path
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Second Mode

First Mode
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s1 d1
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Qs1,d1

v2
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s2

s1 d1

d2

Qs1,d1

v1 = d′2

v2

Figure 5.8: The condensed network for one of two cases in C2. Solid lines show the
edges over which signals are transmitted. Dashed lines show the edges that are not
used in that mode.

Ps2,d2 . Since d′2 has message W2, it can decode message W1 and only relay W1 to d1,

which implies that Ds,Σ = 3
2
.

5.6 Conclusions

In this chapter, we considered the sum s.d.o.f. of two-unicast layered wireless net-

works. We used the setting in [64] and studied the cases in A, A′, B, B′ and C

separately to incorporate security in addition to reliability. The major challenge was

in cases A and A′, where the sum d.o.f. is 1, due to the fact that both destination
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nodes can decode the message signals. While this is inconsequential for the reliabil-

ity problem in [64], it is a major problem when security is considered. To overcome

this problem, we classified layered wireless networks into more detailed sub-cases,

and in all sub-cases proposed modified achievable schemes that guarantee both relia-

bility and security. In almost all sub-cases, we utilized the cooperative jamming and

interference neutralization techniques to design an appropriate achievable scheme.

A remaining challenge was a special configuration, where all of the nodes in the last

layer before the destination layer were allowed to send only independent signals. We

reduced the layered networks in this category into equivalent channel models and

determined their s.d.o.f. As a result, we showed that all networks in cases A and

A′ have sum s.d.o.f. of 0, 2
3
, or 1. We proposed modified schemes to achieve 2 sum

s.d.o.f. for cases B and B′ (which included the achievable scheme for the 2× 2× 2

interference networks), and 3
2

sum s.d.o.f. for case C.

5.7 Appendix

5.7.1 Sum Secure d.o.f. of 2× 2× 2 Interference Network

In this section, we will show that sum s.d.o.f. of 2 can be achieved in the 2 × 2 ×

2 interference network with constant channel gains. The 2 × 2 × 2 interference

network is a concatenation of two fully connected two-user Gaussian ICs. The main

idea is to design a wiretap channel with proper auxiliary random variables, and

to show that with such a choice of random variables, the achievable secrecy rate

can asymptotically approach 1 s.d.o.f. for each user. Our achievability is mainly
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based on the real interference alignment [52] based scheme in [66]. There are two

differences: 1) In [66], M signals are employed for transmitter 1 and M − 1 signals

are employed for transmitter 2. The integer M is chosen sufficiently large such

that 1 d.o.f. can be achieved asymptotically for each user. Due to the fact that the

last signal of transmitter 1, x1,M , can be decoded by transmitter 2, this scheme is

insecure. Here, we use only M − 1 signals in the transmission by choosing x1,M = 0.

2) To achieve 2 sum d.o.f. in the 2 × 2 × 2 interference network, in addition to

scaling the signals with proper coefficients based on real interference alignment,

the nodes in the middle layer of the 2 × 2 × 2 interference network perform hard

decisions to decode the original channel inputs from the previous layer and resend the

signals again with well-designed coefficients. If these hard decisions have no error,

then due to the special construction of the channel inputs based on interference

neutralization and interference alignment, the messages are secure. However, if

errors occur during decoding in the middle layer, then the mixed signals containing

both messages observed by both destination nodes may leak information. To show

the optimality of the proposed achievable scheme, we observe that the message rate

scales with logP , but the probability of hard decision error decreases exponentially

fast with P , which makes the information leakage rate negligible in the high SNR

regime. We provide a precise performance analysis in terms of both reliability and

secrecy.

We use the notation in [66] for the channel model. In the first hop, the received
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signal at relay Rk, k ∈ {1, 2} is

YRk = Fk1X1 + Fk2X2 + Zk (5.20)

where Fkj is the channel gain from source Sj to relay Rk, Xj is the input signal

from Sj, YRk is the received signal at relay Rk, and Zk is an additive zero-mean

unit-variance Gaussian noise. In the second hop, the received signal at destination

Dk, k ∈ {1, 2} is given by

Yk = Gk1XR1 +Gk2XR2 +Nk (5.21)

where Gkj is the channel gain from relay Rj to destination Dk, XRj is the input

signal from relay Rj, Yk is the received signal at Dk and Nk is an additive zero-mean

unit-variance Gaussian noise. All the channel gains in the network are fixed during

the communication session and known at all nodes.

In contrast to separating the message Wi into M independent sub-messages

Wi,ki(ki ∈ {1, 2, · · · ,M}) in [66], we need to construct a virtual wiretap channel to

achieve the sum s.d.o.f. For each user i, we separate the channel input signal xi into

M independent sub-signals {xi,ki}Mki=1. The constellation of each sub-signal xi,ki is

defined as follows

C(Q) = {−Q,−Q+ 1, · · · , Q− 1, Q} (5.22)

If xi,ki ’s are independent and uniform, each of them carries log(2Q + 1) bits. The

real channel input xi is set to be the linear combination of {xi,ki} with the rationally
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independent coefficients1 {ti,ki}, i.e.,

xi = a

M∑
ki=1

ti,kixi,ki (5.23)

where a is a constant to normalize the input signal power, and t2,M = 0 since we

only need M − 1 data signals for x2. The average power of this channel input is

E[x2
i ] ≤ a2

(
M∑
ki=1

|ti,kixi,ki |
)2

≤
(

M∑
ki=1

|ti,ki|
)2

a2Q2 (5.24)

WhenM is fixed, which will be specified later, we denote ξ = maxi=1,2

(∑M
ki=1 |ti,ki|

)2

,

and, for any ε > 0, we choose

Q = P
1−ε

2(M+ε) , a =
1√
ξ
P

M−1+2ε
2(M+ε) (5.25)

Then, the signals x1 and x2 both satisfy the average power constraint, i.e.,

E[x2
i ] ≤ P, for i = 1, 2 (5.26)

Furthermore, from [52], the minimum distance dmin between the points in the com-

bined constellation can be lower bounded as follows:

dmin ≥
kεa

(2Q)M−1+ε
=

kε

2M−1+ε
√
ξ
P

ε
2 (5.27)

1a1, a2, . . . , aL are rationally independent if whenever q1, q2, . . . , qL are integer numbers then∑L
i=1 qiai = 0 implies qi = 0 for all i.
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for some constant kε, which depends on ε, but not on P . This result implies that

the error probability of hard decisions to recover the PAM signals decreases expo-

nentially with the power P ε.

We use the scheme in [66] to design the coefficients ti,kis. At the relay node

R1, the received signal is as follows

YR1 = F1,1t1,1x1,1 +
M−1∑
i=1

F1,1t1,i+1(x1,i+1 + x2,i) + Z1 (5.28)

We denote

xR1,1 = x1,1 (5.29)

xR1,i+1 = x1,i+1 + x2,i, for i = 1, · · · ,M − 1 (5.30)

It is easy to see that xR1,1 ∈ C(Q) and xR1,i+1 ∈ C(2Q) for i = 1, · · · ,M − 1.

Relay node R1 performs hard decision to get x̂R1,i for i = 1, · · · ,M . The

probability of decoding error Pr(R1) decreases exponentially with power P ε and the

channel input of the relay node R1 is:

xR1 = b
M∑
k1=1

tR1,k1x̂R1,k1 (5.31)

where b is again a constant to normalize the input signal power. Similarly, relay
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node R2 makes the hard decision x̂R2,i of the signals xR2,i,

xR2,i = x1,i + x2,i, for i = 1, · · · ,M − 1 (5.32)

xR2,M = x1,M (5.33)

and the probability of error Pr(R2) exponentially decreases with power P ε. The

channel input of the relay node R2 is:

xR2 = b
M−1∑
k2=1

tR2,k2x̂R2,k2 (5.34)

The selection of {tR1,k1} and {tR2,k2} can be found in [66].

The observations of the two receivers in the final layer are

Y1 = b
M∑
i=1

G1,1tR1,ixD1,i +N1 (5.35)

Y2 = bG2,1tR1,MxD2,M + b
M−1∑
i=1

G2,2tR2,ixD2,i +N2 (5.36)

where

xD1,1 = x̂R1,1 (5.37)

xD1,i+1 = x̂R1,i+1 − x̂R2,i, for i = 1, · · · ,M − 1 (5.38)

xD2,i = x̂R2,i − x̂R1,i, for i = 1, · · · ,M − 1 (5.39)

xD2,M = x̂R1,M (5.40)
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Denote by A the event that the hard decisions at relay nodes 1 and 2 are both

correct. Then, the probability of the complement event Ā decreases exponentially

with power P ε due to the following inequality

1− Pr(A) = Pr(Ā) (5.41)

= Pr(hard decision error occurs at R1 and/or R2) (5.42)

≤ Pr(R1) + Pr(R2) (5.43)

≤ 2 exp(−c0P
ε) (5.44)

for some constant c0 independent of P . If event A happens, which indicates that

the hard decisions at both relay nodes are correct, then it is clear that

xD1,1 = x̂R1,1 = x1,1 (5.45)

xD1,i+1 = x̂R1,i+1 − x̂R2,i

= x1,i+1 + x2,i − x1,i − x2,i

= x1,i+1 − x1,i, for i = 1, · · · ,M − 1 (5.46)
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and

xD2,1 = x̂R2,1 − x̂R1,1

= x1,1 + x2,1 − x1,1

= x2,1 (5.47)

xD2,i = x̂R2,i − x̂R1,i

= x1,i + x2,i − x1,i − x2,i−1

= x2,i − x2,i−1, for i = 2, · · · ,M − 1 (5.48)

xD2,M = x̂R1,M

= x1,M + x2,M−1 (5.49)

which means that the observation Y1 and {x2,i}M−1
i=1 are independent and, except the

item x1,M , the observation Y2 and {x1,i}M−1
i=1 are independent2.

To design the wiretap code, we choose the auxiliary random variables v1,i and

v2,i as

v1,i = x1,i and v2,i = x2,i, for i = 1, · · · ,M − 1 (5.50)

with uniform distribution in C(Q) and choose x1,M = 0. Since for different channel

uses the signals are i.i.d., and W1,W2 are independent, the following secrecy rate

2Note that {x1,i}Mi=1 are i.i.d.
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pair is achievable [5, Theorem 2]:

I(v̄i;Yi)− I(v̄i;Yj|v̄j) (5.51)

where v̄i
4
= (vi,1, vi,2, · · · , vi,M−1) and v̄j

4
= (vj,1, vj,2, · · · , vj,M−1) for i = 1, 2, and

j = ī. By [66], information rate part, i.e., the first item in (5.51), is given by

I(v̄i;Yi) ≥
(M − 1)(1− ε)

2(M + ε)
logP + o(logP ) (5.52)

To upper bound the second item in (5.51), we define the binary random variable ZA

as

ZA = 1{A} (5.53)

where 1{·} is the indicator function. As shown above, when event A happens,

v̄i → v̄j → Yj (5.54)

forms a Markov chain for i = 1, 2 and j = ī, i.e.,

I(v̄i;Yj|v̄j, ZA = 1) = 0 (5.55)

The difficulty to analyze the achievable secrecy rate is that when the hard

decisions at relay nodes are in error, the mixed signals at the unintended receiver

will not be aligned in the perfect way, which will introduce dependence between the
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Yj and vi,1...M−1. However, we can upper bound the mutual information for each i

as follows:

I(v̄i;Yj|v̄j) = H(v̄i)−H(v̄i|Yj, v̄j) (5.56)

≤ H(v̄i)−H(v̄i|Yj, ZA, v̄j) (5.57)

where the latter item can be rewriten as

H(v̄i|Yj, ZA, v̄j) =
∑

z∈{0,1}
P (ZA = z)H(v̄i|Yj, ZA = z, v̄j) (5.58)

≥ P (ZA = 1)H(v̄i|Yj, ZA = 1, v̄j) (5.59)

= P (ZA = 1)H(v̄i|ZA = 1, v̄j) (5.60)

(5.60) is due to (5.55). The former item in (5.57) can be upper bounded by

H(v̄i) = H(v̄i|ZA, v̄j) +H(ZA, v̄j)−H(ZA, v̄j|v̄i) (5.61)

= H(v̄i|ZA, v̄j) +H(v̄j) +H(ZA|v̄j)−H(v̄j|v̄i)−H(ZA|v̄j, v̄i) (5.62)

= H(v̄i|ZA, v̄j) +H(ZA|v̄j)−H(ZA|v̄j, v̄i) (5.63)

≤ H(v̄i|ZA, v̄j) + 1 (5.64)

=
∑

z∈{0,1}
P (ZA = z)H(v̄i|ZA = z, v̄j) + 1 (5.65)
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Substituting (5.60) and (5.65) in (5.57), we have

I(v̄i;Yj|v̄j) ≤
∑

z∈{0,1}
P (ZA = z)H(v̄i|ZA = z, v̄j) + 1

− P (ZA = 1)H(v̄i|ZA = 1, v̄j) (5.66)

≤ P (ZA = 0)H(v̄i|ZA = 0, v̄j) + 1 (5.67)

≤ P (Ā)H(v̄i|ZA = 0, v̄j) + 1 (5.68)

≤ o(logP ) (5.69)

The last inequality is due to (5.44) and the finite alphabet of the vector v̄i =

(vi,1, vi,2, · · · , vi,M−1), which is maximized by uniform distribution, i.e.,

H(v̄i|ZA = 0, v̄j) ≤ log |C|M−1 (5.70)

=
(M − 1)(1− ε)

2(M + ε)
logP + o(logP ) (5.71)

which means that the achievable rate (5.51) is lower bounded by

(M − 1)(1− ε)
2(M + ε)

logP + o(logP ) (5.72)

If we choose M large enough, then the sum s.d.o.f. will approach 2 arbitrarily close,

completing the proof.
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Chapter 6

Secure Degrees of Freedom of the Gaussian Wiretap Channel with

Helpers and No Eavesdropper CSI: Blind Cooperative Jamming

6.1 Introduction

In this chapter, we revisit the Gaussian wiretap channel with M helpers considered

in Chapter 2. The exact s.d.o.f. of the Gaussian wiretap channel with M helpers

with perfect CSI at the transmitters is shown to be M
M+1

. One of the main ingredients

of our optimal achievable scheme with perfect CSI is to align cooperative jamming

signals with the information symbols at the eavesdropper to limit the information

leakage rate. This requires perfect eavesdropper CSI at the transmitters.

From a practical point of view, generally, it is difficult or impossible to obtain

the eavesdropper’s CSI. In this chapter, we consider the Gaussian wiretap channel

with M helpers, where no eavesdropper CSI is available at the legitimate entities.

Motivated by the result in [67], we propose a new achievable scheme in which co-

operative jamming signals span the entire space of the eavesdropper, but are not

exactly aligned with the information symbols. We show that this scheme achieves

the same s.d.o.f. of M
M+1

but does not require any eavesdropper CSI; the transmitters

blindly cooperative jam the eavesdropper.
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6.2 System Model and Definitions

The Gaussian wiretap channel with M helpers, see Figure 1.2, is defined by

Y1 = h1X1 +
M+1∑
j=2

hjXj +N1 (6.1)

Y2 = g1X1 +
M+1∑
j=2

gjXj +N2 (6.2)

where Y1 is the channel output of the legitimate receiver, Y2 is the channel output

of the eavesdropper, X1 is the channel input of the legitimate transmitter, Xi, for

i = 2, . . . ,M + 1, are the channel inputs of the M helpers, hi is the channel gain

of the ith transmitter to the legitimate receiver, gi is the channel gain of the ith

transmitter to the eavesdropper, and N1 and N2 are two independent zero-mean

unit-variance Gaussian random variables. All channel inputs satisfy average power

constraints, E [X2
i ] ≤ P , for i = 1, . . . ,M + 1.

Transmitter 1 intends to send a message W , uniformly chosen from a set W ,

to the legitimate receiver (receiver 1). The rate of the message is R
4
= 1

n
log |W|,

where n is the number of channel uses. Transmitter 1 uses a stochastic function

f :W → X1 to encode the message, where X1
4
= Xn

1 is the n-length channel input.

We use boldface letters to denote n-length vector signals, e.g., X1
4
= Xn

1 , Y1
4
= Y n

1 ,

Y2
4
= Y n

2 , etc. The legitimate receiver decodes the message as Ŵ based on its

observation Y1. A secrecy rate R is said to be achievable if for any ε > 0 there

exists an n-length code such that receiver 1 can decode this message reliably, i.e.,
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the probability of decoding error is less than ε,

Pr
[
W 6= Ŵ

]
≤ ε (6.3)

and the message is kept information-theoretically secure against the eavesdropper,

1

n
H(W |Y2) ≥ 1

n
H(W )− ε (6.4)

i.e., that the uncertainty of the message W , given the observation Y2 of the eaves-

dropper, is almost equal to the entropy of the message. The supremum of all achiev-

able secrecy rates is the secrecy capacity Cs, and the s.d.o.f., Ds, is defined as

Ds
4
= lim

P→∞

Cs
1
2

logP
(6.5)

Note that Ds ≤ 1 is an upper bound. To avoid trivial cases, we assume that

h1 6= 0 and g1 6= 0. Without the independent helpers, i.e., M = 0, and with full

knowledge of all channel gains, the secrecy capacity of the Gaussian wiretap channel

is known [4]

Cs =
1

2
log
(
1 + h2

1P
)
− 1

2
log
(
1 + g2

1P
)

(6.6)

and from (6.5) the s.d.o.f. is zero. Therefore, we assume M ≥ 1. If there exists

a j (j = 2, . . . ,M + 1) such that hj = 0 and gj 6= 0, then a lower bound of 1

s.d.o.f. can be obtained for this channel by letting this helper jam the eavesdropper

by i.i.d. Gaussian noise of power P and keeping all other helpers silent. This lower
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bound matches the upper bound, giving the s.d.o.f. On the other hand, if there exists

a j (j = 2, . . . ,M + 1) such that hj 6= 0 and gj = 0, then this helper can be removed

from the channel model without affecting the s.d.o.f. Therefore, in the rest of the

chapter, we assume that M ≥ 1 and hj 6= 0 and gj 6= 0 for all j = 1, · · · ,M + 1.

6.3 Achievable Scheme with no Eavesdropper CSI

In this section, we propose an achievable scheme to achieve the s.d.o.f. of M
M+1

with

no eavesdropper CSI at any of the transmitters. The only assumption we make

is that the legitimate transmitter knows an upper bound of
∑M+1

k=1 g2
k ≤ c̄ on the

eavesdropper channel gains.

Let {V2, V3, · · · , VM+1, U1, U2, U3, · · · , UM+1} be mutually independent discrete

random variables, each of which uniformly drawn from the same PAM constellation

C(a,Q) in (2.73), where Q is a positive integer and a is a real number used to

normalize the transmission power, and is also the minimum distance between the

points belonging to C(a,Q). Exact values of a and Q will be specified later. We

choose the input signal of the legitimate transmitter as

X1 =
1

h1

U1 +
M+1∑
k=2

αkVk (6.7)

where {αk}M+1
k=2 are rationally independent among themselves and also rationally

independent of all channel gains. The input signal of the jth helper, j = 2, · · · ,M+
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1, is chosen as

Xj =
1

hj
Uj (6.8)

Note that, neither the legitimate transmitter signal in (6.7) nor the helper signals in

(6.8) depend on the eavesdropper CSI {gk}M+1
k=1 . With these selections, observations

of the receivers are given by,

Y1 =
M+1∑
k=2

h1αkVk +

(
M+1∑
j=1

Uj

)
+N1 (6.9)

Y2 =
M+1∑
k=2

g1αkVk +
M+1∑
j=1

gj
hj
Uj +N2 (6.10)

The intuition here is as follows: We use M independent sub-signals Vk, k =

2, · · · ,M + 1, to represent the original message W . The input signal X1 is a lin-

ear combination of Vks and a jamming signal U1. At the legitimate receiver, all of

the cooperative jamming signals, Uks, are aligned such that they occupy a small

portion of the signal space. Since {1, h1α2, h1α3, · · · , h1αM+1} are rationally inde-

pendent for all channel gains, except for a set of Lebesgue measure zero, the signals{
V2, V3, · · · , VM+1,

∑M+1
j=1 Uj

}
can be distinguished by the legitimate receiver. In

addition, we observe that
{
g1
h1
, · · · , gM+1

hM+1

}
are rationally independent, and there-

fore, {U1, U2, · · · , UM+1} span the entire space at the eavesdropper; see Figure 6.1

(with perfect CSI, see Figure 2.2 in Chapter 2). Here, by the entire space, we mean

the maximum number of dimensions that the eavesdropper is capable of decoding,

which is M+1 in this case. Since the entire space at the eavesdropper is occupied by

the cooperative jamming signals, the message signals {V2, V3, · · · , VM+1} are secure,
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X3
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U1
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V2 V3U2

U3

X1

X2

Y1

Y2

h1

g1

Figure 6.1: Illustration of the alignment scheme for the Gaussian wiretap channel
with M helpers with no eavesdropper CSI.

as we will mathematically prove in the sequel.

Since, for j 6= 1, Xj is an i.i.d. sequence and is independent of X1, the following

secrecy rate is achievable [3]

Cs ≥ I(V;Y1)− I(V;Y2) (6.11)

where V
4
= {V2, V3, · · · , VM+1}.

First, we use Fano’s inequality to bound the first term in (6.11). By Lemma

2.3, for any small enough δ > 0 and almost surely all {1, h1α2, h1α3, · · · , h1αM+1},

there exists a positive constant γ, which is independent of P , such that if we choose

Q = P
1−δ

2(M+1+δ) and a = γP
1
2/Q, then the average power constraint is satisfied and

the probability of error is bounded by

Pr
[
V 6= V̂

]
≤ exp

(
−ηγP δ

)
(6.12)
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where ηγ is a positive constant which is independent of P and V̂ is the estimate of

V by choosing the closest point in the constellation based on observation Y1.

By Fano’s inequality and the Markov chain V→ Y1 → V̂, we know that

H(V|Y1) ≤ H(V|V̂) (6.13)

≤ 1 + exp
(
−ηγP δ

)
log(2Q+ 1)M (6.14)

= o(logP ) (6.15)

where δ and γ are fixed, and o(·) is the little-o function. This means that

I(V;Y1) = H(V)−H(V|Y1) (6.16)

≥ H(V)− o(logP ) (6.17)

= log(2Q+ 1)M − o(logP ) (6.18)

≥ logP
M(1−δ)

2(M+1+δ) − o(logP ) (6.19)

=
M(1− δ)
M + 1 + δ

(
1

2
logP

)
− o(logP ) (6.20)
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Next, we need to bound the second term in (6.11),

I(V;Y2) = I(V,U;Y2)− I(U;Y2|V) (6.21)

= I(V,U;Y2)−H(U|V) +H(U|Y2,V) (6.22)

= I(V,U;Y2)−H(U) +H(U|Y2,V) (6.23)

= h(Y2)− h(Y2|V,U)−H(U) +H(U|Y2,V) (6.24)

= h(Y2)− h(N2)−H(U) +H(U|Y2,V) (6.25)

≤ h(Y2)− h(N2)−H(U) + o(logP ) (6.26)

≤ 1

2
log 2πe(1 + c̄P )− 1

2
log 2πe− log(2Q+ 1)M+1 + o(logP ) (6.27)

≤ 1

2
logP − (M + 1)(1− δ)

2(M + 1 + δ)
logP + o(logP ) (6.28)

=
(M + 2)δ

M + 1 + δ

(
1

2
logP

)
+ o(logP ) (6.29)

where U
4
= {U1, U2, · · · , UM+1} and c̄ is the upper bound on

∑M+1
k=1 g2

k defined at

the beginning of this section, and (6.26) is due to the fact that given V and Y2,

the eavesdropper can decode U with probability of error approaching zero since{
g1
h1
, · · · , gM+1

hM+1

}
are rationally independent for all channel gains, except for a set of

Lebesgue measure zero. Then, by Fano’s inequality, H(U|Y2,V) ≤ o(logP ) similar

to the step in (6.15).
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Combining (6.20) and (6.29), we have

Cs ≥ I(V;Y1)− I(V;Y2) (6.30)

≥ M(1− δ)
M + 1 + δ

(
1

2
logP

)
− (M + 2)δ

M + 1 + δ

(
1

2
logP

)
− o(logP ) (6.31)

=
M − (2M + 2)δ

M + 1 + δ

(
1

2
logP

)
− o(logP ) (6.32)

where again o(·) is the little-o function. If we choose δ arbitrarily small, then we

can achieve M
M+1

s.d.o.f. for this model where there is no eavesdropper CSI at the

transmitters.

6.4 Conclusions

In this chapter, we studied the Gaussian wiretap channel with M helpers without

any eavesdropper CSI at the transmitters. We proposed an achievable scheme that

achieves a s.d.o.f. of M
M+1

, which is the same as the s.d.o.f. found in Chapter 2

when the transmitters had perfect eavesdropper CSI. The new achievability scheme

is based on real interference alignment and blind cooperative jamming. While in

Chapter 2 we aligned cooperative jamming signals with the information symbols at

the eavesdropper to protect the information symbols, which required eavesdropper

CSI, here we used one more cooperative jamming signal to span the entire space at

the eavesdropper to protect the information symbols. As in Chapter 2, here also,

we aligned all of the cooperative jamming signals in the same dimension at the

legitimate receiver, in order to occupy the smallest space at the legitimate receiver
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to allow for the decodability of the information symbols. Therefore, we aligned the

cooperative jamming signals carefully only at the legitimate receiver, which required

only the legitimate receiver’s CSI at the transmitters.
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Chapter 7

Inseparability of the Multiple Access Wiretap Channel

7.1 Introduction

In this chapter, we investigate the separability of the parallel MAC wiretap channel.

Separability, when exists, is useful as it enables us to code separately over parallel

channels, and still achieve the optimum overall performance. It is well-known that

the parallel single-user channel, parallel MAC and parallel BC are all separable,

however, the parallel IC is not separable in general. In this chapter, we show that,

while MAC is separable MAC wiretap channel is not separable in general. We prove

this via a specific linear deterministic MAC wiretap channel. We then show that

even the Gaussian MAC wiretap channel is inseparable in general. Finally, we show

that, when the channel gains are drawn from continuous distributions, and when

the s.d.o.f. region is considered, then the Gaussian MAC wiretap channel is almost

surely separable.

7.2 System Model and Definitions

In a two-user MAC wiretap channel p(y1, y2|x1, x2), each transmitter i, i = 1, 2, has

a message Wi intended for the legitimate receiver whose channel output is Y1. For

each i, message Wi is uniformly and independently chosen from set Wi. The rate of
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message i is Ri
4
= 1

n
log |Wi|. Transmitter i uses a stochastic function fi :Wi → Xn

i ,

where the n-length vector Xn
i denotes the ith user’s channel input in n channel uses.

All messages are needed to be kept secret from the eavesdropper whose channel

output is Y2.

A secrecy rate pair (R1, R2) is said to be achievable if for any ε > 0 there exist

n-length codes such that the legitimate receiver can decode the messages reliably,

i.e., the probability of decoding error is less than ε

Pr
[
(W1,W2) 6= (Ŵ1, Ŵ2)

]
≤ ε (7.1)

and the messages are kept information-theoretically secure against the eavesdropper

1

n
H(W1,W2|Y n

2 ) ≥ 1

n
H(W1,W2)− ε (7.2)

where Ŵ1, Ŵ2 are the estimates of the messages based on the legitimate receiver’s

observation Y n
1 .

The secrecy capacity region C is the closure of the set containing all achievable

secrecy rate pairs. The sum secrecy capacity is CΣ = sup(R1 + R2), where the

supremum is over all achievable secrecy rate pairs (R1, R2) ∈ C. For Gaussian

MAC wiretap channel with average power constraint P for both transmitters, the

s.d.o.f. region is defined as:

Ds =

{
(d1, d2) : (R1, R2) ∈ C, di 4= lim

P→∞

Ri

1
2

logP

}
(7.3)
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and the sum s.d.o.f. is defined as:

Ds,Σ
4
= lim

P→∞

CΣ

1
2

logP
(7.4)

Let p(y1a, y2a|x1a, x2a) and p(y1b, y2b|x1b, x2b) be two two-user MAC wiretap

channels. The parallel two-user MAC wiretap channel is a two-user MAC wire-

tap channel in which the channel inputs of transmitter 1 and 2 are (x1a, x1b) and

(x2a, x2b), respectively, and the channel inputs are sent simultaneously in parallel.

The channel outputs of the legitimate receiver and the eavesdropper are (y1a, y1b)

and (y2a, y2b), respectively, and are distributed according to

p (y1a, y2a, y1b, y2b|x1a, x2a, x1b, x2b) = p(y1a, y2a|x1a, x2a)p(y1b, y2b|x1b, x2b) (7.5)

We refer to each MAC wiretap channel, p(y1a, y2a|x1a, x2a) and p(y1b, y2b|x1b, x2b), as

a component channel of the overall parallel MAC wiretap channel.

7.3 Inseparability of the MAC Wiretap Channel

In this section, we show that the parallel MAC wiretap channel is not separable in

general. To this end, we provide a specific counter example.

Consider the linear deterministic parallel discrete memoryless MAC wiretap

channel shown in Figure 7.1, which has three component channels: (a), (b) and (c).

In the first component channel, (a), transmitter 1 has two sub-channel inputs, i.e.,

(X11, X12), and transmitter 2 has only one sub-channel input X2. The legitimate
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A

U

A⊕ UU

A X11

X2 Y2

X12 Y12

Y11

(a)

V ⊕B

C ⊕ V

V

B

C

B

X21

X22

Y12

Y2

Y11X1

(b)

A⊕ V ⊕ B ⊕ U

A⊕ U ⊕B ⊕ VB ⊕ U

A⊕ V

Y2
X2

Y1X1

(c)

Figure 7.1: An inseparable linear deterministic parallel MAC wiretap channel. There
are three component channels: (a), (b) and (c). An achievable scheme that codes
across the parallel channels is shown in color magenta.

receiver observes (Y11, Y12) and the eavesdropper observes Y2. In the second com-

ponent channel, (b), the roles of the two transmitters are swapped. In the third

component channel, (c), the legitimate receiver and the eavesdropper have identical

observations. Specifically, the input/output relationships for sub-channel (a) are:

Y11 = X11, Y12 = X12 ⊕X2, Y2 = X11 ⊕X2 (7.6)
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where all symbols are binary, and addition is modulo-2.

While transmitters send independent data, they can each code their data

jointly across their parallel channels. In the following two sub-sections, we show

that the optimum separable (i.e., independent) coding yields 2 bits/channel-use for

the sum secrecy rate, while through coding jointly across the component channels a

sum secrecy rate of 3 bits/channel-use is achievable, and hence separation is strictly

sub-optimal.

7.3.1 Optimum Sum Secrecy Rate with Separable Encoding

Due to independent coding across the component channels:

CΣ,indep = CΣ,(a) + CΣ,(b) + CΣ,(c) = 2CΣ,(a) (7.7)

where CΣ,(a) = CΣ,(b) is due to symmetry, and CΣ,(c) = 0 is due to the fact that

the legitimate receiver and the eavesdropper have identical observations. Therefore,

we only need to show CΣ,(a) = 1 in order to show CΣ,indep = 2. The achievability

of this follows by the following signalling: The first user sends a 1 bit (uniform)

information signal in X12, and sends no signal in the other sub-channel which leaks to

the eavesdropper, i.e., X11 = 0, and the second user does not send any information,

i.e., X2 = 0. This gives 1 bit secure rate for the first user, and hence 1 bit sum

secrecy rate for the system, i.e., CΣ,(a) ≥ 1.

Next, we need to prove that the sum secrecy rate in the component channel

(a) is upper bounded by 1, i.e., CΣ,(a) ≤ 1.
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For convenience, let us denote nRΣ
4
= n(R1 + R2) − nε in order not to carry

+nε throughout the derivation. Then, by definition, and Fano’s inequality, we have

nRΣ = nH(W1,W2)− nε (7.8)

≤ I(W1,W2;Y n
11, Y

n
12)− I(W1,W2;Y n

2 ) (7.9)

Using the chain rule on both terms on the right hand side,

nRΣ ≤ I(W1,W2;Y n
11) + I(W1,W2;Y n

12|Y n
11)− I(W1;Y n

2 )− I(W2;Y n
2 |W1) (7.10)

= I(W1;Y n
11) + I(W2;Y n

11|W1)− I(W1;Y n
2 )

+ I(W1,W2;Y n
12|Y n

11)− I(W2;Y n
2 |W1) (7.11)

= I(W1;Y n
11) + I(W2;Y n

11,W1)− I(W1;Y n
2 )

+ I(W1,W2;Y n
12|Y n

11)− I(W2;Y n
2 |W1) (7.12)

= I(W1;Y n
11)− I(W1;Y n

2 ) + I(W1,W2;Y n
12|Y n

11)− I(W2;Y n
2 |W1) (7.13)

=
[
I(W1;Y n

11)− I(W1;Y n
2 )
]

+
[
I(W1,W2;Y n

12|Y n
11)− I(W2;Y n

2 ,W1)
]

(7.14)

where (7.12) and (7.14) come from the independence of W2 and W1, and (7.13)

comes from the independence of W2 and (W1, Y
n

11). For the first part in (7.14), we
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have

I(W1;Y n
11)− I(W1;Y n

2 ) ≤ I(W1;Y n
11, Y

n
2 )− I(W1;Y n

2 ) (7.15)

= I(W1;Y n
11|Y n

2 ) (7.16)

= I(W1;Xn
11|Y n

2 ) (7.17)

= H(Xn
11|Y n

2 )−H(Xn
11|Y n

2 ,W1) (7.18)

where we refer to (7.6). For the second part in (7.14), we have

I(W1,W2;Y n
12|Y n

11)− I(W2;Y n
2 ,W1)

= I(W1;Y n
12|Y n

11) + I(W2;Y n
12|Y n

11,W1)− I(W2;Y n
2 ,W1) (7.19)

= I(W1;Y n
12|Y n

11) + I(W2;Y n
12, Y

n
11,W1)− I(W2;Y n

2 ,W1) (7.20)

≤ I(W1;Y n
12|Y n

11) + I(W2;Y n
12, Y

n
11, Y

n
2 ,W1)− I(W2;Y n

2 ,W1) (7.21)

= I(W1;Y n
12|Y n

11) + I(W2;Y n
12, Y

n
11|Y n

2 ,W1) (7.22)

≤ I(Xn
11, X

n
12;Y n

12|Y n
11) + I(Xn

2 ;Y n
12, Y

n
11|Y n

2 ,W1) (7.23)

= I(Xn
12;Y n

12|Xn
11) +H(Xn

2 |Y n
2 ,W1) (7.24)

= I(Xn
12;Y n

12|Xn
11) +H(Xn

11|Y n
2 ,W1) (7.25)

where (7.20) follows from the independence of W2 and (W1, Y
n

11), (7.23) follows from
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the Markov chains

W1 → (Y n
11, X

n
11, X

n
12)→ Y n

12

W2 → (Xn
2 , Y

n
2 ,W1)→ (Y n

12, Y
n

11),

we obtain (7.24) by using the channel model in (7.6) and the fact that by knowing

(Y n
11, Y

n
2 ) = (Xn

11, Y
n

2 ), Xn
2 can be determined, and finally, we reach (7.25) by using

the channel model in (7.6) and through the following derivation

H(Xn
2 |Y n

2 ,W1) = H(Xn
2 , Y

n
2 ,W1)−H(Y n

2 ,W1) (7.26)

= H(Xn
2 , X

n
11,W1)−H(Y n

2 ,W1) (7.27)

= H(Xn
11, Y

n
2 ,W1)−H(Y n

2 ,W1) (7.28)

= H(Xn
11|Y n

2 ,W1) (7.29)

Substituting (7.18) and (7.25) into (7.14), we obtain

nRΣ ≤ H(Xn
11|Y n

2 ) + I(Xn
12;Y n

12|Xn
11) (7.30)

= H(Xn
11|Xn

11 ⊕Xn
2 ) + I(Xn

12;Xn
12 ⊕Xn

2 |Xn
11) (7.31)

where ⊕ means bitwise modulo plus. Now, intuitively, as shown in (7.31), if trans-

mitter 1 intends to transmit n-bit message via Xn
11, then to protect it, transmitter

2 must send Bernoulli (1
2
) i.i.d random noise; however, by performing that, the

sub-channel capacity between Xn
12 and Y n

12 is constrained and reduced to zero. To
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confirm this, we continue from (7.31)

nRΣ ≤ H(Xn
11|Xn

11 ⊕Xn
2 ) + I(Xn

12;Xn
12 ⊕Xn

2 |Xn
11) (7.32)

= H(Xn
2 , X

n
11)−H(Xn

11 ⊕Xn
2 ) +H(Xn

12 ⊕Xn
2 |Xn

11)

−H(Xn
2 |Xn

12, X
n
11) (7.33)

= H(Xn
2 ) +H(Xn

11)−H(Xn
11 ⊕Xn

2 ) +H(Xn
12 ⊕Xn

2 |Xn
11)−H(Xn

2 ) (7.34)

= H(Xn
11)−H(Xn

11 ⊕Xn
2 ) +H(Xn

12 ⊕Xn
2 |Xn

11) (7.35)

= H(Xn
11|Xn

2 )−H(Xn
11 ⊕Xn

2 ) +H(Xn
12 ⊕Xn

2 |Xn
11) (7.36)

= H(Xn
11 ⊕Xn

2 |Xn
2 )−H(Xn

11 ⊕Xn
2 ) +H(Xn

12 ⊕Xn
2 |Xn

11) (7.37)

= H(Xn
12 ⊕Xn

2 |Xn
11)− I(Xn

2 ;Xn
11 ⊕Xn

2 ) (7.38)

≤ H(Xn
12 ⊕Xn

2 |Xn
11) = H(Y n

12|Xn
11) ≤ H(Y n

12) (7.39)

≤ n (7.40)

where we repeatedly use the independence of Xn
2 and Xn

11, and also the independence

of Xn
2 and (Xn

11, X
n
12).

Finally, (7.40) implies CΣ,(a) ≤ 1, concluding, together with the achievability,

that CΣ,(a) = 1, and hence CΣ,indep = 2.

7.3.2 Joint Encoding Based Achievable Scheme

Here, we provide an achievable scheme to transmit 3 bits securely by coding across

the component channels, i.e., by introducing correlation between the channel inputs

of component channels. Let {A,B,C, U, V } be mutually independent Bernoulli
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(1
2
) random variables. Here, {A,B,C} represent the message carrying signals, and

{U, V } represent the jamming noises. The joint encoding based achievable scheme

is shown in color magenta in Figure 7.1, where transmitter 1 sends A, V and A⊕V

in three component channels, respectively (note that we choose X12 = 0), and

transmitter 2 sends U , (B,C) and B⊕U in three component channels, respectively.

With this scheme, the legitimate receiver observes A,U,B,C⊕V,A⊕V ⊕B⊕U

from three component channels, which means that the legitimate receiver can decode

message A from transmitter 1 and messages B,C from transmitter 2 with zero

probability of error, i.e., the legitimate receiver can decode 3 bits reliably. On the

other hand, the eavesdropper observes A ⊕ U , B ⊕ V and A ⊕ U ⊕ B ⊕ V , which

implies

I(A,B,C;A⊕ U,B ⊕ V,A⊕ U ⊕B ⊕ V )

= I(A,B,C;A⊕ U,B ⊕ V ) (7.41)

= H(A⊕ U,B ⊕ V )−H(A⊕ U,B ⊕ V |A,B,C) (7.42)

= H(A⊕ U,B ⊕ V )−H(U, V ) (7.43)

= 2− 2 = 0 (7.44)

where we use the independence of {A,B,C, U, V } and also that they are all Bernoulli

(1
2
). This derivation implies that the eavesdropper learns nothing about the mes-

sages, and therefore, 3 bits are sent to the legitimate receiver reliably and securely.
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7.4 Gaussian MAC Wiretap Channel

7.4.1 General Inseparability

In this section, we show that even the parallel Gaussian MAC wiretap channel is

not separable in general. We prove this by providing a specific example. Also note

that, it suffices to show the inseparability from the s.d.o.f. point of view, since it

implies the inseparability of the secrecy capacity.

Consider the special two-user parallel Gaussian MAC wiretap channel shown

in Figure 7.2, in which each component channel is a two-user Gaussian MAC wiretap

channel defined by,

Y1k = h1kX1k + h2kX2k +N1k (7.45)

Y2k = g1kX1k + g2kX2k +N2k (7.46)

where k = a, b, and (hia, hib) and (gia, gib) are the time-invariant channel gains of

user i to the legitimate receiver and the eavesdropper, respectively. We let

h1b = h2b = α, and g1b = g2b = β (7.47)

Then, the six random variables {h1a, h2a, g1a, g2a, α, β} are mutually independently

distributed according to the same continuous distribution, andN1a, N2a, N1b, N2b are

mutually independent Gaussian random variables with zero-mean and unit-variance.

The channel inputs of each user satisfy average power constraints, E [X2
ia +X2

ib] ≤ P ,
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h1a

g2a

g1a h2a

X1a Y1a

N1a

X2a Y2a

N2a

(a)

h1b = α

g1b = β h2b = α

g2b = β

X1b Y1b

Y2bX2b

N1b

N2b

(b)

Figure 7.2: An example two-user parallel Gaussian MAC wiretap channel.

for i = 1, 2.

From Chapter 2, for almost all channel gains {h1a, h2a, g1a, g2a}, the sum

s.d.o.f. for component channel (a) is 2
3
. From [14], component channel (b) is de-

graded, and its sum s.d.o.f. is zero. This implies that, by independent encoding

across the component channels, the optimum sum s.d.o.f. is 2
3
.
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On the other hand, by selecting

X1a =
1

g1a

V, X2a =
1

g2a

U, X1b =
1

β
V, X2b =

1

β
U (7.48)

where V and U are independent random variable drawn from the discrete PAM con-

stellation in (2.73). Here, V represents the message-carrying signal and U represents

the jamming signal. Let us define Ŷ as

Ŷ =
g2a

h2a

Y1a −
β

α
Y1b (7.49)

=

[
g2ah1a

g1ah2a

− 1

]
V +

g2a

h2a

N1a −
β

α
N1b (7.50)

The factor in front of V is non-zero for almost all channel gains. Let us define V̂

as the estimate of V obtained by selecting the closest point in C(a,Q) based on the

observation Ŷ . For any small enough δ > 0, let us choose Q = P
1−δ
2 and a = γP

δ
2 ,

where γ is a constant independent of P to meet the average power constraint. Then,

due to the Markov chain V → (Y1a, Y1b)→ Ŷ → V̂ , we have

I(V ;Y1a, Y1b) ≥ I(V ; Ŷ ) ≥ I(V ; V̂ ) (7.51)

= H(V )−H(V |V̂ ) (7.52)

= log(2Q+ 1)−H(V |V̂ ) (7.53)

≥ log(2Q+ 1)− 1− P
[
V 6= V̂

]
log(2Q+ 1) (7.54)

≥
{

1− P
[
V 6= V̂

]}1− δ
2

logP − 1 (7.55)

264



Now, due to the PAM structure, probability of error is

P
[
V 6= V̂

]
≤ exp

(
−γ′a2

)
≤ exp

(
−γ′′P δ

)
(7.56)

where γ′, γ′′ are constants independent of P . Then, from (7.55) and (7.56), at high

SNR (large enough P ), we have

I(V ;Y1a, Y1b) ≥
1− δ

2
logP + o(logP ) (7.57)

where o(·) is the little-o function.

On the other hand, for the information leakage rate,

I(V ;Y2a, Y2b) ≤ I(V ;V + U) (7.58)

≤ H(V + U)−H(V ) (7.59)

≤ log
4Q+ 1

2Q+ 1
≤ 1 (7.60)

By [34, Theorem 1], we can achieve the sum secrecy rate of

sup (R1 +R2) ≥ I(V ;Y1a, Y1b)− I(V ;Y2a, Y2b) (7.61)

≥ 1− δ
2

logP + o(logP ) (7.62)

for any δ ≥ 0, which implies that we can achieve 1 sum s.d.o.f. This means that by

joint encoding across component channels, we achieve 1 sum s.d.o.f. outperforming

optimum independent encoding, which can at most achieve 2
3

sum s.d.o.f.
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7.4.2 Separability in s.d.o.f. for Almost All Channel Gains

Although the Gaussian MAC wiretap channel is not always separable, the special

construction provided in the last subsection is not “general”, i.e., for almost all

channel gains, the constraints in (7.47) are never met. Based on this observation,

we show that the s.d.o.f. region of the parallel Gaussian MAC wiretap channel is

separable for almost all channel gains.

From Chapter 4, the s.d.o.f. regions of the component Gaussian MAC wiretap

channels are identical, i.e., Ds,(a) = Ds,(b), and

Ds,(a) = {(d1, d2) : 2d1 + d2 ≤ 1, d1 + 2d2 ≤ 1} (7.63)

Therefore, it suffices to show that for the overall parallel Gaussian MAC channel

the s.d.o.f. region is

Ds = {(d1, d2) : 2d1 + d2 ≤ 2, d1 + 2d2 ≤ 2} (7.64)

The achievability follows from Chapter 4 for almost all channel gains. In the

achievability, we scale the power in each component channel, to meet the overall

power constraint; however, this does not affect the s.d.o.f. calculations.

For the converse, we first flatten the parallel channel by concatenating the

channel inputs and outputs of component channels into 2n-length vectors. Instead

of studying the parallel channel in n channel uses, we study the flat channel in 2n

channel uses. The power constraint remains the same over 2n channel uses. In
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addition, since introducing correlation in time and in component channels has the

same effect, the flat channel must have the same converse as the original one.

Then, similar to the steps in Chapter 2, (2.202)-(2.211), we have

n(R1 +R2) ≤ h(X̃1, X̃2,Y1,Y2)− h(X̃1, X̃2|Y1,Y2)− h(Y2) + nc67 (7.65)

where vectors in bold-face are 2n-length vectors. The components of 2n-vectors X̃j,

for j = 1, 2, are X̃ji = Xji + Ñji, for i = 1, . . . , 2n. Here, the sequence Ñ2n
j is

i.i.d. over time, is independent of all other random variables, and Ñji is a Gaussian

random variable with zero-mean and variance σ2
ji, such that

σ2
ji < min

{
1

h2
ja

,
1

g2
ja

,
1

h2
jb

,
1

g2
jb

}
(7.66)

Then, all the remaining steps in Chapter 2 follow, and we have

nRi + nR1 + nR2 ≤ h(Y 2n
1 ) + nc68 ≤

(
2n

2
logP

)
+ nc69 (7.67)

for i = 1, 2. This implies

2d1 + d2 ≤ 2, and d1 + 2d2 ≤ 2 (7.68)

which completes the proof of the converse for this case.
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7.5 Conclusions

In this chapter, we showed that the parallel MAC wiretap channel is not always

separable by providing a specific example in which the sum secrecy rate by joint

encoding over parallel channels outperforms the best rate achievable by individually

optimal encoding for each component channel. Then, we showed that the parallel

Gaussian MAC wiretap channel is inseparable in general as well. Finally, we showed,

from a s.d.o.f. point of view, that the parallel Gaussian MAC wiretap channel is

separable almost surely, however, separability in s.d.o.f. is weaker than separability

in secrecy capacity.
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Chapter 8

Secrecy Games on the One-Sided Interference Channel

8.1 Introduction

An interesting observation made in Chapter 2 is that in the case of two-user Gaussian

IC with confidential messages, in order to achieve the optimum sum s.d.o.f., each

transmitter jams its own receiver to protect the message of the other transmitter.

This phenomenon has also appeared in other multi-transmitter scenarios, such as the

K-user MAC wiretap channel and the K-user IC with secrecy constraints. In order

to investigate this behavior in depth, in this chapter, we focus on the two-user one-

sided IC with confidential messages. In this IC, in addition to the usual selfishness

of the users, the relationship between the two pairs of users is further adversarial in

the sense of both receivers’ desires to eavesdrop on the communication of the other

pair. We develop a game-theoretic model to study the information-theoretic secure

communications in this setting. We first start with a game-theoretic model where

each pair’s payoff is their own secrecy rate. The analysis of the binary deterministic

IC with this payoff function shows that self-jamming of a transmitter, which injures

the eavesdropping ability of its own receiver, is not excluded by the Nash equilibria.

We propose a refinement for the payoff function by explicitly accounting for the

desire of the receiver to eavesdrop on the other party’s communication. This payoff

function captures the adversarial relationship between the two pairs of users better.
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We determine the Nash equilibria for the binary deterministic channel for both

payoff functions.

8.2 Problem Formulation

We consider a two-user one-sided IC, where each transmitter is free to choose a

transmission strategy, which is defined as follows.

Definition 8.1 (Strategy si) is the encoding method at transmitter i, such that:

• the number of information bits of equiprobable messages Wi is log(Mi), and

the block length of codewords is n;

• the stochastic encoding function fi : {1, 2, · · · ,Mi} → Ci maps the message wi

to an n-length codeword xni which belongs to the codebook Ci;

• the corresponding rate of this encoder is Ri = log(Mi)
n

.

We assume that the receiver i performs maximum-likelihood decoding on the

received signal to get an estimate of the message ŵi. We denote the resulting

probability of error as Pe,i = P [Wi 6= Ŵi]. The decoding error probability Pe,i is

jointly determined by both strategies s1 and s2 due to interference. To character-

ize information-theoretic secrecy, we define the measure of information leakage of

transmitter i as

Li =
1

n
I(Wi;Y

n
j ) (8.1)

where j = ī, i.e., i = 1, j = 2 or i = 2, j = 1, and Y n
j is the n-length symbol observed

at receiver j.
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Then, for any fixed threshold ε > 0, which is small enough, given s1 and s2,

we define the payoff of each transmitter as

πi(s1, s2) =


Ri, Pe,i ≤ ε and Li ≤ ε

0, otherwise

(8.2)

for i = 1, 2. It is important to emphasize that, as defined above, s1 and s2 jointly

determine the payoff πi of transmitter i. In order to improve πi, transmitter i can

deviate from si to any other strategy s′i, and the only criteria for this improvement

are Pe,i and Li, not Pe,j or Lj. This implies that such a deviation may affect the

performance of the other transmitter j. To model the behavior of transmitters, who

have the freedom to choose their strategies, it is reasonable to assume that each

transmitter is selfish. Furthermore, each transmitter i is rational and intelligent,

i.e., its objective is to find the best strategy si to maximize corresponding payoff

πi (given the other transmitter’s strategy sj), and each transmitter understands the

situation, including the fact that another transmitter is also an intelligent rational

decision maker.

Based on the above consideration and assumptions, the definition of the Nash

equilibrium secrecy rate region Cs,NE is given as follows:

Definition 8.2 (Nash equilibrium secrecy rate region) Nash equilibrium se-

crecy rate region Cs,NE is the closure of all rate pairs (Rs1, Rs2) such that, there

exists a ε̄ > 0 such that for all ε ∈ (0, ε̄), there exists a strategy pair (s∗1, s
∗
2) which

achieves the payoffs πi(s
∗
1, s
∗
2) = Rsi for i = 1, 2 and s∗i is the best response to s∗j in
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the sense that

πi(s
∗
i , s
∗
j) ≥ πi(s

′
i, s
∗
j), ∀s′i (8.3)

By this definition, if any transmitter i unilaterally attempts to deviate from

the equilibrium strategy while the other transmitter j’s strategy remains the same,

the corresponding payoff πi of transmitter-receiver pair i will not be improved, i.e.,

there is no incentive for each transmitter to deviate from the equilibrium strategy.

Such a secrecy rate pair achieved by the best response strategy pair is an equilibrium

in the secrecy rate region.

8.3 Binary Deterministic Channels with Confidential Messages

In this section, we consider the binary deterministic one-sided IC with confidential

messages to analyze the Nash equilibrium secrecy rate region with the payoff function

defined above. The channel model shown in Figure 8.1 is:

Y1a = X1a, Y1b = X1b (8.4)

Y2a = X1b ⊕X2a, Y2b = X2b (8.5)

where ⊕ is modulo-2 addition. This is a simple example to analyze the equilibrium.

However, it is not difficult to see that it can be easily extended to general one-sided

binary deterministic channels which are used in [84].
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a

b

a

b

a

b

a

b

X1

X2

Y1

Y2

Figure 8.1: Binary deterministic one-sided IC with confidential messages.

The capacity region of this channel is [58]

C = {(R1, R2)|R1 ≤ 2, R2 ≤ 2, R1 +R2 ≤ 3} (8.6)

In fact, it is easy to check that each corner point of this pentagon is an achievable

secrecy rate pair also, and therefore, the unconstrained capacity region in (8.6)

is equal to the secrecy capacity region. In addition, if we do not consider the

secrecy constraint Li in the payoff function, then [76] already found the unique

Nash equilibrium rate pair (R∗1, R
∗
2) to be R∗1 = 2 and R∗2 = 1. The explanation

for this is as follows: Since there is no secrecy constraint, transmitter 1 can always

transmit unencoded messages on both sub-channels with maximum rate 2 bits, and

due to the interference, transmitter 2 can only achieve 1 bit as the maximum rate.

It can be shown that neither user will have any incentive to deviate from this point,

and there exists no other such point. The capacity region is shown in Figure 8.2.

The unique Nash equilibrium with no secrecy constraints is shown with a filled circle.
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2

Rs2

Rs110

1

2

Figure 8.2: The (secrecy) capacity region. Unique Nash equilibrium point (filled
circle) and Nash equilibrium secrecy rate region (blue wide line including the two
end points) with the first payoff function, and the unique Nash equilibrium secrecy
rate point (filled square) for the second payoff function.

With secrecy constraints, we will show that the Nash equilibrium secrecy rate

region is not a unique point. We give the precise form of the Nash equilibrium

secrecy rate region of this channel with the following theorem.

Theorem 8.1 (Nash equilibrium secrecy rate region Cs,NE)

Cs,NE = {(Rs1, Rs2)|Rs1 ∈ [1, 2], Rs2 = 1} (8.7)

Proof: First, note that Rs1 ≥ 1 and Rs2 ≥ 1. This is because, given any

strategy s2, transmitter 1 can at least employ independent encoding on two sub-

channels and transmit unencoded information on sub-channel a with zero decoding

error probability and without any information leakage. The same argument can be

applied to sub-channel b of transmitter 2. Next, note that Rs1 ≤ 2 is trivial. To

prove Rs2 = 1, it suffices to prove that Rs2 ≤ 1.

Assume that (s1, s2) is an equilibrium strategy, which is the best response to
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each other and public to both transmitter-receiver pairs. The reliable transmission

rate for transmitter 2 is upper bounded by

nRs2 = nR2 (8.8)

≤ max
P (Xn

2 )
I(Xn

2 ;Y n
2 ) (8.9)

≤ max
P (Xn

2 )
[I(Xn

2a;Y
n

2a) +H(Xn
2b)] (8.10)

where the inequality in (8.10) is proved in Appendix 8.6.1 with X2b = Y2b. This

could always (but not limited to) be achieved by independently encoding on both

sub-channels. The necessary condition for the equality in (8.10) is

I(Y n
2a;X

n
2b) = 0 (8.11)

Considering s1, the channel X1 → Y1, Y2 is a degraded wiretap channel with

the following upper bound for the secrecy rate:

nRs1 ≤ max
P (Xn

1 )
I(Xn

1 ;Y n
1 )− I(Xn

1 ;Y n
2 ) (8.12)
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The difference can be maximized by

I(Xn
1 ;Y n

1 )− I(Xn
1 ;Y n

2 )

≤ H(Xn
1a) + I(Xn

1b;Y
n

1b)− I(Xn
1 ;Y n

2 ) (8.13)

= H(Xn
1a) + I(Xn

1b;Y
n

1b)− I(Xn
1a, X

n
1b;Y

n
2 ) (8.14)

= H(Xn
1a) + I(Xn

1b;Y
n

1b)− I(Xn
1b;Y

n
2 )− I(Xn

1a;Y
n

2 |Xn
1b) (8.15)

= H(Xn
1a) + I(Xn

1b;Y
n

1b)− I(Xn
1b;Y

n
2 ) (8.16)

= H(Xn
1a) + I(Xn

1b;Y
n

1b)− I(Xn
1b;Y

n
2a)− I(Xn

1b;Y
n

2b|Y n
2a) (8.17)

where (8.13) is proven in Appendix with X1a = Y1a, (8.16) is due to the Markov

chain Xn
1a → Xn

1b → Y n
2 . The fourth item in (8.17) is equal to

I(Xn
1b;Y

n
2b|Y n

2a) = H(Y n
2b|Y n

2a)−H(Y n
2b|Xn

1b, Y
n

2a) (8.18)

= H(Xn
2b|Y n

2a)−H(Xn
2b|Xn

1b, Y
n

2a) (8.19)

= H(Xn
2b)−H(Xn

2b|Xn
1b, Y

n
2a) (8.20)

= H(Xn
2b)−H(Xn

2b|Xn
2a, Y

n
2a) (8.21)

= H(Xn
2b)−H(Xn

2b|Xn
2a) (8.22)

= I(Xn
2a;X

n
2b) (8.23)

where (8.20) is due to (8.11) and (8.22) is due to the Markov chainXn
2b → Xn

2a → Y n
2a.
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Substituting (8.23) in (8.17), we get

I(Xn
1 ;Y n

1 )− I(Xn
1 ;Y n

2 )

≤ H(Xn
1a) + I(Xn

1b;Y
n

1b)− I(Xn
1b;Y

n
2a)− I(Xn

2a;X
n
2b) (8.24)

= H(Xn
1a) +H(Xn

1b)−H(Y n
2a) +H(Y n

2a|Xn
1b)− I(Xn

2a;X
n
2b) (8.25)

= H(Xn
1a) +H(Xn

1b)−H(Y n
2a) +H(Xn

2a)− I(Xn
2a;X

n
2b) (8.26)

= H(Xn
1a) +H(Xn

1b|Xn
2a)−H(Y n

2a) +H(Xn
2a|Xn

2b) (8.27)

= H(Xn
1a) +H(Y n

2a|Xn
2a)−H(Y n

2a) +H(Xn
2a|Xn

2b) (8.28)

= H(Xn
1a)− I(Xn

2a;Y
n

2a) +H(Xn
2a|Xn

2b) (8.29)

≤ H(Xn
1a) +H(Xn

2a|Xn
2b) (8.30)

≤ n+H(Xn
2a|Xn

2b) (8.31)

where (8.26) is due to H(Y n
2a|Xn

1b) = H(Xn
2a|Xn

1b) = H(Xn
2a) and (8.30) is due to

I(Xn
2a;Y

n
2a) ≥ 0. When s2 is given, H(Xn

2a|Xn
2b) is a fixed item for transmitter

1. (8.31) could always (but not limited to) be achieved by a wiretap code with

independent and uniform distributions for Xn
1a and Xn

1b. The necessary condition is

I(Xn
2a;Y

n
2a) = 0 (8.32)

which means that, under the condition that transmitter 1 achieves the maximum

secrecy rate, the upper bound for the reliable transmission rate (8.10) for transmitter
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2 is only

nRs2 ≤ max
P (Xn

2 )
[I(Xn

2a;Y
n

2a) +H(Xn
2b)] (8.33)

≤ max
P (Xn

2 )
H(Xn

2b) (8.34)

≤ n (8.35)

which is achievable. Therefore, the reliable secrecy rate Rs2 is upper bounded by 1.

Finally, we prove the achievability here. Assume that s2 is the following: trans-

mit unencoded information on sub-channel b, but pure noise with input distribution

P (X2a = 0) = 1− P (X2a = 1) = p, for some 0 ≤ p ≤ 1/2 on sub-channel a. Then,

Rs2 = 1.

Given s2, the channel X1 → Y1 → Y2 is a degraded wiretap channel with the

optimal encoder s∗1 which independently encodes the signals on two sub-channels.

On sub-channel a, unencoded message is transmitted, and on sub-channel b, en-

coder transmits the secure message via a wiretap code with the optimal distribution

P ∗(X1b = 0) = 1/2. It is straightforward to see that s∗1 and s2 jointly determine

the achievable secrecy rate for transmitter 1 as Rs1a + Rs1b = 1 + I(X1b;Y1b) −

I(X1b;Y2a) = 1 + {1 − [1 − h2(p)]} = 1 + h2(p), where h2 is the binary entropy

function.

It is easy to check that, to maximize the payoff π2, s2 is also the best response s∗2

to s∗1, i.e., (s∗1, s
∗
2) are best responses to each other, and therefore form an equilibrium,

278



by definition. Then, the corresponding payoffs are

Rs1 = 1 + h2(p), Rs2 = 1 (8.36)

where 0 ≤ p ≤ 1/2, which means Rs1 ∈ [1, 2] and Rs2 = 1. The Nash equilibrium

line is shown as the blue line going from [1, 1] to [2, 1] in Figure 8.2. 2

8.4 Refinement of the Equilibrium

Achieving the Nash equilibrium pairs in the previous section required transmitter

2 to transmit artificial noise on sub-channel a to self-jam its own receiver. Since

all of the equilibrium points yield the same payoff for pair 2, a rational transmitter

2 would rather help its receiver eavesdrop on the other pair than self-jam its own

receiver. However, the self-jamming scheme is not excluded by the Nash equilibrium

in Section 8.3.

We now modify the payoff function of the game in order for the resulting Nash

equilibrium to reflect the adversarial relationship between the two pairs of users

better in this IC with confidential messages. Here we explicitly account for the

desire of the receiver to eavesdrop on the other party’s communication by including

the leakage of the other user’s message in the payoff function of a user together with

its own secrecy rate.

Definition 8.3 (Refinement of the game and equilibria) The equilibrium se-

crecy rate region C̃s,NE is the closure of all rate pairs (Rs1, Rs2) such that there exists
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a ε̄ > 0 such that for all ε ∈ (0, ε̄), there exists a strategy pair (s∗1, s
∗
2) which achieves

the payoffs πi(s
∗
1, s
∗
2) = Rsi for i = 1, 2, and s∗i is the best response to s∗j in the sense

that

πi(s
∗
i , s
∗
j) ≥ πi(s

′
i, s
∗
j), ∀s′i (8.37)

In addition, (s∗1, s
∗
2) is also the best responses with respect to the following payoff

π̃i(si, sj) =


Ri + β · Lj, Pe,i ≤ ε and Li ≤ ε

0, otherwise

(8.38)

for any β > 0 and for all i = 1, 2 with j = ī.

We emphasize a few points here. First, any rate pair in C̃s,NE must also

belong to Cs,NE. Secondly, we include the information leakage Lj defined in (8.1)

into the definition of π̃i in addition to the Ri to further limit the rational behavior

of the selfish transmitters and receivers, i.e., eavesdropping is at least not bad for

the receiver. Lastly, for any rate pair (Rs1, Rs2) ∈ C̃s,NE, by the definition of payoff

π, there must exist a strategy pair which does not violate the secrecy constraint

even though it is also an equilibrium with respect to the payoff π̃, which includes

the information leakage in the definition.

We again examine the channel in Section 8.3 to illustrate the idea of the

refined payoff function and the resulting equilibrium. With the new definition,

the equilibrium rate pairs in the secrecy rate region are modified as stated in the

following theorem.
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Theorem 8.2 (Nash equilibrium secrecy rate region C̃s,NE)

C̃s,NE = {(1, 1)} (8.39)

Proof: (1, 1) ∈ C̃s,NE. This is because each transmitter transmits unencoded

information on the private sub-channel, e.g., sub-channel a of transmitter 1 and sub-

channel b of transmitter 2. Transmitter 1 sends pure noise with uniform distribution

on sub-channel b. Transmitter 2 keeps silent. Here by silence, we mean that trans-

mitter 2 sends a constant symbol which is known to everyone in this network, i.e.,

the corresponding rate is zero. Since no information is transmitted on the interfered

sub-channel, there is no information leakage which implies that (1, 1) ∈ C̃s,NE.

(2, 1) /∈ C̃s,NE. The only scheme to achieve this rate pair is that transmitter

1 transmits unencoded information on both sub-channels as s1. And, for s2 trans-

mitter 2 transmits unencoded information on sub-channel b but sends pure noise

(uniform distribution) on sub-channel a. Obviously, if transmitter 2 deviates from

s2 to one special strategy s′2 which keeps silent on sub-channel a, then the payoff π̃2

will increase due to the information leakage L1.

(Rs1, 1) /∈ C̃s,NE for any Rs1 > 1. We prove this by contradiction. Assume

that this rate pair is in the set C̃s,NE and is achieved by some strategy pair (s1, s2).

Rs1 > 1 means that H(W1) ≥ n(1 +4) for a positive constant value 4 > 0. It is

not difficult to see that transmitter 2 could always deviate to s′2, i.e., keeping silent

on sub-channel a, then the secrecy rate Rs2 remains the same but the information

281



leakage increases:

nL1 = I(W1;Y n
2 ) = I(W1;Y n

2a) (8.40)

= I(W1;Xn
1b) (8.41)

= I(W1;Y n
1b) (8.42)

= I(W1;Y n
1a, Y

n
1b)− I(W1;Y n

1a|Y n
1b) (8.43)

= H(W1)−H(W1|Y n
1a, Y

n
1b)− I(W1;Y n

1a|Y n
1b) (8.44)

≥ H(W1)− I(W1;Y n
1a|Y n

1b)− nε′ (8.45)

≥ n(1 +4)−H(Y n
1a)− nε′ (8.46)

≥ n(4− ε′) (8.47)

where by Fano’s inequality, H(W1|Y n
1a, Y

n
1b) ≤ nε′ for some negligible ε′. Hence, the

payoff π̃2(s1, s
′
2) = Rs2 +βL1 > Rs2 = π̃2(s1, s2) which means that s2 is not the best

response to s1 with respect to π̃, which implies that (Rs1, 1) /∈ C̃s,NE.

Therefore, we conclude that the Nash equilibrium contains only a single rate

pair: C̃s,NE = {(1, 1)}, which is shown with the filled square in Figure 8.2. 2

This theorem shows that all the secrecy rate pairs in the set Cs,NE but not

in the set C̃s,NE are only achieved by the strategies employing self-jamming. The

modified definition for the payoff and the resulting equilibrium are essential to rule

out such rate pairs.
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8.5 Conclusions

In this chapter, we studied the one-sided IC with confidential messages. To model

the adversarial relationship between two transmitter-receiver pairs, we considered

a scenario where each transmitter has the freedom to choose any strategy, and the

only objective is to maximize a certain given payoff. To this end, we formally devel-

oped a game theory model and studied its equilibria. When we defined the payoff

function to be only the secrecy rate of each user, the resulting Nash equilibria did

not reject the behavior of self-jamming, in which a transmitter jams its own re-

ceiver. To improve the modeling of the adversarial relationship between the two

pairs better, we defined a refined payoff function to explicitly incorporate the re-

ceiver’s desire to eavesdrop on the other user. The equilibrium achieved with this

payoff function excluded the possibility of self-jamming, for the deterministic binary

channel considered here.
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8.6 Appendix

8.6.1 Upper Bound for Independent Parallel Channel

For independent parallel channel P (Yα, Yβ|Xα, Xβ) = P (Yα|Xα)P (Yβ|Xβ) with Yβ =

Xβ, the upper bound of the mutually information I(X;Y ) is the following:

I(X;Y ) = I(Xα, Xβ;Yα, Yβ) (8.48)

= I(Xβ;Yα, Yβ) + I(Xα;Yα, Yβ|Xβ) (8.49)

= H(Xβ) + I(Xα;Yα|Xβ) (8.50)

= H(Xβ) +H(Yα|Xβ)−H(Yα|Xα, Xβ) (8.51)

≤ H(Xβ) +H(Yα)−H(Yα|Xα, Xβ) (8.52)

= H(Xβ) +H(Yα)−H(Yα|Xα) (8.53)

= H(Xβ) + I(Xα;Yα) (8.54)

where the (8.53) is due to the Markov chain Xβ → Xα → Yα. The equality holds iff

I(Ya;Xβ) = 0.
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Chapter 9

Conclusions

In this dissertation, we determined the s.d.o.f. of several different wireless communi-

cation channel models, and provided the corresponding optimal signalling schemes

at high SNR.

In Chapter 2, we determined the s.d.o.f. of several fundamental channel models

in one-hop wireless networks. We first considered the Gaussian wiretap channel

with one helper. While the helper needs to create interference at the eavesdropper,

it should not create too much interference at the legitimate receiver. Our approach

is based on understanding this trade-off that the helper needs to strike. To that

purpose, we developed an upper bound that relates the entropy of the cooperative

jamming signal from the helper and the message rate. In addition, we developed an

achievable scheme based on real interference alignment which aligns the cooperative

jamming signal from the helper in the same dimension as the message signal. This

ensures that the information leakage rate is upper bounded by a constant which

does not scale with the power. In addition, to help the legitimate user decode

the message, our achievable scheme renders the message signal and the cooperative

jamming signal distinguishable at the legitimate receiver. This essentially implies

that the message signal can occupy only half of the available space in terms of the

d.o.f. We showed that the exact s.d.o.f. of the Gaussian wiretap channel with one
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helper is 1
2

by these matching achievability and converse proofs. We then generalized

our achievability and converse techniques to the Gaussian wiretap channel with M

helpers, Gaussian BC with confidential messages and helpers, two-user Gaussian IC

with confidential messages and helpers, and K-user Gaussian MAC wiretap channel

in this chapter. In the multiple-message settings, transmitters needed to send a mix

of their own messages and cooperative jamming signals, which can be interpreted

as applying channel prefixing. We determined the exact sum s.d.o.f. of all of these

system models. In particular, we showed that the s.d.o.f. of a Gaussian wiretap

channel with M helpers is M
M+1

, and the sum s.d.o.f. of a K-user Gaussian MAC

wiretap channel is K(K−1)
K(K−1)+1

.

In Chapter 3, we studied secure communications in K-user Gaussian interfer-

ence networks, and addressed three important channel models: IC-EE, IC-CM and

their combination IC-CM-EE in a unified framework. We showed that, for all three

models, the sum s.d.o.f. is exactly K(K−1)
2K−1

. Our achievability is based on structured

signalling, structured cooperative jamming, channel prefixing and asymptotic real

interference alignment. The key insight of the achievability is to carefully design

the structure of all of the signals at the transmitters so that the signals are received

at both legitimate receivers and eavesdroppers in the most desirable manner from

a secure communication point of view. In particular, cooperative jamming signals

protect information carrying signals via alignment, and the information carrying

signals are further aligned to maximize s.d.o.f.

In Chapter 4, we determined the entire s.d.o.f. regions of the K-user MAC

wiretap channel, K-user IC-EE, K-user IC-CM, and K-user IC-CM-EE. The con-
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verse for the MAC directly followed from the results in Chapter 2. The converse for

the IC was shown to be dominated by secrecy constraints and interference constraints

in different parts. To show the tightness and achieve the regions characterized by the

converses, we provided a general method to investigate this class of channels, whose

s.d.o.f. regions have a polytope structure. We provided the equivalence between the

extreme points in the polytope structure and the rank of sub-matrices containing

all active upper bounds associated with each extreme point. Then, we achieved

each extreme point by relating it to a specific channel model. More specifically,

each extreme point of the MAC region can be achieved by an m-user MAC wiretap

channel with K −m helpers, i.e., by setting K −m users’ secure rates to zero and

utilizing them as pure (structured) cooperative jammers. On the other hand, each

asymmetric extreme point of the IC region can be achieved by a (p+1)-user IC-CM

with m helpers, and N external eavesdroppers.

In Chapter 5, we considered the sum s.d.o.f. of two-unicast layered wireless

networks. We used the setting in [64] and studied the cases in A, A′, B, B′ and C

separately to incorporate security in addition to reliability. The major challenge was

in cases A and A′, where the sum d.o.f. is 1, due to the fact that both destination

nodes can decode the message signals. While this is inconsequential for the reliability

problem in [64], it is a major problem when security is considered. To overcome this

problem, we classified layered wireless networks into more detailed sub-cases, and in

all sub-cases proposed modified achievable schemes that guarantee both reliability

and security. In almost all sub-cases, we utilized the cooperative jamming and

interference neutralization techniques to design an appropriate achievable scheme.

287



A remaining challenge was a special configuration, where all of the nodes in the last

layer before the destination layer were allowed to send only independent signals.

We reduced the layered networks in this category into equivalent channel models

and determined their s.d.o.f. using the results in previous chapters. As a result,

we showed that all networks in cases A and A′ have sum s.d.o.f. of 0, 2
3
, or 1. We

proposed modified schemes to achieve 2 sum s.d.o.f. for cases B and B′ (which

included the achievable scheme for the 2× 2× 2 interference networks), and 3
2

sum

s.d.o.f. for case C.

In Chapter 6, we studied the Gaussian wiretap channel with M helpers with-

out any eavesdropper CSI at the transmitters. We proposed an achievable scheme

that achieves a s.d.o.f. of M
M+1

, which is the same as the s.d.o.f. achieved when the

transmitters had perfect eavesdropper CSI. The new achievability scheme is based

on real interference alignment and blind cooperative jamming. While in Chapter 2

we aligned cooperative jamming signals with the information symbols at the eaves-

dropper to protect the information symbols, which required eavesdropper CSI, in

Chapter 6 we used one more cooperative jamming signal to span the entire space at

the eavesdropper to protect the information symbols. In addition, we aligned all of

the cooperative jamming signals in the same dimension at the legitimate receiver, in

order to occupy the smallest space at the legitimate receiver to allow for the decod-

ability of the information symbols. Therefore, we aligned the cooperative jamming

signals carefully only at the legitimate receiver, which required only the legitimate

receiver’s CSI at the transmitters.

In Chapter 7, we showed that the parallel MAC wiretap channel is not always
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separable by providing a specific example in which the sum secrecy rate by joint

encoding over parallel channels outperforms the best rate achievable by individually

optimal encoding for each component channel. Then, we showed that the parallel

Gaussian MAC wiretap channel is inseparable in general as well. Finally, we showed,

from a s.d.o.f. point of view, that the parallel Gaussian MAC wiretap channel is

separable almost surely, however, separability in s.d.o.f. is weaker than separability

in secrecy capacity.

In Chapter 8, we studied the one-sided IC with confidential messages. To

model the adversarial relationship between two transmitter-receiver pairs, we con-

sidered a scenario where each transmitter has the freedom to choose any strategy,

and the only objective is to maximize a certain given payoff. To this end, we for-

mally developed a game theory model and studied its equilibria. When we defined

the payoff function to be only the secrecy rate of each user, the resulting Nash equi-

libria did not reject the behavior of self-jamming, in which a transmitter jams its

own receiver. To improve the modeling of the adversarial relationship between the

two pairs better, we defined a refined payoff function to explicitly incorporate the

receiver’s desire to eavesdrop on the other user. The equilibrium achieved with this

payoff function excluded the possibility of self-jamming, for the deterministic binary

channel considered here.
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