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This dissertation focuses on secure computation and learning from the per-

spective of information-theoretic symmetric private information retrieval (SPIR).

Private information retrieval (PIR) is an elementary and classical problem in com-

puter science, aiming to protect the privacy of users. In a typical PIR setting,

a user wishes to correctly download the desired message out of a set of messages

from multiple non-colluding and replicated databases. This constraint is known as

the reliability constraint. Meanwhile, no individual database should learn anything

about which message the user has downloaded. This constraint is known as the

user privacy constraint. In SPIR, further, the user should learn nothing beyond the

particular message it has downloaded. This constraint is known as the database

privacy constraint.

As a fundamental problem in secure multi-party computation, two-party pri-

vate set intersection (PSI) refers to the problem where two parties wish to collab-

oratively determine the common elements without leaking any further information



about the remaining elements to each other. There are three requirements for two-

party PSI: At least one of the two parties should be able to decode the intersection

correctly (reliability), queried party should not learn the information being queried

(user privacy) and the querying party should not learn anything further than what

it has queried (database privacy). The last two constraints protect the privacy of

the remaining elements in two parties. Thus, the constraints in SPIR and two-

party PSI are equivalent and have a one-to-one correspondence. Further, SPIR is

a distributed (multi-database) version of 1-out-of-K oblivious transfer (OT). It is

well-known that reliability, user privacy and database privacy contradict each other,

and thus, basic single-database SPIR, and basic two-party PSI are infeasible. In or-

der to achieve a valid two-party PSI protocol, our primary solutions are to relax the

privacy constraints via use of multiple databases and utilize auxiliary randomness

data. Further, we study the secure computation problem via SPIR and apply it to

the secure learning problem.

First, we investigate the problem of two-party PSI by using SPIR. It is well-

known that single-database SPIR is not feasible. Hence, in our two-party PSI set-

ting, we assume that each party stores its data set across multiple non-colluding

and replicated databases instead of a single database. As a relaxation of the pre-

vious privacy requirements, the remaining elements of each party only needs to be

kept private from each individual database in the other party. As a consequence, we

propose a new valid two-party PSI achievable scheme under this new privacy require-

ment. More concretely, we consider the multi-message SPIR (MM-SPIR) problem,

which is an extension of the conventional single-message SPIR (SM-SPIR). In MM-



SPIR, the user retrieves multiple messages at a time from the databases. We obtain

the capacity of MM-SPIR as a stand-alone result and show that the MM-SPIR ca-

pacity equals the SM-SPIR capacity. We also unify the schemes of multi-message

PIR (MM-PIR) and MM-SPIR by proposing a new capacity-achieving MM-SPIR

scheme. Finally, we establish the equivalence between two-party PSI and MM-SPIR

with i.i.d. messages of length 1 through an incidence vector mapping, which implies

the minimum download cost for two-party PSI.

Second, we investigate the problem of SPIR with user-side common random-

ness where the user is provided with a random subset of the shared database common

randomness, which is unknown to the databases. We determine the exact capacity

region of the triple (d, ρS, ρU), where d is the download cost, ρS is the amount of

shared database common randomness, and ρU is the amount of available user-side

common randomness. With an appropriate amount of ρU , this new SPIR can achieve

the conventional PIR capacity. As a corollary, single-database SPIR becomes fea-

sible. Consequently, the user-side common randomness in SPIR can be deemed as

auxiliary randomness data and then applied to two-party PSI problem where each

party now possesses only a single database. Likewise, the minimum download cost

for two-party PSI in this case is derived.

Third, we consider the problem of multi-party PSI (MP-PSI). In MP-SPI,

several parties wish to jointly determine the intersection of their respective elements

while protecting the information about the remaining elements. MP-PSI is a non-

trivial extension of the two-party PSI as it cannot be implemented via multiple

use of two-party PSI. We propose a new information-theoretic MP-PSI scheme that



builds on the connection between PSI and MM-SPIR. Our scheme is a non-trivial

generalization of the two-party PSI scheme since it needs an intricate design of

the shared common randomness among the parties. With the aid of this auxiliary

randomness data, we show that our scheme does not incur any penalty, in terms

of the download cost, due to the more stringent privacy constraints in MP-PSI

compared to two-party PSI.

Fourth, as the communication cost in the PSI problem consists of upload cost

and download cost, we consider the total (upload plus download) communication

cost of SPIR with a focus on two-database setting through its relationships to con-

ditional disclosure of secrets (CDS) and conditional disclosure of multiple secrets

(CDMS). In CDS, two parties each holding an individual input and sharing a com-

mon secret wish to disclose this secret to an external party efficiently when their

inputs satisfy some condition. As a natural extension of CDS, in CDMS, two parties

share multiple i.i.d. common secrets. Inspired by the equivalence between a special

configuration of CDMS and two-database SPIR, we design download cost efficient

SPIR schemes for given upload cost using bipartite graph representations of CDS

and CDMS.

Fifth, as a novel and interesting extension of SPIR, we consider the problem of

random SPIR (RSPIR) where the user does not pick a specific message to download,

instead is content with any one of the messages stored in the databases. This is

digital blind box, also known as gachapon, which implements this specified setting

with physical objects for entertainment. This is also the blind version of 1-out-of-K

OT, an important cryptographic primitive. We explore the capacity of two-database



RSPIR and provide its corresponding achievable scheme.

Sixth, we consider the private set union (PSU) problem and then apply it to

the federated submodel learning (FSL) problem. As a dual problem of two-party

PSI, two-party PSU refers to the problem where two parties wish to collaboratively

compute the union of their elements without revealing anything beyond this union

to each other. Hence, we also establish the equivalence between two-party PSU

and MM-SPIR. In FSL, the full learning model in the server is divided into mul-

tiple submodels such that a large number of clients collectively update the model

by downloading only the needed submodels and uploading the corresponding in-

crements while keeping clients’ local training data private from the server. As a

conventional approach in FSL, secure aggregation ensures that the server can only

learn the aggregate model from the clients and nothing beyond that. By contrast,

if one of the parties is selected as a leader party to derive the union, multi-party

PSU (MP-PSU) requires that this leader party obtains only the union from the

remaining parties and nothing beyond that. By unifying secure aggregation and

MP-PSU in the same framework, we propose a new FSL scheme that achieves low

communication cost, and is also robust against client drop-outs, client late-arrivals

and database drop-outs.

Finally, seventh, we consider the FSL problem in a distributed storage sys-

tem. The server now comprises multiple independent databases and the full model

is stored through ramp secure regenerating coding (RSRC) across these databases.

This novel RSRCmechanism is proposed to resolve passive eavesdropper and database

failure issues together in an efficient manner by allowing the eavesdropper to learn



a controllable amount of submodel information. Our new RSRC-based distributed

FSL approach is constructed on the basis of our previous two-database FSL scheme

which uses PSU. In addition to the previous robustness against client drop-outs,

client late-arrivals and database drop-outs, and newly-added robustness against

database failures and a passive eavesdropper, this advanced FSL approach also guar-

antees robustness against an active adversary.
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CHAPTER 1

Introduction

In the era of big data, it is common to complete a task by utilizing the data with a

large size distributed in the form of isolated islands, e.g., perform a target computa-

tion over the personal data possessed by a few parties or train a global learning model

by collecting local data from many clients. Therefore, during the data exchange pro-

cess, preserving the privacy of data is an essential but challenging problem. In this

dissertation, we investigate privacy and security issues arising in such settings from

an information-theoretic perspective.

As an elementary two-party secure computation problem, two-party private

set intersection (PSI) refers to the problem of determining the common elements

in two data sets without leaking any further information about the remaining el-

ements in the sets. This problem has been a major research topic in the field of

cryptography starting with the work [1]. The PSI problem can be motivated by

many practical examples, for instance: The national security agency (NSA) and

the customs and border protection (CBP) need to check whether a specific group

of suspected criminals has entered the country. The NSA has a list of suspected

1



criminals, while the CBP has a complete list of individuals who entered the country.

Both agencies want to find the intersection between these lists. However, the NSA

does not want to share its complete list of suspects, and the CBP cannot reveal

the entire catalog of records either. As another example, consider a major service

provider (e.g., Whatsapp) and a new customer who wishes to join this service. The

user wishes to find out which members of his/her contact list are already using this

service without revealing his/her entire contact list to the service provider. Simi-

larly, the service provider wishes to determine the intersection without revealing its

entire list of customers.

To formulate the two-party PSI problem information-theoretically, consider a

setting where party P1 stores a data set P1 in a single database and party P2 stores

another data set P2 in another single database. They want to jointly calculate the

intersection P1 ∩ P2 in a private way. Without loss of generality, we assume here

that the party P1 initiates the PSI process by sending some query information Q to

the other party P2. Subsequently, P2 sends some answer information A as a response

back to P1. Hence, we have the following three constraints. First, P1 should be able

to derive the intersection P1 ∩ P2 reliably,

[PSI reliability] H(P1 ∩ P2|Q,A,P1) = 0 (1.1)

Second, P1 wants to protect its personal elements in P1 \ (P1 ∩ P2) = P1 \ P2 from

P2. However, since P1 does not know P2, the query Q cannot depend on P2, and P1

should protect all of P1 in query. Therefore, the query sent by P1 should not leak

2



any information about the data set P1,

[P1 privacy] I(P1;Q,A,P2) = 0 (1.2)

Third, by symmetry, P2 wants to protect its personal elements in P2 \ (P1 ∩ P2) =

P2 \ P1 from P1. Moreover, P1 should not learn the absence of the remaining

elements in the set (P1 ∪ P2). Therefore, P1 should not learn any information about

P2’s inclusion status of the elements in (P2 \ P1) ∪ (P1 ∪ P2) = P̄1 (we denote this

information by EP̄1
),

[P2 privacy] I(EP̄1
;Q,A,P1) = 0 (1.3)

Here, we prove that these three constraints conflict with each other such that

the basic two-party PSI is indeed not feasible, which matches our intuition. Note

that given the knowledge about P2’s inclusion status of the elements in P1 (we

denote this information by EP1), P1 is able to obtain the intersection P1 ∩ P2, and

vice versa. Hence, the reliability constraint becomes

[PSI reliability] H(EP1 |Q,A,P1) = 0 (1.4)

Due to the P1 privacy constraint (1.2), the query Q and answer A are identically

distributed for any P1. Then, due to the reliability constraint (1.4), from Q,A,P1,

the information EP1 is always decodable to P1 for any P1. Putting these two facts

together, from Q,A and variable P1, we must have that P1 can obtain the informa-
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tion about P2’s inclusion status of all the elements, which obviously contradicts the

P2 privacy constraint (1.3).

All the existing PSI works in the computer science community uses compu-

tational guarantees to ensure the privacy of the elements beyond the intersection;

see [1–4]. Computational security relies on the fact that there is no computer system

powerful enough to crack the cipher in a reasonable amount of time, and thus can be

broken by an attack with unlimited computation power. By contrast, information-

theoretic security is secure against an adversary with unlimited computing resources

and time. According to the indistinguishability of limited computation power, it is

apparent that previous valid two-party PSI protocols relax the stringent requirement

of information-theoretic security to computational security. In this dissertation, we

aim to achieve valid two-party PSI protocols in different ways, but still under the

umbrella of information-theoretic security. In brief, our first approach is to relax

the privacy constraint through including multiple databases in each party, while the

second approach is to distribute and utilize additional auxiliary randomness data at

both parties. By convention, the performance of our new valid two-party PSI pro-

tocols is still evaluated in terms of the total communication cost that is generated

within the whole process.

In the cryptography field, private information retrieval (PIR) refers to a fun-

damental problem where a user wishes to retrieve a specific message out of a set

of messages that is stored across multiple non-colluding and replicated databases

without leaking any information about this desired message index to any individual

database [5]. The requirement that the user can obtain the desired message without
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any error is referred to as the reliability constraint, and the requirement that each

individual database learns no knowledge about the index of this desired message is

referred to as the user privacy constraint. The capacity of PIR, which is defined as

the maximum number of desired message bits that can be privately retrieved per

downloaded bit from the databases, is proved to be CPIR = (1 − 1
N
)/(1 −

(
1
N

)K
)

in [6] for an N -database K-message system. As an extended version of PIR, sym-

metric PIR (SPIR) additionally requires that the user learns no knowledge about

the remaining messages in the databases after downloading its desired message [7].

This requirement is referred to as the database privacy constraint. Following the

same definition as in the capacity of PIR, the capacity of SPIR is proved to be

CSPIR = 1− 1
N

in [8]. Although PIR does not need any shared common randomness

among the databases, it is well-known that information-theoretic SPIR is possible

only when the databases share a certain minimum amount of common randomness

that is unknown to the user. Following the seminal paper on information-theoretic

PIR capacity [6], PIR and SPIR problems have attracted tremendous attention in

the information theory community recently, e.g., [9–63].

In this dissertation, we concentrate on the SPIR problem taking into consid-

eration the fact that two-party PSI and SPIR share three essential constraints with

similar characteristics. In addition, we note that SPIR is basically a multi-database

version of 1-out-of-K oblivious transfer (OT). OT, first introduced in [64] and then

developed in [65], is an essential building block in modern cryptography because of a

variety of applications that can be built based on it [64]. A 1-out-of-K OT protocol

consists of two parties, a sender with K input messages and a receiver with a choice
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k ∈ [K]. The objective of the protocol is that the receiver will receive the kth mes-

sage without the sender learning the index k, while the sender can guarantee that

the receiver only received one of the K messages. We explore secure computation

and learning by utilizing SPIR as an essential building block from the perspective

of information theory. In particular, we use a probabilistic idea as in [66, 67] to

design new SPIR achievable schemes with better performance and then apply them

to secure computation and learning problems with the main objective of reducing

the overall communication cost.

In Chapter 2, we study the two-party PSI problem on the basis of SPIR. Fol-

lowing the conventional configuration in SPIR [8], each party now stores its own

data set across multiple non-colluding and replicated databases. As a consequence,

the previous privacy requirements can be relaxed such that only the privacy of the

remaining elements in each party needs to be guaranteed against each individual

database in the other party. In this way, the information-theoretic privacy can

be still satisfied in our new two-party PSI scheme. In our PSI problem formu-

lation, there are two parties Pi, for i = 1, 2, each storing a data set Pi, whose

elements are picked from a finite set SK (a.k.a. global alphabet), on Ni replicated

and non-colluding databases. Now, to use SPIR to implement PSI, one party needs

to privately check the presence of each element in the other party. This implies that

the ith party needs to retrieve multiple messages from the other party, where the

messages here correspond to the incidences of each element of the set Pi. This estab-

lishes the connection between two-party PSI and multi-message SPIR (MM-SPIR).

The papers that are most closely related to our work are the ones that focus on sym-
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metry and multi-message aspects of PIR. Reference [8] derives the SPIR capacity.

Reference [23] considers multi-message PIR (MM-PIR) and determines the exact

capacity when the number of desired messages P is at least half of the total number

of messages K or when K/P is an integer; for all other cases [23] provides a novel

PIR scheme which is near-optimal. Reference [35] studies multi-database MM-PIR

with private side information. References [36, 37] study single-database MM-PIR

with side information. Reference [13] studies SPIR from MDS-coded databases.

None of these works consider the interplay between the data privacy constraint and

the joint retrieval of multiple messages, as needed in MM-SPIR.

In this chapter, we first focus on MM-SPIR as a stand-alone problem, we derive

its capacity. Our results show that the sum capacity of MM-SPIR is exactly equal to

the capacity of single-message SPIR (SM-SPIR), i.e., CSM−SPIR = CMM−SPIR = 1−

1
N
. We show that the databases need to share a random variable S such thatH(S) ≥

P
N−1

per desired symbol, which is P multiple of the common randomness required for

SM-SPIR. This implies that, unlike MM-PIR, there is no gain from jointly retrieving

the P messages, and it suffices to download the P messages successively using the

SM-SPIR scheme in [8], provided that statistically independent common randomness

symbols are used at each time. Further, for MM-SPIR, we propose a novel capacity-

achieving scheme for 1 ≤ P ≤ K − 1. Compared with the one in [8], the form of

this achievable scheme is much closer to the achievable scheme in [6]. The query

structure of the scheme resembles its counterpart in [23], in particular, we construct

the greedy algorithm in [6] backwards as in [23]. The major difference between

our proposed scheme and the MM-PIR scheme in [23] is the fact that databases
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add the common randomness to the returned answer strings to satisfy the database

privacy constraint. Our scheme is surprisingly optimal for all P and K in contrast

to the scheme in [23] which is proved to be optimal only if P is at least half of

K or K/P is an integer. By plugging P = 1, our scheme serves as an alternative

capacity-achieving scheme for the SM-SPIR scheme in [8]. Finally, we consider two-

party PSI. In transforming two-party PSI into MM-SPIR, each party constructs

the incidence vector of its own elements with respect to the global alphabet. The

incidence vector is a binary vector of length K that stores a 1 in jth position

if jth element is in the data set. Then, Pi performs MM-SPIR of the messages

corresponding to its incidence vector of Pi within the databases of the other party.

Thus, the equivalence between two-party PSI and MM-SPIR with i.i.d. messages of

length 1 can be established. We show that the optimum download cost of two-party

PSI is min
{⌈

|P1|N2

N2−1

⌉
,
⌈
|P2|N1

N1−1

⌉}
, which is linear in the size of the smaller set, i.e.,

min{|P1|, |P2|}. The linear scaling appears in the problem of determining the set

intersection even without any privacy constraints.

In Chapter 3, we study the problem of SPIR with user-side common random-

ness. As we discussed above, the privacy constraint of two-party PSI is loosened by

considering the setting of multiple non-colluding and replicated databases in each

party. However, in practical applications, enforcing non-collusion among databases

could be difficult, as in some cases, all databases may naturally belong to the same

entity. If all databases collude or belong to the same entity, the system essentially

becomes a single-database system. In addition, we are interested in exploring new

ways to further increase the SPIR capacity. The information-theoretic capacity of
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PIR and SPIR have been found in [6] and [8] as

CPIR =
1− 1

N

1−
(

1
N

)K and CSPIR = 1− 1

N
(1.5)

First, CSPIR is smaller than CPIR, since SPIR is a more constrained problem than

PIR. Second, single-database SPIR is infeasible as CSPIR = 0 for N = 1, while

single-database PIR is feasible as CPIR = 1
K

for N = 1. Our goal in this chapter is

two-fold: To explore ways to increase SPIR capacity to the level of PIR capacity,

and as importantly, to make single-database SPIR feasible. In SPIR, the databases

share two sets of information systems: a message information system and a common

randomness information system. As stated in [33, Theorem 2], the capacity of SPIR

with private side information is exactly equal to the capacity of SPIR without any

private side information. This means that the message information system cannot

be utilized as private side information to improve the capacity of SPIR. As an

alternative, we turn to the common randomness information system.

In this chapter, we introduce SPIR with user-side common randomness to

solve two issues mentioned above together. It is an extension of the classical SPIR

problem where the user is provided with a random subset of the shared database

common randomness, which is unknown to the databases. One way to implement

this is for the user to fetch a part of the common randomness from the databases

uniformly randomly, i.e., without the user knowing what it will get and without

the databases knowing what it got, except for its cardinality. That is, all subsets

of a certain size are equally likely to be obtained by the user. Another practical
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implementation could be for an external helper to distribute common randomness

to the user and the databases randomly. For database-side (server-side) common

randomness of amount ρS and user-side common randomness of amount ρU , we

determine the exact capacity region of the triple (d, ρS, ρU), where d is the download

cost which is the inverse of the capacity. We show that with a suitable ρU , SPIR

capacity becomes equal to the conventional PIR capacity. For the single-database

case, since the conventional PIR capacity is 1
K
, this implies that single-database

SPIR with user-side common randomness is feasible. In addition, the presence of

user-side ρU reduces the amount of required server-side ρS. As a consequence, by

utilizing user-side common randomness as auxiliary randomness data, two-party PSI

with the setting of single database in each party becomes feasible, and the minimum

download cost in this case is obtained.

In Chapter 4, following our work on two-party PSI problem, we investigate

the multi-party PSI (MP-PSI) problem, which is a multi-party secure computation

problem; see [68–71]. Unlike PIR/SPIR, the PSI problem may involve more than

two parties in the practical setting. Returning to the example involving the NSA

and CBP above, suppose now that the NSA needs to narrow down the search to

check whether the suspects have entered the country via a specific airline. The

airline company has a list of all passengers that took its flights all over the world.

The company needs to protect the privacy of its passengers as well. The problem of

finding the set of suspects who entered the country via this specific airline becomes a

three-party PSI. Unfortunately, the NSA cannot just apply a two-party PSI scheme

with the airline company and the CBP, as the NSA will learn extra information than
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the intersection of the three lists, for example, the NSA will learn about some of

its suspects who boarded a flight with this airline company but never landed in this

country. This illustrates that the MP-PSI is a non-trivial extension of the two-party

PSI because it cannot be realized through multiple implementations of two-party

PSI.

In this chapter, we investigate MP-PSI from an information-theoretic perspec-

tive. There are M independent parties. For i = 1, · · · ,M , the ith party denoted by

Pi possesses a data set Pi. The elements of all data sets are picked from a finite set

SK . The data set Pi is stored in Ni replicated and non-colluding databases. We aim

at privately determining the intersection of all the M data sets, i.e., P = ∩M
i=1Pi

in such a way that no party can learn any information beyond the intersection P .

Inspired by the classical achievable scheme in [1,68], we focus on a specific commu-

nication strategy between the parties in this work; see Fig. 1.1. In particular, we

assume that the parties agree on choosing one of them as a leader party, while the

remaining parties act as client parties. Without loss of generality, we pick PM as

a leader party, and then the remaining parties P1, · · · , PM−1 are all client parties.

The leader party PM initiates the MP-PSI determination protocol by generating

and submitting queries to the client parties. Before MP-PSI, the client parties are

allowed to generate and share well-designed intricate common randomness (common

randomness residing in the jth database of party Pi is shown by Ri,j in Fig. 1.1).

This is motivated by the results of [7, 8], which assert that using common ran-

domness is strictly necessary to enable symmetrically private communication. The

client parties then respond truthfully to the leader’s queries. The download cost
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Figure 1.1: Multi-party private set intersection (MP-PSI) system model.

of our scheme is mint∈{1,··· ,M}
∑

i∈{1,···M}\t

⌈
|Pt|Ni

Ni−1

⌉
. Note that the optimal download

cost with one-round communication is D∗ = min
{⌈

|P1|N2

N2−1

⌉
,
⌈
|P2|N1

N1−1

⌉}
in two-party

PSI [72]. This means that although in MP-PSI, the privacy constraints are more

stringent than that in two-party PSI, we incur no penalty for the download cost.

This indeed comes from the common randomness shared among the client parties,

which can be deemed as auxiliary randomness data. In addition, our achievable

download cost scales linearly with the cardinality of the leader set, which outper-

forms the best-known MP-PSI scheme, which scales with the sum of the cardinalities

of all the data sets [70].

In Chapter 5, we consider the total communication cost of SPIR. The total

communication cost of SPIR consists of two parts: the total number of bits sent

from the user to the databases (upload cost) denoted by U , and the total number of

bits downloaded by the user from the databases (download cost) denoted by D. For

a message length of L bits, the total communication cost (U +D) of SPIR depends

on three basic parameters (N,K,L). In [8], without any constraints on U and L,
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the optimal download cost for SPIR is found to be NL
N−1

, which does not depend on

K. In [73], without any constraints on D and L, the optimal upload cost for SPIR

is found to be log2(⌈K
1

N−1 ⌉) which does not depend on L. In addition, [13,15,52,72,

74–76] explore the optimal download cost of SPIR under various extended conditions

without a consideration on the upload cost. As a classical cryptographic primitive,

conditional disclosure of secrets (CDS) is first introduced in [7] as well to help devise

an achievable SPIR scheme. Since CDS itself functions as an essential building block

in applications such as secret sharing and attribute based encryption [77–79], CDS

has also attracted significant attention as a stand-alone computer science problem.

Recently, information-theoretic CDS is formulated in [80, 81] to characterize the

maximum number of secret bits that can be securely disclosed per communication bit

whenever a pre-defined condition is satisfied. Through extending CDS, we introduce

a new concept called conditional disclosure of multiple secrets (CDMS) where two

parties now share multiple i.i.d. common secrets instead of a single common secret

as in CDS.

In this chapter, we investigate the overall communication cost of two-database

SPIR with a particular focus on L = 1 in an information-theoretic setting. Our

focus on L = 1 is motivated by two observations: 1) as pointed out in [6], when L

is allowed to approach infinity, download cost dominates the upload cost, and the

consideration of total cost becomes trivial. 2) in some cryptographic applications,

e.g., two-party PSI and MP-PSI, only L = 1 may make practical sense. We first show

the equivalence between a special CDMS configuration and the two-database SPIR.

Following this equivalence, we explore the total communication cost of two-database
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SPIR through the characteristics of CDS and CDMS. We utilize CDS/CDMS to

determine an upload cost, and proceed to minimize the download cost for the given

fixed upload cost. We then consider the feasible upload and download cost achievable

region. In the example of K = 3 and L = 1, we find two optimal corner points for

the upload and download cost pair. These two corner points outperform the best-

known results in the literature [8, 73] and lead to the optimal total communication

cost. Finally, we can apply total communication cost conclusion in SPIR to PSI as

the PSI problem itself consists of upload cost and download cost.

In Chapter 6, we consider the random SPIR (RSPIR) problem. Gachapon

is a vending machine-dispensed capsule toy by means of a roulette mechanism,

which makes it random and unpredictable for customers [82]. In addition, gachapon

is being adapted as a random-type item in online games and 3D printing, and its

digital form is catching on quickly in the worldwide market [83,84]. Due to packaging

requirements prior to official distribution, gachapon is also referred to as a blind

box [82]. Following the concepts of gachapon as well as blind box, we introduce a

digital blind box between a user and a server in a communication network with the

following characteristics: 1) A user will ultimately receive a random box (content)

from the server. However, the user does not know anything about what is in the

box (what the content is) until it receives a box (content) from the server. 2) For

the sake of unpredictability, a user should also know nothing about the current box

(content) based on what it has received in the previous transactions. A user should

not know anything about what other users have received before communicating with

them. In other words, a user should not know anything beyond what it receives from
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the current box (content). This requirement also protects the content privacy of the

server. 3) In order to protect the privacy of the users, the server should learn

nothing about what a specific user has received. Therefore, a new concept called

RSPIR is put forward. In reference to the conventional SPIR, the only difference

is that, in RSPIR there is no input at the user side. That is, the user does not

send any queries to the databases, and ultimately receives a random message from

the databases. This requirement is referred to as random reliability. Interestingly,

the three requirements of RSPIR, namely, random reliability, database privacy and

user privacy, strictly correspond to the three characteristics of the digital blind

box described above. Thus, the digital blind box is equivalent to the RSPIR. An

instance of RSPIR is that users can share symmetric keys if the databases operate

in a broadcasting manner to transmit the information. In addition, an important

variant of 1-out-of-K OT is that the receiver has no input. For example, this variant

can be used as a subroutine in contract signing and certified mail protocols [65].

Thus, RSPIR can be viewed as a distributed version of this variant of 1-out-of-K

OT.

In this chapter, we formulate two-database RSPIR and investigate its capac-

ity. We determine its capacity as well as the minimal amount of required common

randomness in the cases of K = 2, 3, 4 messages. This determines the capacity of

digital blind box. While we give a general achievable scheme for any number of

messages, the exact capacity of RSPIR for K ≥ 5 remains an open problem.

In Chapter 7, we consider the federated submodel learning (FSL) problem,

which is a particular federated learning (FL) model involving the PIR problem. In
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FL, multiple isolated clients collaboratively perform a learning task while protecting

the privacy of their stored local data against the global server [85, 86]. Recently,

a new framework called FSL has been proposed to further reduce the communi-

cation and computation overhead at both server and client sides [87]. In the FSL

framework, the full learning model stored in the server is divided into multiple sub-

models based on their data characteristics. Instead of accessing and updating the

full model as in conventional FL, each selected client downloads only the needed

submodel(s) from the server and then uploads the corresponding submodel updates

based on the local data type in FSL. As pointed out by [87], there are two fun-

damental problems that can be abstracted out of the FSL framework: One is how

can each client download its desired submodels without disclosing these submodel

indices to the server. This is basically a private read problem, which is equivalent to

PIR. The other is how can each client update/write-back these desired submodels

still without disclosing the indices or the content of the updated submodels to the

curious server. This is basically a private write problem, which is tightly related to

oblivious random-access machine (ORAM) and secure aggregation.

At present, there are a few different FSL approaches relying on different ideas.

One class of approaches is based on ORAM. Assume that the storage in the server en-

compasses multiple data blocks with the same size. ORAM is introduced to hide the

data access pattern from the server, namely, which blocks are read/written from/to

the server [88], by making sure that any two data access patterns are completely

indistinguishable from the perspective of each individual database. Most ORAM

schemes are based on computational security [89, 90]. Using the idea in ORAM as
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reference and the X-secure T -PIR scheme in [55, 91] as a building block, [92] puts

forward an FSL approach to achieve information-theoretic security. Specifically, as

the databases in the server are distributed [89], the complete model is divided into

submodels which are viewed as data blocks and encrypted by the server-side common

randomness, and then stored across multiple distributed databases in the server. For

each round of the FSL process, one client who is interested in accessing and updating

a specific submodel participates in the training by sending two carefully-designed

queries (a read query and a write query) to each database. Along this research line,

a new technique called private read update write (PRUW) is proposed in order to

further improve the total communication cost efficiency of FSL [93]. In PRUW, a

user downloads (reads), updates and uploads (writes) the increments back to the

chosen data blocks while taking the privacy of the content downloaded, uploaded

and their positions into account simultaneously. Through over-designing the PRUW

with additional server-side common randomness in storage, the communication cost

is decreased notably. Moreover, PRUW is extended by incorporating gradient spar-

sification where only a subset of the overall parameters in the full learning model

is downloaded and updated [94,95]. Another class of approaches is based on secure

aggregation. As a critical building block of FL, secure aggregation aims to aggre-

gate the locally trained model updates from a large number of clients at the server

side in a secure manner, namely, no information about each client’s local training

data is leaked to the others except that the aggregated result can be learned by the

server [96]. Most previous secure aggregation works concentrate on computational

security, see e.g., [97–99]. Similar to PSI, private set union (PSU) refers to the
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problem of determining the union of elements in all the available data sets with-

out revealing any more information than this union result [68, 100]. Using secure

aggregation and PSU separately, an FSL approach is put forward in [87] with com-

putational security guarantee. Basically, in this approach, the server first calculates

the union of the clients’ desired submodels through a Bloom filter-based PSU proto-

col. Then, through secure aggregation, the training model is updated by the clients

within this submodel union at the sever side. The drawback of this approach is that

the submodel union result is not accurate, and thus, the potential update efficiency

of clients is not fully utilized. Recently, several secure aggregation protocols towards

achieving information-theoretic security are proposed, see e.g., [101–104]. Thus, the

second fundamental problem in FSL has close connections with PRUW and PSU;

see detailed discussions in [105].

In this chapter, through unifying secure aggregation and PSU in the same

framework, we propose a new FSL scheme that retains the main advantages of

the above-mentioned two classes of approaches still with an information-theoretic

security. First, the server securely calculates the clients’ desired submodel index

union. This is well-known as the PSU problem and referred to as FSL-PSU phase.

Then, the server securely aggregates clients’ generated updates in the calculated set

union. This is well-known as the secure aggregation problem and referred to as FSL-

write phase. In both phases, the server can only learn the ultimate result, without

knowing which client has made which contribution to the ultimate result. Note that

the constraints in PSI and PSU are analogous, we first establish the equivalence

between PSU and MM-SPIR, and then extend PSU to multi-party PSU (MP-PSU).
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Similar to typical PIR/SPIR formulations, we consider the simplest setting where

the FSL server has two databases. In Fig. 1.2, we show the techniques used, their

relationships, and the roadmap of the development in this chapter. The classical

information-theoretic SPIR serves as a starting point to formulate our new FSL

scheme. Due to the long duration of FSL process, it is possible for some clients to

drop-out. Thus, we design our scheme in such a way that even if some clients lose

their connection to the server, our scheme continues to work normally. It is also

possible that some clients’ generated answers arrive at their associated databases

late and the corresponding databases make the wrong judgement that the clients

have dropped-out. Our scheme is designed such that these late answers do not leak

any additional information about these late clients to the databases. Moreover,

our scheme continues to work normally even when some of the databases become

inactive, especially when the total number of databases is large enough. Finally, our

FSL scheme can be run iteratively in multiple rounds until a pre-defined termination

criterion is met.

In Chapter 8, we consider the FSL problem in a distributed storage system

where our above-mentioned two-database FSL approach is extended by considering

more databases at the server side. As the number of databases is large now, several

issues may arise, such as: a set of databases may be captured by an eavesdropper

who can passively read database content and listen to database communications

to capture database and client information [53]; a set of databases may fail [106].

To solve the eavesdropping and database failure challenges in a distributed storage

setting, [107] proposes secure regenerating codes, where the eavesdropper learns no
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Figure 1.2: Techniques used, their relationships, and the roadmap of the develop-
ment of the private FSL in Chapter 7.

useful information, and a replacement database can be constructed to replace the

failed database by communicating with the remaining databases. Further, classical

secret sharing refers to a setting where a secret is shared among multiple parties in

such a way that any t parties can recover the secret, but any fewer than t parties

learns nothing about the secret [108]. In ramp secret sharing [109], a ramp zone

is established such that, any t parties can recover the secret, any t̃ parties learns

nothing about the secret, and a set of parties whose cardinality is between t̃ and t

learns partial knowledge about the secret. This partial knowledge can be quantified

by the mutual information and goes up as the cardinality of this set of parties in the

ramp zone increases. By combining the idea in ramp secret sharing [109] together

with the idea in secure regenerating codes [107], we put forward a new customized

coding scheme that we coin ramp secure regenerating code (RSRC) to develop an

FSL scheme that is resilient to passive adversaries and database equipment failures.

Hence, in our RSRC scheme, the useful information learned by the eavesdropper is
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quantifiable and controllable, and the performance of our RSRC-based distributed

FSL scheme is adjustable. Further, a set of databases may be captured by an

adversary who may actively overwrite the responses generated by its controlled

databases [25]. In this case, the clients will receive erroneous information. The per-

formance of an FSL scheme is evaluated by three critical metrics: computation cost,

communication cost, and storage cost. Towards achieving information-theoretic se-

curity, the schemes generally rely on operations in a finite field. As these operations

are simple, the computation cost can be neglected. Moreover, since we are concen-

trating on distributed storage across the databases, we consider only the server-side

storage cost and neglect the client-side storage cost.

In this chapter, we propose a new RSRC-based FSL scheme that is efficient in

terms of communication cost and server-side storage cost under the circumstance of

distributed storage. We also prove that our proposed scheme is fully robust against

permanent database failures, eavesdroppers, active adversaries, database drop-outs,

client droup-outs, client late-arrivals, for one-round distributed FSL. Again, this

one-round distributed FSL scheme can be performed in an iterative manner until a

termination criterion is satified.

In Chapter 9, we present the conclusions of this dissertation.
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CHAPTER 2

Private Set Intersection: A Multi-Message Symmetric Pri-

vate Information Retrieval Perspective

2.1 Introduction

In this chapter, we study the two-party PSI problem where each party stores its per-

sonal data set across multiple non-colluding and replicated databases. In particular,

there are two entities Ei, for i = 1, 2, each storing a data set Pi, whose elements

are picked from a finite set SK , on Ni replicated and non-colluding databases. It

is required to determine the set intersection P1 ∩ P2 without leaking any infor-

mation about the remaining elements to the other entity, and to do this with the

least amount of downloaded bits. We first show that the two-party PSI problem

can be recast as an MM-SPIR problem with certain added restrictions. Next, as a

stand-alone result, we derive the information-theoretic sum capacity of MM-SPIR,

CMM−SPIR. We show that with K messages, N databases, and a given size of the

desired message set P , the exact capacity of MM-SPIR is CMM−SPIR = 1− 1
N

when

P ≤ K − 1, provided that the entropy of the server-side common randomness S

satisfies H(S) ≥ P
N−1

per desired symbol. When P = K, the MM-SPIR capacity is
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trivially 1 without the need for any server-side common randomness S. This result

implies that there is no gain for MM-SPIR over successive SM-SPIR. For the MM-

SPIR problem, we present a novel capacity-achieving scheme which builds seamlessly

over the near-optimal MM-PIR scheme in [23] without any database privacy con-

straints. Surprisingly, our scheme here is exactly optimal for MM-SPIR for any P ,

in contrast to the scheme for MM-PIR, which was proved only to be near-optimal.

Our scheme is an alternative to the successive usage of the SM-SPIR scheme in [8].

Based on this capacity result for the MM-SPIR problem, and after addressing the

added requirements in its conversion to the two-party PSI problem, we show that

the optimal download cost for two-party PSI is given by min
{⌈

P1N2

N2−1

⌉
,
⌈

P2N1

N1−1

⌉}
,

where Pi is the cardinality of set Pi.

2.2 PSI: Problem Formulation

Consider the problem of privately determining the intersection of two sets (or lists)

picked from a finite set1 SK . For convenience, we denote a random variable and

its realization by using the same general uppercase letter when distinction is clear

from the context. We address this issue additionally whenever clarification is needed.

Consider a setting where there are two entities E1 and E2. For i = 1, 2, the entity Ei

1The restriction of generating the set from a finite set is without loss of generality as the set
elements of any kind can be mapped into corresponding finite set elements for sufficiently large
size. For example, the elements of the set that contains the names of suspected terrorists in the
United States can be mapped into elements from the finite set SK , where K is the population
size on this planet. As we will show next, the download cost is independent of K. Hence, the
optimization of the alphabet size is irrelevant to our formulation. Nevertheless, it is advisable to
choose K to be the lowest integer such that P1,P2 ⊆ SK to minimize the upload cost. It suffices
to have K > P1 + P2.
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stores a set Pi. For each element of the finite set SK , the entity Ei adds
2 this element

to its set Pi independently from the remaining field elements with probability qi. In

this work, we focus on the case of qi =
1
2
for i = 1, 2. After generation of the set

Pi, the cardinality of Pi ⊆ SPi
K is denoted by |Pi| = Pi, and is public knowledge.3

The entity Ei stores Pi in a replicated fashion on Ni replicated and non-colluding

databases.

The entities E1 and E2 want to compute the intersection P1∩P2 privately (see

Fig. 2.1). To that end, the entity4 E1 sends N2 queries to the databases associated

with E2. Specifically, E1 sends the query Q
[P1]
n2 to the n2th database for all n2 ∈ [N2],

where [N2] (and also [1 : N2]) denotes integers from 1 to N2. Since E1 does not know

P2 in advance, it generates the queries Q
[P1]
1:N2

=
{
Q

[P1]
n2 : n2 ∈ [N2]

}
independently

from P2, hence,

I(Q
[P1]
1:N2

;P2) = 0 (2.1)

The databases associated with E2 respond truthfully with answers A
[P1]
1:N2

={
A

[P1]
n2 : n2 ∈ [N2]

}
. The n2th answer A

[P1]
n2 is a deterministic function of the set P2,

2We note that our achievability scheme works for any statistical distribution imposed on the
sets, i.e., the i.i.d. generation assumption presented here is not needed for the achievability proof.

3We note that choosing to have Pi to be a global knowledge is for the consistency with MM-
SPIR problem and convenient execution. This knowledge enables the entities to determine which
entity should initiate the PSI process to have the least download cost (or if any is needed at all, as
in the case of Pi = K, for an i; see Remark 2.1). If the cardinalities are not public knowledge, our
achievability works by choosing one of the entities arbitrarily to initiate the PSI process assuming
that the other entity has sufficient common randomness. We note, however, that keeping the
cardinalities private is indeed a challenging problem and it is outside the scope of this work.

4The entities E1, E2 should agree on a specific order of retrieval operations such that this order
results in the minimal download cost. Without loss of generality, we assume here that the optimal
order of operation starts with entity E1 sending queries to the databases associated with entity
E2.
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Figure 2.1: Example for the private set intersection (PSI) problem. E1 has the set
P1 = {a, b, c, d} and E2 has the set P2 = {a, c, e, f, g, h}. E1 submits queries to E2

that do not leak information about P1, while E2 responds with answers that do not
leak information about e, f, g, h (or non-existence of i, j). By decoding the answers,
E1 learns that P1 ∩ P2 = {a, c}.

the query Q
[P1]
n2 and the existing common randomness S, thus,

H(A[P1]
n2

|Q[P1]
n2

,P2, S) = 0, n2 ∈ [N2] (2.2)

Denote the cardinality of the intersection |P1∩P2| byM . The entity5 E1 should

be able to reliably compute the intersection P1∩P2 based on the sent queries Q
[P1]
1:N2

,

the collected answers A
[P1]
1:N2

and the knowledge of P1 without knowingM in advance.

5After calculating P1 ∩ P2 at E1, the entity E1 sends the result of P1 ∩ P2 directly to E2 if
needed.
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This is captured by the following PSI reliability constraint,

[PSI reliability] H(P1 ∩ P2|Q[P1]
1:N2

, A
[P1]
1:N2

,P1) = 0 (2.3)

The privacy requirements can be expressed as the following two privacy con-

straints: E1 privacy and E2 privacy. First, the queries sent by E1 should not leak

any information about6 P1, i.e., any individual database associated with E2 learns

nothing about P1 from the query Q
[P1]
n2 , the answer A

[P1]
n2 , the knowledge of P2 and

the existing common randomness S,

[E1 privacy] I(P1;Q
[P1]
n2

, A[P1]
n2

,P2, S) = 0, n2 ∈ [N2] (2.4)

Second, E1 should not be able to learn anything further than P1∩P2, i.e., E1 should

not learn the elements in P2 other than the intersection, P2 \ (P1 ∩ P2) = P2 \ P1.

Moreover7, E1 should not learn the absence of the remaining field elements in E2,

i.e., the set (P1 ∪ P2). Thus, E1 should learn nothing about whether E2 contains

(P2 \ P1) ∪ (P1 ∪ P2) = P̄1 or not (we denote this information by E2,P̄1
) from the

6While checking the presence of elements of P1 in P2, E1 wants to protect P1 \ P2. However,
since E1 does not know P2, the queries cannot depend on P2 (see also (2.1)), and E1 should protect
all of P1 in queries.

7Although it is tempting to formulate the E2 privacy constraint as I(P2 \ P1;A
[P1]
1:N2

) = 0, this
constraint permits leaking information about the remaining field elements that do not exist in P2.
More specifically, if we adopted this constraint in the example in Fig. 2.1, the answers should not
leak information about e, f, g, h, however, E1 may learn that the elements i, j do not exist in P2.
To properly formalize the constraint that E1 learns nothing other than the intersection, we need
to protect (P1 ∪ P2) as well.

26



collected answers A
[P1]
1:N2

given the generated queries Q
[P1]
1:N2

and the knowledge of P1,

[E2 privacy] I(E2,P̄1
;Q

[P1]
1:N2

, A
[P1]
1:N2

,P1) = 0 (2.5)

For given finite set size K, set sizes P1 and P2, and number of databases

N1 and N2, an achievable PSI scheme is a scheme that satisfies the PSI reliability

constraint (2.3), the E1 privacy constraint (2.4), and the E2 privacy constraint (2.5).

In this chapter, we measure the efficiency of a scheme by the maximal number of

downloaded bits by one of the entities E1 or E2 in order to compute P1 ∩ P2. We

denote the maximal number of downloaded bits by D. Then, the optimal download

cost is D∗ = infD over all achievable PSI schemes.8

2.3 From PSI to MM-SPIR

In this section, we show that the PSI problem can be reduced to an MM-SPIR

problem, if the entities allow storing their sets in a specific searchable format. This

transformation has the same flavor as [110] and [42], where the original contents of

the databases are mapped into searchable lists to enable PIR, which assumes that

8A more natural efficiency metric is to consider the sum of the maximal number of uploaded
bits (denoted by U) and the maximal number of downloaded bits (denoted by D) by one of the
entities E1 or E2 to compute P1∩P2. In this case, the most efficient scheme is the scheme with the
lowest communication cost, i.e., that achieves the optimal communication cost C∗ = inf(U +D)
over all achievable PSI schemes. The SPIR problem [8] under combined upload and download costs
is still an open problem. As we will see, our framework builds on the SPIR problem. Therefore,
in this work, we consider only the download cost. The PSI under combined upload and download
costs is an interesting future direction, which is outside the scope of this chapter. In Section 2.7.2,
we provide an illustrative example to show that the upload cost can be reduced without affecting
the download cost. Nevertheless, we argue that if the PSI determination is repeated (for example,
if one list is kept the same and the other list is regularly updated, we always use the fixed list
to initiate the PSI process), the queries could be used repeatedly without compromising the user
privacy as long as the databases do not collude. In this case, the upload cost would not scale with
the number of PSI determination rounds, unlike the download cost.
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the user knows the position of the desired file in the databases. To that end, define

the incidence vector Xi ∈ FK
2 as a binary vector of size K associated with the set

Pi. Denote the jth element of the incidence vector Xi by Xi(j) where

Xi(j) =


1, j ∈ Pi

0, j /∈ Pi

(2.6)

for all j ∈ SK . Hence, Xi(j) is an i.i.d. random variable for all j ∈ [K] such that

Xi(j) ∼ Ber(qi). The entity Ei constructs the incidence vector Xi corresponding

to the set Pi (see Fig. 2.2). The entity Ei replicates the vector Xi at all of its Ni

associated databases (see Fig. 2.3). Note that Xi is a sufficient statistic for Pi for a

given K. The PSI determination process is performed over X1 or X2, and not over

the original P1 or P2.

To solidify ideas, we state the variables defined so far explicitly over a spe-

cific example. Consider the example in Fig. 2.1. Here, the entity E1 has the set

P1 = {a, b, c, d} and the entity E2 has the set P2 = {a, c, e, f, g, h}. Therefore, the

intersection is P1 ∩ P2 = {a, c}. Let us assume that the alphabet, Palph, for this

example is Palph = {a, b, c, d, e, f, g, h, i, j} as shown in Fig. 2.2. Then, the incidence

vectors at the entities are X1 = [1 1 1 1 0 0 0 0 0 0] and X2 = [1 0 1 0 1 1 1 1 0 0],

which are also shown in Fig. 2.2. For this example, P1 = 4, P2 = 6, K = 10, and

M = 2. Finally, the MM-SPIR is conducted over the replicated incidence vectors

at the two entities as shown in Fig. 2.3.

Without loss of generality, assume that E1 initiates the PSI process. E1 does
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Figure 2.2: Example for the transformation from sets to incidence vectors. E1 has
the set P1 = {a, b, c, d} and E2 has the set P2 = {a, c, e, f, g, h}. The alphabet
is Palph = {a, b, c, d, e, f, g, h, i, j}. Entity Ei constructs an incidence vector Xi to
facilitate MM-SPIR.

not knowM in advance. The only information E1 has is P1. Consequently, E1 wants

to verify the existence of each element of P1 in P2 to deduce P1 ∩ P2. Thus, E1

needs to jointly and reliably download the bits WP1 = {X2(j) : j ∈ P1} by sending

N2 queries to the databases associated with E2 and collecting the corresponding

answers with the knowledge of X1, i.e., H(P1 ∩ P2|WP1 , X1) = 0. Hence, we can

write the PSI reliability constraint as,

H(WP1|Q[P1]
1:N2

, A
[P1]
1:N2

, X1) = 0 (2.7)

This is exactly the reliability constraint in MM-SPIR noting that P is known to the
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Figure 2.3: Example for the transformation from the PSI problem to an MM-SPIR
problem. E1 needs to retrieve the elements corresponding to P1 from the incidence
vector X2 without revealing P1, while E2 responds with answer strings that do not
leak P̄1.

user; see Section 2.5.1. Meanwhile, given the knowledge of X1 and the intersection

P1 ∩ P2, WP1 can also be deduced by E1, i.e., H(WP1|P1 ∩ P2, X1) = 0. Hence, the

MM-SPIR reliability constraint can revert back to the PSI reliability constraint.

Since E1 is searching for the existence of all elements of P1 in P2 without

leaking any information about P1 to any individual database associated with E2,

the E1 privacy constraint in (2.4) dictates,

I(P1;Q
[P1]
n2

, A[P1]
n2

, X2, S) = 0, n2 ∈ [N2] (2.8)

This is exactly the privacy constraint in MM-SPIR if we treat X2 as the messages
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in the databases with length 1; see Section 2.5.1.

As the databases associated with E2 store X2 now, to ensure the E2 privacy

constraint in (2.5), the answers from E2 databases should not leak anything about

E2,P̄1
, which can be further mapped to not leaking any information about WP̄1

=

{X2(j) : j /∈ P1} as,

I(WP̄1
;Q

[P1]
1:N2

, A
[P1]
1:N2

, X1) = 0 (2.9)

This is exactly the database privacy constraint in MM-SPIR as P is known to the

user; see Section 2.5.1.

Consequently, with the cardinality of sets in each entity being global knowl-

edge, the PSI problem is formally equivalent to the MM-SPIR problem with

i.i.d. messages of length 1 bit each (also see Fig. 2.3), when the entities E1 and

E2 are allowed to construct the corresponding incidence vectors for the original sets

P1 and P2. The message length constraint of 1 bit per message, i.e., H(Wk) = 1 for

all k ∈ [K], comes due to messages representing incidences in the SPIR problem.

The i.i.d. property of the messages that we have here in this chapter is a consequence

of the i.i.d. generation of the sets with probability qi, and it is not true in general.

In Section 2.5, we derive in detail the capacity of the MM-SPIR problem (see also

Section 2.6), which in turn gives the most efficient information-theoretic PSI scheme

in terms of the download cost.
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2.4 Main Result

In this section, we present our main result concerning the PSI problem. The re-

sult provides the optimal (minimum) download cost for the PSI problem under the

assumptions in Sections 2.2 and 2.3. The result is based on the optimal download

cost of the MM-SPIR problem, which is presented in detail in Section 2.5; see also

Section 2.6.

Theorem 2.1 In the PSI problem, the elements of the sets are added independently

with probability qi =
1
2
from a finite set of size K. Once the set generation is fin-

ished, the fixed set P1 where |P1| = P1 < K is stored among N1 databases and the

fixed set P2 where |P2| = P2 < K is stored among N2 databases. The set cardi-

nalities P1 and P2 are made public. The amount of common randomness satiesfies

H(S) ≥ min {
⌈

P1

N2−1

⌉
,
⌈

P2

N1−1

⌉
}. Then, the optimal download cost with one-round

communication (one entity sends the queries to the other entity and then receives

feedback) is,

D∗ = min

{⌈
P1N2

N2 − 1

⌉
,

⌈
P2N1

N1 − 1

⌉}
(2.10)

The proof of Theorem 2.1 is a direct consequence of the capacity result for

MM-SPIR presented in Section 2.5; see also Section 2.6. We have the following

remarks.

Remark 2.1 In the special case of having Pi = K for i = 1 or i = 2, the download
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cost is trivially zero. This is due to the fact that if P1 = K for example, the entity

E2 directly concludes that the intersection P1∩P2 = P2 without sending any queries

to E1 or requiring any common randomness.

Remark 2.2 The relationship M = |P1| + |P2| − |P1 ∪ P2| ≥ |P1| + |P2| − K is

always satisfied automatically. However, in the special case of M = |P1|+ |P2|−K,

the entire list of the entity that starts the PSI determination will be inevitably leaked

to the second entity, as the list sizes |P1|, |P2| are globally known. Consequently, our

results hold for the strict inequality case M > |P1|+ |P2|−K. It is worth noting that

this restriction is due to the nature of the PSI problem itself and not an artifact of

our proposed scheme. Furthermore, entity 1 cannot simply announce its list directly

as the cardinality of the intersection set M is unknown in advance.

Remark 2.3 The min term in Theorem 2.1 comes from the fact that either en-

tity can initiate the PSI determination process so that the overall download cost is

minimized.

Remark 2.4 We note that although our result is exact, i.e., the download cost

capacity (in the sense of matching achievability and converse proofs) under the as-

sumptions of independent generation model for the lists with qi =
1
2
, our scheme is

achievable for any list generation model with arbitrary qi (see Footnote 2).

Remark 2.5 Our result is private in information-theoretic (absolute) sense and

does not need any assumptions about the computational powers of the entities. Fur-

thermore, the achievable scheme is fairly simple and easy to implement compared to
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the fully homomorphic encryption needed in [3]. A drawback of our approach is that

it needs multiple non-colluding databases (N1 or N2 needs to be strictly larger than

1), otherwise, our scheme is infeasible.

Remark 2.6 The linear scalability of our scheme matches the linear scalability of

the best-known set intersection algorithms without any privacy constraints.

2.5 MM-SPIR as a Stand-Alone Problem

In this section, we consider the MM-SPIR problem. We present the problem in a

stand-alone format, i.e., we present a formal problem description in Section 2.5.1,

followed by the main result in Section 2.5.2, the converse in Section 2.5.3, and a

novel achievability in Section 2.5.4.

2.5.1 MM-SPIR: Formal Problem Description

There are N non-colluding databases each storing K i.i.d. messages. Each message

is composed of L 9 i.i.d. and uniformly chosen symbols from a sufficiently large finite

field Fq. Then,

H(Wk) = L, k ∈ [K] (2.11)

H(W1:K) = KL (2.12)

In the MM-SPIR problem, our goal is to retrieve a set of messages WP out

9As in most PIR problems, the message length L can approach infinity.
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of the K available messages without leaking any information regarding the index

set P to any individual database where P = {i1, i2, · · · , iP} ⊆ [K] such that its

cardinality is |P| = P .10 We assume that the cardinality of the potential message

set, P , is known to all databases in the server. This is the user privacy constraint. In

addition, our goal is to not retrieve any messages beyond the desired set of messages

WP . This is the database privacy constraint.

Following the SPIR formulation in [8], let F denote the randomness in the

retrieving strategy adopted by the user. Because of the user privacy constraint, F

is a random variable whose realization is only known to the user, but is unknown

to the databases. A necessary common randomness S must be shared among the

N databases to satisfy the database privacy constraint. The random variable S is

generated independent of the message setW1:K . Similarly, F is independent ofW1:K

as the user does not know message realizations in advance. Moreover, F and S are

generated independently without knowing the desired index set P . Then,

H(F , S,P ,W1:K) = H(F) +H(S) +H(P) +H(W1:K) (2.13)

To perform MM-SPIR, a user generates one query Q
[P]
n for each database

according to the randomness F and then sends it to the nth database. Hence, the

queries Q
[P]
1:N are deterministic functions of F , i.e.,

H(Q
[P]
1 , Q

[P]
2 , · · · , Q[P]

N |F) = 0, ∀P (2.14)

10We use the symbol P to denote the random variable corresponding to the desired set and its
realization with little abuse of notation.
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Combining (2.13) and (2.14), the queries are independent of the messages, i.e.,

I(Q
[P]
1:N ;W1:K) = 0 (2.15)

After receiving a query from the user, each database truthfully generates an

answer string based on the messages and the common randomness, hence,

H(A[P]
n |Q[P]

n ,W1:K , S) = 0, ∀n,∀P (2.16)

After collecting all the answer strings from the N databases, the user should

be able to decode the desired messages WP reliably, therefore,

[reliability] H(WP |A[P]
1:N , Q

[P]
1:N ,F)

(2.14)
= H(WP |A[P]

1:N ,F) = 0, ∀P (2.17)

In order to protect the user’s privacy, the query generated to retrieve the set

of messages WP1 should be statistically indistinguishable from the one generated to

retrieve the set of messages WP2 where |P1| = |P2| = P , i.e.,

[user privacy] (Q[P1]
n , A[P1]

n ,W1:K , S)

∼ (Q[P2]
n , A[P2]

n ,W1:K , S), ∀n, ∀P1,P2 s.t. |Pi| = P (2.18)

The user privacy constraint in (2.18) is equivalent to,

[user privacy] I(P ;Q[P]
n , A[P]

n ,W1:K , S) = 0, ∀P (2.19)
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In order to protect the databases’ privacy, the user should learn nothing about

WP̄ which is the complement of WP , i.e., WP̄ = W1:K\WP ,

[database privacy] I(WP̄ ;Q
[P]
1:N , A

[P]
1:N ,F) = 0, ∀P (2.20)

An achievable MM-SPIR scheme is a scheme that satisfies the MM-SPIR reli-

ability constraint (2.17), the user privacy constraint (2.18)-(2.19), and the database

privacy constraint (2.20). The efficiency of the scheme is measured in terms of the

maximal number of downloaded bits by the user from all the databases, denoted by

DMM−SPIR. Thus, the sum retrieval rate of MM-SPIR is given by

RMM−SPIR =
PL

DMM−SPIR

(2.21)

The sum capacity of MM-SPIR, CMM−SPIR, is the supremum of the sum retrieval

rates RMM−SPIR over all achievable schemes.

2.5.2 MM-SPIR: Main Results

Our stand-alone result for MM-SPIR is stated in the following theorem. We only

consider N ≥ 2 as SPIR is infeasible for N = 1.

Theorem 2.2 The MM-SPIR capacity for N ≥ 2, K ≥ 2, and a fixed P ≤ K, is

37



given by,

CMM−SPIR =



1, P = K

1− 1
N
, 1 ≤ P ≤ K − 1, H(S) ≥ PL

N−1

0, otherwise

(2.22)

The converse proof is given is Section 2.5.3, and the achievability proof is given

in Section 2.5.4. We have the following remarks concerning Theorem 2.2.

Remark 2.7 The result implies that the capacity of MM-SPIR is exactly the same

as the capacity of SM-SPIR [8]. Hence, there is no gain from joint retrieval in

comparison to successive single-message SPIR [8]. This in contrast to the gain

in MM-PIR [23] in comparison to successive single-message PIR [6]. MM-SPIR

capacity expression in Theorem 2.2 inherits all of the structural remarks from [8].

Remark 2.8 Similar to the SM-SPIR problem, we observe a threshold effect on the

size of the required common randomness. Specifically, we note that there is a minimal

required size for the common randomness above which the problem is feasible. This

threshold is P times the threshold in SM-SPIR. Using a common randomness in the

amount of the threshold achieves the full capacity, and there is no need to use any

more randomness than the threshold.

Remark 2.9 For the extreme case of P = K, the SPIR capacity is 1 without using

any common randomness. This is due to the fact that the user privacy and the

database privacy constraints are trivially satisfied, and hence the user can simply
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download all of the messages from one of the databases without using any common

randomness.

2.5.3 MM-SPIR: Converse Proof

In this section, we derive the converse for Theorem 2.2. In the converse proof, we

focus on the case P ≤ K − 1. Because when P = K, the trivial upper bound for

the retrieval rate R ≤ 1 and the trivial lower bound for the common randomness

H(S) ≥ 0 suffice. Further, we exclusively focus on the case K ≥ 3. When K = 1,

we have P = 1, and the converse trivially follows since P = K. When K = 2: If

P = 2, the converse trivially follows from the converse of P = K, and when P = 1,

the converse follows from the converse of SM-SPIR [8].

Now, focusing on the case K ≥ 3, and P ≤ K−1, the total number of possible

choices for the index set P is β =
(
K
P

)
≥ 3. Thus, there always exist at least three

non-identical index sets P1,P2,P3 such that |Pi| = P , i = 1, 2, 3.

To prove the converse of Theorem 2.2, we first need the following lemmas.

Lemmas 2.1 are 2.2 are direct extensions to [8, Lemmas 1 and 2] to the setting of

MM-SPIR. Lemma 2.1 simply states that an answer string A
[P1]
n which is received

at the user to retrieve WP1 has the same size as A
[P2]
n , i.e., all answer strings are

symmetric in length, even if we condition over the desired message set WP1 . This

lemma is a direct consequence of the user privacy constraint.
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Lemma 2.1 (Symmetry)

H(A[P1]
n |WP1 , Q

[P1]
n ) = H(A[P2]

n |WP1 , Q
[P2]
n ), ∀n, ∀P1,P2 s.t. P1 ̸= P2, |P1| = |P2|

(2.23)

H(A[P1]
n |Q[P1]

n ) = H(A[P2]
n |Q[P2]

n ), ∀n, ∀P1,P2 s.t. P1 ̸= P2, |P1| = |P2|

(2.24)

Proof: From the user privacy constraint (2.18), we have

H(A[P1]
n ,WP1 , Q

[P1]
n ) = H(A[P2]

n ,WP1 , Q
[P2]
n ) (2.25)

H(WP1 , Q
[P1]
n ) = H(WP1 , Q

[P2]
n ) (2.26)

Using the definition of conditional entropy H(X|Y ) = H(X, Y )−H(Y ), we obtain

(2.23). The proof of (2.24) follows from the user privacy constraint as well with

noting that H(A
[P1]
n , Q

[P1]
n ) = H(A

[P2]
n , Q

[P2]
n ) and H(A

[P1]
n ) = H(A

[P2]
n ). ■

Next, Lemma 2.2 states that knowing the user’s private randomness F does

not help in decreasing the uncertainty of the answer string A
[P]
n .

Lemma 2.2 (Effect of conditioning on user’s randomness)

H(A[P]
n |WP ,F , Q[P]

n ) = H(A[P]
n |WP , Q

[P]
n ), ∀n,∀P (2.27)
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Proof: We start with the following mutual information,

I(A[P]
n ;F|WP , Q

[P]
n ) ≤ I(A[P]

n ,W1:K , S;F|WP , Q
[P]
n ) (2.28)

= I(W1:K , S;F|WP , Q
[P]
n ) + I(A[P]

n ;F|W1:K , S,WP , Q
[P]
n )

(2.29)

= I(W1:K , S;F|WP , Q
[P]
n ) + I(A[P]

n ;F|W1:K , S,Q
[P]
n ) (2.30)

= I(W1:K , S;F|WP , Q
[P]
n ) +H(A[P]

n |W1:K , S,Q
[P]
n )

−H(A[P]
n |F ,W1:K , S,Q

[P]
n ) (2.31)

= I(W1:K , S;F|WP , Q
[P]
n ) (2.32)

≤ I(W1:K , S;F|WP , Q
[P]
n ) + I(WP ;F|Q[P]

n ) (2.33)

= I(W1:K ,WP , S;F|Q[P]
n ) (2.34)

= I(W1:K , S;F|Q[P]
n ) (2.35)

≤ I(W1:K , S;F|Q[P]
n ) + I(W1:K , S;Q

[P]
n ) (2.36)

= I(W1:K , S;F , Q[P]
n ) (2.37)

= 0 (2.38)

where (2.32) follows from the fact that the answer strings are deterministic func-

tions of the queries and the messages, and (2.38) follows from the independence of

(W1:K , S,F) and (2.14). Since mutual information cannot be negative, it must be

equal to zero, and

H(A[P]
n |WP , Q

[P]
n )−H(A[P]

n |WP ,F , Q[P]
n ) = I(A[P]

n ;F|WP , Q
[P]
n ) = 0 (2.39)
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Pc

Pd

Pe

Pb Pa

P1

P2

[1 : K]

Figure 2.4: The relation of the index sets presented in Lemma 2.3 and used in
Lemmas 2.4 and 2.5.

completing the proof. ■

Next, we need Lemma 2.3, which is an existence proof for index sets with

specific properties. This technical lemma is needed in the proofs of upcoming two

lemmas, Lemma 2.4 and Lemma 2.5. First, we give the definitions of relevant index

sets Pa, Pb, Pc, Pd, and an element im. Given P1 and P2, we divide P1 into two

disjoint partitions Pa and Pb (i.e., Pa ∪ Pb = P1 and Pa ∩ Pb = ∅), where Pa ⊆ P2

(i.e., P1 ∩ P2 = Pa), Pb ⊆ P̄2. Suppose |Pa| = M ∈ [1 : P − 1]. Note that since

P1 ̸= P2, we cannot have M = P . We assume that Pa = {i1, · · · , iM} for clarity

of presentation. Given an arbitrary number m ∈ [1 : M ], we define a new index

set Pc = {i1, · · · , im} which consists of exactly the first m elements in the index set

Pa. Let im be the last element from the index set Pc. We obtain a new index set

Pd = {i1, · · · , im−1} after removing this element. That means Pc = Pd ∪ {im}. The

relation of all these mentioned index sets is shown in Fig. 2.4.
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Lemma 2.3 For K ≥ 3, 1 ≤ P ≤ K−1, given index sets P1, P2 such that |Pi| = P

for i = 1, 2 and P1 ̸= P2, we can construct an index set P3 such that,

i) P3 ̸= P1 and P3 ̸= P2,

ii) |P3| = P , and

iii) P3 includes Pb ∪ Pd but does not include the common element im in P1 ∩ P2.

Proof: The key is to construct an index set Pe which satisfies the following two

constraints: Pe ⊆ [1 : K]\{Pb,Pc} and |Pe| = M − (m − 1). As we can see,

|Pa\Pc| = M − m and |P2\Pa| ≥ 1. One way to construct the index set Pe is to

include all the (M −m) elements from the index set Pa\Pc and one more element

from the index set P2\Pa, i.e.,

Pe = (Pa\Pc) ∪ {i∗} (2.40)

where i∗ ∈ P2\Pa. The index set Pe is generally not unique (for some examples, see

Examples 1 and 2 below). Now, we are ready to construct the index set P3 as,

P3 = Pb ∪ Pd ∪ Pe (2.41)

Since Pb, Pd, Pe are disjoint sets, |P3| = |Pb|+ |Pd|+ |Pe| = (P −M) + (m− 1) +

(M −m+1) = P . Thus, we are able to construct P3 such that |P3| = P . Based on

the formulation of Pb, Pd and Pe, these three index sets do not include the element

im. Hence, im /∈ P3. Since both P1 and P2 have the element im as im belongs to
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their intersection Pa, P3 is not the same as P1 or P2, i.e., P3 ̸= P1, P3 ̸= P2 and

|P3| = P . ■

The following two examples illustrate the relations between the aforementioned

sets, which will be important for the converse proof through the proofs of Lemmas 2.4

and 2.5.

Example 1: Suppose K = 3, P = 2 and N ≥ 2 is an arbitrary positive integer.

The total possible number of index sets is
(
K
P

)
= 3. Assume P1 = {1, 2}, P2 = {1, 3}

without loss of generality. Then, Pa = {1}, Pb = {2} and the corresponding M is

1. Thus, m can only take the value 1. That means Pc = {1} and Pd has to be an

empty set. For Pe, we cannot take any element from the set Pa\Pc as it is empty,

instead we can take the element 3 from the set P2\Pa. Thus, Pe is formed as {3},

and we construct P3 = {2, 3}.

Example 2: Suppose K = 6, P = 4 and N ≥ 2 is an arbitrary positive integer.

The total possible number of index sets is
(
K
P

)
= 15. Assume P1 = {1, 3, 5, 6},

P2 = {2, 3, 5, 6} without loss of generality. Then, Pa = {3, 5, 6}, Pb = {1} and

the corresponding M is 3. Thus, m can take the values 1, 2 or 3. To avoid being

repetitive, we only consider the cases of m = 2 or m = 3, which are different from

Example 1.

When m = 2, Pc = {3, 5} and Pd = {3}. For Pe, we can take the element 6

from the set Pa\Pc and then take the element 2 from the set P2\Pa. Alternatively,

we can pick the element 4 outside the union P1 ∪ P2 instead of the element 6 from

the set Pa\Pc. Thus, Pe is formed as {2, 6} (or {4, 6}). Therefore, we finally obtain
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P3 = {1, 2, 3, 6} (or {1, 3, 4, 6}).

When m = 3, Pc = {3, 5, 6} and Pd = {3, 5}. For Pe, we cannot take any

element from the set Pa\Pc since it is empty. We take the element 2 from the set

P2\Pa or take the element 4 outside the union P1 ∪ P2. Thus, Pe is formed as {2}

(or {4}), and we construct P3 = {1, 2, 3, 5} (or {1, 3, 4, 5}).

Next, we need the following lemma. Lemma 2.4 states that revealing any

individual answer given the messages (WPb
,WPd

) does not leak any information

about the message Wim .

Lemma 2.4 (Message leakage within any individual answer string) When

1 ≤ P ≤ K − 1 and M ≥ 1, for arbitrary m ∈ [1 : M ], the following equality is

always true,

H(Wim |WPb
,WPd

, A[P2]
n , Q[P2]

n ) = H(Wim |WPb
,WPd

, Q[P2]
n ) (2.42)

Remark 2.10 The goal of Lemma 2.4 is to prove a key step, equation (2.63), in

the proof of Lemma 2.5. We remark that Lemma 2.4 is true for any m ∈ [2 : M ]

when M ≥ 1 as proved below. In the case when m = 1, the messages set Wi1:im−1

(i.e., Pd) is an empty set and thus Lemma 2.4 is still true in this case.

Proof: From the user privacy constraint (2.18), we have,

H(WPb
,WPc , A

[P2]
n , Q[P2]

n ) = H(WPb
,WPc , A

[P3]
n , Q[P3]

n ) (2.43)

H(WPb
,WPd

, A[P2]
n , Q[P2]

n ) = H(WPb
,WPd

, A[P3]
n , Q[P3]

n ) (2.44)
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Since Pc = Pd ∪ im, we have

H(Wim|WPb
,WPd

, A[P2]
n , Q[P2]

n ) = H(Wim|WPb
,WPd

, A[P3]
n , Q[P3]

n ) (2.45)

Similarly,

H(Wim|WPb
,WPd

, Q[P2]
n ) = H(Wim|WPb

,WPd
, Q[P3]

n ) (2.46)

From the database privacy constraint (2.20), we have,

0 = I(WP̄3
;A

[P3]
1:N , Q

[P3]
1:N ,F) (2.47)

= I(WP̄3
;A

[P3]
1:N ,WP3 , Q

[P3]
1:N ,F) (2.48)

≥ I(WP̄3
;A

[P3]
1:N ,WPb

,WPd
, Q

[P3]
1:N ) (2.49)

≥ I(Wim ;A
[P3]
1:N ,WPb

,WPd
, Q

[P3]
1:N ) (2.50)

≥ I(Wim ;A
[P3]
n ,WPb

,WPd
, Q[P3]

n ) (2.51)

= I(Wim ;A
[P3]
n |WPb

,WPd
, Q[P3]

n ) (2.52)

= H(Wim |WPb
,WPd

, Q[P3]
n )−H(Wim|A[P3]

n ,WPb
,WPd

, Q[P3]
n ) (2.53)

where (2.48) comes from the MM-SPIR reliability constraint (2.17), (2.49) comes

from the relationship P3 = Pb ∪ Pd ∪ Pe (i.e, Pb ∪ Pd ⊆ P3), and (2.50)

comes from the relationship im ∈ P̄3. Thus, H(Wim|WPb
,WPd

, Q
[P3]
n ) ≤

H(Wim|A[P3]
n ,WPb

,WPd
, Q

[P3]
n ). This concludes the proof by observing that

H(Wim|WPb
,WPd

, Q
[P3]
n ) ≥ H(Wim|A[P3]

n ,WPb
,WPd

, Q
[P3]
n ) trivially as conditioning
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cannot increase entropy. ■

Finally, the following lemma states that conditioning on an undesired message

set does not decrease the uncertainty on any individual answer string. This is a

consequence of the database privacy constraint.

Lemma 2.5 (Effect of conditioning on an undesired message set)

H(A[P2]
n |WP1 , Q

[P2]
n ) = H(A[P2]

n |Q[P2]
n ), ∀n, ∀P1,P2 s.t. P1 ̸= P2, |P1| = |P2| (2.54)

Remark 2.11 We note that although Lemma 2.5 has the same flavor as [8,

eqn. (39)], the proof is much more involved. The main reason for this difficulty is

the inter-relations between subsets of messages of size P . Specifically, in SM-SPIR,

all message subsets are of size P = 1, and therefore, they are disjoint. However, in

MM-SPIR, the message subsets are of size P , and they intersect in general, i.e., for

a given P1, P2 such that |P1| = |P2| = P , the intersection P1 ∩ P2 is not an empty

set in general in contrast to SM-SPIR. Dealing with message subset intersections is

the essence of introducing and proving Lemmas 2.3, 2.4 and 2.5.

Proof: From the database privacy constraint (2.20), we have,

0 = I(WP̄2
;A

[P2]
1:N , Q

[P2]
1:N ,F) (2.55)

≥ I(WP̄2
;A[P2]

n , Q[P2]
n ) (2.56)

≥ I(WPb
;A[P2]

n , Q[P2]
n ) (2.57)

= I(WPb
;A[P2]

n |Q[P2]
n ) (2.58)
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= H(WPb
|Q[P2]

n )−H(WPb
|A[P2]

n , Q[P2]
n ) (2.59)

where (2.57) comes from the relationship Pb ⊆ P̄2, (2.58) follows from the indepen-

dence of messages and queries. Hence, H(WPb
|Q[P2]

n ) = H(WPb
|A[P2]

n , Q
[P2]
n ) as the

reverse implication follows form the fact that conditioning cannot increase entropy.

Case 1: M = 0: In this case, there is no intersection between P1 and P2.

WPa is an empty set of messages and then WP1 = WPb
. Hence,

I(WP1 ;A
[P2]
n |Q[P2]

n ) = I(WPb
;A[P2]

n |Q[P2]
n ) = 0 (2.60)

where (2.60) follows from (2.58). This proves (2.54), the claim of lemma, when

M = 0.

Case 2: M ≥ 1: In this case, WP1 = WPa ∪WPb
and WPa = {Wi1 , · · · ,WiM}.

H(WPa|WPb
, A[P2]

n , Q[P2]
n ) = H(Wi1:iM |WPb

, A[P2]
n , Q[P2]

n ) (2.61)

= H(Wi1|WPb
, A[P2]

n , Q[P2]
n ) +H(Wi2|Wi1 ,WPb

, A[P2]
n , Q[P2]

n )

+ · · ·+H(WiM |Wi1:iM−1,WPb
, A[P2]

n , Q[P2]
n ) (2.62)

= H(Wi1|WPb
, Q[P2]

n ) +H(Wi2|Wi1 ,WPb
, Q[P2]

n )

+ · · ·+H(WiM |Wi1:iM−1,WPb
, Q[P2]

n ) (2.63)

= H(Wi1:iM |WPb
, Q[P2]

n ) (2.64)

= H(WPa|WPb
, Q[P2]

n ) (2.65)
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where (2.63) comes from the direct application of Lemma 2.4.

Thus, we have,

I(WP1 ;A
[P2]
n |Q[P2]

n ) = H(WP1|Q[P2]
n )−H(WP1|A[P2]

n , Q[P2]
n ) (2.66)

= H(WP1|Q[P2]
n )−H(WPa ,WPb

|A[P2]
n , Q[P2]

n ) (2.67)

= H(WP1|Q[P2]
n )−H(WPb

|A[P2]
n , Q[P2]

n )

−H(WPa |WPb
, A[P2]

n , Q[P2]
n ) (2.68)

= H(WP1|Q[P2]
n )−H(WPb

|Q[P2]
n )−H(WPa|WPb

, Q[P2]
n ) (2.69)

= H(WP1 |Q[P2]
n )−H(WPa ,WPb

|Q[P2]
n ) (2.70)

= H(WP1 |Q[P2]
n )−H(WP1|Q[P2]

n ) (2.71)

= 0 (2.72)

where (2.69) follows from (2.59) and (2.65). This proves (2.54), the claim of lemma,

when M ≥ 1.

Combining (2.60) and (2.72) proves (2.54) in all cases completing the proof.

■

Remark 2.12 The intuition behind Lemma 2.5 is as follows: If the pair

(A
[P2]
n , Q

[P2]
n ) provide any information about WP1, they have to provide some in-

formation about WP̄1
under the user privacy constraint. However, database privacy

constraint is thus obviously violated if the user receives any information about WP̄1
.

Consequently, the pair (A
[P2]
n , Q

[P2]
n ) can never provide any information about WP̄1

.

Therefore, we are able to derive H(WP1 |A[P2]
n , Q

[P2]
n ) = H(WP1)

(2.15)
= H(WP1|Q[P2]

n ),

49



and hence I(WP1 ;A
[P2]
n |Q[P2]

n ) = 0.

Now, we are ready to construct the main body of the converse proof for MM-

SPIR, as well as the minimal entropy of common randomness required to achieve

perfect MM-SPIR. Since we dealt with the inter-relations between message subsets

in the previous lemmas and reached similar conclusions to those in SM-SPIR [8],

the main body of the converse proof will be similar in structure to its counterpart

in SM-SPIR.

The proof for R ≤ CMM−SPIR:

PL = H(WP1) (2.73)

= H(WP1|F) (2.74)

= H(WP1|F)−H(WP1|A[P1]
1:N ,F) (2.75)

= I(WP1 ;A
[P1]
1:N |F) (2.76)

= H(A
[P1]
1:N |F)−H(A

[P1]
1:N |WP1 ,F) (2.77)

= H(A
[P1]
1:N |F)−H(A

[P1]
1:N |WP1 ,F , Q[P1]

n ) (2.78)

≤ H(A
[P1]
1:N |F)−H(A[P1]

n |WP1 ,F , Q[P1]
n ) (2.79)

= H(A
[P1]
1:N |F)−H(A[P1]

n |WP1 , Q
[P1]
n ) (2.80)

= H(A
[P1]
1:N |F)−H(A[P2]

n |WP1 , Q
[P2]
n ) (2.81)

= H(A
[P1]
1:N |F)−H(A[P2]

n |Q[P2]
n ) (2.82)

= H(A
[P1]
1:N |F)−H(A[P1]

n |Q[P1]
n ) (2.83)

≤ H(A
[P1]
1:N |F)−H(A[P1]

n |Q[P1]
n ,F) (2.84)
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= H(A
[P1]
1:N |F)−H(A[P1]

n |F) (2.85)

where (2.74) follows from the independence of the user’s private randomness and

the messages, (2.75) follows from the MM-SPIR reliability constraint (2.17), (2.78)

follows from the fact that the queries are deterministic functions of the user’s pri-

vate randomness F (2.14), (2.80) follows from Lemma 2.2, (2.81) follows from the

first part of Lemma 2.1, (2.82) follows from Lemma 2.5, (2.83) follows from the

second part Lemma 2.1, and (2.85) again follows from the fact that the queries are

deterministic functions of the user’s private randomness F (2.14).

By summing (2.85) up for all n ∈ [1 : N ] and letting P denote the general

desired index set, we obtain,

NPL ≤ NH(A
[P]
1:N |F)−

N∑
n=1

H(A[P]
n |F) (2.86)

≤ NH(A
[P]
1:N |F)−H(A

[P]
1:N |F) (2.87)

= (N − 1)H(A
[P]
1:N |F) (2.88)

≤ (N − 1)
N∑

n=1

H(A[P]
n |F) (2.89)

≤ (N − 1)
N∑

n=1

H(A[P]
n ) (2.90)

which leads to the desired converse result on the retrieval rate,

RMM−SPIR =
PL

DMM−SPIR

≤ PL∑N
n=1H(A

[P]
n )

≤ N − 1

N
= 1− 1

N
(2.91)
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The proof for H(S) ≥ PL
N−1

:

0 = I(WP̄1
;A

[P1]
1:N , Q

[P1]
1:N ,F) (2.92)

≥ I(WP̄1
;A

[P1]
1:N ,F) (2.93)

= I(WP̄1
;A

[P1]
1:N ,WP1 ,F) (2.94)

= I(WP̄1
;A

[P1]
1:N |WP1 ,F) (2.95)

≥ I(WP̄1
;A[P1]

n |WP1 ,F) (2.96)

= H(A[P1]
n |WP1 ,F)−H(A[P1]

n |W1:K ,F) (2.97)

= H(A[P1]
n |WP1 ,F)−H(A[P1]

n |W1:K ,F) +H(A[P1]
n |W1:K ,F , S) (2.98)

= H(A[P1]
n |WP1 ,F)− I(S;A[P1]

n |W1:K ,F) (2.99)

= H(A[P1]
n |WP1 ,F)−H(S|W1:K ,F) +H(S|A[P1]

n ,W1:K ,F) (2.100)

= H(A[P1]
n |WP1 ,F)−H(S) +H(S|A[P1]

n ,W1:K ,F) (2.101)

≥ H(A[P1]
n |WP1 ,F)−H(S) (2.102)

= H(A[P1]
n |WP1 ,F , Q[P1]

n )−H(S) (2.103)

= H(A[P1]
n |Q[P1]

n )−H(S) (2.104)

where (2.92) follows from the database privacy constraint (2.20), (2.94) follows from

the MM-SPIR reliability constraint (2.17), (2.98) follows from the fact that the

answer strings are deterministic functions of messages and queries which are also

functions of the randomness F as in (2.14) and (2.16), (2.101) follows from the

independence of the common randomness, messages, and user’s private randomness

as in (2.13), (2.103) follows from (2.14), and (2.104) follows from the steps between
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(2.80)-(2.83) by applying Lemma 2.1, 2.2 and 2.5 again.

By summing (2.104) up for all n ∈ [1 : N ] and letting P denote the general

desired index set again, we obtain,

0 ≥
N∑

n=1

H(A[P]
n |Q[P]

n )−NH(S) (2.105)

≥ H(A
[P]
1:N |Q[P]

n )−NH(S) (2.106)

≥ H(A
[P]
1:N |Q[P]

n ,F)−NH(S) (2.107)

= H(A
[P]
1:N |F)−NH(S) (2.108)

≥ N

N − 1
PL−NH(S) (2.109)

where (2.108) follows from (2.14) and (2.109) follows from (2.88), which leads to a

lower bound for the minimal required entropy of common randomness S,

H(S) ≥ PL

N − 1
(2.110)

2.5.4 MM-SPIR: Achievability Proof

Since the MM-SPIR capacity is the same as the SM-SPIR capacity, and the required

common randomness is P times the required common randomness for SM-SPIR, we

can use the achievable scheme in [8] successively P times in a row (by utilizing

independent common randomness each time) to achieve the MM-SPIR capacity.

Although the query structure for the capacity-achieving scheme for SPIR in [8] is

quite simple, it is fundamentally different than the query structure for the capacity-
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achieving scheme for PIR in [6]. This means that user/databases should execute

different query structures for different database privacy levels. In this chapter,

by combining ideas for achievability from [23] and [15], we propose an alternative

capacity-achieving scheme for MM-SPIR for any11 P . Our achievability scheme

enables us to switch between MM-PIR and MM-SPIR seamlessly, and therefore

support different database privacy levels, as the basic query structures are similar12.

We start with two motivating examples in Section 2.5.4.1, give the general achievable

scheme in Section 2.5.4.2, and calculate its rate and required common randomness

amount in Section 2.5.4.3.

For convenience, we use the k-sum notation in [6, 23]. A k-sum is a sum of k

symbols from k different messages. Thus, a k-sum symbol appears only in round k.

We denote the number of stages in round k by αk, which was originally introduced

in [23]. In addition, we use ν to denote the number of repetitions of the scheme13

in [23] we need before we start assigning common randomness symbols.

2.5.4.1 Motivating Examples

Example 3: Consider the case K = 3, P = 1, N = 3. Our achievable scheme is

as follows: First, we generate an initial query table, which strictly follows the query

11We note that the capacity-achieving scheme for K = P is simply to download all messages
from one of the databases, hence, without loss of generality, we focus on the case 1 ≤ P ≤ K − 1
in this section.

12We note that the presented scheme in this section can be thought of as a stand-alone capacity-
achieving scheme for the MM-SPIR problem when the message lengths are unconstrained. Conse-
quently, our proposed scheme in Section 2.5.4 cannot be applied to the PSI problem, as it requires
the message size to be constrained to L = 1.

13 When we refer to the scheme in [23], we refer to the near-optimal scheme in [23] which was
introduced for K/P ≥ 2. Reference [23] has a different, optimal, scheme for K/P ≤ 2. However,
in this chapter, even when K/P ≤ 2, we still refer to (and use) the near-optimal scheme in [23].
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table generation in [23]. For this case, from [23], we obtain the number of stages

needed in each round as α1 = 1, α2 = 2, α3 = 4. From the perspective of a database,

before the assignment of common randomness symbols begins, the total number

of downloaded desired symbols in round 1 is α1P = 1 × 1 = 1. Thus, we need 1

previously downloaded common randomness symbol for this desired symbol. Since

this common randomness symbol needs to come from the other N−1 = 2 databases,

the required common randomness to be downloaded from each database is 1
2
symbols

(assuming a symmetric scheme that distributes downloads equally over the other 2

databases). Thus, in order to obtain an integer number of common randomness

symbols to be downloaded from each database, we repeat the scheme in [23] two

times (i.e., ν = 2) before we begin assigning the common randomness symbols.

Hence, the number of stages in each round become ναk = 2αk, for k = 1, 2, 3.

That is we have 2 stages of 1-sums, 4 stages of 2-sums and 8 stages of 3-sums; see

Table 2.1.

We are now ready to start assigning the common randomness symbols. We

first download 1 common randomness symbol from each database; for instance, we

download s1 from database 1. In round 1, we mix (i.e., add) a common randomness

symbol to each 1-sum. All the common randomness symbols at each database should

be distinct; for instance, observe that, we add s2, s3, s4, s5, s6, s7 at database 1.

Second, the common randomness symbols added to the desired symbols (a symbols

in this example) must be downloaded from other databases; for instance, note that

s2 and s3 added to symbols a1 and a2 are downloaded from databases 2 and 3. Note

that the indices of the common randomness symbols added to the undesired symbols
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Database 1 Database 2 Database 3
s1 s2 s3

a1 + s2 a3 + s1 a5 + s1
a2 + s3 a4 + s3 a6 + s2
b1 + s4 b3 + s8 b5 + s12
b2 + s5 b4 + s9 b6 + s13
c1 + s6 c3 + s10 c5 + s14
c2 + s7 c4 + s11 c6 + s15

a7 + b3 + s8 a15 + b1 + s4 a23 + b1 + s4
a8 + b4 + s9 a16 + b2 + s5 a24 + b2 + s5
a9 + b5 + s12 a17 + b5 + s12 a25 + b3 + s8
a10 + b6 + s13 a18 + b6 + s13 a26 + b4 + s9
a11 + c3 + s10 a19 + c1 + s6 a27 + c1 + s6
a12 + c4 + s11 a20 + c2 + s7 a28 + c2 + s7
a13 + c5 + s14 a21 + c5 + s14 a29 + c3 + s10
a14 + c6 + s15 a22 + c6 + s15 a30 + c4 + s11
b7 + c7 + s16 b11 + c11 + s20 b15 + c15 + s24
b8 + c8 + s17 b12 + c12 + s21 b16 + c16 + s25
b9 + c9 + s18 b13 + c13 + s22 b17 + c17 + s26
b10 + c10 + s19 b14 + c14 + s23 b18 + c18 + s27

a31 + b11 + c11 + s20 a39 + b7 + c7 + s16 a47 + b7 + c7 + s16
a32 + b12 + c12 + s21 a40 + b8 + c8 + s17 a48 + b8 + c8 + s17
a33 + b13 + c13 + s22 a41 + b9 + c9 + s18 a49 + b9 + c9 + s18
a34 + b13 + c14 + s23 a42 + b10 + c10 + s19 a50 + b10 + c10 + s19
a35 + b15 + c15 + s24 a43 + b15 + c15 + s24 a51 + b11 + c11 + s20
a36 + b16 + c16 + s25 a44 + b16 + c16 + s25 a52 + b12 + c12 + s21
a37 + b17 + c17 + s26 a45 + b17 + c17 + s26 a53 + b13 + c13 + s22
a38 + b18 + c18 + s27 a46 + b18 + c18 + s27 a54 + b14 + c14 + s23

Table 2.1: The query table for the case K = 3, P = 1, N = 3.

(symbols b and c) increase cumulatively, e.g., s4, s5, s6, s7 at database 1 in round 1,

and these symbols are not separately downloaded by the user.

In round 2, for every 2-sum containing a desired message symbol, we add a

side information symbol downloaded from another database which already contains a

common randomness symbol; for instance, we add b3+s8 that is already downloaded

from database 2, to the desired symbol a7 at database 1, i.e., we download a7+b3+s8.

On the other hand, for every 2-sum not containing any desired message symbols,
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we add a new distinct common randomness symbol with a cumulatively increasing

index; for instance, for the download b7 + c7 from database 1, we add s16 which is

a new non-downloaded common randomness symbol, and download b7 + c7 + s16.

Finally, in round 3, where we download 3-sums, and hence every download contains

a desired symbol, we add the side information generated at other databases; for

instance, we add b11 + c11 + s20 downloaded from database 2, to a31 and download

a31+b11+c11+s20. This completes the achievable scheme for this case. The complete

query table is shown in Table 2.1.

Now, we calculate the rate of this scheme. The length of each message is

L = 54, and the total number of downloads is D = 81. Thus, the rate R of this

scheme is 54
81

= 2
3
= 1 − 1

3
, which matches the capacity expression. In addition,

we used 27 common randomness symbols, hence the required common randomness

H(S) is 27 = 54
2
, which matches the required minimum.

Example 4: Consider the case K = 5, P = 3, N = 2. Our achievable scheme is

as follows: Again, first, we generate an initial query table, which strictly follows

the query table generation in [23]. Note that, we still use the near-optimal scheme

in [23], even though for this caseK/P ≤ 2 (see Footnote 13). For this case, from [23],

we obtain the number of stages needed in each round as α1 = 3, α2 = 1, α3 = α4 = 0

and α5 = 1. In this case, from the perspective of a database, before the assignment

of common randomness symbols begins, the total number of downloaded desired

symbols in round 1 is α1P = 3 × 3 = 9. Thus, we need 9 previously downloaded

common randomness symbols for these desired symbols. These common randomness
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symbols need to come from the other N − 1 = 1 database. In this case, since

9/1 = 9 is an integer already, we do not need to repeat the scheme unlike the case

in Example 3. Thus, ν = 1 here, there is no need for repetition, and the underlying

query structure before adding common randomness symbols is exactly the same

as [23]; see Table 2.2.

We are now ready to start assigning the common randomness symbols. We

first download 9 common randomness symbols from each database; for instance, we

download s1, · · · , s9 from database 1. In round 1, we add a common randomness

symbol to each 1-sum. All the common randomness symbols at each database should

be distinct; for instance, observe that, we add s10, · · · , s24 at database 1. Second,

the common randomness symbols added to the desired symbols (a, b, c symbols

in this example) must be downloaded from the other databases; for instance, note

that s10, · · · , s18 added to symbols a1, b1, c1, a2, b2, c2, a3, b3, c3 are downloaded from

database 2. Note that the indices of the common randomness symbols added to

the undesired symbols (symbols d and e) increase cumulatively, e.g., s19 · · · , s24 at

database 1 in round 1, and these symbols are not separately downloaded by the

user.

In round 2, for every 2-sum containing only one desired message symbol, we

add a side information symbol downloaded from the other database which already

contains a common randomness symbol; for instance, we add d4+s25 that is already

downloaded from database 2, to the desired bit a8 at database 1, i.e., we download

a8 + d4 + s25. On the other hand, for every 2-sum containing two of the desired

message symbols, we add a new distinct common randomness symbol and download
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Database 1 Database 2
s1, s2, s3 s10, s11, s12
s4, s5, s6 s13, s14, s15
s7, s8, s9 s16, s17, s18
s31, s32, s33 s34, s35, s36
a1 + s10 a4 + s1
b1 + s11 b4 + s2
c1 + s12 c4 + s3
d1 + s19 d4 + s25
e1 + s20 e4 + s26
a2 + s13 a5 + s4
b2 + s14 b5 + s5
c2 + s15 c5 + s6
d2 + s21 d5 + s27
e2 + s22 e5 + s28
a3 + s16 a6 + s7
b3 + s17 b6 + s8
c3 + s18 c6 + s9
d3 + s23 d6 + s29
e3 + s24 e6 + s30

a7 + b4 + s34 a10 + b1 + s31
a4 + c7 + s35 a1 + c10 + s32
a8 + d4 + s25 a11 + d1 + s19
a9 + e4 + s26 a12 + e1 + s20
b7 + c4 + s36 b10 + c1 + s33
b8 + d5 + s27 b11 + d2 + s21
b9 + e5 + s28 b12 + e2 + s22
c8 + d6 + s29 c11 + d3 + s23
c9 + e6 + s30 c12 + e3 + s24
d7 + e7 + s37 d8 + e8 + s38

a13 + b5 + c5 + d8 + e8 + s38 a2 + b13 + c2 + d7 + e7 + s37

Table 2.2: The query table for the case K = 5, P = 3, N = 2.

it separately from the other database; for instance, for the download a7 + b4 from

database 1, we add s34 and download s34 separately from database 2, and download

a7 + b4 + s34. Therefore, for this, we need to download 3 common randomness

symbols (s34, s35, s36) from database 2. Further, for every 2-sum not containing any

desired message symbols, we add a new distinct common randomness symbol with a
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cumulatively increasing index; for instance, for the download d7 + e7 from database

1, we add s37 which is a new non-downloaded common randomness symbol, and

download b7 + c7 + s37. We skip rounds 3 and 4 because α3 = α4 = 0. Finally, in

round 5, where we download 5-sums, we add the side information generated at the

other databases; for instance, we add d8 + e8 + s38 downloaded from database 2, to

a13+b5+c5 and download a13+b5+c5+d8+e8+s38. This completes the achievable

scheme for this case. The complete query table is shown in Table 2.2.

Now, we calculate the rate of this scheme. We downloaded 13 a symbols, 13

b symbols and 12 c symbols, hence a total of L = 38 desired symbols. The total

number of downloads is D = 76. Thus, the rate R of this scheme is 38
76

= 1
2
= 1− 1

2
,

which matches the capacity expression. In addition, we used 38 common randomness

symbols, hence the required common randomness H(S) is 38 = 38
1
, which matches

the required minimum.

We finally note that, since we downloaded asymmetric number of symbols

from desired messages, i.e., 13 a symbols, 13 b symbols and 12 c symbols, we can

repeat this scheme 3 times changing the roles of a, b and c, and have a symmetric

scheme where we download 38 a symbols, 38 b symbols and 38 c symbols. This will

not change the normalized download cost and normalized downloaded common ran-

domness symbol numbers, hence, all the calculations (rate and common randomness

calculations) will remain the same.
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2.5.4.2 General Achievable Scheme

Our achievability scheme is primarily based on the one in [23], with the addition of

downloading and/or mixing common randomness variables into symbol downloads

appropriately. We note that, here we extend the near-optimal algorithm in [23],

which was originally proposed for P ≤ K
2
, to the case of P ≥ K

2
, and therefore, use

it for all 1 ≤ P ≤ K − 1 (see Footnote 13). Our achievability scheme comprises the

following steps:

1. Initial MM-PIR Query Generation: Generate an initial query table strictly

following the near-optimal procedure in [23] for arbitrary K, P and N .

2. Repetition: Repeat Step 1 for a total of ν times. The purpose of the repeti-

tion is to i) get an integer number of common randomness generated at each

database by a symmetric algorithm (as exemplified in Example 3), and ii) get

equal number of symbols downloaded from each desired message (as exem-

plified in Example 4). Let ν0 be the smallest integer such that (N−1)K−PNν0
P

(i.e., αKNν0
P

) is an integer. Similarly, for 1 ≤ k ≤ min{P,K − P}, let νk be

the smallest integer such that
(Pk)αkνk

N−1
is an integer (k ≤ K − P comes from

αK−P+1 = · · · = αP−1 = 0 in [23, eqn. (51)]). Then, choose ν as the lowest

common multiple of these νk, where k ∈ [0 : min{P,K − P}].

3. Common Randomness Assignment: Assign the common randomness as fol-

lows:

(a) In round 1, assign νPα1

N−1
independent common randomness symbols to
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each database, and download them. At each database, mix every 1-sum

symbol containing a desired message symbol with an arbitrary common

randomness symbol already downloaded from another database, making

sure that every 1-sum symbol at each database is mixed with a different

common randomness symbol. Mix all other 1-sum symbols not containing

a desired symbol with a new common randomness symbol which is not

downloaded by the user.

(b) In round k (k ≥ 2), assign
ν(Pk)αk

N−1
independent common randomness sym-

bols to each database, and download them. At each database: Mix

every k-sum symbol containing only desired message symbols with an

arbitrary common randomness symbol already downloaded from another

database. Mix every k-sum symbol containing p desired message sym-

bols (1 ≤ p ≤ k − 1) with the common randomness symbol from the

(k − p)-sum symbol having the same k − p undesired message symbols

downloaded at any other database. Mix every k-sum symbol not con-

taining any desired message symbols with a new common randomness

symbol which is not downloaded by the user.

(c) Repeat Step 3b until k reaches K. Note that if αk = 0, nothing is done.

This scheme inherits the user privacy property from the underlying scheme

in [23], as the new common randomness symbols, which are separately downloaded

and subtracted out, make no difference. Due to the procedure in Step 3, where non-

downloaded common randomness symbols are added to the downloads, no undesired
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symbol is decodable because of the added unknown common randomness, ensuring

the database privacy constraint.

2.5.4.3 Rate and Common Randomness Amount Calculation

We calculate the achievable rate and the minimal required common randomness for

only one repetition of the scheme. The reason for this is that, in every repetition,

every involved term would be multiplied by T , and thus T can be cancelled in the

numerator and the denominator of the normalized rate and normalized required

common randomness expressions.

For each database, before the assignment of common randomness, let D1 be

the total number of downloaded symbols, U1 be the total number of downloaded

undesired symbols, U2 be the total number of downloaded symbols including only

desired message symbols, and D2 be the total number of downloaded common ran-

domness symbols. The achievable rate is then given by,

R =
D1 − U1

D1 +D2

(2.111)

Using the respective results in [23, eqns. (66)-(69) and (70)-(72)], we have

D1 =
K∑
k=1

(
K

k

)
αk =

P∑
i=1

γir
K−P
i

[(
1 +

1

ri

)K

− 1

]
(2.112)

U1 =
K−P∑
k=1

(
K − P

k

)
αk =

P∑
i=1

γir
K−P
i

[(
1 +

1

ri

)K−P

− 1

]
(2.113)

In the proposed new achievable scheme, every k-sum symbol (1 ≤ k ≤ min{P,K −
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P}) containing only desired message symbols is mixed with an arbitrary common

randomness symbol which is downloaded from another database. In addition, these

downloaded common randomness symbols are uniformly requested from the other

(N − 1) databases. Thus,

U2 =

min{K−P,P}∑
k=1

(
P

k

)
αk (2.114)

D2 =
1

N − 1
U2 =

1

N − 1

min{K−P,P}∑
k=1

(
P

k

)
αk (2.115)

With these observations we have the following two lemmas where we compute

the MM-SPIR rate and the required common randomness amount.

Lemma 2.6 The rate of the proposed achievable scheme is,

R = 1− 1

N
(2.116)

Proof: We first calculateD2 in two possible settings. When P ≤ K
2
, i.e., P ≤ K−P ,

D2 =
1

N − 1

P∑
k=1

(
P

k

)
αk (2.117)

=
1

N − 1

P∑
k=1

(
P

k

) P∑
i=1

γir
K−P−k
i (2.118)

=
1

N − 1

P∑
k=1

P∑
i=1

(
P

k

)
γir

K−P−k
i (2.119)

=
1

N − 1

P∑
i=1

P∑
k=1

(
P

k

)
γir

K−P−k
i (2.120)
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=
1

N − 1

P∑
i=1

γir
K−2P
i

P∑
k=1

(
P

k

)
rP−k
i (2.121)

=
1

N − 1

P∑
i=1

γir
K−2P
i (N − 1)rPi (2.122)

=
1

N − 1

P∑
i=1

γir
K−P
i (N − 1) (2.123)

where (2.122) follows because ri is a root of the characteristic equation [23, eqn. (59)].

When K
2
≤ P ≤ K − 1, i.e., K − P ≤ P ,

D2 =
1

N − 1

K−P∑
k=1

(
P

k

)
αk (2.124)

=
1

N − 1

P∑
k=1

(
P

k

)
αk −

P∑
k=K−P+1

(
P

k

)
αk (2.125)

=
1

N − 1

P∑
k=1

(
P

k

)
αk (2.126)

=
1

N − 1

P∑
i=1

γir
K−P
i (N − 1) (2.127)

where (2.126) follows because αK−P+1 = · · · = αP−1 = 0 due to [23, eqn. (51)], and

(2.127) follows from (2.123).

Therefore, from (2.123) and (2.127), for all P , where 1 ≤ P ≤ K − 1, we

always have

D2 =
1

N − 1

P∑
k=1

(
P

k

)
αk =

1

N − 1

P∑
i=1

γir
K−P
i (N − 1) (2.128)

Now, in order to show that R = D1−U1

D1+D2
= 1− 1

N
, we need to equivalently show

65



that D1 = NU1 + (N − 1)D2. Thus, we proceed as,

NU1 + (N − 1)D2 = N
P∑
i=1

γir
K−P
i

[(
1 +

1

ri

)K−P

− 1

]
+

P∑
i=1

γir
K−P
i (N − 1)

(2.129)

=
P∑
i=1

γir
K−P
i

[
N

(
1 +

1

ri

)K−P

−N +N − 1

]
(2.130)

=
P∑
i=1

γir
K−P
i

[
N

(
1 +

1

ri

)K−P

− 1

]
(2.131)

=
P∑
i=1

γir
K−P
i

[
N

(
1 +

1

ri

)−P (
1 +

1

ri

)K

− 1

]
(2.132)

=
P∑
i=1

γir
K−P
i

[(
1 +

1

ri

)K

− 1

]
(2.133)

= D1 (2.134)

where (2.133) follows because N(1 + 1
ri
)−P = 1, which comes from [23, eqn. (62)].

■

Lemma 2.7 The minimal required common randomness in the proposed achievable

scheme is,

H(S) =
PL

N − 1
(2.135)

Proof: In our proposed scheme, at each database, a new common randomness sym-

bol is employed only in two cases. The first case is when a new common randomness

symbol is added to a k-sum symbol that contains only desired message symbols. In

this case, the common randomness symbols are equally distributed over the (N −1)
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databases and downloaded from them. The second case is when a new common

randomness symbol is assigned to a k-sum symbol that does not contain any desired

message symbol. In this case, the common randomness symbols are not downloaded.

Therefore, we count the total number of distinct common randomness symbols as

H(S) = U1 +D2. We note that L can be written as 1
P
(D1 − U1). Thus,

PL

N − 1
=

P
P
(D1 − U1)

N − 1
(2.136)

=
D1 − U1

N − 1
(2.137)

=
NU1 + (N − 1)D2 − U1

N − 1
(2.138)

=
(N − 1)U1 + (N − 1)D2

N − 1
(2.139)

= U1 +D2 (2.140)

= H(S) (2.141)

where (2.138) comes from (2.134), i.e., D1 = NU1 + (N − 1)D2. ■

2.6 MM-LSPIR: Arbitrary Message Lengths

Since the message sizes in the PSI problem are given and fixed, in particular, they

are fixed to be 1 (as the incidence vectors are composed 0s and 1s), we need to

determine the capacity of MM-SPIR with a given and fixed message size L. We call

this setting MM-LSPIR. The capacity of MM-LSPIR is given in the next theorem.

Theorem 2.3 The MM-LSPIR capacity for N ≥ 2, K ≥ 2, and P ≤ K, for an
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arbitrary message length L is given by,

CMM−LSPIR =



1, P = K

PL

⌈NPL
N−1 ⌉ , 1 ≤ P ≤ K − 1, H(S) ≥

⌈
PL
N−1

⌉
0, otherwise

(2.142)

We give the converse of Theorem 2.3 in Section 2.6.1, the achievability in

Section 2.6.2, and map MM-LSPIR back to PSI in Section 2.6.3.

2.6.1 MM-LSPIR: Converse Proof

From the converse proof of Theorem 2.2, using (2.21) and (2.91), we have

RMM−LSPIR =
PL

DMM−LSPIR

≤ PL∑N
n=1H(A

[P]
n )

≤ N − 1

N
= 1− 1

N
(2.143)

Note that, for an arbitrary finite fixed message length L, the download cost

DMM−LSPIR must be a positive integer. Thus, we have,

DMM−LSPIR ≥
⌈
NPL

N − 1

⌉
(2.144)

and therefore, the converse result for a finite and fixed L, is

RMM−LSPIR =
PL

DMM−LSPIR

≤ PL⌈
NPL
N−1

⌉ (2.145)

Similarly, the entropy of common randomness must also be a positive integer,
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as the common randomness symbols are picked uniformly and independently from

the same field as the message symbols. Thus, with a careful look at going from

(2.109) to (2.110), we have,

H(S) ≥
⌈
PL

N − 1

⌉
(2.146)

Therefore, (2.145) and (2.146) constitute the converse for Theorem 2.3.

2.6.2 MM-LSPIR: Achievability Proof

Following the converse results in (2.144) and (2.146), we provide an achievable

scheme for MM-SPIR with any arbitrary parameters K,N, P, L in this section.

Starting with the achievable scheme presented in [8, Section IV.B.1], we set the

value of lK to be 1 and build a corresponding SPIR achievable scheme for the case

of
⌈
K
P

⌉
, N, 1, PL. The value of K

P
is taken to ensure that the total number of mes-

sage symbols in the databases are the same for SPIR and MM-SPIR. If K
P

is not an

integer, we choose
⌈
K
P

⌉
, in which case there exist some redundant message symbols

in SPIR. The remedy is to make all these redundant message symbols dummy. In

other words, all these redundant message symbols are set to be 0, and thus will not

make any difference in the following process. Thus far, the only remaining step is

to change the message symbol index such that the converted scheme is consistent

with the original MM-SPIR problem with message length L.

For clarity, we consider a simple MM-SPIR problem with K = 4, N = 3, P =

2, L = 1. The first step is to build an achievable scheme with K = 2, N = 3, P =
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1, L = 2 according to [8, Section IV.B.1]. Assume that we are only interested in

the first message W1 = [W1,1,W1,2] but not the second message W2 = [W2,1,W2,2]

without loss of generality. The concrete scheme is given next: The queries sent to

the databases are,

Q
[1]
1 = [h1 h2 h3 h4] (2.147)

Q
[1]
2 = [h1 + 1 h2 h3 h4] (2.148)

Q
[1]
3 = [h1 h2 + 1 h3 h4] (2.149)

where h1, h2, h3, h4 are all uniform bits in F2. The corresponding answers received

from all the database are,

A
[1]
1 = h1W1,1 + h2W1,2 + h3W2,1 + h4W2,2 + S (2.150)

A
[1]
2 = h1W1,1 + h2W1,2 + h3W2,1 + h4W2,2 +W1,1 + S (2.151)

A
[1]
3 = h1W1,1 + h2W1,2 + h3W2,1 + h4W2,2 +W1,2 + S (2.152)

After tuning the message symbol index to coincide with the original MM-SPIR

problem, again assuming that the desired message indices are 1 and 2, the ultimate

scheme for original MM-SPIR problem with K = 4, N = 3, P = 2, L = 1 is as

follows: The queries sent to the databases are,

Q
[1,2]
1 = [h1 h2 h3 h4] (2.153)

Q
[1,2]
2 = [h1 + 1 h2 h3 h4] (2.154)
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Q
[1,2]
3 = [h1 h2 + 1 h3 h4] (2.155)

where h1, h2, h3, h4 are all uniform bits in F2. The corresponding answers received

from all the databases are,

A
[1,2]
1 = h1W1 + h2W2 + h3W3 + h4W4 + S (2.156)

A
[1,2]
2 = h1W1 + h2W2 + h3W3 + h4W4 +W1 + S (2.157)

A
[1,2]
3 = h1W1 + h2W2 + h3W3 + h4W4 +W2 + S (2.158)

In summary, we can always readily construct an MM-SPIR scheme with pa-

rameters P,L on the basis of a single-message SPIR scheme with parameters 1, PL

such that the induced download cost and the amount of common randomness for

an arbitrary fixed message length are both optimal. The optimal values are exactly

the ones given in (2.144) and (2.146).

2.6.3 Mapping MM-LSPIR Back to PSI

Finally, we map our MM-SPIR results back to the PSI problem to obtain Theo-

rem 2.1. Recall that, in the PSI problem, by generating the sets P1 and P2 by

i.i.d. drawing the elements from the alphabet Palph, we obtain i.i.d. messages in the

corresponding MM-SPIR problem. Further, by choosing the probability qi of choos-

ing each element to be included in the set Pi to be qi =
1
2
, for i = 1, 2, we obtain

uniformly distributed messages, with message size L = 1. Therefore, the PSI prob-
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lem is equivalent to an MM-LSPIR problem with L = 1. Now, using Theorem 2.3

with L = 1, we obtain the ultimate result of this chapter in Theorem 2.1.

2.7 Conclusion

In this chapter, we investigated the two-party PSI problem over a finite set SK from

an information-theoretic point of view. We showed that the problem can be recast

as an MM-SPIR problem with a message size 1. This is under the assumption that

the sets (or their corresponding incidence vectors) can be stored in replicated and

non-colluding databases. Further, the set elements are generated in an i.i.d. fashion

with a probability 1
2
of adding any element to any of the sets.

To that end, we explored the information-theoretic capacity of MM-SPIR as

a stand-alone problem. We showed that joint multi-message retrieval does not out-

perform the successive application of single-message SPIR. This is unlike the case of

MM-PIR, where significant performance gains can be obtained due to joint retrieval.

We remark that SM-SPIR is a special case of the problem studied in this chapter by

plugging P = 1. For the converse proof, we extended the proof techniques of [8] to

the setting of multi-messages. In particular, the proof of Lemma 2.5 is significantly

more involved than the proof in [8]. This is due to the fact that the desired message

subsets in the case of MM-SPIR may not be disjoint. To unify the query structures

of MM-PIR and MM-SPIR, we proposed a new capacity-achieving scheme for any P

as an alternative to the successive usage of the scheme in [8]. Our scheme primarily

consists of three steps: Exploiting the achievable scheme in [23], making necessary
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repetitions to symmetrize the scheme, and adding the needed common randomness

properly. The last step is inspired by [15]. Based on these results, we showed that

the optimal download cost for PSI is min
{⌈

P1N2

N2−1

⌉
,
⌈

P2N1

N1−1

⌉}
.

In the following subsections, we make a few remarks about assumptions made

in this chapter, and directions for further research.

2.7.1 Data Generation Model

In this work, we add elements to each set in an i.i.d. manner and with probability

1
2
. This assumption is made for two reasons, first, to have i.i.d. incidence vectors,

therefore, i.i.d. messages in the MM-SPIR problem, and second, to have uniform

messages to avoid the need for compressing the messages W1:K before/within re-

trieval. However, this assumption may be restrictive, as with this assumption, the

expected sizes of both sets are K
2
. Even with keeping the i.i.d. generation assump-

tion, the probability of adding each element to set i could be generalized to be an

arbitrary qi. In this more general case, the expected sizes of the sets, Kq1 and

Kq2, could be arbitrary. This may be done by using appropriate compression be-

fore/during retrieval, but needs to be studied further. Regarding the i.i.d. selection

of elements, while this assumption is not needed from the achievability side, it is

needed for the converse proof. To overcome these restrictions, as future work, it

may be worthwhile to investigate the MM-SPIR problem with correlated messages.
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2.7.2 Upload Cost Reduction

In this chapter, we have focused on the download cost as the sole performance metric.

A more natural performance metric is to consider the combined upload and download

cost. In this section, we provide an illustrative example, which shows that the

upload cost may be reduced without sacrificing the download cost. Nevertheless, the

characterization of the optimal combined upload and download cost is an interesting

future direction that is outside the scope of this chapter.

Example 5: Consider the SPIR problem with K = 3, N = 2, P = 1, L = 1. The

original SPIR scheme in [8] achieves the optimal download cost of D = 2 bits, while

the upload cost is U = 6 bits. Inspired by [73], we show that the upload cost can

be reduced to just 4 bits without increasing the download cost. Our new achievable

scheme is as follows:

For any one of the two databases, there are four possible answers A
(q)
n , where

n ∈ [2], q ∈ [4] and common randomness S is a uniformly distributed bit:

A
(1)
1 = W1 +W2 +W3 + S, A

(1)
2 = W2 +W3 + S (2.159)

A
(2)
1 = W1 + S, A

(2)
2 = S (2.160)

A
(3)
1 = W2 + S, A

(3)
2 = W1 +W2 + S (2.161)

A
(4)
1 = W3 + S, A

(4)
2 = W1 +W3 + S (2.162)

The corresponding queries for different desired messages are generated accord-
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ing to the following distributions:

W1 : (Q
[1]
1 , Q

[1]
2 ) is uniform over {(1, 1), (2, 2), (3, 3), (4, 4)},

W2 : (Q
[2]
1 , Q

[2]
2 ) is uniform over {(1, 4), (2, 3), (3, 2), (4, 1)},

W3 : (Q
[3]
1 , Q

[3]
2 ) is uniform over {(1, 3), (2, 4), (3, 1), (4, 2)}.

The reliability constraint follows from the fact for every query pair, the user

can cancel the interfering messages and the common randomness S from the other

database. For the database-privacy constraint, we note that the undesired messages

are always mixed with S. Hence, the information leakage from undesired messages

is zero. For the user-privacy constraint, we have

P (Q[k]
n = q) = P (Q[k′]

n = q), ∀k, k′ ∈ [3], ∀n ∈ [2], ∀q ∈ [4] (2.163)

i.e., from the point of view of any database, the same set of queries is used for any

desired message Wi, where i = 1, 2, 3 with the same probability distribution.

For the proposed scheme, the required download cost is D = 2 bits and the

required upload cost is U = 4 bits, which outperforms the one in [8] in terms of

upload cost.

2.7.3 Communication Model

We note that our optimality result is restricted to the presented communication

scenario, where a sender submits queries to a receiver in one round. An interesting
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future direction is to investigate whether there is a more efficient communication

scheme or whether there can be an impossibility result that can assert that no other

communication scheme can outperform our presented scheme.

2.7.4 Single Database Assumption

Our scheme is infeasible for N1 = N2 = 1 due to the capacity result for MM-

SPIR. It would be interesting to see if MM-SPIR can be made feasible with certain

modifications to the problem, e.g., side information, or alternatively, if PSI can be

transformed into other problems, in the case of a single-server. We can refer to the

work in Chapter 3.
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CHAPTER 3

Symmetric Private Information Retrieval at the Private In-

formation Retrieval Rate

3.1 Introduction

In this chapter, we consider the problem of SPIR with user-side common random-

ness. Note that the privacy constraint in SPIR is symmetric between the user and

the databases, SPIR has the following three properties: its capacity is smaller than

the capacity of PIR which requires only user privacy; it is infeasible in the case of

a single database; and it requires presence of shared common randomness among

the databases. We introduce a new variant of SPIR where the user is provided with

a random subset of the shared database common randomness, which is unknown

to the databases. We determine the exact capacity region of the triple (d, ρS, ρU),

where d is the download cost, ρS is the amount of shared database (server) com-

mon randomness, and ρU is the amount of available user-side common randomness.

The user-side common randomness utilized here can be deemed as auxiliary ran-

domness data. We show that with a suitable amount of ρU , this new variant of

SPIR achieves the capacity of the conventional PIR. As a corollary, single-database
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SPIR becomes feasible. Further, the presence of user-side ρU reduces the amount of

required server-side ρS.

3.2 Problem Formulation

We consider a system of N ≥ 1 non-colluding databases each storing the same set of

K ≥ 2 i.i.d. messages each of which consisting of L i.i.d. symbols uniformly selected

from a sufficiently large finite field Fq, i.e.,

H(Wk) = L, k ∈ [K] (3.1)

H(W1:K) = H(W1) + · · ·+H(WK) = KL (3.2)

For convenience, we denote a random variable and its realization by using

the same general uppercase letter when distinction is clear from the context. We

address this issue additionally whenever clarification is needed. As in [8], we use a

random variable F to denote the randomness in the retrieval strategy implemented

by the user. Due to the user privacy constraint, the realization of F is only known

to the user, and is unknown to any of the databases. Due to the database privacy

constraint, databases need to share some amount of common randomness RS; we

will call this server-side common randomness. The server-side common randomness

RS with size M is a set of i.i.d. symbols {S1, S2, · · · , SM} uniformly selected from

Fq, i.e.,

H(Sm) = 1, m ∈ [M ] (3.3)
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H(S1:M) = H(S1) + · · ·+H(SM) =M (3.4)

Moreover, the set of indices {1, 2, · · · ,M} forms an alphabet A, i.e., A =

{1, 2, · · · ,M}. Before the retrieval process starts, the user obtains a partial knowl-

edge of RS. We denote it by RU , and call it user-side common randomness. There-

fore, we introduce a new random variable AU corresponding to the uniform selection

of elements without replacement from A (the sample space of AU is the power set of

A). User-side common randomness RU is a set of i.i.d. symbols from Fq where the

indices of the symbols are constituted by AU . Further, we assume that AU is not

known to any individual database and also is kept private throughout the retrieval

process1, although the cardinality of AU can be public information to the databases.

In addition, we introduce another new random variable ĀU , which is the comple-

ment of AU with respect to the universe A, i.e., ĀU = A\AU . Likewise, RS\RU is

also a set of i.i.d. symbols from Fq where the indices of symbols are constituted by

ĀU . Thus, after determining the selection AU , ĀU is also deterministic; see Fig. 3.1

for the specific system model.

The server-side common randomness RS is generated independently of the

stored message set in the databases. The desired message index k, the random

selection AU and the retrieval strategy randomness F , are all determined at the

user-side before the retrieval process starts. Moreover, all these random variables

1We note that this assumption is with some loss of generality. There could be a version of the
problem where we do not care about the privacy of AU against the databases during the retrieval
process. This version of the problem could potentially have a higher retieval rate. This choice
is akin to enforcing “W -privacy” versus “W -S privacy” (see [27, 29, 30, 32–34, 36, 37, 39, 111, 112],
especially [32,33]), where W -privacy stands for message privacy only and W -S privacy stands for
message and side-information privacy in a PIR setting with side information.
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k,AU ,RU

Wk

Wk̄

k kk

Figure 3.1: System model for SPIR with user-side common randomness.

are mutually independent, thus,

H(W1:K ,RS, k,AU ,F) = H(W1:K) +H(RS) +H(k) +H(AU) +H(F) (3.5)

Using the desired message index and the user-side common randomness indices,

the user generates a query for each database according to the retrieval strategy

randomness F . Hence, the queries Q
[k,AU ]
n , n ∈ [N ] are deterministic functions of F ,

H(Q
[k,AU ]
1 , Q

[k,AU ]
2 , . . . , Q

[k,AU ]
N |F) = 0, ∀k, ∀AU (3.6)

During the independent query generation stage, (3.5) and (3.6) lead to the

following relationship,

I(Q
[k,AU ]
1:N ;W1:K ,RS) = 0, ∀k, ∀AU (3.7)
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After receiving a query from the user, each database generates a truthful an-

swer based on the stored message set W1:K and the server-side common randomness

RS,

H(A[k,AU ]
n |Q[k,AU ]

n ,W1:K ,RS) = 0, ∀n, ∀k, ∀AU (3.8)

After collecting all N answers from the databases, the user should be able to

decode the desired messages Wk reliably,

[reliability] H(Wk|Q[k,AU ]
1:N , A

[k,AU ]
1:N ,RU)

(3.6)
= H(Wk|F , A[k,AU ]

1:N ,RU) = 0, ∀k, ∀AU

(3.9)

Due to the user privacy constraint, the query generated to retrieve the desired

message should be statistically indistinguishable from other queries. Specifically, for

all k, k′, all n, and all AU , there exists some A′
U with |A′

U | = |AU |, i.e., H(R′
U) =

H(RU)
2, such that,

[user privacy] (Q[k,AU ]
n , A[k,AU ]

n ,W1:K ,RS) ∼ (Q
[k′,A′

U ]
n , A

[k′,A′
U ]

n ,W1:K ,RS) (3.10)

As in [46, 66], the joint probability distribution of all random variables at the

2In the single-database case, AU and A′
U can not be exactly the same although some overlap is

allowed, nor can RU and R′
U . Otherwise, user-privacy, database-privacy and reliability constraints

jointly form a contradiction, and as a consequence, the problem degenerates to the infeasible
conventional single-database SPIR problem, which is trivial. However, this constraint on the strict
difference between AU and A′

U (also RU and R′
U ) does not apply to the multi-database case. This

is because its accompanying reliability constraint requires the user to collect the answers from all
the databases, not only an individual one. Moreover, in the remaining content of this chapter, we
always assume that A′

U has the same cardinality as AU and R′
U has the same entropy as RU .
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databases can be factorized in the following way,

P
(
(Q[k,AU ]

n , A[k,AU ]
n ,W1:K ,RS) = (q, a, w1:K , rS)

)
= P (Q[k,AU ]

n = q) · P
(
(W1:K ,RS) = (w1:K , rS)

∣∣Q[k,AU ]
n = q

)
· P
(
A[k,AU ]

n = a
∣∣(Q[k,AU ]

n ,W1:K ,RS) = (q, w1:K , rS)
)

(3.11)

= P
(
Q[k,AU ]

n = q
)
· P
(
(W1:K ,RS) = (w1:K , rS)

)
· c (3.12)

where the second term in (3.12) comes from the independent query generation of

message set as well as server-side common randomness (3.7) and becomes a constant

depending on the realizations of the pair (W1:K ,RS), and the third term c in (3.12) is

also a constant either taking the value of 0 or 1 depending on the choice of a because

of the fact that the generated answer in a database is a deterministic function of

the information that database possesses (3.8). As a consequence, we obtain the

following equivalent expression for user privacy for all potential query realizations

q,

[user privacy] P (Q[k,AU ]
n = q) = P (Q

[k′,A′
U ]

n = q) (3.13)

Due to the database privacy constraint, the user should learn nothing about

Wk̄ which is the complement of Wk, i.e., Wk̄ = {W1, · · · ,Wk−1,Wk+1, · · · ,WK},

[database privacy] I(Wk̄;F , A[k,AU ]
1:N ,RU) = 0, ∀k, ∀AU (3.14)
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Again due to the database privacy, the user should not learn all the information

about the remaining common randomness among the databases when the retrieval

is complete. However, in order to formulate the problem in an easier and clearer

way, we add an additional requirement that the user should not gain any knowledge

about the remaining common randomness among the databases even after retrieving

the desired message,

I(RS\RU ;F , A[k,AU ]
1:N ,Wk,RU) = 0, ∀k, ∀AU (3.15)

An achievable SPIR scheme is a scheme that satisfies the reliability constraint

(3.9), the user privacy constraint (3.13) and the database privacy constraint (3.14).

The efficiency of a scheme is measured in terms of the number of downloaded bits by

the user from all databases denoted by D. We define the normalized download cost

d, the normalized server-side common randomness ρS, and the normalized user-side

common randomness ρU , as

d =
D

L
, ρS =

H(RS)

L
, ρU =

H(RU)

L
(3.16)

where L is the message length. Thus, the triple (d, ρS, ρU) is said to be achievable

if all three values can be realized simultaneously by a valid achievable scheme. Our

goal in this chapter is to determine the capacity region over all achievable triples

(d, ρS, ρU).
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3.3 Main Result

We state the main result of this chapter in the following theorem which is the

capacity region for the triple (d, ρS, ρU).

Theorem 3.1 With user-side common randomness, the multi-database SPIR ca-

pacity region for N ≥ 2 and K ≥ 2 is

d ≥ 1 +
1

N
+

1

N2
+ · · ·+ 1

NK−1
(3.17)

ρS − ρU ≥ 1

N
+

1

N2
+ · · ·+ 1

NK−1
(3.18)

N − 1

N
d+ ρU ≥ 1 (3.19)

N

N − 1
ρU +NρS ≥ N

N − 1
(3.20)

Remark 3.1 The capacity region is defined in the form of a triple (d, ρS, ρU), where

d is the reciprocal of the capacity defined in [6,8], ρS is the required amount of com-

mon randomness shared among the databases relative to the message size, ρU is

the total amount of common randomness obtained by the user before the retrieval

starts relative to the message size. Theorem 3.1 gives the optimal tradeoff among

these three variables and determines the exact capacity region. There are two cor-

ner points in this capacity region. The first corner point is ( N
N−1

, 1
N−1

, 0), which is

an intersection point among (19), (20) and the implicit constraint ρU ≥ 0. The

second corner point is (1 + 1
N
+ · · · + 1

NK−1 ,
1
N
+ 1

N2 + · · · + 1
NK ,

1
NK ), which is an

intersection point among (17), (18) and (20). The achievability of the first corner
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point is provided in the existing paper [8]. The new achievability of the second cor-

ner point is introduced in Section 3.6. Furthermore, any point on the line segment

joining these two corner points can be achieved by time-sharing between these two

different schemes. Any other remaining point in the capacity region can be achieved

by adding extra common randomness at the user- and server-side simultaneously, or

by increasing the server-side common randomness and the download cost.

Remark 3.2 The right hand side of (3.17) is the optimum normalized download

cost of classical PIR, dPIR = 1 + 1
N
+ 1

N2 + · · ·+ 1
NK−1 [6]. Thus, (3.17) states that

d ≥ dPIR.

When ρU = 0, i.e., when there is no user-side common randomness, (3.19)

becomes d ≥ dSPIR, where dSPIR = N
N−1

is the optimum normalized download cost of

classical SPIR [8], (3.20) gives ρS ≥ 1
N−1

, and (3.17) and (3.18) are non-binding.

Note that dSPIR > dPIR for all N . Therefore, when ρU = 0, Theorem 3.1 reduces to

the capacity of classical SPIR [8], and it corresponds to the first corner point.

When ρU = 1
NK , both (3.17) and (3.19) become equivalent to d ≥ dPIR, and the

new SPIR download cost achieves d = dPIR. In addition, from (3.18) and (3.20), we

deduce that ρS ≥ 1
N
+ 1

N2+· · ·+ 1
NK−1+

1
NK = 1

N
dPIR, which implies that the minimum

amount of required server-side common randomness must be no smaller than the

download cost in each database with symmetry across databases. Therefore, when

ρU = 1
NK , the new SPIR download cost equals the download cost of the traditional

PIR, and it corresponds to the second corner point.

Corollary 3.1 When ρU = 0, Theorem 3.1 reduces to the capacity of classical SPIR.
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That is, d ≥ N
N−1

= dSPIR and ρS ≥ 1
N−1

= 1
N
dSPIR.

Corollary 3.2 When ρU = 1
NK , new SPIR download cost equals the download cost

of the traditional PIR, d = dPIR. The required amount of server-side common

randomness becomes ρS ≥ 1
N
dPIR.

Remark 3.3 The gap between ρS and ρU must be no smaller than a specific value

as a function of N and K as given on the right hand side of (3.18). This comes

from the database privacy constraint, where part of the common randomness, i.e.,

RS\RU , is utilized to hide the undesired messages.

Remark 3.4 From (3.20), we observe that the existence of user-side common ran-

domness can help reduce the required amount of server-side common randomness.

In fact, from Corollary 3.1, when ρU = 0, we need ρS ≥ 1
N
dSPIR, whereas from

Corollary 3.2, when ρU = 1
NK , we need ρS ≥ 1

N
dPIR. Noting that dPIR ≤ dSPIR,

the required server-side common randomness in Corollary 3.2 is smaller compared

to Corollary 3.1. For instance, for N = 2 databases and K = 2 messages, clas-

sical SPIR optimum download cost d = dSPIR = 2 is achieved by ρS = 1 [8]. In

Theorem 3.1, d = 2 can be achieved by ρS = 3
4
with ρU = 1

4
.

Remark 3.5 It is well-known that, for N = 1, classical SPIR is not feasible [8].

With user-side common randomness, single-database SPIR becomes feasible. The

following corollary states the capacity region of this case as a reduction from Theo-

rem 3.1.
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Corollary 3.3 With user-side common randomness, the single-database SPIR ca-

pacity region for N = 1 and K ≥ 2 is

d ≥ K (3.21)

ρS − ρU ≥ K − 1 (3.22)

ρU ≥ 1 (3.23)

Remark 3.6 The optimal normalized download cost for single-database PIR is d =

K [6, 32], which is achieved by downloading all messages from the database. One

of the difficulties of single-database SPIR is that downloading all messages is not a

valid SPIR scheme. Corollary 3.3 shows that single-database PIR capacity can be

achieved for single-database SPIR by means of user-side common randomness.

Remark 3.7 The first two terms in Corollary 3.3 follow from the first two terms

in Theorem 3.1. The third term in Corollary 3.3 follows from the last two terms in

Theorem 3.1 by multiplying both sides of the fourth term in Theorem 3.1 by N − 1.

Remark 3.8 Like multi-database SPIR, in the single-database SPIR as well, the

gap between ρS and ρU must be no smaller than a specific value as a function of K

as given in (3.22) to avoid information leakage on undesired messages.

Remark 3.9 From Corollary 3.3, the minimum download cost for single-database

SPIR with user-side common randomness is d = K, the minimum required server-

side common randomness is ρS = K, of which ρU = 1 must be acquired randomly

by the user.
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3.4 Motivating Examples

Example 6: We consider a single-database case N = 1, K = 3 and L = 1. We use

W1,W2 andW3 to denote the three message symbols uniformly selected from a finite

field Fq. The common randomness S1, S2 and S3 stored in the database are also three

uniformly selected symbols from Fq. Our new achievable scheme is given in Table 3.1.

In Table 3.1, we go from the table on the left hand side to the table on the right

hand side by compact denotation of the queries as q1 = [W1+S1,W2+S2,W3+S3],

q2 = [W1+S2,W2+S3,W3+S1] and q3 = [W1+S3,W2+S1,W3+S2]. This compact

notation on the right hand side table makes it more apparent that queries q1, q2, q3

are used for all user-side common randomness settings, e.g., S1, S2, S3 and for all

desired messages, e.g., W1, W2, W3, with equal probability.

RU
desired message

W1 W2 W3

S1 W1 + S1 W2 + S1 W3 + S1

W2 + S2 W3 + S2 W1 + S2

W3 + S3 W1 + S3 W2 + S3

S2 W1 + S2 W2 + S2 W3 + S2

W2 + S3 W3 + S3 W1 + S3

W3 + S1 W1 + S1 W2 + S1

S3 W1 + S3 W2 + S3 W3 + S3

W2 + S1 W3 + S1 W1 + S1

W3 + S2 W1 + S2 W2 + S2

RU
desired message
W1 W2 W3

S1 q1 q3 q2
S2 q2 q1 q3
S3 q3 q2 q1

Table 3.1: The query table for the case N = 1, K = 3, L = 1. The table on the
right denotes the query sets compactly as q1, q2 and q3.

The reliability constraint follows from the fact that the user can always decode

the desired message by using its own common randomness. The database privacy

constraint follows from the fact that the undesired messages are always mixed with
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unknown common randomness. For the user-privacy constraint, we have for all

k, k′ ∈ [3], k′ ̸= k and a random selection AU ∈
{
{1}, {2}, {3}

}
under a uniform

distribution, there exists another different A′
U ∈

{
{1}, {2}, {3}

}
, such that,

P (Q[k,AU ] = q) = P (Q[k′,A′
U ] = q) =

1

3
(3.24)

where q ∈ {q1, q2, q3}. Specifically from the point of view of the database, the same

set of queries can be invoked for any desired message Wi, i ∈ [3] with the same

probability distribution. This scheme achieves d = 3, ρU = 1 and ρS = 3, which

exactly matches the boundary of the SPIR capacity region for N = 1 and K = 3 in

Corollary 3.3.

Example 7: We consider a multi-database case N = 2, K = 2 and L = 4. We

use W1 and W2 to denote the two messages each consisting of 4 symbols that are

uniformly selected from a finite field Fq. The common randomness S1, S2 and S3

shared between the two databases are also uniformly selected symbols from Fq.

Then, we use [a1, a2, a3, a4] as a random uniform permutation of the symbols in

the first message W1, and independently, [b1, b2, b3, b4] as another random uniform

permutation of the symbols in the second message W2. Our new achievable scheme

is given in Table 3.2. Each set of queries shown in Table 3.2 (e.g., a1 + S1, b1 +

S2, a3 + b2 +S3, a2 +S1, b2 +S3, a4 + b1 +S2) is one possible choice after performing

message symbol index permutation and unknown server-side common randomness

index permutation. Due to space limitations, we use one particular permutation to

represent all possible permutation outcomes. During an actual implementation, the
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user should uniformly randomly select one random permutation out of all possible

permutations.

RU
desired message: W1 desired message: W2

DB1 DB2 DB1 DB2
S1 a1 + S1 a2 + S1 b1 + S1 b2 + S1

b1 + S2 b2 + S3 a1 + S2 a2 + S3

a3 + b2 + S3 a4 + b1 + S2 b3 + a2 + S3 b4 + a1 + S2

S2 a1 + S2 a2 + S2 b1 + S2 b2 + S2

b1 + S3 b2 + S1 a1 + S3 a2 + S1

a3 + b2 + S1 a4 + b1 + S3 b3 + a2 + S1 b4 + a1 + S3

S3 a1 + S3 a2 + S3 b1 + S3 b2 + S3

b1 + S1 b2 + S2 a1 + S1 a2 + S2

a3 + b2 + S2 a4 + b1 + S1 b3 + a2 + S2 b4 + a1 + S1

Table 3.2: The query table for the case N = 2, K = 2, L = 4.

Verification that this proposed scheme achieves reliability, user privacy and

database privacy constraints is similar to the one analyzed in Example 6. Specifically

with regard to the user privacy, for any n ∈ [2], given a random selection AU ∈{
{1}, {2}, {3}

}
under a uniform distribution, a user wishes to retrieve Wk, that

database can always find A′
U ∈

{
{1}, {2}, {3}

}
such that Q

[k′,A′
U ]

n = Q
[k,AU ]
n for all

k′ ̸= k. In other words, that database is not able to recognize the desired message

index from the query taking into consideration message symbol index permutation

and unknown server-side common randomness index permutation. This scheme

achieves d = 3
2
, ρU = 1

4
and ρS = 3

4
. This is the second corner point of the capacity

region in Theorem 3.1 where all inequalities are satisfied with equality, i.e., here

ρU = 1
NK , d = dPIR = 1 + 1

N
, and ρS = 1

N
dPIR.

Example 8: We consider a multi-database case N = 3, K = 2, L = 36 and

ρU = 1
18
. We use W1 and W2 to denote the two messages each consisting of 36
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symbols that are uniformly selected from a finite field Fq. The common randomness

S1, · · · , S17 shared among the three database are also uniformly selected symbols

from Fq. Then, We use [a1, . . . , a36] as a random uniform permutation of the sym-

bols in the first message W1, and independently, [b1, . . . , b36] as another random

uniform permutation of the symbols in the second message W2. For the first 9 bits

of the desired message after message symbol index permutation, i.e., [a1, . . . , a9], we

utilize server-side common randomness {S1, S2, S3, S4} and then our new achievable

scheme for one random selection of unknown server-side common randomness index

permutation is given in Table 3. For the next 9 bits, i.e., [a10, . . . , a18], we select

another set of server-side common randomness, e.g., {S5, S6, S7, S8}, and then use

our scheme in Table 3 once more. For the last 18 bits, we use the classical SPIR

scheme in [8].

RU
desired message: W1 desired message: W2

DB1 DB2 DB3 DB1 DB2 DB3
S1 a1 + S1 a2 + S1 a3 + S1 b1 + S1 b2 + S1 b3 + S1

b1 + S2 b2 + S3 b3 + S4 a1 + S2 a2 + S3 a3 + S4

a4 + b2 + S3 a6 + b1 + S2 a8 + b1 + S2 b4 + a2 + S3 b6 + a1 + S2 b8 + a1 + S2

a5 + b3 + S4 a7 + b3 + S4 a9 + b2 + S3 b5 + a3 + S4 b7 + a3 + S4 b9 + a2 + S3

S2 a1 + S2 a2 + S2 a3 + S2 b1 + S2 b2 + S2 b3 + S2

b1 + S3 b2 + S4 b3 + S1 a1 + S3 a2 + S4 a3 + S1

a4 + b2 + S4 a6 + b1 + S3 a8 + b1 + S3 b4 + a2 + S4 b6 + a1 + S3 b8 + a1 + S3

a5 + b3 + S1 a7 + b3 + S1 a9 + b2 + S4 b5 + a3 + S1 b7 + a3 + S1 b9 + a2 + S4

S3 a1 + S3 a2 + S3 a3 + S3 b1 + S3 b2 + S3 b3 + S3

b1 + S4 b2 + S1 b3 + S2 a1 + S4 a2 + S1 a3 + S2

a4 + b2 + S1 a6 + b1 + S4 a8 + b1 + S4 b4 + a2 + S1 b6 + a1 + S4 b8 + a1 + S4

a5 + b3 + S2 a7 + b3 + S2 a9 + b2 + S1 b5 + a3 + S2 b7 + a3 + S2 b9 + a2 + S1

S4 a1 + S4 a2 + S4 a3 + S4 b1 + S4 b2 + S4 b3 + S4

b1 + S1 b2 + S2 b3 + S3 a1 + S1 a2 + S2 a3 + S3

a4 + b2 + S2 a6 + b1 + S1 a8 + b1 + S1 b4 + a2 + S2 b6 + a1 + S1 b8 + a1 + S1

a5 + b3 + S3 a7 + b3 + S3 a9 + b2 + S2 b5 + a3 + S3 b7 + a3 + S3 b9 + a2 + S2

Table 3.3: The query table for the first 9 bits in the case N = 3, K = 2, L = 36.

We observe from Table 3.3 that, for the first 9 bits, this scheme achieves
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D = 12, H(RU) = 1 and H(RS) = 4. Doubling these, for the first 18 bits, this

scheme achieves D = 24, H(RU) = 2 and H(RS) = 8. For the last 18 bits, we

use the classical SPIR scheme in [8], which achieves D = 27, H(RU) = 0 and

H(RS) = 9. Thus, by combining these two different schemes in a time-sharing

manner, we ultimately have d = 24+27
36

= 17
12
, ρU = 2+0

36
= 1

18
, and ρS = 8+9

36
= 17

36
,

which corresponds to a point on the line segment joining the first corner point

where ρU = 0 and the second corner point where ρU = 1
9
of the capacity region in

Theorem 3.1.

3.5 Converse Proof

In this section, we provide the converse proof of Theorem 3.1. The four inequalities

in Theorem 3.1 are proved in Lemmas 3.3, 3.4, 3.9 and 3.10 below. Towards proving

these four lemmas, we need Lemmas 3.1-3.2 and Lemmas 3.5-3.8 below. We note

that Lemmas 3.1-3.2 extend [6, Lemmas 5-6], and Lemmas 3.5-3.8 extend [8, Lem-

mas 1-2, Eqn. (39)]. These extensions are needed because we have two additional

sets of random variables in our system model: RS andRU with respect to techniques

in [6], and RU with respect to techniques in [8].

Lemma 3.1 (Messages Dependence Upper Bound)

I(W2:K ;Q
[1,AU ]
1:N , A

[1,AU ]
1:N ,RS|W1) ≤ D − L (3.25)
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Proof:

I(W2:K ;Q
[1,AU ]
1:N , A

[1,AU ]
1:N ,RS|W1)

= I(W2:K ;Q
[1,AU ]
1:N , A

[1,AU ]
1:N ,RS|W1) + I(W2:K ;W1) (3.26)

= I(W2:K ;Q
[1,AU ]
1:N , A

[1,AU ]
1:N ,W1,RS) (3.27)

= I(W2:K ;Q
[1,AU ]
1:N , A

[1,AU ]
1:N ,RS) + I(W2:K ;W1|Q[1,AU ]

1:N , A
[1,AU ]
1:N ,RS) (3.28)

= I(W2:K ;Q
[1,AU ]
1:N , A

[1,AU ]
1:N ,RS) (3.29)

= I(W2:K ;A
[1,AU ]
1:N |Q[1,AU ]

1:N ,RS) + I(W2:K ;Q
[1,AU ]
1:N ,RS) (3.30)

= I(W2:K ;A
[1,AU ]
1:N |Q[1,AU ]

1:N ,RS) (3.31)

= H(A
[1,AU ]
1:N |Q[1,AU ]

1:N ,RS)−H(A
[1,AU ]
1:N |Q[1,AU ]

1:N ,W2:K ,RS) (3.32)

= H(A
[1,AU ]
1:N |Q[1,AU ]

1:N ,RS)−H(A
[1,AU ]
1:N |Q[1,AU ]

1:N ,W2:K ,RS)

−H(W1|Q[1,AU ]
1:N , A

[1,AU ]
1:N ,W2:K ,RS) (3.33)

= H(A
[1,AU ]
1:N |Q[1,AU ]

1:N ,RS)−H(W1, A
[1,AU ]
1:N |Q[1,AU ]

1:N ,W2:K ,RS) (3.34)

≤ H(A
[1,AU ]
1:N )−H(W1, A

[1,AU ]
1:N |Q[1,AU ]

1:N ,W2:K ,RS) (3.35)

≤ D −H(W1, A
[1,AU ]
1:N |Q[1,AU ]

1:N ,W2:K ,RS) (3.36)

= D −H(W1|Q[1,AU ]
1:N ,W2:K ,RS)−H(A

[1,AU ]
1:N |Q[1,AU ]

1:N ,W1,W2:K ,RS) (3.37)

= D −H(W1|Q[1,AU ]
1:N ,W2:K ,RS) (3.38)

= D − L (3.39)

where (3.26) follows from the i.i.d. message setting in the databases (3.2), (3.29)

follows from the reliable decoding of the first message (3.9), (3.31) follows from the
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independence of the message set (3.5) and the independent query generation (3.7),

(3.33) follows from the reliable decoding of the first message (3.9) again, (3.38)

follows from the truthful deterministic answer generation at each database (3.8),

(3.39) follows from the joint application of (3.1), (3.2), (3.5) and (3.7). ■

Lemma 3.2 (Messages Dependence Lower Bound)

I(Wk:K ;Q
[k−1,AU ]
1:N , A

[k−1,AU ]
1:N ,RS|W1:k−1)

≥ 1

N
I(Wk+1:K ;Q

[k,A′
U ]

1:N , A
[k,A′

U ]

1:N ,RS|W1:k) +
L

N
, ∀k ∈ [2 : K] (3.40)

Proof:

NI(Wk:K ;Q
[k−1,AU ]
1:N , A

[k−1,AU ]
1:N ,RS|W1:k−1)

≥
N∑

n=1

I(Wk:K ;Q
[k−1,AU ]
n , A[k−1,AU ]

n ,RS|W1:k−1) (3.41)

=
N∑

n=1

I(Wk:K ;Q
[k,A′

U ]
n , A

[k,A′
U ]

n ,RS|W1:k−1) (3.42)

≥
N∑

n=1

I(Wk:K ;A
[k,A′

U ]
n |Q[k,A′

U ]
n ,W1:k−1,RS) (3.43)

=
N∑

n=1

(
H(A

[k,A′
U ]

n |Q[k,A′
U ]

n ,W1:k−1,RS)−H(A
[k,A′

U ]
n |Q[k,A′

U ]
n ,W1:K ,RS)

)
(3.44)

=
N∑

n=1

H(A
[k,A′

U ]
n |Q[k,A′

U ]
n ,W1:k−1,RS) (3.45)

≥
N∑

n=1

H(A
[k,A′

U ]
n |Q[k,A′

U ]

1:N , A
[k,A′

U ]
1:n−1 ,W1:k−1,RS) (3.46)

=
N∑

n=1

(
H(A

[k,A′
U ]

n |Q[k,A′
U ]

1:N , A
[k,A′

U ]
1:n−1 ,W1:k−1,RS)

94



−H(A
[k,A′

U ]
n |Q[k,A′

U ]

1:N , A
[k,A′

U ]
1:n−1 ,W1:K ,RS)

)
(3.47)

=
N∑

n=1

I(Wk:K ;A
[k,A′

U ]
n |Q[k,A′

U ]

1:N , A
[k,A′

U ]
1:n−1 ,W1:k−1,RS) (3.48)

= I(Wk:K ;A
[k,A′

U ]

1:N |Q[k,A′
U ]

1:N ,W1:k−1,RS) (3.49)

= I(Wk:K ;A
[k,A′

U ]

1:N |Q[k,A′
U ]

1:N ,W1:k−1,RS) + I(Wk:K ;Q
[k,A′

U ]

1:N |W1:k−1,RS) (3.50)

= I(Wk:K ;Q
[k,A′

U ]

1:N , A
[k,A′

U ]

1:N |W1:k−1,RS) (3.51)

= I(Wk:K ;Q
[k,A′

U ]

1:N , A
[k,A′

U ]

1:N |W1:k−1,RS) + I(Wk:K ;Wk|Q[k,A′
U ]

1:N , A
[k,A′

U ]

1:N ,W1:k−1,RS)

(3.52)

= I(Wk:K ;Q
[k,A′

U ]

1:N , A
[k,A′

U ]

1:N ,Wk|W1:k−1,RS) (3.53)

= I(Wk:K ;Wk|W1:k−1,RS) + I(Wk:K ;Q
[k,A′

U ]

1:N , A
[k,A′

U ]

1:N |W1:k,RS) (3.54)

= L+ I(Wk:K ;Q
[k,A′

U ]

1:N , A
[k,A′

U ]

1:N |W1:k,RS) (3.55)

= I(Wk+1:K ;Q
[k,A′

U ]

1:N , A
[k,A′

U ]

1:N |W1:k,RS)

+ I(Wk;Q
[k,A′

U ]

1:N , A
[k,A′

U ]

1:N |W1:k,Wk+1:K ,RS) + L (3.56)

= I(Wk+1:K ;Q
[k,A′

U ]

1:N , A
[k,A′

U ]

1:N |W1:k,RS) + L (3.57)

= I(Wk+1:K ;Q
[k,A′

U ]

1:N , A
[k,A′

U ]

1:N |W1:k,RS) + I(Wk+1:K ;RS|W1:k) + L (3.58)

= I(Wk+1:K ;Q
[k,A′

U ]

1:N , A
[k,A′

U ]

1:N ,RS|W1:k) + L (3.59)

where (3.42) follows from the application of user-privacy (3.10), (3.45) and (3.47)

both follow from truthful deterministic answer generation by each database (3.8),

(3.50) follows from (3.2), (3.5) and (3.7), (3.52) follows from reliability constraint

(3.9), (3.55) follows from (3.1), (3.2) and (3.5), (3.58) follows from (3.2) and (3.5)

again. Dividing both sides by N completes the proof. ■
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Lemma 3.3 (Minimal download cost d)

d ≥ 1 +
1

N
+

1

N2
+ · · ·+ 1

NK−1
(3.60)

Proof: Following steps similar to [6, Eqns. (62)-(67)] for Lemma 3.2, we obtain

I(W2:K ;Q
[1,AU ]
1:N , A

[1,AU ]
1:N ,RS|W1) ≥

(
1

N
+

1

N2
+ · · ·+ 1

NK−1

)
L (3.61)

Combining the upper bound in Lemma 3.1 and the lower bound in (3.61) completes

the proof. ■

Lemma 3.4 (Minimal difference between ρS and ρU)

ρS − ρU ≥ 1

N
+

1

N2
+ · · ·+ 1

NK−1
(3.62)

Proof: From (3.61), we have,

I(W2:K ;Q
[1,AU ]
1:N , A

[1,AU ]
1:N ,RS|W1)

= H(W2:K |W1)−H(W2:K |Q[1,AU ]
1:N , A

[1,AU ]
1:N ,W1,RS) (3.63)

= (K − 1)L−H(W2:K |Q[1,AU ]
1:N , A

[1,AU ]
1:N ,W1,RS) (3.64)

≥
(

1

N
+

1

N2
+ · · ·+ 1

NK−1

)
L (3.65)
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Thus, we obtain,

H(W2:K |Q[1,AU ]
1:N , A

[1,AU ]
1:N ,W1,RS) ≤ (K − 1)L−

(
1

N
+

1

N2
+ · · ·+ 1

NK−1

)
L

(3.66)

Next, we have the following upper bound,

I(W2:K ;RS\RU |Q[1,AU ]
1:N , A

[1,AU ]
1:N ,W1,RU)

= H(RS\RU |Q[1,AU ]
1:N , A

[1,AU ]
1:N ,W1,RU)−H(RS\RU |Q[1,AU ]

1:N , A
[1,AU ]
1:N ,W1:K ,RU)

(3.67)

≤ H(RS\RU |Q[1,AU ]
1:N , A

[1,AU ]
1:N ,W1,RU) (3.68)

= H(RS\RU) (3.69)

= H(RS)−H(RU) (3.70)

where (3.69) follows from the presumed independence of the remaining common

randomness among the databases when the retrieval is complete (3.15).

In addition, we have the following lower bound,

I(W2:K ;RS\RU |Q[1,AU ]
1:N , A

[1,AU ]
1:N ,W1,RU)

= H(W2:K |Q[1,AU ]
1:N , A

[1,AU ]
1:N ,W1,RU)−H(W2:K |Q[1,AU ]

1:N , A
[1,AU ]
1:N ,W1,RS) (3.71)

= (K − 1)L−H(W2:K |Q[1,AU ]
1:N , A

[1,AU ]
1:N ,W1,RS) (3.72)

≥ (K − 1)L− (K − 1)L+

(
1

N
+

1

N2
+ · · ·+ 1

NK−1

)
L (3.73)
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=

(
1

N
+

1

N2
+ · · ·+ 1

NK−1

)
L (3.74)

where (3.72) follows from the database privacy constraint (3.14) in the realization

of k = 1 and reliability constraint (3.9), and (3.73) follows from (3.66).

Combining (3.70) and (3.74) yields the desired result. ■

Lemma 3.5 (Different Indices Effect on the Same Message)

H(A
[k′,A′

U ]
n |Q[k′,A′

U ]
n ,Wk,R′

U)−H(A[k,AU ]
n |Q[k,AU ]

n ,Wk,RU) ≤ H(RU), ∀k′ ̸= k

(3.75)

Proof: From the user privacy constraint (3.10), we have,

H(Wk|Q[k,AU ]
n , A[k,AU ]

n ,RU) = H(Wk|Q[k′,A′
U ]

n , A
[k′,A′

U ]
n ,RU) (3.76)

From the deterministic queries relying on the retrieval strategy (3.6), database pri-

vacy constraint (3.14), and the fact Wk ∈ Wk̄′ , we have,

0 = I(Wk̄′ ;Q
[k′,A′

U ]

1:N , A
[k′,A′

U ]

1:N ,R′
U) (3.77)

= I(Wk;Q
[k′,A′

U ]

1:N , A
[k′,A′

U ]

1:N ,R′
U) (3.78)

= I(Wk;Q
[k′,A′

U ]
n , A

[k′,A′
U ]

n |R′
U) (3.79)

= H(Wk|Q[k′,A′
U ]

n , A
[k′,A′

U ]
n )−H(Wk|Q[k′,A′

U ]
n , A

[k′,A′
U ]

n ,R′
U) (3.80)
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Using the equations derived above, we derive an upper bound for the following term,

H(Wk|Q[k′,A′
U ]

n , A
[k′,A′

U ]
n ,R′

U)−H(Wk|Q[k,AU ]
n , A[k,AU ]

n ,RU)

= H(Wk|Q[k′,A′
U ]

n , A
[k′,A′

U ]
n )−H(Wk|Q[k′,A′

U ]
n , A

[k′,A′
U ]

n ,RU) (3.81)

= I(Wk;RU |Q[k′,A′
U ]

n , A
[k′,A′

U ]
n ) (3.82)

= H(RU |Q[k′,A′
U ]

n , A
[k′,A′

U ]
n )−H(RU |Q[k′,A′

U ]
n , A

[k′,A′
U ]

n ,Wk) (3.83)

≤ H(RU |Q[k′,A′
U ]

n , A
[k′,A′

U ]
n ) (3.84)

≤ H(RU) (3.85)

where (3.81) follows from (3.76) and (3.80). This is different from the equivalence

H(Wk|Q[k′]
n , A

[k′]
n ) = H(Wk|Q[k]

n , A
[k]
n ) in the SPIR problem without user-side com-

mon randomness and it leads to the difference between our Lemma 3.5 and [8,

Lemma 1].

Once again from the user privacy constraint (3.10), we have,

H(Q[k,AU ]
n , A[k,AU ]

n ,RS) = H(Q
[k′,A′

U ]
n , A

[k′,A′
U ]

n ,RS) (3.86)

which is gives the following equality,

H(RS\RU |Q[k,AU ]
n , A[k,AU ]

n ,RU) +H(Q[k,AU ]
n , A[k,AU ]

n ,RU)

= H(RS\R′
U |Q

[k′,A′
U ]

n , A
[k′,A′

U ]
n ,R′

U) +H(Q
[k′,A′

U ]
n , A

[k′,A′
U ]

n ,R′
U) (3.87)

Noting the independence of the remaining common randomness among the databases
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after the retrieval process (3.15), thus, we have,

H(RS\RU) +H(Q[k,AU ]
n , A[k,AU ]

n ,RU) = H(RS\R′
U) +H(Q

[k′,A′
U ]

n , A
[k′,A′

U ]
n ,R′

U)

(3.88)

which leads to

H(Q[k,AU ]
n , A[k,AU ]

n ,RU) = H(Q
[k′,A′

U ]
n , A

[k′,A′
U ]

n ,R′
U) (3.89)

Likewise, without taking into consideration the answers, we also have,

H(Q[k,AU ]
n ,RU) = H(Q

[k′,A′
U ]

n ,R′
U) (3.90)

As a consequence, we derive the following relation by utilizing the independent

message set (3.5) and also deterministic queries (3.6),

H(Q[k,AU ]
n ,Wk,RU) = H(Q[k,AU ]

n ,RU) +H(Wk) (3.91)

= H(Q
[k′,A′

U ]
n ,R′

U) +H(Wk) (3.92)

= H(Q
[k′,A′

U ]
n ,Wk,R′

U) (3.93)

Now, we are ready to prove the Lemma 3.5,

H(A[k,AU ]
n |Q[k,AU ]

n ,Wk,RU)

= H(Q[k,AU ]
n , A[k,AU ]

n ,Wk,RU)−H(Q[k,AU ]
n ,Wk,RU) (3.94)
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= H(Wk|Q[k,AU ]
n , A[k,AU ]

n ,RU) +H(Q[k,AU ], A[k,AU ]
n ,RU)−H(Q[k,AU ]

n ,Wk,RU)

(3.95)

≥ H(Wk|Q[k′,A′
U ]

n , A
[k′,A′

U ]
n ,R′

U)−H(RU) +H(Q[k,AU ]
n , A[k,AU ]

n ,RU)

−H(Q[k,AU ]
n ,Wk,RU) (3.96)

= H(Wk|Q[k′,A′
U ]

n , A
[k′,A′

U ]
n ,R′

U) +H(Q
[k′,A′

U ]
n , A

[k′,A′
U ]

n ,R′
U)

−H(Q
[k′,A′

U ]
n ,Wk,A′

U)−H(RU) (3.97)

= H(Q
[k′,A′

U ]
n , A

[k′,A′
U ]

n ,Wk,A′
U)−H(Q

[k′,A′
U ]

n ,Wk,A′
U)−H(RU) (3.98)

= H(A
[k′,A′

U ]
n |Q[k′,A′

U ]
n ,Wk,A′

U)−H(RU) (3.99)

where (3.96) follows from (3.85), and (3.97) follows from (3.89) and (3.93). ■

Lemma 3.6 (Symmetry)

H(A[k,AU ]
n |Q[k,AU ]

n ,RU) = H(A
[k′,A′

U ]
n |Q[k′,A′

U ]
n ,R′

U), ∀k′ ̸= k (3.100)

Proof: The proof of Lemma 3.6 follows from (3.89) and (3.90). ■

Lemma 3.7 (Effect of conditioning on retrieval strategy randomness)

H(A[k,AU ]
n |F , Q[k,AU ]

n ,Wk,RU) = H(A[k,AU ]
n |Q[k,AU ]

n ,Wk,RU) (3.101)

Proof: We prove Lemma 3.7 by showing that the following conditional mutual
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information is non-positive and thus is zero,

I(A[k,AU ]
n ;F|Q[k,AU ]

n ,Wk,RU)

≤ I(A[k,AU ]
n ,W1:K ,RS\RU ;F|Q[k,AU ]

n ,Wk,RU) (3.102)

= I(W1:K ,RS\RU ;F|Q[k,AU ]
n ,Wk,RU) + I(A[k,AU ]

n ;F|Q[k,AU ]
n ,W1:K ,RS)

(3.103)

= I(W1:K ,RS\RU ;F|Q[k,AU ]
n ,Wk,RU) (3.104)

≤ I(W1:K ,RS\RU ;F|Q[k,AU ]
n ,Wk,RU) + I(Wk;F|Q[k,AU ]

n ,RU) (3.105)

= I(W1:K ,RS\RU ;F|Q[k,AU ]
n ,RU) (3.106)

≤ I(W1:K ,RS\RU ;F , Q[k,AU ]
n ,RU) (3.107)

= I(RS\RU ;F , Q[k,AU ]
n ,RU) + I(W1:K ;F , Q[k,AU ]

n ,RU |RS\RU) (3.108)

= I(RS\RU ;F , Q[k,AU ]
n ,RU) +H(W1:K |RS\RU)−H(W1:K |F , Q[k,AU ]

n ,RS)

(3.109)

= I(RS\RU ;F , Q[k,AU ]
n ,RU) +H(W1:K)−H(W1:K) (3.110)

= I(RS\RU ;F , Q[k,AU ]
n ,RU) (3.111)

= H(RS\RU)−H(RS\RU |F , Q[k,AU ]
n ,RU) (3.112)

= H(RS\RU)−H(RS\RU) (3.113)

= 0 (3.114)

where (3.104) follows from the fact that the answer is a deterministic function of the

corresponding query, message set and server-side common randomness (3.8), (3.110)
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follows from the independence of message set (3.5) and the query is a deterministic

function of the realization of retrieval strategy randomness (3.6), and (3.113) follows

from the independence of the remaining common randomness among the databases

(3.15) and (3.6). ■

Lemma 3.8 (Effect of conditioning on an undesired message)

H(A
[k′,A′

U ]
n |Q[k′,A′

U ]
n ,R′

U) = H(A
[k′,A′

U ]
n |Q[k′,A′

U ]
n ,Wk,R′

U), ∀k′ ̸= k (3.115)

Proof: From the database privacy constraint (3.14) and noting that Wk ∈ Wk̄′ , we

have,

0 = I(Wk̄′ ;Q
[k′,A′

U ]

1:N , A
[k′,A′

U ]

1:N ,R′
U) (3.116)

= I(Wk;Q
[k′,A′

U ]

1:N , A
[k′,A′

U ]

1:N ,R′
U) (3.117)

= I(A
[k′,A′

U ]
n ;Wk|Q[k′,A′

U ]
n ,R′

U) (3.118)

= H(A
[k′,A′

U ]
n |Q[k′,A′

U ]
n ,R′

U)−H(A
[k′,A′

U ]
n |Q[k′,A′

U ]
n ,Wk,A′

U) (3.119)

which is the desired result. ■

Lemma 3.9 (Minimal bound for d and ρU)

N − 1

N
d+ ρU ≥ 1 (3.120)
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Proof: Starting from the message length assumption (3.1),

L = H(Wk) (3.121)

= H(Wk|F ,RU) (3.122)

= H(Wk|F ,RU)−H(Wk|F , A[k,AU ]
1:N ,RU) (3.123)

= I(Wk;A
[k,AU ]
1:N |F ,RU) (3.124)

= H(A
[k,AU ]
1:N |F ,RU)−H(A

[k,AU ]
1:N |F ,Wk,RU) (3.125)

= H(A
[k,AU ]
1:N |F ,RU)−H(A[k,AU ]

n |F , Q[k,AU ]
n ,Wk,RU) (3.126)

= H(A
[k,AU ]
1:N |F ,RU)−H(A[k,AU ]

n |Q[k,AU ]
n ,Wk,RU) (3.127)

≤ H(A
[k,AU ]
1:N |F ,RU)−H(A

[k′,A′
U ]

n |Q[k′,A′
U ]

n ,Wk,R′
U) +H(RU) (3.128)

= H(A
[k,AU ]
1:N |F ,RU)−H(A

[k′,A′
U ]

n |Q[k′,A′
U ]

n ,R′
U) +H(RU) (3.129)

= H(A
[k,AU ]
1:N |F ,RU)−H(A[k,AU ]

n |Q[k,AU ]
n ,RU) +H(RU) (3.130)

≤ H(A
[k,AU ]
1:N |F ,RU)−H(A[k,AU ]

n |F ,RU) +H(RU) (3.131)

where (3.122) follows from independence of the message set (3.5), (3.123) follows

from the reliable decoding of message Wk, (3.126) and (3.131) both follow from the

fact that each query is determined by the retrieval strategy (3.6), (3.127) follows

from Lemma 3.7, (3.128) follows from Lemma 3.5, (3.129) follows from Lemma 3.8,

(3.130) follows from Lemma 3.6.

By summing (3.131) over all n ∈ [1 : N ], we obtain the following relationship,

NL ≤ NH(A
[k,AU ]
1:N |F ,RU)−

N∑
n=1

H(A[k,AU ]
n |F ,RU) +NH(RU) (3.132)
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≤ (N − 1)H(A
[k,AU ]
1:N |F ,RU) +NH(RU) (3.133)

≤ (N − 1)
N∑

n=1

H(A[k,AU ]
n |F ,RU) +NH(RU) (3.134)

≤ (N − 1)D +NH(RU) (3.135)

which completes the proof. ■

Lemma 3.10 (Minimal bound for ρU and ρS)

N

N − 1
ρU +NρS ≥ N

N − 1
(3.136)

Proof: Starting with the database privacy constraint (3.14),

0 = I(Wk̄;F , A[k,AU ]
1:N ,RU) (3.137)

= I(Wk̄;A
[k,AU ]
1:N ,RU |F) (3.138)

= I(Wk̄;A
[k,AU ]
1:N ,RU |F) + I(Wk̄;Wk|F , A[k,AU ]

1:N ,RU) (3.139)

= I(Wk̄;A
[k,AU ]
1:N ,Wk,RU |F) (3.140)

= I(Wk̄;A
[k,AU ]
1:N |F ,Wk,RU) + I(Wk̄;Wk,RU |F) (3.141)

= I(Wk̄;A
[k,AU ]
1:N |F ,Wk,RU) (3.142)

≥ I(Wk̄;A
[k,AU ]
n |F ,Wk,RU) (3.143)

= H(A[k,AU ]
n |F ,Wk,RU)−H(A[k,AU ]

n |F ,W1:K ,RU) +H(A[k,AU ]
n |F ,W1:K ,RS)

(3.144)
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≥ H(A[k,AU ]
n |F ,Wk,RU)−H(A[k,AU ]

n |F ,W1:K ,RU) +H(A[k,AU ]
n |F ,W1:K ,RS,RU)

(3.145)

= H(A[k,AU ]
n |F ,Wk,RU)− I(A[k,AU ]

n ;RS|F ,W1:K ,RU) (3.146)

= H(A[k,AU ]
n |F ,Wk,RU)−H(RS|F ,W1:K ,RU) +H(RS|F , A[k,AU ]

n ,W1:K ,RU)

(3.147)

≥ H(A[k,AU ]
n |F ,Wk,RU)−H(RS|F ,Wk,RU) (3.148)

= H(A[k,AU ]
n |F ,Wk,RU)−H(RU ,RS\RU |F ,Wk,RU) (3.149)

= H(A[k,AU ]
n |F ,Wk,RU)−H(RS\RU |F ,Wk,RU) (3.150)

= H(A[k,AU ]
n |F ,Wk,RU)−H(RS\RU) (3.151)

= H(A[k,AU ]
n |F , Q[k,AU ]

n ,Wk,RU)−H(RS) +H(RU) (3.152)

= H(A[k,AU ]
n |Q[k,AU ]

n ,RU)−H(RS) (3.153)

where (3.139) follows from the reliability constraint (3.9), (3.142) follows from (3.2)

and (3.5), (3.144) follows from the deterministic answer generation by each database

(3.8) and (3.6), (3.151) follows from the independent remaining common randomness

among the databases (3.15), (3.152) follows from the deterministic queries relying

on the retrieval strategy (3.6), and (3.153) follows from the steps between (3.127)-

(3.130) by applying Lemma 3.5 through Lemma 3.8 again.

By summing (3.153) over all n ∈ [1 : N ], we obtain the following relationship,

0 ≥
N∑

n=1

H(A[k,AU ]
n |Q[k,AU ]

n ,RU)−NH(RS) (3.154)
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≥ H(A
[1,AU ]
1:N |F , Q[1,AU ]

n ,RU)−NH(RS) (3.155)

= H(A
[1,AU ]
1:N |F ,RU)−NH(RS) (3.156)

≥ N

N − 1
L− N

N − 1
H(RU)−NH(RS) (3.157)

where (3.157) follows from (3.133), completing the proof. ■

3.6 Achievability Proof

Following the critical idea in [113], our new achievable scheme corresponding to the

second corner point in Theorem 3.1 is based on the principle of converting a given

PIR scheme into a valid SPIR scheme using the server-side and user-side common

randomness in a manner that does not compromise the download cost. To that

end, given any existing information-theoretic PIR achievable scheme, we add a new

distinct common randomness to each message symbol. The common randomness

added to the desired symbols are substracted out as they are available at the user

side, and the remaining common randomness unknown to the user are used to

protect the undesired messages. There are two main challenges to constructing

such an achievable scheme: first is to simultaneously reduce the amount of required

server-side and user-side common randomness to the extent possible, and second is

to implement this achievable scheme for all possible user-side common randomness

realizations which are unknown ahead of time. By means of converting the PIR

scheme in [6] to a corresponding valid SPIR scheme, our proposed new achievable

scheme consists of the following steps:
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1. Initial PIR query generation: For given N and K, generate an initial PIR

query table for each desired message using the scheme in [6], e.g., Tables 3.1-

3.3 without common randomness Si’s.

2. Server-side common randomness assignment: Mix all 1-sum symbols from the

desired message across all the databases with the same new common ran-

domness. We call it seed common randomness (e.g., S1 in first three rows of

Table 3.2). Assign a new distinct common randomness to every 1-sum symbol

from the undesired messages. For every k-sum symbol containing a desired

message symbol, mix it with the common randomness from the (k−1)-sum

symbol having the same k−1 undesired message symbols queried at another

database. For every k-sum symbol not containing any desired message sym-

bol, assign a new distinct common randomness. Repeat this until k reaches

K. We call this whole modified query table a query cell.3

3. Server-side common randomness cycling: While keeping each query cell, create

a new one by adding 1 (mod |A|) to each common randomness index (e.g., S1

becomes S2 in Table 3.2). Repeat it |A| times such that each query cell has a

different seed common randomness index.

4. Query cell determination: The user has |AU | server-side common randomness.

The user determines the query cell to be invoked, and selects a random per-

mutation within that cell, by matching its user-side common randomness to

3As we did in Example 7, in this step and next step, we use one particular permutation to
represent all possible permutation outcomes coming from message symbol index permutation and
unknown server-side common randomness index permutation. We do not show all possible permu-
tations for simplicity.
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the seed common randomness of the cell.

Reliability: The reliability follows from the reliability of the PIR achievable

scheme in [6]. One of the desired message symbols is coupled with a common

randomness that is known to the user in advance. The other desired message symbols

are coupled with interference that are downloaded from other databases.

User Privacy: From the perspective of each database, the same query can

be adopted for any desired message with equal probability. Specifically, as in (3.13),

for any n ∈ [N ], any k ∈ [K], any provided AU , any selected query q, we always

have P (Q
[k,AU ]
n = q) being a constant, which does not depend on the realizations of

n, k, AU and q.

Database Privacy: From the perspective of the user, every undesired mes-

sage symbol is always mixed with some unknown common randomness. As a result,

no information about undesired message is leaked to the user.

Performance: We compute the performance of the proposed achievable

scheme with regard to ρS, ρU and d. As in [6], the message length L is NK ,4 and d

is 1 + 1
N
+ 1

N2 + · · ·+ 1
NK−1 because the total number of downloaded symbols across

all the databases does not change. Combining the first statement of [6, Lemma 1]

and our assignment of server-side common randomness in step 2, we calculate the

4In Examples 6-7, the message length is strictly L = NK . However, in Example 8, we note that
the classical SPIR scheme achieving dSPIR in [8] requires the message length to be a multiple of
N−1 = 2, and our new SPIR scheme achieving dPIR requires the message length to be a multiple of
NK = 9. In order to execute an appropriate half-to-half time-sharing between these two different
schemes, we set the overall message length to be 36.
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value of |A|,

|A| = 1 +N ·
K−1∑
k=1

(N − 1)k−1

(
K − 1

k

)
(3.158)

= 1 +
N

N − 1
·
K−1∑
k=1

(N − 1)k
(
K − 1

k

)
(3.159)

= 1 +
N

N − 1
·
(

K−1∑
k=0

(
K − 1

k

)
(N − 1)k1K−1−k − 1

)
(3.160)

= 1 +
N

N − 1
·
(
(N − 1 + 1)K−1 − 1

)
(3.161)

= 1 +
N

N − 1
· (NK−1 − 1) (3.162)

=
NK − 1

N − 1
(3.163)

= 1 + · · ·+NK−1 (3.164)

which implies that ρS = H(RS)
L

= |A|
L

is 1
N
+· · ·+ 1

NK since L = NK . The total amount

of required user-side common randomness |AU | is 1 since the user only has one seed

common randomness before the retrieval takes place. Thus, ρU = H(RU )
L

= |AU |
L

is

1
NK since L = NK .

3.7 Conclusion

In this chapter, we considered SPIR which is a fundamental primitive in cryptogra-

phy, as an essential building block in many cryptographic applications, such as OT,

secure multi-party computation and zero knowledge proofs. Single-database SPIR

could be critical in applications where colluding of all databases cannot be ruled out.

Further, side-information and/or cached information is a useful dimension to explore
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to improve private download rates. Hence, we introduced an extended version of the

SPIR problem, where the user randomly fetches a portion of the available shared

common randomness at the databases. This fetched database common randomness

can be viewed as a form of side-information at the user. We showed that this side-

information increases the SPIR rate, and it can increase it to the level of PIR rate.

Since single-database SPIR is infeasible while single-database PIR is feasible, the

proposed non-trivial use of user-side common randomness makes single-database

SPIR feasible. Finally, we determined the exact capacity region of the download

cost, database-side common randomness, and user-side common randomness. Open

problems include considering upload cost together with download cost in this sys-

tem and encoding user-side and server-side common randomness as in the coded

PIR problem.
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CHAPTER 4

Multi-Party Private Set Intersection: An Information-

Theoretic Approach

4.1 Introduction

In this chapter, we investigate the problem of MP-PSI. In particular, there are M

parties, each storing a data set Pi over Ni replicated and non-colluding databases,

and we want to calculate the intersection of the data sets ∩M
i=1Pi without leaking any

information beyond the set intersection to any of the parties. We consider a specific

communication protocol where one of the parties, called the leader party, initiates

the MP-PSI protocol by sending queries to the remaining parties which are called

client parties. The client parties are not allowed to communicate with each other.

We propose an information-theoretic scheme that privately calculates the intersec-

tion ∩M
i=1Pi with a download cost of D = mint∈{1,··· ,M}

∑
i∈{1,···M}\t

⌈
|Pt|Ni

Ni−1

⌉
. Similar

to the two-party PSI problem, our scheme builds on the connection between the PSI

problem and the MM-SPIR problem. Our scheme is a non-trivial generalization of

the two-party PSI scheme as it needs an intricate design of the shared common ran-

domness among the client parties before the MP-PSI process starts. Interestingly,
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by means of this auxiliary randomness data, in terms of the download cost, our

scheme does not incur any penalty due to the more stringent privacy constraints in

the MP-PSI problem compared to the two-party PSI problem.

4.2 Problem Formulation

Consider a setting where there are M independent parties1, denoted by Pi, i =

1, 2, · · · ,M . The ith party possesses a data set Pi for i ∈ [1 : M ]. The data set Pi

is stored within Ni replicated and non-colluding databases2. Given that K is large

enough, the elements in each data set Pi are picked independently from a finite

set SK of cardinality K with an arbitrary statistical distribution3. More specifically,

before the data sets generation, the data sets Pi, i ∈ [1 :M ] are all random variables

and they are mutually independent. We assume that the cardinality of data set |Pi|

is public knowledge.

Motivated by the relation between 2-party PSI and MM-SPIR in [72], the ith

party maps its data set Pi into a searchable list to facilitate PIR. To that end,

the party Pi constructs an incidence vector Xi, which is a binary vector of size K

1In this work, we only consider semi-honest (honest but curious) parties in the sense that
parties exactly follow the prescribed scheme but curious to learn more about the others. MP-PSI
under malicious/adversarial attacks and in the presence of dishonest parties is an interesting future
direction that is outside the scope of this work.

2We note that the multi-server assumption exists in almost all information-theoretic PIR lit-
erature. In practice, the data content may be distributed to the databases by a central content
generator who does not communicate directly with other parties, i.e., does not have access to the
exchanged queries. The databases do not have any direct communication links among each other
and they update their content by downloading the data from the content generator. Hence, in this
setting, the databases are replicated but not colluding.

3The presented achievability scheme works for any data set generation model and even for
distribution-free data sets. The specific data set generation model in the 2-party PSI problem
in [72] was introduced only for settling the converse.
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associated with the data set Pi for all i ∈ [1 :M ], such that

Xi,j =


1, j ∈ Pi

0, j /∈ Pi

(4.1)

where Xi,j is the jth element of Xi for all j ∈ SK . Note that Xi is a sufficient

statistic for Pi for a given K. Hence, the MP-PSI determination is performed over

Xi instead of Pi.

We consider a specific communication protocol in this work. The parties agree

on a leader party, which sends queries to the remaining parties and eventually

calculates the desired intersection ∩M
i=1Pi. The remaining parties are called client

parties. Without loss of generality, assume that the leader party is PM . The leader

party PM sends the query Q
[PM ]
i,j to the jth database in the client party Pi for all

i ∈ [1 : M − 1] and j ∈ [1 : Ni]. Since PM has no information about data set Pi

before the communication, the generated queries Q
[PM ]
i,j are independent from Pi.

Hence,

I(Q
[PM ]
i,j ;Pi) = 0, ∀i ∈ [1 :M − 1], ∀j ∈ [1 : Ni] (4.2)

The jth database associated with the client party Pi responds truthfully with

an answer A
[PM ]
i,j for all i ∈ [1 :M−1], and j ∈ [1 : Ni]. The answer is a deterministic

function of the query Q
[PM ]
i,j , the data set Pi, and some common randomness4 Ri,j

4We note that the common randomness (key) exchange is an interesting stand-alone problem
that is outside the scope of this chapter. One practical solution to this problem in our setting
is to have an external helper, who generates and shares the common randomness prior to the
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that is available to the jth database of Pi. Thus,

H(A
[PM ]
i,j |Q[PM ]

i,j ,Pi,Ri,j) = 0, ∀i ∈ [1 :M − 1], ∀j ∈ [1 : Ni] (4.3)

Let us denote all the queries generated by PM asQ
[PM ]
1:M−1,1:Ni

and all the answers

collected by PM as A
[PM ]
1:M−1,1:Ni

, i.e.,

Q
[PM ]
1:M−1,1:Ni

=
{
Q

[PM ]
i,j : i ∈ [1 :M − 1], j ∈ [1 : Ni]

}
(4.4)

A
[PM ]
1:M−1,1:Ni

=
{
A

[PM ]
i,j : i ∈ [1 :M − 1], j ∈ [1 : Ni]

}
(4.5)

Three formal requirements are needed to be satisfied for the MP-PSI problem:

First, the leader party PM should be able to reliably determine the intersec-

tion P = ∩M
i=1Pi based on Q

[PM ]
1:M−1,1:Ni

, A
[PM ]
1:M−1,1:Ni

and the knowledge of PM without

knowing |P| in advance. This is captured by the following MP-PSI reliability con-

straint,

[MP-PSI reliability] H(P|Q[PM ]
1:M−1,1:Ni

, A
[PM ]
1:M−1,1:Ni

,PM) = 0 (4.6)

Second, the queries sent by PM should not leak any information about PM

except the cardinality of PM to any individual database. Thus, PM should be

independent of all the information available in the jth database of Pi for all i ∈
MP-PSI determination process. The external helper is not involved in the MP-PSI process itself,
i.e., it does not observe the queries or the answers. In this case, the client parties do not need to
communicate with each other to exchange the common randomness and there is no leakage from
their queries/answers to the external helper. We note that the SPIR problem [8] (and by extension
our scheme) is infeasible if no common randomness exists.
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[1 : M − 1] and j ∈ [1 : Ni]. This is described by the following leader’s privacy

constraint,

[Leader’s privacy] I(PM ;Q
[PM ]
i,j , A

[PM ]
i,j ,Pi,Ri,j) = 0, ∀i ∈ [1 :M − 1], ∀j ∈ [1 : Ni]

(4.7)

Note that the communication between any two client parties is not allowed in our

protocol. This implies that the party Pi is not able to get any information about

the remaining M − 2 client parties. Thus, the mutual independence required by the

problem formulation is thereby satisfied from the perspective of the party Pi.

Third, client’s privacy requires that the leader party does not learn any infor-

mation other than the intersection P from the collected answer strings. Let Xi,P̄ be

the set of elements in Xi that do not belong to P , i.e., Xi,P̄ = {Xi,k : k ∈ P̄}. Hence,

the set
{
X1,P̄ , · · · , XM−1,P̄

}
=
{
X1,k, · · · , XM−1,k, k ∈ P̄

}
should be independent of

all the information available in PM . Note that if an element in PM is not in the inter-

section P , the leader party is supposed to conclude that not all the client parties con-

tain this element simultaneously. On the basis of this fact, we define a new set XP̄ ={
{X1,P̄ , · · · , XM−1,P̄} : X1,k + · · ·+XM−1,k < M − 1,∀k ∈ PM ∩ P̄}

}
, we have the

following client’s privacy constraint,

[Client’s privacy] I(XP̄ ;Q
[PM ]
1:M−1,1:Ni

, A
[PM ]
1:M−1,1:Ni

,PM) = 0 (4.8)

For a given field size K and individual parties with associated databases, an

MP-PSI achievability scheme is a scheme that satisfies the MP-PSI reliability con-
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straint (4.6), the leader’s privacy constraint (4.7) and the client’s privacy constraint

(4.8). The efficiency of an achievable MP-PSI scheme is measured by its download

cost5 which is the number of downloaded bits (denoted by D) by one of the parties

in order to compute the intersection P . The optimal download cost is D∗ = infD

over all MP-PSI achievability schemes.

4.3 Main Result

In this section, we state our main result concerning the performance of our MP-PSI

scheme in terms of the download cost. This is summarized in the following theorem,

whose proof is given in Section 4.5.

Theorem 4.1 In the MP-PSI problem with M independent parties with data sets

Pi, assuming that the parties follow a leader-to-clients communication policy, if

the data sets are stored within Ni replicated and non-colluding databases for i =

1, · · · ,M , then the optimal download cost, D∗, is upper bounded by

D∗ ≤ min
t∈{1,··· ,M}

∑
i∈{1,···M}\t

⌈ |Pt|Ni

Ni − 1

⌉
(4.9)

Remark 4.1 In the special case of having an arbitrary party Pi where |Pi| = K,

5We note that although a more natural performance metric is to consider the combined upload
and download cost, we argue that the upload cost may not scale with the number of MP-PSI
determination rounds if the MP-PSI is regularly repeated [72, footnote 8]. Since the core of [72] (and
this chapter also) relies on SPIR, we give a detailed discussion of how to reduce the upload cost of
the SPIR scheme without sacrificing the download cost in [72, Section 7.2]. The optimal download
cost of the SPIR problem is characterized in [8] with keeping the upload cost unconstrained. In
addition, the optimal upload cost of the SPIR problem is characterized in [73] with keeping the
download cost unconstrained. The optimal combined download and upload cost for the canonical
SPIR problem is still an open problem.
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we discard this party Pi before we perform the MP-PSI determination process, and

thereby, the M-party MP-PSI problem reduces to an M − 1-party MP-PSI problem.

In the extreme case, where all parties have |Pi| = |SK | = K, the download cost

becomes zero, i.e., no party needs to exchange any information with any other, as

the intersection is immediate.

Remark 4.2 The minimization problem in (4.9) in Theorem 4.1 corresponds to the

fact that the parties can agree on the party with the minimum
∑

i∈{1,···M}\t

⌈
|Pt|Ni

Ni−1

⌉
to be the leader party. We note that the leader party may not be the party with the

least |Pi|, as the download cost also depends on the number of the databases at all

parties.

Remark 4.3 The download cost of our achievability scheme is equal to the sum

of the download costs of M − 1 pair-wise PSI schemes. This implies that there is

no penalty incurred due to adopting a stringent clients’ privacy constraint over the

E2 privacy constraint. Note that the E2 privacy constraint is a relaxed version of

client’s privacy (4.8) when M = 2 [72]. More specifically, the E2 privacy constraint

asserts that the leakage from elements outside the set P1 in the answers returned by

E2 is zero, i.e., I(P̄1;A
[P1]
1:N2

) = 0.

Remark 4.4 Our achievability scheme is private in the information-theoretic (ab-

solute) sense and is fairly simple to implement. A drawback of our approach is that

it needs multiple replicated non-colluding databases as in the 2-party PSI problem

in [72]; otherwise, our scheme is infeasible if Ni = 1 for all i.
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Remark 4.5 Comparing our result with the most closely related information-

theoretic MP-PSI schemes [69], we argue that our scheme outperforms theirs in

terms of the communication cost as our download cost is linear in both the number

of parties M and the size of the sets p, assuming that |Pi| = p for all i = 1, · · · ,M

in contrast of O(M4p2) in [69]. We note, however, that the work [69] allows for

potential distrust between the parties in the sense that an active adversary may cor-

rupt up to M/3 parties. The issue of parties’ misbehavior is an interesting future

direction for our work, which is outside the scope of this chapter.

4.4 Motivating Example: 3 Parties with 3 Databases Each (M = 3

with N1 = N2 = N3 = 3)

In this section, we motivate our scheme by presenting the following example. In

this example, we have M = 3 parties, each possessing Ni = 3 replicated and non-

colluding databases. Assume that each party stores an independently generated

set Pi ⊆ SK , where SK = {1, 2, 3, 4}. Specifically, we assume that P1 = {1, 2},

P2 = {1, 3}, and P3 = {1, 4}. We aim at reliably calculating the intersection

P1 ∩ P2 ∩ P3 = {1} without leaking any further information to any of the parties

according to the defined communication policy. Without loss of generality, we pick

P3 to be the leader party. The remaining parties P1, P2 are referred to as clients.

We map the sets into the corresponding incidence vectors as in [72], i.e., we
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construct a vector Xi, such that Xi,k = 1 if k ∈ Pi, hence,

Party P1 : P1 = {1, 2} ⇒ X1 = [X1,1 X1,2 X1,3 X1,4]
T = [1 1 0 0]T (4.10)

Party P2 : P2 = {1, 3} ⇒ X2 = [X2,1 X2,2 X2,3 X2,4]
T = [1 0 1 0]T (4.11)

Party P3 : P3 = {1, 4} ⇒ X3 = [X3,1 X3,2 X3,3 X3,4]
T = [1 0 0 1]T (4.12)

To carry out the MP-PSI calculations, the parties agree on a finite field FL,

where L is a prime number such that L ≥M . Therefore, we pick L = 3 in our case,

i.e., all summations are performed as modulo-3 arithmetic.

The leader party P3 initiates the MP-PSI determination protocol by sending

queries Q
[P3]
i,j for i ∈ {1, 2} and j ∈ {1, 2, 3}. The queries aim at privately retrieving

the messages X1,1, X1,4 and X2,1, X2,4 using the SPIR retrieval scheme in [8] (the

same query structure was introduced in the original work of [5]). Note that in this

example we have Ni = |P3|+1, thus, the leader party sends exactly 1 query to each

client database. More specifically, let hk, where k = 1, · · · , 4, be a random variable

picked uniformly and independently from F3, then, for client party P1, the queries

sent from the leader party P3 are generated as follows,

Q
[P3]
1,1 = [h1 h2 h3 h4]

T (4.13)

Q
[P3]
1,2 = [h1 + 1 h2 h3 h4]

T (4.14)

Q
[P3]
1,3 = [h1 h2 h3 h4 + 1]T (4.15)

i.e., the leader party sends a random vector h = [h1 h2 h3 h4] ∈ F4
3 to the first
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database as a query. The queries for the remaining databases add a 1 to the positions

corresponding to P3. For client party P2, the leader party submits the same set of

queries,

Q
[P3]
2,1 = [h1 h2 h3 h4]

T (4.16)

Q
[P3]
2,2 = [h1 + 1 h2 h3 h4]

T (4.17)

Q
[P3]
2,3 = [h1 h2 h3 h4 + 1]T (4.18)

Originally in 2-party PSI, the client databases obtain the inner product of

Xi and Q
[P3]
i,j and add a common randomness. In MP-PSI, however, we note that

applying the answering strategy of [8,72] compromises the clients’ privacy constraint

(4.8). This is due to the fact that the leader, in this case, can decode that X1,4 = 0

and X2,4 = 0 and not only the intersection ∩i=1,2,3 Pi. Consequently, the clients’

databases need to share intricate common randomness prior to the retrieval phase

to prevent that. To that end, the client parties generate and/or share the following

randomness (see Fig. 4.1):

1. Local randomness: This is denoted by the random variable si, for i = 1, 2.

The random variable si is picked uniformly from F3 independent of all data

sets and other randomness sources. The local randomness si is shared among

all the databases belonging to the ith client party and not shared with other

parties. This local randomness acts as the common randomness needed for

SPIR [8], and is added to the inner product of the incidence vector and the
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Figure 4.1: MP-PSI for the motivating example.

query.

2. Individual correlated randomness: This is possessed by each client’s database,

and is denoted by the random variables ti,j for i = 1, 2, and j = 1, 2, 3. This

is needed to prevent the leader party from decoding X1,4, and X2,4. However,

since we also need the leader party to decode the intersection, the random
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variables ti,j need to be correlated such that their effect can be removed if Xi,j

belongs to the intersection. To that end, we choose t1,1 = t2,1 = 0. Database

2 of the party P1 generates uniformly and independently t1,2 from F3 and

sends it to database 2 of party P2. Database 2 of the party P2 calculates

t2,2 = 1 − t1,2. Similarly, database 3 of the party P1 generates t1,3 uniformly

and independently from F3 and shares it with database 3 of P2. Hence,

t1,j ∼ uniform{0, 1, 2}, j = 2, 3 (4.19)

t1,j + t2,j = 1, j = 2, 3 (4.20)

This randomness is added to each response as well. Note that client parties

do not know each other’s data sets while generating/sharing this randomness.

3. Global randomness: This is denoted by the random variable c. The random

variable c is generated randomly and independently of all data sets and other

randomness variables. The global randomness c is picked uniformly from F3 \

{0} = {1, 2}. The global randomness is shared among all databases of all

client parties P1 and P2. The global randomness is used as a multiplier to the

responses.

After sharing the common randomness needed to construct the answer strings

as shown above, the jth database of the ith client party responds to the query Q
[P3]
i,j
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as follows,

A
[P3]
i,j = c(XT

i Q
[P3]
i,j + si + ti,j), i = 1, 2, j = 1, 2, 3 (4.21)

Hence, noting that t1,1 = 0, the answer strings from P1 can be explicitly written as,

A
[P3]
1,1 = c

(
4∑

k=1

hkX1,k + s1

)
(4.22)

A
[P3]
1,2 = c

(
4∑

k=1

hkX1,k +X1,1 + s1 + t1,2

)
(4.23)

A
[P3]
1,3 = c

(
4∑

k=1

hkX1,k +X1,4 + s1 + t1,3

)
(4.24)

Similarly, the answer strings from P2 are,

A
[P3]
2,1 = c

(
4∑

k=1

hkX2,k + s2

)
(4.25)

A
[P3]
2,2 = c

(
4∑

k=1

hkX2,k +X2,1 + s2 + t2,2

)
(4.26)

A
[P3]
2,3 = c

(
4∑

k=1

hkX2,k +X2,4 + s2 + t2,3

)
(4.27)

Note that, by this construction, the local randomness si is used to protect the

random sum
∑4

k=1 hkXi,k as in SPIR, and the individual randomness ti,j is needed

to prevent the leader party from directly decoding Xi,j+1. Note that s1 and s2 need

to be independent to avoid the information leakage about the relationship between∑4
k=1 hkX1,k and

∑4
k=1 hkX2,k.

Reliability: To calculate ∩i=1,2,3 Pi based on the answer strings the leader
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party has received, the leader party subtracts A
[P3]
1,1 and A

[P3]
2,1 from the remaining

answer strings. Denote the result of subtraction related to the jth element in SK at

Pi by Zi,j. This leads to,

Z1,1 = c(X1,1 + t1,2) = A
[P3]
1,2 − A

[P3]
1,1 (4.28)

Z1,4 = c(X1,4 + t1,3) = A
[P3]
1,3 − A

[P3]
1,1 (4.29)

Z2,1 = c(X2,1 + t2,2) = A
[P3]
2,2 − A

[P3]
2,1 (4.30)

Z2,4 = c(X2,4 + t2,3) = A
[P3]
2,3 − A

[P3]
2,1 (4.31)

Now, let Ej be an indicator of having the jth element in SK in the intersection

∩i=1,2,3 Pi, such that Ej = 0 if and only if j ∈ ∩i=1,2,3 Pi. To that end, define Ej as

the modulo-L sum of Zi,j along all clients, i.e.,

Ej =
M−1∑
i=1

Zi,j (4.32)

Looking deeper at E1, we note that,

E1 = Z1,1 + Z2,1 (4.33)

= c(X1,1 +X2,1 + t1,2 + t2,2) (4.34)

= c(X1,1 +X2,1 + 1) (4.35)

where t1,2 + t2,2 = 1 by the construction of the individual correlated randomness.

Therefore, E1 = 0 if and only if X1,1 = 1 and X2,1 = 1 simultaneously. In this

125



case, E1 = 0 irrespective of the value of c and the leader party verifies that {1} ⊆

∩i=1,2,3 Pi.

On the other hand, when P3 calculates E4,

E4 = Z1,4 + Z2,4 = c(X1,4 +X2,4 + 1) ̸= 0 (4.36)

Consequently, the leader party confirms that ∩i=1,2,3 Pi = {1} and does not

include 4.

Leader’s Privacy: The leader’s privacy constraint follows from the user’s

privacy constraint of the inherent SPIR scheme [8]. The queries of the leader to any

party have the same structure as the queries of the user in the SPIR problem. More

specifically, the privacy of leader party is preserved as each element in the queries

is uniformly distributed over the finite field F3. Hence, no information about P3 is

leaked from the queries.

Client’s Privacy: To see the client’s privacy, we note that no information

is leaked about P1 ∩ P3 or P2 ∩ P3 due to s1 and s2, respectively. Nevertheless,

in MP-PSI, we need to verify that the leader does not know which of the two

parties possesses the element {4}, i.e., knowing the fact that E4 ̸= 0, we need to

show that P(X1,4 + X2,4 = 0) = P(X1,4 + X2,4 = 1) = 1
2
. Specifically, if E4 is 1,

P(X1,4 + X2,4 = 0) = P(X1,4 + X2,4 = 1) = 1
2
because c is uniformly distributed

over 1 and 2 and the sum t1,3 + t2,3 = 1 by construction. The conclusion is exactly

the same when E4 equals 2. Thus, the only information that P3 can obtain for the

element 4 is that client parties P1 and P2 do not contain it at the same time (this is
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no further leak, as if they did contain it at the same time, it would have been in the

intersection). Hence, c is used such that the leader party P3 does not know whether

the sum X1,4 +X2,4 is 0 or 1.

Download Cost: In our example, the leader party P3 downloads Ni = |PM |+

1 symbols from each client party. Hence, the total download cost is D = (M −

1)(|PM |+ 1) = 6.

4.5 Achievability Proof

In this section, we describe our general achievable scheme for MP-PSI for arbitrary

number of parties M , arbitrary set sizes |Pi|, and arbitrary number of databases

per party Ni, for i ∈ {1, · · · ,M}. The leader’s querying policy is based on the

SPIR scheme presented in [8] (originally introduced in [5]). Our novel ideas in

this scheme are concerned with the construction of the answering strings. More

specifically, the scheme hinges on the intricate design of generating and sharing

common randomness among the clients’ databases in such a way that the leader

party cannot learn anything but the intersection ∩M
i=1Pi.

4.5.1 General Achievability Scheme

In the following, assume that Pi ⊆ SK , where |SK | = K.

1. Initialization: The parties agree on a retrieval finite field FL to carry out the
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calculations needed for MP-PSI determination protocol. L is chosen such that,

L = min {L ≥M : L is a prime} (4.37)

The parties agree on a leader Pt∗ such that:

t∗ = arg min
t∈{1,··· ,M}

∑
i ̸=t

⌈ |Pt|Ni

Ni − 1

⌉
(4.38)

Without loss of generality, we assume that t∗ =M in the sequel. Furthermore,

assume that Pt∗ = PM = {Y1, Y2, · · · , YR} with cardinality |PM | = R.

2. Query generation: The leader party PM independently and uniformly gener-

ates κ random vectors {h1,h2, · · · ,hκ}, where κ is given by,

κ = max
i∈{1,··· ,M−1}

⌈ |PM |
Ni − 1

⌉
(4.39)

The vector hℓ, for ℓ = 1, 2, · · · , κ is picked uniformly from FK
L such that,

hℓ = [hℓ(1) hℓ(2) · · · hℓ(K)] (4.40)

Denote ηi =
⌈

|PM |
Ni−1

⌉
, and let Pℓi

M = {Y ℓi
1 , Y

ℓi
2 , · · ·Y ℓi

Ni−1}, for i = 1, · · · ,M − 1.

The leader party PM submits ηi random vectors from {h1,h2, · · · ,hκ} to the

first database of the ith client party as queries. Each submitted random vector

can be reused in the remaining Ni − 1 databases to retrieve Ni − 1 symbols.

This can be done by adding 1 to the positions corresponding to the desired

128



symbols. More specifically, take ℓi to be a running index, i.e., ℓi = 1, 2, · · · , ηi,

and assume that PM = ∪ηi
ℓi=1Pℓi

M , where Pℓi
M ⊆ PM are disjoint partitions of

PM such that |Pℓi
M | = Ni − 1 (except potentially for the last subset Pηi

M), then

for i = 1, 2, · · · ,M − 1, the query structure is given by:

Q
[Pℓ1

M ]
i,1 = [h1(1) h1(2) · · · h1(K)] (4.41)

Q
[Pℓ1

M ]
i,2 = [h1(1) · · · h1(Y ℓ1

1 − 1) h1(Y
ℓ1
1 ) + 1 h1(Y

ℓ1
1 + 1) · · · h1(K)] (4.42)

...

Q
[Pℓ1

M ]

i,Ni
= [h1(1) · · · h1(Y ℓ1

Ni−1 − 1) h1(Y
ℓ1
Ni−1) + 1 h1(Y

ℓ1
Ni−1 + 1) · · · h1(K)]

(4.43)

...

Q
[Pηi

M ]
i,1 = [hηi(1) hηi(2) · · · hηi(K)] (4.44)

Q
[Pηi

M ]
i,2 = [hηi(1) · · · hηi(Y ηi

1 − 1) hηi(Y
ηi
1 ) + 1 hηi(Y

ηi
1 + 1) · · · hηi(K)]

(4.45)

...

Q
[Pηi

M ]

i,Ni
= [hηi(1) · · · hηi(Y ηi

Ni−1 − 1) hηi(Y
ηi
Ni−1) + 1 hηi(Y

ηi
Ni−1 + 1) · · · hηi(K)]

(4.46)

i.e., PM simply partitions the set PM into subsets of size Ni − 1. For each set,

PM uses different hℓ. PM submits hℓ into the first database. For the remaining

databases, it adds 1 for the positions that corresponds to the partition.

3. Common randomness generation: In order to respond to the leader party, the
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clients need to generate and share common randomness. Specifically, there are

three types of randomness:

• Local randomness: This is denoted by si = [si(1) si(2) si(ηi)]. Each

element of si is generated independently and uniformly from FL. The

local randomness si is shared between the databases associated with Pi.

The local randomness is added to the responses as in SPIR [8]. Note that

each database uses a different element from si for each submitted query.

• Individual correlated randomness: The jth database associated with the

ith client possesses an individual randomness ti,j = [ti,j(1) ti,j(2) ti,j(ηi)]

for i = 1, · · · ,M − 1, and j = 1, · · · , Ni. The elements ti,1 = 0 for all

i. For i = 1, · · · ,M − 2, the vector ti,j is independently and uniformly

picked from Fηi
L . All these random vectors are sent to the party PM−1.

The client PM−1 generates its individual randomness tM−1,j according

to the received individual randomness from the remaining parties. For

simplicity, let us (re)denote the individual randomness components by

t̃i,k, where i is the index of the client party and k = 1, 2, · · · , R is just a

monotonically increasing index of the randomness component used within

the databases 2 to Ni of the ith client. Thus,

t̃i,1 = ti,2(1), t̃i,1 = ti,2(2), · · · , t̃i,R = ti,Ni
(ηi) (4.47)

With this re-definition, the client PM−1 calculates its individual random-
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ness as,

t̃M−1,j = L− (M − 1)−
M−2∑
i=1

t̃i,j, j = 1, 2, · · · , R (4.48)

This ensures that the individual randomness are correlated such that∑M−1
i=1 t̃i,j = L − (M − 1). The individual randomness is added to the

responses.

• Global randomness: This is denoted by c. c is picked uniformly and

independently from FL \ {0}. c is shared among all the databases at all

clients. c is used as a multiplier for the answering string.

4. Response generation: The clients respond to the submitted queries by using

the queries as a combining vector to their contents, i.e., each database cal-

culates the inner product of the query and its contents. Next, it adds the

local and individual randomness. Finally, it multiplies the result by the global

randomness. More specifically, the answer string of the jth database, which is

associated with the ith client to retrieve one of the elements of the partition

Pℓi
M , A

[Pℓi
M ]

i,j , is given by,

A
[Pℓi

M ]
i,j = c

(
XT

i Q
[Pℓi

M ]
i,j + si(ℓi) + ti,j(ℓi)

)
(4.49)

From the collected answers the leader party can determine the intersection ∩M
i=1Pi

reliably and privately.

131



4.5.2 Download Cost, Reliability, Leader’s Privacy, Clients’ Privacy

Download cost: By observing the queries associated with the MP-PSI scheme

in the previous section, one can note that the desired symbols are divided into

ηi =
⌈

|PM |
Ni−1

⌉
subsets. Each subset consists of Ni − 1 desired symbols. The leader

needs to download 1 bit from all Ni databases to query the entire subset, as the

leader downloads useless random linear combination of the contents from the first

database. Hence, the download cost is given by,

D =
M−1∑
i=1

Niηi (4.50)

=
M−1∑
i=1

⌈ |PM |Ni

Ni − 1

⌉
(4.51)

Reliability: To verify reliability, we follow the leader’s processing of the

responses. First, we note that the answer string that is returned from database 1 is

a random linear combination of the contents of the database besides the common

randomness, and is given by,

A
[Pℓi

M ]
i,1 = c

(
K∑
k=1

hℓi(k)Xi,k + si(ℓi)

)
, i = 1, · · · ,M − 1 (4.52)

Note that ti,1 = 0 by construction. The leader subtracts this response from each

response that belongs to the same partition. Denote the subtraction result at the

132



ith client that contains the element Xi,k by Zi,k, hence,

Zi,k = c(Xi,k + t̃i,k) = A
[Pℓi

M ]
i,j∗ − A

[Pℓi
M ]

i,1 , k ∈ Pℓi
M (4.53)

for some unique j∗ that A
[Pℓi

M ]
i,j∗ is a response of the query that adds 1 to the kth

position of the query vector. In particular, for the special case of Ni = |Pi| + 1 for

all i = 1, · · · ,M − 1, we have j∗ = k + 1 and Pℓi
M = PM (one partition). Note that

we used the alternative notation t̃i,k as it is counted in sequence.

Next, the leader constructs the intersection indicator variable Ek, where Ek is

given by,

Ek =
M−1∑
i=1

Zi,k (4.54)

= c

(
M−1∑
i=1

Xi,k +
M−1∑
i=1

t̃i,k

)
(4.55)

= c

(
M−1∑
i=1

Xi,k + L− (M − 1)

)
(4.56)

where (4.56) follows from the construction of the individual randomness. Now, the

element Ek = 0 if and only if
∑M−1

i=1 Xi,k = M − 1, which implies that Xi,k = 1

for all i = 1, 2, · · · ,M − 1. Consequently, Yk ∈ ∩M
i=1Pi if and only if Ek = 0. This

proves the reliability of the scheme.

Leader’s privacy: The leader’s privacy follows from the fact that the random

vectors {h1, · · · ,hκ} are uniformly generated over FK
L . Adding 1 to these vectors

does not change the statistical distribution of the vector. Since the leader submits
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independent vectors each time it queries a database, all queries are equally likely

and the leader’s privacy is preserved.

Clients’ privacy: Without loss of generality, we derive the proof of the

client’s privacy for the homogeneous number of databases, i.e., Ni = R+1, ∀i ∈ [1 :

M−1]. The general proof in the heterogeneous case follows the same steps and after

removing the response of the first databases, we will be left with Zi,k that has the

same structure of homogeneous case. Consequently, we present the homogeneous

case here for convenience only. In the following proof, we adopt the notation that

for a random variable ζi,j indexed by two indices (i, j),

ζi1:iM ,j1:jR = {ζi,j : i ∈ {i1, · · · , iM}, j ∈ {j1, · · · , jR}} (4.57)

For the proof, we need the following lemmas. Lemma 4.1 shows that the effect

of the local randomness is to make the response of the first database at all parties

independent of XP̄ .

Lemma 4.1 For the presented achievable scheme, we have,

I(XP̄ ;A
[PM ]
1:M−1,1|Z1:M−1,Y1:YR

, Q
[PM ]
1:M−1,1:Ni

,PM) = 0 (4.58)

Proof: Intuitively, the proof follows from the fact that A
[PM ]
i,1 , i ∈ [1 : M − 1] is

a random variable uniformly distributed over [0 : L − 1] because of the local ran-

domness si, and thus, is independent of the data sets, queries and the subtraction
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results. More specifically,

I(XP̄ ;A
[PM ]
1:M−1,1|Z1:M−1,Y1:YR

, Q
[PM ]
1:M−1,1:Ni

,PM)

= H(A
[PM ]
1:M−1,1|Z1:M−1,Y1:YR

, Q
[PM ]
1:M−1,1:Ni

,PM)

−H(A
[PM ]
1:M−1,1|XP̄ , Z1:M−1,Y1:YR

, Q
[PM ]
1:M−1,1:Ni

,PM) (4.59)

≤ H(A
[PM ]
1:M−1,1)−H(A

[PM ]
1:M−1,1|X1:M−1, c,XP̄ , Z1:M−1,Y1:YR

, Q
[PM ]
1:M−1,1:Ni

,PM)

(4.60)

≤ (M − 1)−H(s1, · · · , sM−1) (4.61)

= (M − 1)− (M − 1) = 0 (4.62)

This concludes the proof, since I(XP̄ ;A
[PM ]
1:M−1,1|Z1:M−1,Y1:YR

, Q
[PM ]
1:M−1,1:Ni

,PM) ≥ 0. ■

Lemma 4.2 asserts that for i ∈ [1 : M − 2], j ∈ [1 : R] the effect of individual

randomness ti,j+1 is to force the random variables Zi,Yj
to be independent of XP̄ .

Note that we do not claim anything about ZM−1,Yj
as the individual randomness

are correlated at party M − 1.

Lemma 4.2 For the presented scheme, we have,

I(XP̄ ;Z1:M−2,Y1:YR
|EY1:YR

, Q
[PM ]
1:M−1,1:Ni

,PM) = 0 (4.63)

Proof: Intuitively, similar to the proof of Lemma 4.1, the proof follows from the

fact that Zi,Yj
, i ∈ [1 :M − 2], j ∈ [1 : R] is a random variable uniformly distributed

over [0 : L−1] because of the individual randomness ti,j+1, and thus, is independent
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of the data sets, queries, and the data sets in the client parties EYj
,

I(XP̄ ;Z1:M−2,Y1:YR
|EY1:YR

, Q
[PM ]
1:M−1,1:Ni

,PM)

= H(Z1:M−2,Y1:YR
|EY1:YR

, Q
[PM ]
1:M−1,1:Ni

,PM)

−H(Z1:M−2,Y1:YR
|XP̄ , EY1:YR

, Q
[PM ]
1:M−1,1:Ni

,PM) (4.64)

≤ H(Z1:M−2,Y1:YR
)−H(Z1:M−2,Y1:YR

|X1:M−1, c,XP̄ , EY1:YR
, Q

[PM ]
1:M−1,1:Ni

,PM)

(4.65)

≤ ((M − 2)R)−H(t1:M−2,Y1:YR
) (4.66)

= ((M − 2)R)− ((M − 2)R) = 0 (4.67)

This concludes the proof as the reverse implication is true by the non-negativity of

mutual information. ■

The following lemma asserts that indicator functions EYj
for all j do not leak

any information about XP̄ .

Lemma 4.3 For the presented scheme, we have,

I(XP̄ ;EY1:YR
, Q

[PM ]
1:M−1,1:Ni

,PM) = 0 (4.68)

Proof: Note that if Yj ∈ PM is in the intersection, EYj
= 0 has nothing to do with

XP̄ since XP̄ is defined on the elements not in the intersection. However, if Yj is not

in the intersection, EYj
= c(X1,Yj

+· · ·+XM−1,Yj
+L−(M−1)), Yj ∈ PM∩P̄ received

by the leader party would be a realization within the range of FL \ {0} because
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of the global randomness c. However, the leader party only knows that the global

randomness c is uniformly distributed over FL\{0} and has no information about the

specific value of c in the client parties. As a result, from the perspective of the leader

part PM , X1,Yj
+ · · ·+XM−1,Yj

+L− (M−1) is uniformly distributed over [1 : L−1]

according to the information contained in EYj
. This comes from the fact that the

set FL \ {0} of all L − 1 non-zero elements must form a finite cyclic group under

multiplication given a finite field FL. That means that, in the additive table under

multiplication operation, each element in FL\{0} appears precisely once in each row

and column of the table. The probability P(X1,Yj
+ · · ·+XM−1,Yj

+L− (M−1) = l)

would always be 1
L−1

for any l ∈ [1 : L−1]. Then, X1,Yj
+ · · ·+XM−1,Yj

is uniformly

distributed over [M −L :M − 2] (i.e., [0 :M − 2]∪ [M : L− 1]) and we can further

conclude that X1,Yj
+ · · ·+XM−1,Yj

is uniformly distributed over [0 :M −2] because

its largest possible value is M − 2 if Yj is not in the intersection. Thus, the only

information we can learn from EY1 , · · · , EYR
and the accompanying queries about

XP̄ is X1,k + · · · + XM−1,k < M − 1,∀k ∈ PM ∩ P̄ without knowing the specific

value of X1,k + · · ·+XM−1,k, which already exists in the definition of XP̄ . Thus, we

obtain,

I(XP̄ ;EY1:YR
, Q

[PM ]
1:M−1,1:Ni

,PM)

= I(XP̄ ;EY1:YR
|Q[PM ]

1:M−1,1:Ni
,PM) (4.69)

= H(XP̄ |Q[PM ]
1:M−1,1:Ni

,PM)−H(XP̄ |EY1:YR
, Q

[PM ]
1:M−1,1:Ni

,PM) (4.70)

= H(XP̄)−H(XP̄) (4.71)
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= 0 (4.72)

where (4.69) follows from the fact that queries and PM are independent of the data

sets in the client parties EYj
in (4.2). ■

Now, we are ready to show that our achievability satisfies the client’s privacy

constraint,

I(XP̄ ;Q
[PM ]
1:M−1,1:Ni

, A
[PM ]
1:M−1,1:Ni

,PM)

= I(XP̄ ;A
[PM ]
1:M−1,1, Z1:M−1,Y1:YR

, Q
[PM ]
1:M−1,1:Ni

,PM) (4.73)

= I(XP̄ ;Z1:M−1,Y1:YR
, Q

[PM ]
1:M−1,1:Ni

,PM)

+I(XP̄ ;A
[PM ]
1:M−1,1|Z1:M−1,Y1:YR

, Q
[PM ]
1:M−1,1:Ni

,PM) (4.74)

= I(XP̄ ;Z1:M−1,Y1:YR
, Q

[PM ]
1:M−1,1:Ni

,PM) (4.75)

= I(XP̄ ;Z1:M−2,Y1:YR
, EY1:YR

, Q
[PM ]
1:M−1,1:Ni

,PM) (4.76)

= I(XP̄ ;EY1:YR
, Q

[PM ]
1:M−1,1:Ni

,PM) + I(XP̄ ;Z1:M−2,Y1:YR
|EY1:YR

, Q
[PM ]
1:M−1,1:Ni

,PM)

(4.77)

= I(XP̄ ;EY1:YR
, Q

[PM ]
1:M−1,1:Ni

,PM) (4.78)

= 0 (4.79)

where (4.73) follows from the fact that there is a bijective transformation between

A
[PM ]
1:M−1,1:Ni

and (A
[PM ]
1:M−1,1, Z1:M−1,Y1:YR

), (4.75) follows from Lemma 4.1, (4.76) fol-

lows from the fact that there is a bijective transformation between Z1:M−1,Y1:YR

and (Z1:M−2,Y1:YR
, EY1:YR

), (4.78) follows from Lemma 4.2, and (4.79) follows from
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Lemma 4.3.

4.6 Further Examples

In this section, we present two examples of our achievable scheme. Unlike the

motivating example in Section 4.4, in these examples, the number of databases per

party does not need to be Ni = |PM |+ 1 or even be homogeneous in general6.

4.6.1 An Example for Ni < |PM |+ 1

In this example, we use the same setting of Section 4.4 with P1 = {1, 2}, P2 = {1, 3},

and P3 = {1, 4} with P3 being the leader party and the retrieval field being F3. The

incidence vectors Xi, for i = 1, 2 remain the same. However, to illustrate that our

scheme works for Ni < |PM | + 1, we assume that N1 = N2 = 2. As we will show

next, when Ni < |PM | + 1, we need to send κ = ηi =
⌈

|PM |
Ni−1

⌉
= 2 queries to the

first database of the ith party (in contrast to 1 query only when Ni ≥ |PM | + 1).

Moreover, the common randomness components si, and ti,j need to be vectors of

size
⌈

|PM |
Ni−1

⌉
= 2. Note that, in this case, the leader’s set is divided into 2 subsets

Pℓ1
M = {1} and Pℓ1

M = {4} as |Pℓi
M | = Ni − 1 = 1.

For the queries, since both client parties have the same number of databases,

the leader P3 submits the same query vectors to the databases of both clients. The

first databases of each client receives 2 uniformly generated vectors h, h̄ ∈ F4
3, where

h = [h1 h2 h3 h4]
T and h̄ = [h̄1 h̄2 h̄3 h̄4]

T . P3 submits the same two vectors to

6For Ni > |PM | + 1, we just use any arbitrary |PM | + 1 databases to execute the MP-PSI
determination protocol.
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the second databases of P1 and P2 with adding 1 to the desired positions. More

specifically, let Q
[k]
i,j be the query to the jth database of Pi to retrieve the element

k, then P3 submits the following queries:

Q
[1]
1,1 = Q

[1]
2,1 = [h1 h2 h3 h4]

T (4.80)

Q
[1]
1,2 = Q

[1]
2,2 = [h1 + 1 h2 h3 h4]

T (4.81)

Q
[4]
1,1 = Q

[4]
2,1 = [h̄1 h̄2 h̄3 h̄4]

T (4.82)

Q
[4]
1,2 = Q

[4]
2,2 = [h̄1 h̄2 h̄3 h̄4 + 1]T (4.83)

At the clients’ side, the clients share a global randomness c ∼ uniform{1, 2}

among all the databases of both clients. For i = 1, 2, the ith client generates and

shares a local randomness si = [si(1) si(2)]
T , such that si(ℓ) ∼ uniform{0, 1, 2}

among the databases that belong to the ith client. Finally, for i = 1, 2, the

second database of the ith client has an individual correlated randomness ti,2 =

[ti,2(1) ti,2(2)]
T , such that t1,2(1) ∼ t1,2(2) ∼ uniform{0, 1, 2}, t1,2(1) + t2,2(1) = 1,

and t1,2(2) + t2,2(2) = 1. Assume that t1,1 = t2,1 = 0. All randomness components

are independently generated of each other and of the data sets.

The answer string A
[k]
i,j , for i = 1, 2, j = 1, 2, k = 1, 4, is given by,

A
[k]
i,j = c

(
XT

i Q
[k]
i,j + si(ℓ(k)) + ti,j(ℓ(k))

)
(4.84)

where ℓ(1) = 1 and ℓ(4) = 2.
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Thus, the leader party receives the following answer strings from P1,

A
[1]
1,1 = c

(
4∑

k=1

hkX1,k + s1(1)

)
(4.85)

A
[1]
1,2 = c

(
4∑

k=1

hkX1,k +X1,1 + s1(1) + t1,2(1)

)
(4.86)

A
[4]
1,1 = c

(
4∑

k=1

h̄kX1,k + s1(2)

)
(4.87)

A
[4]
1,2 = c

(
4∑

k=1

h̄kX1,k +X1,4 + s1(2) + t1,2(2)

)
(4.88)

and the following answer strings from P2,

A
[1]
2,1 = c

(
4∑

k=1

hkX2,k + s2(1)

)
(4.89)

A
[1]
2,2 = c

(
4∑

k=1

hkX2,k +X1,1 + s2(1) + t2,2(1)

)
(4.90)

A
[4]
2,1 = c

(
4∑

k=1

h̄kX2,k + s2(2)

)
(4.91)

A
[4]
2,2 = c

(
4∑

k=1

h̄kX2,k +X1,4 + s2(2) + t2,2(2)

)
(4.92)

The leader party constructs the subtractions Zi,j as follows,

Z1,1 = c(X1,1 + t1,2(1)) = A
[1]
1,2 − A

[1]
1,1 (4.93)

Z1,4 = c(X1,4 + t1,2(2)) = A
[4]
1,2 − A

[4]
1,1 (4.94)

Z2,1 = c(X1,1 + t2,2(1)) = A
[1]
2,2 − A

[1]
2,1 (4.95)

Z2,4 = c(X1,4 + t2,2(2)) = A
[4]
2,2 − A

[4]
2,1 (4.96)
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These are exactly the statistics in (4.28)-(4.31). Hence, the reliability and privacy

constraints follow exactly as in Section 4.4. The total download cost in this case is

D = 4 + 4 = 8, which is consistent with the download cost for the general case in

(4.9), D =
⌈

2∗2
2−1

⌉
+
⌈

2∗2
2−1

⌉
= 8.

4.6.2 An Example for Heterogeneous Number of Databases

In this example, we consider a general case, where there are no constraints on the

number of databases associated with each party or on the cardinality of the sets.

In this example, we have M = 4 parties with N1 = 2, N2 = 3, N3 = 5, and

N4 = 4 associated databases. The four parties have the following data sets and the

corresponding incidence vectors,

Party P1 : P1 = {1, 2, 3, 4}, X1 = [X1,1 X1,2 X1,3 X1,4 X1,5]
T = [1 1 1 1 0]T (4.97)

Party P2 : P2 = {1, 2, 4}, X2 = [X2,1 X2,2 X2,3 X2,4 X2,5]
T = [1 1 0 1 0]T (4.98)

Party P3 : P3 = {1, 3, 4}, X3 = [X3,1 X3,2 X3,3 X3,4 X3,5]
T = [1 0 1 1 0]T (4.99)

Party P4 : P4 = {1, 4, 5}, X4 = [X4,1 X4,2 X4,3 X4,4 X4,5]
T = [1 0 0 1 1]T (4.100)

First, we choose party P4 for the role of the leader party, as it results in the

minimum download cost Dt =
∑

i ̸=t

⌈
|Pt|Ni

Ni−1

⌉
. Since M = 4, we choose a retrieval

field FL, such that L = 5, as L is the smallest prime number that satisfies L ≥M .

Now, κ = maxi

⌈
|P4|
Ni−1

⌉
= 3. Hence, for the queries, the leader P4 generates

κ = 3 random vectors. From which, it submits ηi =
⌈

|P4|
Ni−1

⌉
to the first database
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associated with the ith party, i = 1, 2, 3. Each random vector can be reused for

retrieving Ni − 1 elements from the remaining databases by adding 1 to the query

vector in the positions of the desired symbols.

Specifically, party P1 has only two databases and P4 is supposed to sub-

mits η1 =
⌈

3
2−1

⌉
= 3 random vectors to database 1, denoted by hℓ =

[hℓ(1) hℓ(2) · · · hℓ(5)]T , where ℓ = 1, 2, 3. The leader’s set is divided as P11
4 = {1},

P12
4 = {4}, and P13

4 = {5} with |Pℓ1
M | = N1 − 1 = 1. These random vectors are

generated uniformly from F5
5 Thus, the queries sent from P4 to P1 are generated as

follows,

Q
[1]
1,1 = [h1(1) h1(2) h1(3) h1(4) h1(5)]

T (4.101)

Q
[1]
1,2 = [h1(1) + 1 h1(2) h1(3) h1(4) h1(5)]

T (4.102)

Q
[4]
1,1 = [h2(1) h2(2) h2(3) h2(4) h2(5)]

T (4.103)

Q
[4]
1,2 = [h2(1) h2(2) h2(3) h2(4) + 1 h2(5)]

T (4.104)

Q
[5]
1,1 = [h3(1) h3(2) h3(3) h3(4) h3(5)]

T (4.105)

Q
[5]
1,2 = [h3(1) h3(2) h3(3) h3(4) h3(5) + 1]T (4.106)

Party P2 has three databases and P4 only needs to send η2 =
⌈

4
3−1

⌉
= 2 random

vectors to database 1 of client P2. Each random vector can be reused at databases

2, 3 to retrieve 2 desired symbols. The leader’s set is divided as P21
4 = {1, 4}, and

P22
4 = {5}. Without loss of generality, P4 uses h1 to obtain the information of

X2,1, X2,4 and h2 is used to obtain the information of X2,5. Note that, in this case
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no query is needed to be sent to the third database to retrieve X2,5. Thus, the

queries sent from P4 to P2 are generated as follows,

Q
[1,4]
2,1 = [h1(1) h1(2) h1(3) h1(4) h1(5)]

T (4.107)

Q
[1,4]
2,2 = [h1(1) + 1 h1(2) h1(3) h1(4) h1(5)]

T (4.108)

Q
[1,4]
2,3 = [h1(1) h1(2) h1(3) h1(4) + 1 h1(5)]

T (4.109)

Q
[5]
2,1 = [h2(1) h2(2) h2(3) h2(4) h2(5)]

T (4.110)

Q
[5]
2,2 = [h2(1) h2(2) h2(3) h2(4) h2(5) + 1]T (4.111)

Party P3 has five databases and P4 needs to send η3 =
⌈

4
5−1

⌉
= 1 random

vector to database 1 and reuse this vector to retrieve all the desired symbols from

databases 2 through 4. Thus, the queries sent from P4 to P3 are generated as follows,

Q
[1,4,5]
3,1 = [h1(1) h1(2) h1(3) h1(4) h1(5)]

T (4.112)

Q
[1,4,5]
3,2 = [h1(1) + 1 h1(2) h1(3) h1(4) h1(5)]

T (4.113)

Q
[1,4,5]
3,3 = [h1(1) h1(2) h1(3) h1(4) + 1 h1(5)]

T (4.114)

Q
[1,4,5]
3,4 = [h2(1) h2(2) h2(3) h2(4) h2(5) + 1]T (4.115)

The clients share the following common randomness. A global randomness c ∼

uniform{1, 2, 3, 4} is shared among all databases at all clients. A local randomness

s1 = [s1(1) s1(2) s1(3)] is shared among the databases of P1, and similarly s2 =

[s2(1) s1(2)], s3 = [s3(1)] are shared among the databases of P2 and P3, respectively.
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The random variable si(ℓ) ∼ uniform{0, 1, 2, 3, 4}. Finally, database 2 which is

associated with P1, generates the individual randomness t1,2 = [t1,2(1) t1,2(2) t1,2(3)].

Similarly, at P2, database 2 generates t2,2 = [t2,2(1) t2,2(2)], and database 3 generates

t2,3. Each element of the common randomness ti,j for i = 1, 2 and j = 2, 3 is

generated uniformly and independently from F5. The variables (ti,j, i = 1, 2, j =

2, 3) are sent to P3. The individual correlated randomness t3,j at P3 is calculated

as,

t3,2 = 2− t1,2(1)− t2,2(1) ⇐⇒ t1,2(1) + t2,2(1) + t3,2 = 2 (4.116)

t3,3 = 2− t1,2(2)− t2,3 ⇐⇒ t1,2(2) + t2,3 + t3,3 = 2 (4.117)

t3,4 = 2− t1,2(3)− t2,2(2) ⇐⇒ t1,2(3) + t2,2(2) + t3,4 = 2 (4.118)

According to this construction, the leader receives the following answer strings

from P1,

A
[1]
1,1 = c

(
5∑

k=1

h1(k)X1,k + s1(1)

)
(4.119)

A
[1]
1,2 = c

(
5∑

k=1

h1(k)X1,k + s1(1) +X1,1 + t1,2(1)

)
(4.120)

A
[4]
1,1 = c

(
5∑

k=1

h2(k)X1,k + s1(2)

)
(4.121)

A
[4]
1,2 = c

(
5∑

k=1

h2(k)X1,k + s1(2) +X1,4 + t1,2(2)

)
(4.122)

A
[5]
1,1 = c

(
5∑

k=1

h3(k)X1,k + s1(3)

)
(4.123)
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A
[5]
1,2 = c

(
5∑

k=1

h3(k)X1,k + s1(3) +X1,5 + t1,2(3)

)
(4.124)

Similarly, P4 receives the following responses from P2,

A
[1,4]
2,1 = c

(
5∑

k=1

h1(k)X2,k + s2(1)

)
(4.125)

A
[1,4]
2,2 = c

(
5∑

k=1

h1(k)X2,k + s2(1) +X2,1 + t2,2(1)

)
(4.126)

A
[1,4]
2,3 = c

(
5∑

k=1

h1(k)X2,k + s2(1) +X2,4 + t2,3

)
(4.127)

A
[5]
2,1 = c

(
5∑

k=1

h2(k)X2,k + s2(2)

)
(4.128)

A
[5]
2,2 = c

(
5∑

k=1

h2(k)X2,k + s2(2) +X2,5 + t2,2(2)

)
(4.129)

Finally, P4 receives the following responses from P3,

A
[1,4,5]
3,1 = c

(
5∑

k=1

h1(k)X3,k + s3(1)

)
(4.130)

A
[1,4,5]
3,2 = c

(
5∑

k=1

h1(k)X3,k + s3(1) +X3,1 + t3,2

)
(4.131)

A
[1,4,5]
3,3 = c

(
5∑

k=1

h1(k)X3,k + s3(1) +X3,4 + t3,3

)
(4.132)

A
[1,4,5]
3,4 = c

(
5∑

k=1

h1(k)X3,k + s3(1) +X3,5 + t3,4

)
(4.133)

The leader party P4 proceeds with decoding by removing the random responses

created at database 1 of all clients P1, P2 and P3, i.e., it constructs Zi,j for i = 1, 2, 3
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and j = 1, 2, 3, 4, 5 by subtracting the responses Ai,1,

Z1,1 = c(X1,1 + t1,2(1)) = A
[1]
1,2 − A

[1]
1,1 (4.134)

Z1,4 = c(X1,4 + t1,2(2)) = A
[4]
1,2 − A

[4]
1,1 (4.135)

Z1,5 = c(X1,5 + t1,2(3)) = A
[5]
1,2 − A

[5]
1,1 (4.136)

Z2,1 = c(X2,1 + t2,2(1)) = A
[1,4]
2,2 − A

[1,4]
2,1 (4.137)

Z2,4 = c(X2,4 + t2,3) = A
[1,4]
2,3 − A

[1,4]
2,1 (4.138)

Z2,5 = c(X2,5 + t2,2(2)) = A
[5]
2,2 − A

[5]
2,1 (4.139)

Z3,1 = c(X3,1 + t3,2) = A
[1,4,5]
3,2 − A

[1,4,5]
3,1 (4.140)

Z3,4 = c(X3,4 + t3,3) = A
[1,4,5]
3,3 − A

[1,4,5]
3,1 (4.141)

Z3,5 = c(X3,5 + t3,4) = A
[1,4,5]
3,4 − A

[1,4,5]
3,1 (4.142)

The MP-PSI determination at P4 concludes by evaluating the following indi-

cators, Ej, for j = 1, 4, 5 as,

E1 =
3∑

i=1

Zi,1 = c(X1,1 +X2,1 +X3,1 + t1,2(1) + t2,2(1) + t3,2) (4.143)

E4 =
3∑

i=1

Zi,4 = c(X1,4 +X2,4 +X3,4 + t1,2(2) + t2,3 + t3,3) (4.144)

E5 =
3∑

i=1

Zi,5 = c(X1,5 +X2,5 +X3,5 + t1,2(3) + t2,2(2) + t3,4) (4.145)

By observing that the sum of the correlated randomness in Ej according to

(4.116)-(4.118) is equal 2, we note that Ej = 0 if and only if
∑3

i=1Xi,j = 3, i.e., if

X1,j = X2,j = X3,j = 1 simultaneously. Consequently, E1 = E4 = 0 irrespective to
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c, while E5 ̸= 0 and P4 can reliably calculate ∩i=1,2,3,4 Pi = {1, 4}. On the other

hand, for E5, X1,5 +X2,5 +X3,5 + t1,4 + t2,4 + t3,4 is equal to 2 and then E5 must be

one value in the set {1, 2, 3, 4} depending on the value of c. Now, we calculate the

value of the expression X1,5 +X2,5 +X3,5 from the perspective of the leader party

P4. If E5 is 1, P(X1,5 +X2,5 +X3,5 = l) = 1
4
,∀l = {0, 1, 2, 3} because c is uniformly

distributed over {1, 2, 3, 4}. The conclusion is exactly the same when E5 is equal to

2, 3 or 4. Thus, the only information that P4 can obtain for the element 5 is that

client parties P1 , P2 and P3 cannot contain it at the same time. The privacy of

leader party is preserved because each element in the queries is uniformly distributed

over the finite field F5. Hence, no information about P4 is leaked from the queries.

The total download cost in this case is D = 6+5+4 = 15, which is consistent with

the download cost for the general case in (4.9), D =
⌈

3∗2
2−1

⌉
+
⌈

3∗3
3−1

⌉
+
⌈

3∗5
5−1

⌉
= 15.

4.7 Conclusion

In this chapter, we formulated the problem of MP-PSI from an information-theoretic

point of view. We investigated a specific mode of communication, namely, single

round communication between the leader and clients. We proposed a novel achiev-

able scheme for the MP-PSI problem. Our scheme hinges on a careful design and

sharing of randomness between client parties prior to commencing the MP-PSI op-

eration. Our scheme is not a straightforward extension to the two-party PSI scheme,

as applying the two-party PSI scheme M − 1 times leaks information beyond the

intersection ∩M
i=1Pi. The download cost of our scheme matches the sum of download
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cost of pair-wise PSI despite the stringent privacy constraint in the case of MP-

PSI. We note that this work provides only an achievable scheme with no claim of

optimality. A converse proof is needed to assess the efficiency of our scheme. Fur-

thermore, several interesting directions can be pursued based on this work. First,

one can investigate the MP-PSI in more general communication settings (not neces-

sarily leader-to-clients). Second, one can study the case where the communication

between the parties is done over multiple rounds (in contrast to the single round

of communication in this work). Third, one can investigate the case of calculating

more general set functions (not necessarily the intersection).
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CHAPTER 5

Communication Cost of Two-Database Symmetric Private

Information Retrieval: A Conditional Disclosure of Multiple

Secrets Perspective

5.1 Introduction

In this chapter, since the communication cost in the PSI problem is composed of

upload cost and download cost, we consider the total (upload plus download) com-

munication cost of two-database SPIR through its relationship to CDS. In CDS, two

parties each holding an individual input and sharing a common secret expect to dis-

close this secret to an external party in an efficient manner if and only if their inputs

satisfy a public deterministic function. As a natural extension of CDS, we introduce

conditional disclosure of multiple secrets (CDMS) where two parties share multiple

i.i.d. common secrets rather than a single common secret as in CDS. We show that

a special configuration of CDMS is equivalent to two-database SPIR. Inspired by

this equivalence, given specific upload cost, we design download cost efficient SPIR

schemes using bipartite graph representation of CDS and CDMS. Following this
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idea, we determine the exact minimum total communication cost of two-database

SPIR for K = 3 messages when the message length is 1.

5.2 Problem Formulation

5.2.1 Symmetric Private Information Retrieval

Following the classical SPIR problem statement in [8], we consider N ≥ 2 non-

colluding databases with each individual database storing the replicated set ofK ≥ 2

i.i.d. messages W1:K . Moreover, L i.i.d. symbols within each message are uniformly

selected from a sufficiently large finite field Fq,

H(Wk) = L, ∀k (5.1)

H(W1:K) = H(W1) + · · ·+H(WK) = KL (5.2)

A random variable F is used to denote the randomness of the retrieval strategy

selection implemented by the user. Due to the user privacy constraint, the realization

of F is only known to the user, and unknown to any of the databases. Due to

the database privacy constraint, databases need to share some amount of common

randomness R.

The message setW1:K stored in the databases is independent of retrieval strat-

egy randomness F , common randomness R and user’s desired message index θ,
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which is a random variable uniformly distributed over the set [K],

I(W1:K ; θ,F ,R) = 0 (5.3)

Using the desired message index, the user generates a query for each database

according to F . Hence, the queries Q
[k]
n , n ∈ [N ] are deterministic functions of F ,

H(Q
[k]
1 , . . . , Q

[k]
N |F) = 0, ∀k (5.4)

After receiving a query from the user, each database should respond with a

truthful answer based on the stored message set and common randomness,

[deterministic answer] H(A[k]
n |Q[k]

n ,W1:K ,R) = 0, ∀n, ∀k (5.5)

After collecting all N answers from the databases, the user should be able to

decode the desired message reliably,

[reliability] H(Wk|F , A[k]
1:N) = 0, ∀k (5.6)

Due to the user privacy constraint, the query generated to retrieve the desired

message should be statistically indistinguishable from other queries, thus, for all

k, k′ ∈ [K], k′ ̸= k,

[user privacy] (Q[k]
n ,A

[k]
n ,W1:K ,R) ∼ (Q[k′]

n , A[k′]
n ,W1:K ,R) (5.7)
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Due to the database privacy constraint, the user should learn nothing about

Wk̄ which is the complement of Wk, i.e., Wk̄ = {W1, · · · ,Wk−1,Wk+1, · · · ,WK},

[database privacy] I(Wk̄;F , A[k]
1:N) = 0, ∀k (5.8)

An achievable SPIR scheme is a scheme that satisfies the reliability constraint

(5.6), the user privacy constraint (5.7) and the database privacy constraint (5.8).

In this chapter, we focus on the overall communication cost, which is a sum of the

number of uploaded bits (named upload cost and denoted by U) and the number

of downloaded bits (named download cost and denoted by D), within the retrieval

scheme. As a consequence, the most efficient achievable scheme is the scheme with

the lowest total communication cost, i.e., the one that achieves C∗ = inf(U + D)

over all achievable SPIR schemes.

5.2.2 Conditional Disclosure of a Secret

Two parties Alice and Bob possess their respective inputs X, Y and share a common

secret S. Alice and Bob also share an independent randomness R to assist the secret

disclosure of S. With the knowledge of the inputs X, Y but without knowing the

common randomness R, another party Carol wishes to learn the secret S under a

specific condition by communicating with Alice and Bob simultaneously. Generally,

this condition is described as a deterministic public function. Specifically, given a

globally public function f , the secret S is disclosed to Carol if and only if f(X, Y ) = 1

is true. By contrast, if f(X, Y ) is not equal to 1, no information about the secret S
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should be revealed to Carol. To that end, Alice sends a signal AX and Bob sends

another signal BY to Carol.

The signals are determined by all the information contained in Alice or Bob

before being sent to Carol,

[deterministic signal] H(AX |X,S,R) = 0

H(BY |Y, S,R) = 0 (5.9)

If the condition is satisfied, Carol is able to decode the secret by using all the

information she possesses,

[validity] H(S|X, Y,AX , BY ) = 0, if f(X, Y ) = 1 (5.10)

Otherwise, if the condition is not satisfied, Carol cannot learn anything about the

secret based on all the information she has,

[security] I(S;X, Y,AX , BY ) = 0, if f(X, Y ) ̸= 1 (5.11)

The information-theoretic objective of CDS is to minimize the number of bits

contained in AX and BY .
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5.2.3 Conditional Disclosure of Multiple Secrets

Here, we introduce the concept of CDMS as an extension of CDS. Given the same

setting except sharing K i.i.d. common secrets S1, . . . , SK in Alice and Bob, Carol

expects to learn partial secrets under some specific conditions (one for each secret)

by communicating with Alice and Bob simultaneously. Now, a sequence of functions

fk, k ∈ [K] are globally public, the constraints in CDMS generalize to the following

ones.

The integrated signals are determined by all the information contained in Alice

or Bob before being sent to Carol,

[deterministic signal] H(AX |X,S1:K ,R) = 0

H(BY |Y, S1:K ,R) = 0 (5.12)

For all k ∈ [K], if the condition fk is satisfied, Carol is able to decode the

secret Sk,

[validity] H(Sk|X, Y,AX , BY ) = 0, if fk(X, Y ) = 1 (5.13)

For all k ∈ [K], if the condition fk is not satisfied, Carol learns nothing about the

secret Sk,

[security] I(Sk;X, Y,AX , BY ) = 0, if fk(X, Y ) ̸= 1 (5.14)
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X,S,R Y, S,RAlice Bob

X, Y Carol

Carol learns S iff f(X, Y ) = 1

f : globally known

AX BY

CDS

X,S1:K ,R Y, S1:K ,RAlice Bob

X, Y Carol

Carol learns Sk iff fk(X, Y ) = 1

f1:K : globally known

AX BY

CDMS
generalization

W1:K ,R W1:K ,RDB1 DB2

θ, X, Y User

User only learns Wθ given fθ(X, Y ) = 1

AX BY

SPIR

X Y

reduction

customized f1:K

globally known

Figure 5.1: Relationship among CDS, CDMS and SPIR.

Likewise, the information-theoretic objective of CDMS is to minimize the num-

ber of bits contained in AX and BY .

5.3 Main Results

We design the particular CDMS configuration given below:

1. First, Carol selects a random desired index θ, which is uniformly distributed

over [K]; θ is independent of the secrets as well as common randomness in

Alice and Bob.

2. Second, Carol selects two random vectors X and Y such that no information

about θ is leaked in the individual vectors X or Y , i.e., I(θ;X) = 0 and

I(θ;Y ) = 0.

3. Third, Carol sends X to Alice and Y to Bob.

4. Globally known condition functions are set in accordance with the selection of

random vectors X and Y , such that, at all times only one condition function

fθ can be 1.
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Theorem 5.1 CDMS configured as above is equivalent to SPIR with two replicated

and non-colluding databases.

Proof: Within the given configuration, Alice and Bob can be treated as database 1

and database 2, and Carol as the user; the secrets S1:K can be treated as the message

setW1:K ; the random variable θ as the desired message index at the user; the inputs

X, Y as the queries Q
[θ]
1 , Q

[θ]
2 ; and the signals AX , BY as the answers A

[θ]
1 , A

[θ]
2 . Thus,

we have the following conversions, which complete the proof:

1. Deterministic signal becomes deterministic answer,

H(A
[θ]
1 |Q[θ]

1 ,W1:K ,R) = 0 (5.15)

H(A
[θ]
2 |Q[θ]

2 ,W1:K ,R) = 0 (5.16)

2. From the first two steps in the CDMS configuration, we obtain the user privacy

for each database,

I(θ;Q
[θ]
1 , A

[θ]
1 ,W1:K ,R) = 0 (5.17)

I(θ;Q
[θ]
2 , A

[θ]
2 ,W1:K ,R) = 0 (5.18)

3. Validity becomes reliability due to the unique decodable secret Sθ,

H(Wθ|Q[θ]
1 , Q

[θ]
2 , A

[θ]
1 , A

[θ]
2 ) = 0 (5.19)
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4. Security becomes database privacy due to the remaining undecodable secrets,

I(Wθ̄;Q
[θ]
1 , Q

[θ]
2 , A

[θ]
1 , A

[θ]
2 ) = 0 (5.20)

■

We are ready to investigate the total communication cost of two-database

SPIR by means of the characteristics of CDS and CDMS. We use the terminologies

in [114] for the bipartite graph in CDS/CDMS.

Remark 5.1 We can construct an upload cost starting from 2 log2K in two-

database SPIR while satisfying the constraints in the second step of the particular

CDMS configuration above. Intuitively, the upload cost of 2 log2K comes from the

needed log2K bits to be sent to each database to represent any one of the K mes-

sages. The upload cost 2 log2K can be achieved by the following setting: X and Y

are two uniformly selected symbols from a finite set SK = {0, 1, . . . , K − 1} such

that X + Y = θ − 1 under an assumption that the sum is always calculated over

module K. In order to construct a larger upload cost, we can select a larger finite

set by utilizing additional dummy messages. As an aside, we note that a larger fi-

nite set can be denoted by using multiple symbols from a smaller finite set. This

further increases the diversity of upload cost constructions. For example, we can

use two symbols from S3 = {0, 1, 2} to include every option in S8 = {0, 1, . . . , 7}.

Thus, when K = 8, X and Y can either be two one-symbol vectors from S8 or two

two-symbol vectors from S3.
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Remark 5.2 As in CDS and CDMS, we can use a bipartite graph to specify two-

database SPIR constraints. As introduced in [80, 81], CDS can be viewed as a data

storage system over a bipartite graph where the nodes in each side of the graph are

used to denote the input values in each party, and the connectivity of the links is

used to indicate the satisfaction of the condition after selecting two nodes (input

values) from two parties. In the extension to CDMS, we assign a distinct color ck

to each independent secret Sk,∀k ∈ [K]. Hence, in CDMS, the color of links is

used to indicate which secret should be revealed while keeping all the other secrets

completely private. Following CDMS, in two-database SPIR, the nodes are used

to denote the queries received by the databases, and the links with different colors

are used to indicate which message should be retrieved while keeping all the other

messages completely private, which implies reliability and database privacy.

Remark 5.3 In the bipartite graph, the links that are incident to any node should

include all possible colors with equal number, due to user privacy.

Example 9: In this example, we will show the use of bipartite graphs for SPIR for

N = 2, K = 3 and two example upload costs of U = 2 log2 3 and U = 4. We use

colors red, yellow and green to denote messages W1,W2 and W3, respectively.

For upload cost of U = 2 log2 3, we use one-symbol vectors X and Y where

X and Y are both uniformly selected from S3 s.t. X + Y = θ − 1 for message Wθ.

In this case, globally known condition functions are set accordingly as: fi(X, Y ) =

X + Y + 2 − i, for i ∈ [3]. Then, we use A0, A1, A2 to denote the three choices for

the queries in database 1, and B0, B1, B2 to denote the three choices for the queries
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Figure 5.2: Bipartite graph for K = 3 messages and U = 2 log2 3 upload cost.

A00
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B00
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B10

B11

Figure 5.3: Bipartite graph for K = 3 messages and U = 4 upload cost.

in database 2. The corresponding bipartite graph is shown in Fig. 5.2.

For upload cost of U = 4, we use two-symbol vectors X = {X2, X1} and

Y = {Y2, Y1} where X1, X2, Y1, Y2 are all uniformly selected from S2 s.t. 2(X2 +

Y2) + (X1 + Y1) = θ − 1 for message Wθ. The setting of globally known condition

functions is similar: fi(X, Y ) = 2(X2 + Y2) + (X1 + Y1) + 2 − i, for i ∈ [3]. Then,

A00, A01, A10, A11 and B00, B01, B10, B11 are used to denote the choices for the queries

in two databases. The corresponding bipartite graph is shown in Fig. 5.3.

Remark 5.4 Given an achievable scheme for two-database SPIR with K = P mes-

sages with known upload cost U and download cost D, we can construct a new

achievable scheme for K = 2P messages with upload cost U + 2 and download cost

2D. We use the following simple example to illustrate the idea of the general con-

struction.
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A0

A1

B0

B1

Figure 5.4: Bipartite graph for K = 2 messages and U = 2 upload cost.

Example 10: Consider two-database SPIR with K = 4 messages, where colors red,

yellow, green, blue are assigned to messagesW1,W2,W3,W4, respectively. Now, first

consider a two-database SPIR with K = 2 messages with a special bipartite graph

provided in Fig. 5.4. Following this bipartite graph, we generate an SPIR achievable

scheme for K = 2 and L = 1, with U = 2 and D = 2 as follows:

A0 = R1, B0 = W1 +R1 (5.21)

A1 = W1 +W2 +R1, B1 = W2 +R1 (5.22)

Now, we use the bipartite graph in Fig. 5.4 as a building block to construct

an SPIR scheme for K = 4 messages as stated in Remark 5.4. First, we replicate

this bipartite graph, thus, we need to use one extra bit to describe the query choices

in each database, see the left part of Fig. 5.5. Then, we replicate the whole left

part, change the color of links to green and blue, and then also exchange the order

of query choices in the second column, see the right part of Fig. 5.5. Combining

the left part and the right part in Fig. 5.5, we can verify that this new bipartite

graph is a valid one by checking Remark 5.2 and Remark 5.3. Moreover, following

this bipartite graph for K = 4, the corresponding upload cost increases by 2 and

the corresponding download cost doubles; see the following achievable scheme with
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Figure 5.5: Bipartite graph for K = 4 messages and U = 4 upload cost.

L = 1:

A00 = {R1, R3}, B00 = {W1 +R1,W3 +R4} (5.23)

A01 = {W1 +W2 +R1,W3 +W4 +R3}, B01 = {W2 +R1,W4 +R4} (5.24)

A10 = {R2, R4}, B10 = {W1 +R2,W3 +R3} (5.25)

A11 = {W1 +W2 +R2,W3 +W4 +R4}, B11 = {W2 +R2,W4 +R3} (5.26)

5.4 Exact Upload-Download Region N = 2, K = 3

In this section, we give the exact achievable (U,D) cost region of two-database

SPIR for K = 3 messages with L = 1 using the results of the previous section. In

particular, for the upload cost of U = 2 log2 3, we achieve a download cost of D = 3.

This outperforms the best-known result ofD = 4 in [73]. We show (2 log2 3, 3) corner

point to be optimum with a converse. Further, by increasing the query selection for

each database by one, we achieve a download cost of D = 2. This means that U = 4

is sufficient to achieve D = 2, and having U = 6 is not necessary as in [8]. We show
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(4, 2) corner point to be optimum as well with a converse.

Theorem 5.2 In the two-database SPIR with K = 3 messages with message length

L, when the upload cost is U = 2 log2 3, the optimal download cost is D = 3L and

the minimal amount of required common randomness is 2L.

Corollary 5.1 In the two-database SPIR with K = 3 messages, if the message

length is confined to be L = 1, the optimal total communication cost is 2 log2 3 + 3

with minimal amount of required common randomness being 2.

Proof: We present the converse proof first. First, we select two random nodes from

the two columns. Without loss of generality, let them be A1 and B1, respectively.

From A1, B1, we can recover one random message Wp without learning anything

about the remaining messages Wp̄. Next, we select another two nodes Ai, i ̸= 1

and Bj, j ̸= 1 such that Wp can be recovered from Ai, Bj once again with no

knowledge about Wp̄. Thus, from Ai, B1, we can only recover another random

message Wq, q ̸= p. Then, we have,

H(A1|F) +H(B1|F)

≥ H(A1|Ai, B1,F) +H(B1|Ai, Bj,F) (5.27)

= H(A1, Ai, B1,F) +H(Ai, B1, Bj,F)−H(Ai, B1,F)−H(Ai, Bj,F) (5.28)

= H(Wp, A1, Ai, B1,F) +H(Wp, Ai, B1, Bj,F)−H(Ai, B1,F)−H(Ai, Bj,F)

(5.29)
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≥ H(Wp, Ai, B1,F) +H(Wp, A1, Ai, B1, Bj,F)−H(Ai, B1,F)−H(Ai, Bj,F)

(5.30)

= H(Wp) +H(Wp, A1, Ai, B1, Bj,F)−H(Ai, Bj,F) (5.31)

= H(Wp) +H(Wp̄, A1, Ai, B1, Bj,F)−H(Ai, Bj,F) (5.32)

≥ H(Wp) +H(Wp̄, Ai, Bj,F)−H(Ai, Bj,F) (5.33)

= H(Wp) +H(Wp̄) (5.34)

= 3L (5.35)

where (5.29) follows from the decodability of message Wp from A1, B1 and from

Ai, Bj, (5.30) follows form the fact that conditioning cannot increase entropy, i.e.,

H(A1|Wp, Ai, B1,F) ≥ H(A1|Wp, Ai, B1, Bj,F), (5.31) and (5.34) both come from

the database privacy (5.8), (5.32) follows from the fact that we can decode W1:3

from A1, B1, Ai, Bj,F , which can be readily proved by contradiction in the bipartite

graph. As a result, we reach the desired converse result regarding the download

cost,

D ≥ H(A1) +H(B1) ≥ H(A1|F) +H(B1|F) ≥ 3L (5.36)

Next, we prove H(R) ≥ 2L:

0 = I(Wp̄;A1, B1,F) (5.37)

= I(Wp̄;A1, B1|Wp,F) (5.38)
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= H(A1, B1|Wp,F)−H(A1, B1|W1:K ,F) +H(A1, B1|W1:K ,F ,R) (5.39)

= H(A1, B1|Wp,F)− I(A1, B1;R|W1:K ,F) (5.40)

≥ H(A1, B1|Wp,F)−H(R) (5.41)

where (5.38) follows from the combination of (5.2) and (5.3), (5.39) follows from the

deterministic answers (5.5), and (5.41) follows from (5.3) again. Therefore, we turn

to find a lower bound for the expression H(A1, B1|Wp,F),

H(A1, B1|Wp,F)

≥ H(A1|Wp, Ai, B1,F) +H(B1|Wp, Ai, Bj,F) (5.42)

= H(A1, Ai, B1,F) +H(Ai, B1, Bj,F)−H(Wp, Ai, B1,F)−H(Ai, Bj,F)

(5.43)

= H(A1, Ai, B1,F) +H(Ai, B1, Bj,F)−H(Ai, B1,F)−H(Ai, Bj,F)−H(Wp)

(5.44)

≥ H(Wp) +H(Wp̄)−H(Wp) (5.45)

= 2L (5.46)

where (5.45) exactly follows from the steps between (5.28)-(5.34). As a consequence,

we reach the desired converse result regarding the minimal amount of required com-

mon randomness,

H(R) ≥ 2L (5.47)
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Next, we move to the achievability. We use the structure in Fig. 5.2 and

the corresponding answers for L = 1 are as follows (we use this achievable scheme

multiple times for larger L),

A0 = (R1, R2), B0 = W1 +R1 (5.48)

A1 = (W1 +W2 +R1,W2 +W3 +R2), B1 = W2 +R2 (5.49)

A2 = (W1 +W3 +R1,W1 +W2 +R2), B2 = W3 +R1 +R2 (5.50)

The achievability in (5.48)-(5.50) together with converses in (5.36) and (5.47) com-

plete the proof. ■

Theorem 5.3 In the two-database SPIR with K = 3 messages with message length

L, when the upload cost is U = 2 log2 4 = 4, the optimal download cost is D = 2L

and the minimal amount of required common randomness is L.

Corollary 5.2 In the two-database SPIR with K = 3 messages, if the message

length is confined to be L = 1, the optimal total communication cost is 4 + 2 = 6

with minimal amount of required common randomness being 1.

Proof: The converse proof comes from [8, Thm. 1]. The achievability comes from

the following answers corresponding to the structure in Fig. 5.3,

A00 = R1, B00 = W1 +R1 (5.51)

A01 = W1 +W2 +R1, B01 = W2 +R1 (5.52)

A10 = W1 +W3 +R1, B10 = W3 +R1 (5.53)
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Figure 5.6: Achievable (U,D) region for two-database SPIR with K = 3, L = 1.

A11 = W2 +W3 +R1, B11 = W1 +W2 +W3 +R1 (5.54)

which complete the proof. ■

Combining Theorem 5.2 and Theorem 5.3, we obtain the achievable (U,D)

region for two-database SPIR for K = 3 and L = 1 in Fig. 5.6. Any point within

the light blue area is achievable, while all the remaining points are not achievable.

Thus, the optimal communication cost is 4 + 2 = 6.

5.5 Conclusion

In this chapter, we investigated the overall communication cost of two-database

SPIR from the perspective of information theory. This is a first and leading at-

tempt on this problem. Although the download cost of SPIR is fully understood
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now, the upload cost or joint upload-download cost of SPIR is still open. To that

end, we utilized CDS/CDMS to provide a potential connection in this work. Follow-

ing this direction, we developed an understanding of how to construct the general

upload cost for two-database SPIR, and determined a few principles of building two-

database SPIR schemes from small K to large K. Finally, by providing a complete

upload-download cost achievable region, we determined the exact minimum total

communication cost of two-database SPIR for K = 3 messages when the message

length is 1. In the future, we aim to extend these ideas to more general parameters.

In other words, we want to find the optimal communication cost in two-database

SPIR when the total number of messages K is arbitrarily large, and devise a cor-

responding general scheme to achieve this communication cost. We also want to

consider the case with more than two databases.
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CHAPTER 6

Digital Blind Box: Random Symmetric Private Information

Retrieval

6.1 Introduction

In this chapter, we introduce the problem of RSPIR, which a novel and interesting

extension of SPIR. Different from SPIR, the user does not have an input to the

databases, i.e., the user does not select a specific message to download. As an

alternative, this user is satisfied with any arbitrary message in the message set that

is available to the databases. Therefore, the databases need to send symbols to

the user in such a way that the user is guaranteed to download a message correctly

(random reliability), the databases do not know which message the user has received

(user privacy), and the user does not learn anything further than the one message it

has received (database privacy). This is the digital version of a blind box, also known

as gachapon, which implements the above specified setting with physical objects

for entertainment. This is also the blind version of 1-out-of-K OT, an important

cryptographic primitive in the field of cryptography. We study the information-

theoretic capacity of two-database RSPIR and determine its exact capacity for the
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cases of K = 2, 3, 4 messages. While we provide a general achievable scheme that is

applicable to any number of messages, the capacity for K ≥ 5 remains open.

6.2 RSPIR: Problem Formulation

In this chapter, we consider N = 2 non-colluding databases each storing the same

set of K ≥ 2 i.i.d. messages. Each message consists of L i.i.d. uniformly chosen

symbols from a sufficiently large finite field Fq, i.e.,

H(Wk) = L, k ∈ [K] (6.1)

H(W1:K) = H(W1) + · · ·+H(WK) = KL (6.2)

The two databases jointly share a necessary common randomness random vari-

able S, which is generated independent of the message set W1:K . Thus,

H(W1:K ,S) = H(W1:K) +H(S) (6.3)

Before the RSPIR process starts, an answer set A with cardinality M1 is

assigned to database 1 while another answer set B with cardinality M2 is assigned

to database 2. Since there is no input at the user side in the RSPIR process, the

databases will never receive a query from the user. Therefore, as a simple approach,

each database individually selects a random answer under a uniform distribution

from its corresponding answer set and then transmits it to the user. The indices of

the answers for two databases are denoted by X and Y , respectively, i.e., database
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1 will select AX ∈ A and database 2 will select BY ∈ B. Moreover, we use x and y

to denote the realizations of the random variables X and Y , respectively. We note

that every answer from any answer set is generated based on the message set and

the common randomness, hence, for all X ∈ [M1] and Y ∈ [M2], we have,

[deterministic answer] H(AX , BY |X, Y,W1:K ,S) = 0 (6.4)

After collecting two arbitrary answers from the databases, the user should

always be able to decode a random message reliably. Thus, for all X ∈ [M1] and Y ∈

[M2], we can always find an index θX,Y ∈ [K] (the mapping here is not deterministic)

such that

[random reliability] H(WθX,Y
|X, Y,AX , BY ) = 0 (6.5)

Because of the database privacy constraint, the user is supposed to learn noth-

ing about Wθ̄X,Y
which is the complement of the randomly retrieved message WθX,Y

,

i.e., Wθ̄X,Y
= {W1, . . . ,WθX,Y −1,WθX,Y +1, . . . ,WK},

[database privacy] I(Wθ̄X,Y
;X, Y,AX , BY ) = 0 (6.6)

Because of the user privacy constraint, i.e., the protection of this randomly re-

trieved message’s index in the user, from the perspective of each individual database,

this index must be indistinguishable for each randomly selected answer under a uni-

form distribution. In other words, even though an answer from one database is
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deterministic, the user can still decode every potential message in the message set

with equal probability through the variation of the answer from the other database.

Thus, for the first database, given any realization x ∈ [M1], we always have the

following probability distribution of the random variable θx,Y with respect to the

random variable Y ,

P (θx,Y = k) =
1

K
, ∀k ∈ [K] (6.7)

which is equivalent to

[user privacy] I(x,Ax,W1:K ,S; θx,Y ) = 0 (6.8)

By symmetry, for database 2, given any realization y ∈ [M2], we also have the

following probability distribution of the random variable θX,y with respect to the

random variable X,

P (θX,y = k) =
1

K
, ∀k ∈ [K] (6.9)

which is equivalent to

[user privacy] I(y,By,W1:K ,S; θX,y) = 0 (6.10)

As a consequence, we obtain the following theorem regarding the cardinality

of the answer sets, which can be proved by contradiction using the user privacy
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constraint.

Theorem 6.1 The total possible number of answers in the answer set for each

database must be a multiple of K, i.e.,

M1 = t1K, M2 = t2K, t1, t2 ∈ N+ (6.11)

Moreover, we also have the following theorem concerning the common ran-

domness distribution in the databases.

Theorem 6.2 As in multi-database SPIR [7, 8], in RSPIR, the databases must

share some necessary common randomness that is unknown to the user before the

retrieval process starts. Otherwise, RSPIR is not feasible.

Proof: Without any common randomness in the databases, for any X ∈ [M1] and

Y ∈ [M2], the random reliability constraint and the database privacy constraint

collectively lead to,

0 = I(Wθ̄X,Y
;X, Y,AX , BY ) (6.12)

= I(Wθ̄X,Y
;WθX,Y

, X, Y,AX , BY ) (6.13)

= H(Wθ̄X,Y
)−H(Wθ̄X,Y

|WθX,Y
, X, Y,AX , BY ) (6.14)

Then, we consider the following expression

I(X, Y,AX , BY ;Wθ̄X,Y
|WθX,Y

)
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= H(Wθ̄X,Y
|WθX,Y

)−H(Wθ̄X,Y
|WθX,Y

, X, Y,AX , BY ) (6.15)

= H(Wθ̄X,Y
)−H(Wθ̄X,Y

) (6.16)

= 0 (6.17)

where (6.16) follows from (6.14). For any realization x,

0 = I(Ax;Wθ̄x,Y |x,Wθx,Y ) (6.18)

= H(Ax|x,Wθx,Y )−H(Ax|x,W1:K) (6.19)

= H(Ax|Wθx,Y ) (6.20)

where (6.18) follows from (6.17), and (6.20) follows from the deterministic answer

constraint H(Ax|x,W1:K) = 0 without common randomness. Taking into consid-

eration the fact that (6.20) is true for any realization y ∈ [M2] as well as the user

privacy constraint (6.7), we have H(Ax|W1) = · · · = H(Ax|WK) = 0. Since mes-

sages are all mutually independent, it is easy to derive that H(Ax) = 0, which forms

a contradiction. ■

A valid two-database RSPIR achievable scheme is a scheme that satisfies the

user privacy constraint (6.8), (6.10), the database privacy constraint (6.6) and the

random reliability constraint (6.5).

The efficiency of a scheme is measured in terms of the total number of down-

loaded bits by the user from the two databases, named as the download cost. Ac-

cording to the formulation above, the download cost consists of the answer indices
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X, Y and the answers themself AX , BY . Compared with the answer cost, the an-

swer index cost can be neglected as it does not scale with the message length if we

reuse them to decode each symbol in the randomly retrieved message. Thus, we

use DRSPIR to denote the expected number of bits contained in the answers AX , BY

over the indices X, Y . Then the retrieval rate of RSPIR is given by,

RRSPIR =
L

DRSPIR

(6.21)

The capacity of RSPIR, CRSPIR, is the supremum of the retrieval rates RRSPIR over

all valid achievable schemes.

6.3 Main Results

Theorem 6.3 In the two-database RSPIR problem, in the case of K = 2, the capac-

ity is 1
2
with minimal amount of required common randomness being L. In the case

of K = 3, 4, the capacity is 1
3
with minimal amount of required common randomness

being 2L.

The converse proof of Theorem 6.3 is given in Section 6.4, and the achievability

proof of Theorem 6.3 is presented in Section 6.5. The capacity and its minimal

amount of required common randomness in the case of K ≥ 5 is an open problem.

Remark 6.1 It is well known [8] that the capacity of multi-database SPIR is 1− 1
N
,

where N is the number of replicated and non-colluding databases. As a corollary,

the capacity of two-database SPIR is 1
2
, which does not depend on the number of
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messages K stored in the databases. By contrast, the capacity of RSPIR does depend

on the value of K. Even though the capacity of RSPIR achieves the same limit as

SPIR in the case of K = 2, the capacity of RSPIR decreases to 1
3
when the value of

K increases to 3.

Remark 6.2 Because of the equivalence between RSPIR and the digital blind box,

in a digital blind box setting where two non-colluding databases share K messages

and some necessary common randomness, perfect digital blind box delivery can be

achieved with a linear download cost KL. The proof is a direct consequence of the

second general achievable scheme given in Section 6.5.

Remark 6.3 In the problem formulation part of our previous work [75], we assume

that the user is able to obtain a random subset of the shared common randomness

that is unknown to any individual database before the SPIR retrieval process starts.

Although we mention the idea of fetching common randomness like side-information

in advance, we do not specify in [75] a corresponding practical implementation. Now,

it is clear that the achievability provided here for RSPIR can be used as a practical

approach for this problem if common randomness is treated as another independent

message system.

6.4 Converse Proof

Theorem 6.4 In the two-database RSPIR problem, the capacity is realized in the

case where M1 and M2 are both exactly K.
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Proof: We provide a sketch of proof here. The idea of the proof is that once we

multiply the value of M1 by an integer t ≥ 2, it is straightforward to see that

additional constraints will be added to each pair AX , BY for all X ∈ [tM1] and

Y ∈ [M2] after considering the index permutation, which will either increase or

maintain the minimal value of H(AX) + H(BY ). This analysis also applies to the

increase of M2. ■

In the case of K = 2, motivated by Theorem 6.4, we consider the simplest

case where M1 = 2 and M2 = 2. Then, we only need to investigate the following

constraints since all the other potential system of constraints have the same structure

as this one and will lead to the same conclusions,

H(W1|A1, B1) = 0, H(W1|A2, B2) = 0 (6.22)

H(W2|A1, B2) = 0, H(W2|A2, B1) = 0 (6.23)

These constraints exactly reflect the random reliability constraint (6.5) and user

privacy constraint (6.7), (6.9) involved in this problem. First, we prove a lower

bound for H(A1) +H(B1),

H(A1) +H(B1)

≥ H(A1|A2, B1) +H(B1|A2, B2) (6.24)

= H(A1, A2, B1) +H(A2, B1, B2)−H(A2, B1)−H(A2, B2) (6.25)

= H(W1, A1, A2, B1) +H(W1, A2, B1, B2)−H(A2, B1)−H(A2, B2) (6.26)
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≥ H(W1, A2, B1) +H(W1, A1, A2, B1, B2)−H(A2, B1)−H(A2, B2) (6.27)

= H(A1, A2, B1, B2)−H(A2, B2) +H(W1) (6.28)

≥ H(W2, A2, B2)−H(A2, B2) +H(W1) (6.29)

= H(W2) +H(W1) (6.30)

= 2L (6.31)

where (6.28) and (6.30) follow from the database privacy constraint. Likewise, we

can always obtain H(AX)+H(BY ) ≥ 2L for any other answer pair AX , BY , X, Y ∈

[2]. As a result, we reach a converse result for the capacity when K = 2,

R =
L

D
≤ L

H(AX) +H(BY )
≤ L

2L
=

1

2
(6.32)

Next, we prove the minimal required amount of common randomness shared

in the two databases.

0 = I(W2;A1, B1) (6.33)

= I(W2;A1, B1|W1) (6.34)

= H(A1, B1|W1)−H(A1, B1|W1,W2) +H(A1, B1|W1,W2,S) (6.35)

= H(A1, B1|W1)− I(A1, B1;S|W1,W2) (6.36)

= H(A1, B1|W1)−H(S|W1,W2) +H(S|W1,W2, A1, B1) (6.37)

≥ H(A1, B1|W1)−H(S) (6.38)
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where (6.35) follows from the deterministic answer constraint (6.4) and (6.38) follows

from the independence between message set and the common randomness (6.3).

Therefore, we turn to find a lower bound for the expression H(A1, B1|W1),

H(A1, B1|W1)

= H(A1|W1, B1) +H(B1|W1) (6.39)

≥ H(A1|W1, A2, B1) +H(B1|W1, A2, B2) (6.40)

= H(A1, A2, B1) +H(A2, B1, B2)−H(W1, A2, B1)−H(A2, B2) (6.41)

= H(A1, A2, B1) +H(A2, B1, B2)−H(A2, B1)−H(A2, B2)−H(W1) (6.42)

≥ H(W2) (6.43)

= L (6.44)

where (6.42) follows from the database privacy constraint and (6.43) exactly follows

from the steps between (6.25)-(6.30). As a consequence, we reach a converse result

for the minimal amount of required common randomness,

H(S) ≥ L (6.45)

In the case of K = 3, M1 and M2 both take the value 3, after converting the

random reliability constraint and user privacy constraint into pairwise constraints

as in (6.22)-(6.23), we can proceed with the converse steps. As in the converse proof

in the case of K = 2 above, the concrete process is to utilize the converse proof

of [115, Theorem 2] once more after eliminating the influence of retrieval strategy
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randomness and its generated queries. Thus, we have the same conclusions as the

one in [115, Theorem 2] in the case of K = 3,

R ≤ 1

3
, H(S) ≥ 2L (6.46)

In the case of K = 4, it is easy to verify that each answer pair AX , BY , X, Y ∈

[4] has more constraints than the one when K = 3. Thus, a converse proof for the

capacity and the minimal amount of required common randomness in the case of

K = 4 can be inherited from the case of K = 3, i.e.,

R ≤ 1

3
, H(S) ≥ 2L (6.47)

A tight converse proof for the capacity and the minimal amount of required

common randomness remains to be found in the case of K ≥ 5.

6.5 Achievability

The work in [73] provides a scheme that can be readily converted into an achievable

scheme (albeit suboptimal) for the two-database RSPIR problem. For clarity, we

restate the result from the new perspective of RSPIR here. Assuming that L = 1

for the time being, two databases share K common randomness symbols S1, . . . , SK ,

which are all uniformly selected from Fq. For database 1, the answer set A is
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composed of K elements in the following form,

A1 = (W1 + S1,W2 + S2, . . . ,WK + SK) (6.48)

A2 = (W1 + S2,W2 + S3, . . . ,WK + S1) (6.49)

...

AK = (W1 + SK ,W2 + S1, . . . ,WK + SK−1) (6.50)

Basically, we only rotate common randomness symbols by one place in the sequence

of answers. A homomorphic variation of A is to rotate message symbols by one

place without imposing any influence on the answer set B and it is shown as follows,

A1 = (W1 + S1,W2 + S2, . . . ,WK + SK) (6.51)

A2 = (W2 + S1,W3 + S2, . . . ,W1 + SK) (6.52)

...

AK = (WK + S1,W1 + S2, . . . ,WK−1 + SK) (6.53)

For database 2, the answer set B also including K elements is shown as follows,

B1 = S1, (6.54)

B2 = S2, (6.55)

...

BK = SK (6.56)
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The answer set construction in these two databases is public knowledge to the

user. Afterwards, database 1 selects a random answer under a uniform distribution

from A, and then sends the values of symbols as well as the index belonging to

this answer to the user. Likewise, database 2 performs the same selection and

transmission. The reason for sending the answer indices is that the user does not

know how to use the values of symbols in the answers to decode a random message

without the help of the answer indices. After receiving two answers, the user is

always able to decode one random message reliably. Moreover, since each database

is doing the uniform selection, this random message is equally likely to be any

message in the message set. Therefore, it is impossible for each individual database

to learn the index of this randomly retrieved message at the user side. Meanwhile,

the user cannot learn any information about the remaining messages because of the

existence of unknown common randomness symbols. When each message includes

multiple symbols, we can simply perform this scheme repeatedly for each symbol

while there is no need to do the new selection nor send the answer index for each

database after first execution. Thus, the download cost of answer index can be

ignored as illustrated in the problem formulation when L is large enough. Obviously,

the download cost is D = (K + 1)L in this scheme but it is not optimal.

Here, we provide a new general scheme that achieves the download cost of

D = KL when L goes to infinity. Assuming that L = 1 temporarily, let two

databases share K − 1 common randomness symbols S1, . . . , SK−1. For database 1,
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the answer set A contains K elements in the following form,

A1 = (S1, S2, . . . , SK−1) (6.57)

A2 = (W1 +W2 + S1,W2 +W3 + S2, . . . ,WK−1 +WK + SK−1) (6.58)

A3 = (W1 +W3 + S1,W2 +W4 + S2, . . . ,WK−1 +W1 + SK−1) (6.59)

...

AK = (W1 +WK + S1,W2 +W1 + S2, . . . ,WK−1 +WK−2 + SK−1) (6.60)

Basically, except for the first answer, we only rotate the second message symbol by

one place in the sequence of answers while keeping the first message symbol. For

database 2, the answer set B consists of K elements in the following form,

B1 = W1 + S1 (6.61)

B2 = W2 + S2 (6.62)

...

BK−1 = WK−1 + SK−1 (6.63)

BK = WK + S1 + S2 + . . . SK−1 (6.64)

Now, note that, since this scheme achieves a download cost of D = KL, it

achieves a rate of R = L
D

= L
KL

= 1
K
. For K = 2 and K = 3, this scheme

achieves rates 1
2
and 1

3
meeting the converse bounds in (6.32) and (6.46), respectively.
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Specifically, when K = 2, we have the following answer sets,

A1 = S1, B1 = W1 + S1 (6.65)

A2 = W1 +W2 + S2, B2 = W2 + S2 (6.66)

When K = 3, we have the following answer sets,

A1 = (S1, S2), B1 = W1 + S1 (6.67)

A2 = (W1 +W2 + S1,W2 +W3 + S2), B2 = W2 + S2 (6.68)

A3 = (W1 +W3 + S1,W2 +W1 + S2), B3 = W3 + S1 + S2 (6.69)

When K = 4, this achievable scheme achieves a rate R = 1
K

= 1
4
whereas the

converse in (6.47) gives a bound of 1
3
. Now, we provide a better scheme that achieves

the converse in the case of K = 4. The message length L is assumed to be 2 such

that W1 = {a1, a2},W2 = {b1, b2},W3 = {c1, c2} and W4 = {d1, d2}. Moreover, two

databases share 4 common randomness symbols S1, S2, S3, S4. For database 1, the

answer set A containing 4 elements is in the following form,

A1 = (S1, S2, S3) (6.70)

A2 = (a1 + c1 + c2 + S1, b2 + d1 + S1 + S3, c2 + S4) (6.71)

A3 = (a1 + d2 + S1 + S4, a2 + d1 + d2 + S2, b1 + c2 + S2 + S3) (6.72)

A4 = (b1 + S4, a1 + a2 + b1 + b2 + S1 + S2, c1 + d2 + S1 + S2 + S3) (6.73)
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Figure 6.1: A two-database RSPIR bipartite graph for K = 4 messages.

For database 2, the answer set B with 4 elements is as follows,

B1 = (a1 + S1, a2 + S2, S4) (6.74)

B2 = (b1 + b2 + S1 + S2, b1 + S2 + S3, a1 + c1 + d2 + S1 + S4) (6.75)

B3 = (d1 + d2 + S2, b1 + c2 + S4, d1 + S1 + S3) (6.76)

B4 = (c2 + S2 + S3, c1 + c2 + S1, a1 + a2 + b2 + c1 + d1 + S3 + S4) (6.77)

Here, the download cost is D = 6 and the rate is R = L
D
= 1

3
. The remaining steps

and verification of this specific achievable scheme are the same as the last two general

ones. Specifically, regarding verification, we can use the bipartite graph in Fig. 6.1.

In this bipartite graph, by using colors red, yellow, green and blue for messages

W1,W2,W3 and W4, respectively, the color of links indicates which message should

be decoded while keeping all the other messages private. Moreover, each node is

always connected to 4 links with different colors.
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6.6 Conclusion

In this chapter, we investigated the capacity of two-party RSPIR from the perspec-

tive of information theory. This work provides an initial Shannon-theoretic study

of RSPIR. It is well known that the capacity of two-database SPIR is always one

half, which is independent of the number of messages K stored in the databases.

By contrast, the capacity of two-party RSPIR does depend on the value of K. In

addition, because of the equivalence between RSPIR and digital blind box, we can

achieve a linear download cost KL for perfect digital blind box delivery. Moreover,

according to our observation in Chapter 3, an important application of RSPIR is

to enable the user to fetch a random subset of the common randomness available

at the databases for the sake of user-side common randomness formation that is

unknown to the databases (also unknown to the user before it is received by the

user). Finally, we determined the exact capacity of two-party RSPIR for the cases

of K = 2, 3, 4. In particular, during the design of the achievable scheme in the case

of K = 4, the message length needs to be set as 2 rather than the usual 1. In our

future work, we want to find the capacity of two-database RSPIR in the case of

an arbitrary number of messages K. Similarly, we also want to explore the general

capacity of RSPIR when there are more databases at the server side.
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CHAPTER 7

Private Federated Submodel Learning via Private Set Union

7.1 Introduction

In this chapter, we consider the FSL problem and propose an approach where clients

are able to update the central model information-theoretically privately. Our ap-

proach is based on PSU, which is further based on MM-SPIR. The server has two

non-colluding databases which keep the model in a replicated manner. With our

scheme, the server does not get to learn anything further than the subset of sub-

models updated by the clients: the server does not get to know which client updated

which submodel(s), or anything about the local client data. In comparison to the

state-of-the-art private FSL schemes in [92, 94], our scheme does not require noisy

storage of the model at the databases; and in comparison to the recent secure ag-

gregation scheme in [101], our scheme does not require pre-distribution of client-side

common randomness, instead, our scheme creates the required client-side common

randomness via RSPIR and one-time pads. Our system is initialized with a repli-

cated storage of submodels and a sufficient amount of common randomness in two

databases at the server side. The protocol starts with a common randomness gen-
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eration (CRG) phase where the two databases establish common randomness at

the client side using RSPIR and one-time pads (this phase is called FSL-CRG).

Next, the clients utilize the established client-side common randomness to have the

server determine privately the union of submodel indices to be updated collectively

by the clients (this phase is called FSL-PSU). Then, the two databases broadcast

the current versions of the submodels in the index set union to clients. The clients

update the submodels based on their local training data. Finally, the clients use

a variation of FSL-PSU to write the updates back to the databases privately (this

phase is called FSL-write). Since the databases at the server do not need to com-

municate, as a novel approach, we utilize randomly chosen alive clients to route the

required information between the two databases. Our proposed private FSL scheme

achieves low communication cost, and is also robust against client drop-outs, client

late-arrivals, and database drop-outs.

7.2 Problem Formulation

7.2.1 MM-SPIR

As in [72], we consider N ≥ 1 non-colluding databases with each individual database

storing the replicated set of K ≥ 2 i.i.d. messages W[K] = {W1, . . . ,WK}. The L

i.i.d. symbols within each message are uniformly selected from a sufficiently large

finite field Fq, hence,

H(Wk) = L, ∀k (7.1)
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H(W[K]) = H(W1) + · · ·+H(WK) = KL (7.2)

The goal of the MM-SPIR problem is to retrieve a set of messages WΩ out of

the message set W[K] without leaking any information regarding the retrieved index

set Ω = {i1, i2, · · · , iP} ⊆ [K] with cardinality |Ω| = P to any individual database

(user privacy constraint), and while not obtaining any further information beyond

the desired message set WΩ (database privacy constraint). The cardinality of the

retrieved message set P is public knowledge and known by all the databases. Due

to the database privacy constraint, databases need to share some amount of server-

side common randomness RS that is unknown to the user. The server-side common

randomness RS is independent of the message set W[K] in the server.

The desired message index set Ω is a random variable corresponding to a

uniform selection of elements without replacement from the set [K] and the sample

space of Ω is the power set of [K]. We use P to denote the realization of the random

variable Ω. Based on the desired message set Ω, the user generates a set of queries

Q
[Ω]
[N ] without knowing the message set W[K] stored in the databases, hence,

I(W[K];Q
[Ω]
[N ],Ω) = 0 (7.3)

For any desired message index set P , after receiving a query from the user,

each database responds with a truthful answer based on the stored message set and
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the server-side common randomness,

[MM-SPIR deterministic answer] H(A[P]
n |Q[P]

n ,W[K],RS) = 0, ∀n, ∀P (7.4)

Subsequently, the user should be able to decode the desired set of messages

reliably after collecting N answers from all the databases,

[MM-SPIR reliability] H(WP |Q[P]
[N ], A

[P]
[N ],P) = 0, ∀P (7.5)

Due to the user privacy constraint, the query generated to retrieve the desired

set of messages should be statistically indistinguishable from other queries. Thus,

for all realizations P and P ′, such that P ≠ P ′ and |P| = |P ′| = P ,

[MM-SPIR user privacy] (Q[P]
n , A[P]

n ,W[K],RS) ∼ (Q[P ′]
n , A[P ′]

n ,W[K],RS) (7.6)

which is equivalent to the following one,

[MM-SPIR user privacy] I(Ω;Q[Ω]
n , A[Ω]

n ,W[K],RS) = 0, ∀n (7.7)

Due to the database privacy constraint, the user should learn nothing about

WP̄ which is the complement of WP , i.e., WP̄ = W[K]\P ,

[MM-SPIR database privacy] I(WP̄ ;Q
[P]
[N ], A

[P]
[N ],P) = 0, ∀P (7.8)
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An achievable MM-SPIR scheme is a scheme that satisfies the reliability con-

straint (7.5), the user privacy constraint (7.6) and the database privacy constraint

(7.8). Similar to single-database SPIR [8], single-database MM-SPIR is infeasible as

well. In order to make single-database MM-SPIR feasible, we use the multi-message

version of the extended SPIR formulation in [75], where the user is able to fetch

a random subset of the shared server-side common randomness before the retrieval

process starts, in the MM-SPIR setting.

7.2.2 PSU

In the PSU problem, two parties each holding a dataset, wish to jointly compute

the union of their sets without revealing anything else to either party. Let A denote

the global alphabet. The first party P1 stores a dataset Ω1 across its own N1 ≥ 1

replicated and non-colluding databases, and the second party P2 stores a dataset

Ω2 across its own N2 ≥ 1 replicated and non-colluding databases. Let P1 and P2

denote the realizations of the random variables Ω1 and Ω2, respectively. All elements

in P1 and P2 are selected from A under an arbitrary statistical distribution, i.e.,

P1,P2 ⊆ A. We denote one of the parties as the leader/server and the other as the

client/user. Without loss of generality, let party P1 be the server. Then, as in [72], P1

privacy, P2 privacy and PSU reliability constraints jointly form a contradiction, and

as in all SPIR formulations [7, 8], the server databases need to share an amount of

common randomness RS besides their own datasets. Then, the party P2 generates

N1 queries Q
[P2]
[N1]

and sends them to the databases associated with the party P1.
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After receiving the query Q
[P2]
n1 , the n1th database of the party P1 responds with an

answer A
[P2]
n1 .

For each database in the party P1, the answer A
[P2]
n1 should be generated truth-

fully according to the received query, its own dataset and its own common random-

ness,

[PSU deterministic answer] H(A[P2]
n1

|Q[P2]
n1

,Ω1,RS) = 0, ∀n1, ∀P2 (7.9)

When the PSU process is complete, the party P2 should be able to reliably

compute the union Ω1 ∪Ω2 based on the sent queries, the collected answers and the

knowledge of Ω2 without knowing |Ω1 ∪ Ω2| in advance. This is captured by the

PSU reliability constraint,

[PSU reliability] H(Ω1 ∪ Ω2|Q[P2]
[N1]

, A
[P2]
[N1]

,Ω2) = 0, ∀P2 (7.10)

The privacy requirements in PSU can be divided into two parts to protect

each participating party: P1 privacy and P2 privacy. First, the party P2 wants to

protect Ω1 ∪Ω2, however, since the party P2 does not know Ω1 when generating its

queries, the queries cannot depend on Ω1, and thus, P2 should only protect Ω2 in

queries. Thus, the queries sent by P2 should not leak any information about its own

dataset, i.e., any individual database associated with P1 learns nothing about Ω2
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from all the information it has,

[PSU P2 privacy] I(Ω2;Q
[Ω2]
n1

, A[Ω2]
n1

,Ω1,RS) = 0, ∀n1 (7.11)

Because of the known and fixed global alphabet A, it is obvious that we have

the following two constraints H(Ω2|Ω̄2) = 0 and H(Ω̄2|Ω2) = 0, which lead to the

following relationship,

H(Ω2) = H(Ω2)−H(Ω2|Ω̄2) (7.12)

= I(Ω2; Ω̄2) (7.13)

= H(Ω̄2)−H(Ω̄2|Ω2) (7.14)

= H(Ω̄2) (7.15)

Thus, we obtain the following identity,

I(Ω̄2;Q
[Ω2]
n1

, A[Ω2]
n1

,Ω1,RS)

= H(Ω̄2)−H(Ω̄2|Q[Ω2]
n1

, A[Ω2]
n1

,Ω1,RS) (7.16)

= H(Ω̄2)−H(Ω̄2|Q[Ω2]
n1

, A[Ω2]
n1

,Ω1,RS) +H(Ω̄2|Q[Ω2]
n1

, A[Ω2]
n1

,Ω1,Ω2,RS) (7.17)

= H(Ω̄2)− I(Ω̄2; Ω2|Q[Ω2]
n1

, A[Ω2]
n1

,Ω1,RS) (7.18)

= H(Ω2)−H(Ω2|Q[Ω2]
n1

, A[Ω2]
n1

,Ω1,RS) +H(Ω2|Q[Ω2]
n1

, A[Ω2]
n1

,Ω1, Ω̄2,RS) (7.19)

= H(Ω2)−H(Ω2|Q[Ω2]
n1

, A[Ω2]
n1

,Ω1,RS) (7.20)

= I(Ω2;Q
[Ω2]
n1

, A[Ω2]
n1

,Ω1,RS) (7.21)

193



As a consequence, we obtain the following equivalent expression for P2 privacy,

[PSU P2 privacy] I(Ω̄2;Q
[Ω2]
n1

, A[Ω2]
n1

,Ω1,RS) = 0, ∀n1 (7.22)

From the union result Ω1 ∪ Ω2, the party P2 always knows that the party P1

contains the elements in (Ω1∪Ω2)\Ω2 and does not contain the elements in (Ω1 ∪ Ω2).

Noting that (Ω1 ∪ Ω2)\Ω2 ∪ (Ω1 ∪ Ω2) = Ω̄2, thus, P2 should learn nothing about

whether P1 contains any element in Ω2 (we denote this information by E1,Ω2) from

the generated queries, the collected answers and its own dataset,

[PSU P1 privacy] I(E1,Ω2 ;Q
[P2]
[N1]

, A
[P2]
[N1]

,Ω2) = 0, ∀P2 (7.23)

Theorem 7.1 PSU is equivalent to MM-SPIR with L = 1 and P = |A| − |Ω2|.

Proof: We prove the equivalence between PSU and MM-SPIR similar to the proof

of equivalence between PSI and MM-SPIR in [72] after mapping the dataset in

each party to a corresponding incidence vector. Specifically, the P1 privacy, P2

privacy and PSU reliability constraints in the PSU problem are consistent with the

database privacy, user privacy and reliability constraints in the MM-SPIR problem

if Ω̄2 in PSU is treated as Ω in MM-SPIR. By contrast, the consistency of the three

constraints of PSI and MM-SPIR is true if Ω2 in PSI is treated as Ω in MM-SPIR.

■

Remark 7.1 From [72], we note that PSI is equivalent to MM-SPIR with L = 1

and P = |Ω2|. From Theorem 7.1 above, we note that PSU is equivalent to MM-
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SPIR with L = 1 and P = |A| − |Ω2|.1 From the de Morgan’s law, which says

A ∪B = A ∩ B, we have that A ∪ B = A ∩B, thus, the set union can be obtained

by a composition of set intersection and set complement. This shows the duality

between PSU and PSI problems. We note, however, that the parties should agree on

whether they will perform PSU or PSI, as the specific protocol will depend on it. In

this chapter, we focus on designing specific PSU protocols.

Remark 7.2 In certain applications of PSU, one or both of the parties may have

only a single database. Since PSU is equivalent to MM-SPIR from Theorem 7.1, and

since single-database MM-SPIR is infeasible [8], in such cases, one of the two parties

may obtain (fetch) a random subset of the shared server-side common randomness

from the other party prior to the start of the PSU process, as in [75]. This makes

MM-SPIR feasible, and thus, PSU feasible.

Remark 7.3 As PSI was generalized to multi-party PSI (MP-PSI) in [74], PSU can

be generalized to MP-PSU. As in MP-PSI, MP-PSU will require additional common

randomness allocation among the clients. To avoid repetition, we skip the detailed

development of MP-PSU, however, in the next subsection, we present a particular

MP-PSU in detail, where one party has no input. As a critical difference, in the

reliability verification stage, we need to have the sum in [74, Eqn. (56)] equal to 0

if all the clients contain the same element in the MP-PSI problem while this sum

should be 0 if none of the clients contain this element in the MP-PSU problem;

1These two conclusion are built upon the assumption that the party P2 is the user. As an
alternative, if the party P1 is treated as the user, we just need to replace Ω1 with Ω2 in these two
statements.
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see Example 13 for details. In MP-PSU, if all the parties have a single database,

we can construct an achievable scheme by using pre-fetched server-side common

randomness from the leader party as in [75]. In addition, for common randomness

allocation among the clients, we make use of the distributed property of non-colluding

databases as well as the RSPIR approach introduced in [116].

7.2.3 Private Distributed FSL

We consider a distributed FSL problem with one server that contains N = 2 non-

colluding and replicated databases2, and C clients that are selected by the server

to participate in one round of the FSL process; see Fig. 7.1. By convention, every

client establishes a direct secure and authenticated communication channel with

both databases. The full model for learning stored at the server side comprises

K submodels, each one of which consisting of L i.i.d. symbols that are uniformly

selected from a finite field Fq. Thus, each database in the server contains the full

model M[K], and we have,

H(Mk) = L, ∀k (7.24)

H(M[K]) = H(M1) + · · ·+H(MK) = KL (7.25)

The two databases also share an amount of server-side common randomness

RS that is unknown to the clients. Each selected client is interested in updating one

2We start this investigation with the simplest case of two databases. Our achievable scheme
works for any number of databases after minor modifications. However, how to improve the
performance by increasing the number of databases needs further study.
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Figure 7.1: Distributed federated submodel learning (FSL) system model.

or more submodels according to its local training data. Specifically, for i ∈ [C], the

ith client wishes to update the submodels whose index set is denoted by the random

variable Γ⟨i⟩, whose realization is denoted by γ⟨i⟩. For i ∈ [C], the random variable

Y ⟨i⟩ = {Y ⟨i⟩
1 , Y

⟨i⟩
2 , . . . , Y

⟨i⟩
K } is used to denote the corresponding incidence vector of

Γ⟨i⟩ after mapping to the alphabet as in [72,74].

We formulate our FSL process following the seminal FSL work in [87]. At

the beginning, each individual database in the server needs to calculate the union

of the selected clients’ desired submodel index sets Γ⟨1⟩ ∪ Γ⟨2⟩ ∪ · · · ∪ Γ⟨C⟩ denoted

by Γ. This phase is referred to as the FSL-PSU phase. Due to the constraint

that the two databases in the server cannot communicate with each other directly,

our solution is to use randomly selected alive clients as intermediators to route the

information received by the two databases rather than to enforce each client to
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send the same answer to both databases. The main objective of this new approach

is to reduce the total communication cost and the needed communication time.

Thus, we separate C clients into two groups: a group of clients whose index set

denoted by C1 = {C1(1), C1(2), . . . , C1(|C1|)} are associated with database 1, and the

other group of clients whose index set denoted by C2 = {C2(1), C2(2), . . . , C2(|C2|)}

are associated with database 2. A potential separation method is to rely on each

client’s communication channel bandwidth (or quality) with the two databases. For

instance, a client is classified as belonging to C1 if its channel with database 1 has a

higher bandwidth (quality) than the channel with database 2. Otherwise, this client

is considered as belonging to C2. Note that C1 ∩ C2 = ∅ and C1 ∪ C2 = [C]. Please

see Figs. 7.1 and 7.2 for depictions.

The FSL-PSU phase is further divided into two steps considering the fact that

two random clients (one from each client group) are utilized to relay the informa-

tion between the databases; see Fig. 7.2. This information is produced from the

answers that are collected by the two databases individually from their associated

client groups. In the first step, there is no need for each client to download any

information from the databases since the server itself is not involved in the PSU

computation, namely the downloads D
⟨Cj⟩,(j)
U,1 are null3 for all j ∈ [2]. As a conse-

quence, the only operation in this step is to make clients send their well-designed

3In this work, we use the value in ⟨⟩ to denote the index of client and the value in () to denote the
index of database for clarity. The superscript of the download D or the answer A in the following
text implies the information flow during the client-database communication. The first subscript of
D or A is used to show it is within the FSL-PSU phase or FSL-write phase (the letter U stands for
union and the letter W stands for write), whereas the second subscript is used to denote the step

number within this phase. In particular, “D
⟨Cj⟩,(j)
U,1 are null” here means that the communication

between any client in Cj and database j is always empty in the first step of FSL-PSU phase.
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Figure 7.2: Data flow in the FSL-PSU phase of our FSL system model.

answers A
⟨Cj⟩,(j)
U,1 to the associated database. In the second step, for all j ∈ [2],

database j processes the answers received from its associated clients with the aid of

its own server-side common randomness, and then the produced D
⟨θj⟩,(j)
U,2 is merely

downloaded by a randomly chosen client whose index is θj within its associated client

group Cj. Finally, client θj forwards the same processed answer A
⟨θj⟩,([2])
U,2 based on

the received download to both databases; see Fig. 7.2.

Similar to the conventional multi-user PIR/SPIR problem formulated in [117,

118], the constraints accompanying FSL-PSU phase comprises three parts. First,

each database j should be able to reliably determine the union Γ using all the

collected answers {A⟨Cj⟩,(j)
U,1 , A

⟨θ[2]⟩,(j)
U,2 } within two FSL-PSU steps and its own server-

side common randomness RS, which is captured by,

[FSL-PSU reliability] H(Γ|A⟨Cj⟩,(j)
U,1 , A

⟨θ[2]⟩,(j)
U,2 ,RS) = 0, ∀j (7.26)

Second, the databases should not learn anything further about the set Γ⟨[C]⟩

or Y ⟨[C]⟩ other than the union Γ. Note that if an element is not in the union Γ, each

database concludes that no client contains this element. Otherwise, each database
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learns that at least one client contains this element. Let Y
⟨i⟩
Γ = {Y ⟨i⟩

k : k ∈ Γ}, we

define a new set YΓ = Y
⟨[C]⟩
Γ , then,

[FSL-PSU privacy] I(YΓ;A
⟨Cj⟩,(j)
U,1 , A

⟨θ[2]⟩,(j)
U,2 ,RS|

∑
i∈[C]

Y
⟨i⟩
k > 0,∀k ∈ Γ) = 0, ∀j

(7.27)

Third, client θj that obtains the download D
⟨θj⟩,(j)
U,2 from database j should

learn nothing about the other clients’ desired submodel indices. Hence, we have the

following constraint,

[FSL-PSU inter-client privacy] I(Y
⟨[C]\θj⟩
Γ ;D

⟨θj⟩,(j)
U,2 , Y ⟨θj⟩) = 0, ∀j (7.28)

A valid FSL-PSU phase is one that satisfies the FSL-PSU reliability (7.26), the

FSL-PSU privacy (7.27) and the FSL-PSU inter-client privacy (7.28). The efficiency

of an FSL-PSU phase is measured in terms of the number of bits in the involved

communication strings. Therefore, for the FSL-PSU phase itself, we wish to reduce

the total number of bits in the answers {A⟨C1⟩,(1)
U,1 , A

⟨C2⟩,(2)
U,1 , A

⟨θ1⟩,([2])
U,2 , A

⟨θ2⟩,([2])
U,2 } and

downloads {D⟨θ1⟩,(1)
U,2 , D

⟨θ2⟩,(2)
U,2 } to the extent possible.

When the FSL-PSU phase is completed, each database will learn Γ, the union

of the submodel indices to be updated. Next, we proceed to the FSL-write phase

where each database will update the full learning model synchronously. The FSL-

write phase is analogous to the FSL-PSU phase, and therefore, is also divided into

two steps as the FSL-PSU phase. The difference is that in the first step, both
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Database 1 Database 2

Client group C1

A
〈C1(1)〉,(1)
W,1

Client group C2

D
〈C1〉,(1)
W,1 D

〈C2〉,(2)
W,1

A
〈C1(2)〉,(1)
W,1 A

〈C1(|C1|)〉,(1)
W,1 A

〈C2(1)〉,(2)
W,1 A

〈C2(2)〉,(2)
W,1 A

〈C2(|C2|)〉,(2)
W,1

(a) FSL-write phase step 1.

Database 1 Database 2

Client group C1

A
〈θ1〉,([2])
W,2 A

〈θ2〉,([2])
W,2

D
〈θ1〉,(1)
W,2 D

〈θ2〉,(2)
W,2

Client group C2

(b) FSL-write phase step 2.

Figure 7.3: Data flow in the FSL-write phase of our FSL system model.

databases broadcast the same set of submodels MΓ = {Mk : k ∈ Γ} to their associ-

ated clients before each client trains its desired submodel set MΓ⟨i⟩ by employing its

local data. Hence, for all j ∈ [2], the downloads D
⟨Cj⟩,(j)
W,1 are always in the form of

MΓ. Subsequently, clients send their well-processed answer A
⟨Cj⟩,(j)
W,1 corresponding

to the submodel updates back to the associated database. In the second step, for all

j ∈ [2], database j processes its associated clients’ answers through different server-

side common randomness and then the produced D
⟨θj⟩,(j)
W,2 is downloaded by the θjth

client again. Finally, the θjth client forwards the same resulting answer A
⟨θj⟩,([2])
W,2 to

both databases after processing the newly received download; see Fig. 7.3.

Likewise, the constraints accompanying FSL-write phase comprises three

parts. First, each database j should be able to reliably obtain the aggregation of

all the submodel updates according to all the collected answers {A⟨Cj⟩,(j)
W,1 , A

⟨θ[2]⟩,(j)
W,2 }

within two FSL-write steps, its own current full model M[K] and its own server-

side common randomness RS. When the submodel training by means of the lo-

cal data in the ith client is complete, for all k ∈ Γ⟨i⟩, this client will gener-

ate the increment ∆k = {∆⟨i⟩
k,1,∆

⟨i⟩
k,2, . . . ,∆

⟨i⟩
k,L} for each symbol in the submodel

Mk = {Mk,1,Mk,2, . . . ,Mk,L}. Thus, for the kth submodel, let Φk be the set of clients
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whose desired submodel index set Γ⟨i⟩ contains k, its correct updated version should

beM ′
k = {M ′

k,1,M
′
k,2, . . . ,M

′
k,L} = {Mk,1+

∑
i∈Φk

∆
⟨i⟩
k,1,Mk,2+

∑
i∈Φk

∆
⟨i⟩
k,2, . . . ,Mk,L+∑

i∈Φk
∆

⟨i⟩
k,L}. For each database in the server, the correct updated submodel aggre-

gation should be M ′
Γ = {M ′

k : k ∈ Γ} and thus the first constraint can be expressed

as,

[FSL-write reliability] H(M ′
Γ|A

⟨Cj⟩,(j)
W,1 , A

⟨θ[2]⟩,(j)
W,2 ,M[K],RS) = 0, ∀j (7.29)

Second, no database should learn any knowledge about each client’s desired

submodel index set or any further information beyond the updated submodel ag-

gregation about each client’s submodel increment. For the ith client’s submodel

increment, let ∆
⟨i⟩
Γ = {∆⟨i⟩

k,l : k ∈ Γ, l ∈ [L]}, we define a new set ∆Γ = ∆
⟨[C]⟩
Γ , then,4

[FSL-write privacy]I(∆Γ;A
⟨Cj⟩,(j)
W,1 , A

⟨θ[2]⟩,(j)
W,2 ,M[K],RS|

∑
i∈Φk

∆
⟨i⟩
k,l,∀k∈Γ, ∀l∈ [L]) = 0, ∀j

(7.30)

Third, the θjth client should learn nothing about the other clients’ desired sub-

model indices or submodel increments according to its obtained download D
⟨θj⟩,(j)
W,2

4In general, the first term in the following conditional mutual information should be YΓ,∆Γ

rather than ∆Γ. In the FSL-write phase, we note that the information transmission only involves
the submodel increment regarding MΓ and it has nothing to do with the incidence vectors Y ⟨[C]⟩.
That means that if a database learns nothing beyond the aggregation increment from all the se-
lected clients, this database definitely learns nothing about the incidence vector YΓ. Therefore, the
expression ∆Γ takes the place of YΓ,∆Γ. This observation also applies to the FSL-write inter-client

privacy constraint (7.31) in which the expression ∆
⟨[C]\θj⟩
Γ is used in place of Y

⟨[C]\θj⟩
Γ ,∆

⟨[C]\θj⟩
Γ .
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from database j. Hence, we have the following constraint,

[FSL-write inter-client privacy] I(∆
⟨[C]\θj⟩
Γ ;D

⟨θj⟩,(j)
W,2 ,Γ⟨θj⟩,∆

Γ⟨θj⟩) = 0 (7.31)

A valid FSL-write phase is a one that satisfies the FSL-write reliability (7.29),

the FSL-write privacy (7.30) and the FSL-write inter-client privacy (7.31). Given

any specific FSL problem with fixed initial parameters, the communication cost

of sending the set of submodels MΓ to each client from the two databases is a

constant. Hence, the efficiency of an FSL-write phase is also measured in terms

of the total number of bits in the answers {A⟨C1⟩,(1)
W,1 , A

⟨C2⟩,(2)
W,1 , A

⟨θ1⟩,([2])
W,2 , A

⟨θ2⟩,([2])
W,2 } and

downloads {D⟨θ1⟩,(1)
W,2 , D

⟨θ2⟩,(2)
W,2 }, and we wish to minimize it as much as possible. If we

do not consider the generation of client-side common randomness that is necessary

to perform the FSL, one complete FSL round consists of two phases: FSL-PSU phase

and FSL-write phase. Our objective is to make the total number of communication

bits exchanged in these two phases as small as possible. Further, this FSL round

can be executed in an iterative manner until a predefined termination criterion is

satisfied, e.g., the accuracy of the updated global model exceeds the preset threshold

or a preset maximal number of iterations is reached.

7.3 Main Result

Our main result is a new private FSL algorithm as described above. The following

theorem gives its performance in terms of the total communication cost in the en-

tire process including the cost of FSL-PSU, FSL-write, and the generation of the
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necessary common randomness at the clients. The proof of the theorem is given in

Section 7.5.2 and Section 7.5.3.

Theorem 7.2 The total communication cost of the proposed private FSL scheme in

one round is O(CK+C|Γ|L) in q-ary bits, where C is the number of selected clients,

K is the total number of submodels, and |Γ| is the number of updated submodels in

the given round. Here, O(CK) is due to the FSL-PSU phase, while O(C|Γ|L) is

due to the FSL-write phase.

Remark 7.4 The achievability of the theorem starts with an MM-SPIR with multi-

ple replicated and non-colluding databases. The storage in the databases is uncoded

and without noise. We unify PSU and secure aggregation in a common information

theoretic framework, and propose a novel private FSL scheme. We take advantage of

the non-colluding aspect of the databases to implement simple common randomness

generation/distribution across selected clients.

Remark 7.5 Our proposed FSL achieves unconditional information theoretic pri-

vacy. This is different from most prior secure aggregation works that focus on the

computational security, e.g., [87,96,99,119,120]. It is also different from prior pri-

vate read update write (PRUW) works [92,93,121–124] in which only a single client

at a time updates the full model in an FSL round, although information theoretic

security is satisfied. Our proposed private FSL scheme is robust against client drop-

outs, client late-arrivals, and database drop-outs. Moreover, there is no constraint

on the number of clients that may drop-out during the FSL process.
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Remark 7.6 The communication cost of our proposed private FSL, O(CK +

C|Γ|L), outperforms the best-known communication cost in the existing literature

[96–99], which is at least O(CKL). In the seminal FSL work [87], the communi-

cation cost is O(C|Γ|) for the PSU phase and O(C|Γ|L) for the whole FSL process

with much weaker privacy guarantee. Although this communication cost is a little

better than our communication cost in terms of the PSU phase, the PSU [87] yields

erroneous results while our PSU yields completely accurate results. Furthermore,

the PSU problem and the subsequent secure aggregation problem are considered sep-

arately in [87]. We note that the total number of submodels K is very large when

each product is represented by an individual submodel in the e-commerce recom-

mendation system in [87]. Thus, given the scale of the full learning model and the

general average size of clients’ desired products in practice, we can further optimize

the communication cost by adjusting the size of K, e.g., combining relevant products

into the same goods category. Specifically, as we decrease K, the product of |Γ| and

L will likely increase such that K and |Γ|L will have the same order. Thus, the com-

munication cost of our scheme is superior to existing schemes, and can be further

improved by optimizing the system model parameters. However, it is difficult to find

a fair metric to compare our communication cost with the ones in [92,94]. The main

reason for this is that the schemes in [92, 94] require that only one client updates

one submodel at a time, and also heavily rely on the sufficiently large number of

databases N . That is, the schemes in [92,94] require at least N ≥ 4 databases, and

cannot be compared to the scheme in this chapter where the number of databases is

N = 2. If we follow the asymptotic assumption L ≫ K and let C take value 1, the
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only conclusion we can draw is that, the communication cost in these two different

schemes are both a linear function of the submodel size L.

Remark 7.7 Generally, the existing private FL schemes in the computer science

literature rely on heavy cryptographic computations, while our proposed FSL scheme

relies only on simple addition and multiplication computations in the finite field Fq,

at both client and server sides. In addition, due to unstable inter-client commu-

nications in practice, and the impermissible inter-database communication in our

assumption, our FSL scheme relies only on client-database communications. In

order to alleviate the challenges arising from the lack of inter-database communica-

tions, as a novel approach in our FSL scheme, we utilize random clients to route the

required information between the databases in the server. The routed information

comes from the answers collected by each database from its associated clients, and

we further protect this information between the clients (inter-client privacy).

Remark 7.8 In practical implementations, for each client, the upload speeds are

typically much slower than download speeds during the client-database communica-

tions. Unlike the classical secure aggregation scheme in [96], the total communi-

cation time in our FSL process is further improved, since almost all of the alive

clients send only one answer to one database in each phase. In addition, while de-

termining the two client groups to be connected to the two databases, we can further

improve the total communication time based on the actual bandwidth/quality of each

client-database communication channel.

Remark 7.9 The proposed private FSL scheme can be used iteratively in multiple
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rounds of an FSL process by refreshing server-side and client-side common random-

ness.

7.4 Examples for Blocks of Private Distributed FSL

In this section, we give examples to explain the functionalities of the modules (boxes)

in Fig. 1.2. The examples get progressively more complex: Example 11 considers a

two-party PSU setting where the client party has multiple databases and the leader

party has a single database. Example 12 considers the slightly more difficult version

of Example 11, in that the client party also has a single database. In this case, single-

database SPIR is infeasible, and the leader party needs to fetch client-side common

randomness to use as leader-side side information as in [75]. Example 13 considers

generalized version of Example 12 to a multi-party (MP) case; in particular, there are

5 parties and each party has a single database. Example 14 is an extended version

of Example 13, where the leader party has two databases. This example reflects how

the FSL-PSU phase of the proposed private FSL scheme works. Finally, Example 15

shows how the private write works. The FSL-PSU in Example 14 and the FSL-write

in Example 15 together constitute our proposed private FSL scheme.

Example 11: Two-party PSU; two-database client; one-database leader:

Consider a two-party PSU problem with a global alphabet A = {1, 2, 3, 4}. The

first party P1 contains element 1 and element 2, i.e., P1 = {1, 2}. The second party

P2 contains element 1 and element 3, i.e., P2 = {1, 3}. For convenience, the total

number of elements in each party is public knowledge. The parties want to jointly
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compute the union of their element sets without revealing anything else to each

other. By mapping their element sets into the corresponding incidence vectors, two

parties construct the vectors as follows,

Party P1 : P1 = {1, 2} ⇒ X⟨1⟩ = [X
⟨1⟩
1 X

⟨1⟩
2 X

⟨1⟩
3 X

⟨1⟩
4 ]T = [1 1 0 0]T (7.32)

Party P2 : P2 = {1, 3} ⇒ X⟨2⟩ = [X
⟨2⟩
1 X

⟨2⟩
2 X

⟨2⟩
3 X

⟨2⟩
4 ]T = [1 0 1 0]T (7.33)

First, P2 (leader party) asks for the value of X
⟨1⟩
2 from P1 using an SPIR

approach. P1 (client party) has two replicated and non-colluding databases. These

two databases share a server-side common randomness symbol S1 that is uniformly

selected from the finite field F2 and unknown to P2. As a consequence, P1 generates

the answer table for two individual databases in the following form,

A
(1)
U (1) = S1, A

(2)
U (1) = X

⟨1⟩
1 +S1 (7.34)

A
(1)
U (2) = X

⟨1⟩
1 +X

⟨1⟩
2 +S1, A

(2)
U (2) = X

⟨1⟩
2 +S1 (7.35)

A
(1)
U (3) = X

⟨1⟩
1 +X

⟨1⟩
3 +S1, A

(2)
U (3) = X

⟨1⟩
3 +S1 (7.36)

A
(1)
U (4) = X

⟨1⟩
1 +X

⟨1⟩
4 +S1, A

(2)
U (4) = X

⟨1⟩
4 +S1 (7.37)

A
(1)
U (5) = X

⟨1⟩
2 +X

⟨1⟩
3 +S1, A

(2)
U (5) = X

⟨1⟩
1 +X

⟨1⟩
2 +X

⟨1⟩
3 +S1 (7.38)

A
(1)
U (6) = X

⟨1⟩
2 +X

⟨1⟩
4 +S1, A

(2)
U (6) = X

⟨1⟩
1 +X

⟨1⟩
2 +X

⟨1⟩
4 +S1 (7.39)

A
(1)
U (7) = X

⟨1⟩
3 +X

⟨1⟩
4 +S1, A

(2)
U (7) = X

⟨1⟩
1 +X

⟨1⟩
3 +X

⟨1⟩
4 +S1 (7.40)

A
(1)
U (8) = X

⟨1⟩
1 +X

⟨1⟩
2 +X

⟨1⟩
3 +X

⟨1⟩
4 +S1, A

(2)
U (8) = X

⟨1⟩
2 +X

⟨1⟩
3 +X

⟨1⟩
4 +S1 (7.41)
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Following the notation in Section 7.2, the superscript of A denotes the database

index of P1 while the index on the right-hand side of A denotes the potential query

choice that can be chosen by P2.

In order to retrieveX
⟨1⟩
2 , P2 selects a random query choice for the first database

of P1 and its coupled query for the second database of P1. For instance, P2 chooses

1 for the first database of P1 and 2 for the second database of P1. After receiving

the query symbol 1, the first database of P1 responds with the answer A
(1)
U (1) = S1.

Meanwhile, the second database of P1 responds with the answer A
(2)
U (2) = X

⟨1⟩
2 +S1

when the query symbol 2 is received. Next, P2 asks for the value of X
⟨1⟩
4 from P1 in

the same way.

Since there are 8 possible queries to each database of P1, the communication

cost from P2 to P1 is 3+3 = 6 bits; and since each database of P1 sends back a single

bit of answer, the communication cost from P1 to P2 is 1 + 1 = 2 bits. Thus, the

total communication cost for learning X
⟨1⟩
2 and X

⟨1⟩
4 is 2 · (6 + 2) = 16 bits through

this MM-SPIR approach. After learning the values of X
⟨1⟩
2 and X

⟨1⟩
4 , P2 knows that

P1 has element 2 but does not have element 4. Combining its own elements, P2 is

able to calculate the union, which is {1, 2, 3}. Thus, the PSU reliability constraint is

satisfied. Regarding the two privacy constraints, due to the user privacy constraint

in the SPIR problem, each individual database in P1 can only learn that P2 has two

elements without learning any knowledge about what these two specific elements

are. Due to the database privacy constraint in the SPIR problem, P2 can only learn

that P1 possesses element 2 and does not possess element 4 without any additional

knowledge about whether P1 has elements 1, 3. In particular, whether P1 has element
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4 or not can be deduced by P2 from the ultimate union result and its own elements.

Thus, both of P1 and P2 privacy constraints are guaranteed. Thus, this is a valid

two-party PSU scheme.

Example 12: Two-party PSU; one-database client; one-database leader:

Compared to Example 11, the only modification in the setting is that party P1 now

has a single database. Party P1 also holds four server-side common randomness

symbols S1, S2, S3 and S4 that are all uniformly selected from the finite field F2.

In order to have a feasible single-database SPIR approach as illustrated in [75], the

party P2 obtains one random server-side common randomness symbol ahead of time.

As a consequence, P1 generates the following answer table for the only database,

A
(1)
U (1) = {X⟨1⟩

1 +S1, X
⟨1⟩
2 +S2, X

⟨1⟩
3 +S3, X

⟨1⟩
4 +S4} (7.42)

A
(1)
U (2) = {X⟨1⟩

1 +S2, X
⟨1⟩
2 +S3, X

⟨1⟩
3 +S4, X

⟨1⟩
4 +S1} (7.43)

A
(1)
U (3) = {X⟨1⟩

1 +S3, X
⟨1⟩
2 +S4, X

⟨1⟩
3 +S1, X

⟨1⟩
4 +S2} (7.44)

A
(1)
U (4) = {X⟨1⟩

1 +S4, X
⟨1⟩
2 +S1, X

⟨1⟩
3 +S2, X

⟨1⟩
4 +S3} (7.45)

Subsequently, P2 selects a query choice that matches its pre-fetched server-side

common randomness symbol. For instance, if its pre-fetched symbol is S1, in order

to retrieve X
⟨1⟩
2 , P2 chooses 4 and then sends this query symbol to P1. The database

belonging to P1 responds with the answer A
(1)
U (4) = {X⟨1⟩

1 + S4, X
⟨1⟩
2 + S1, X

⟨1⟩
3 +

S2, X
⟨1⟩
4 +S3}. Likewise, P2 also asks for the value of X

⟨1⟩
4 from P1 in the same way.

Since there are 4 possible queries to the database of P1, the communication cost
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from P2 to P1 is 2 bits; and since P1 sends back an answer with 4 components, the

communication cost from P1 to P2 is 4 bits. Thus, the total communication cost

for learning X
⟨1⟩
2 and X

⟨1⟩
4 is 2 · (2 + 4) = 12 bits through this MM-SPIR approach,

without considering the communication cost generated by the pre-fetched server-

side common randomness symbol. Verification that this achievable scheme satisfies

the PSU reliability, P1 privacy and P2 privacy constraints follows similarly as in

Example 11.

Example 13: Five-party PSU; one-database per client; one-database

leader: As a generalization of Examples 11 and 12, in this example, we consider a

multi-party setting, again with the global alphabet A = {1, 2, 3, 4}. Here, the first

party P1 contains element 1, i.e., P1 = {1}. The second party P2 contains element 1

and element 3, i.e., P2 = {1, 3}. The third party P3 contains element 1 and element

4, i.e., P3 = {1, 4}. The fourth party P4 contains element 1, element 3 and element

4, i.e., P4 = {1, 3, 4}. The fifth party P5 contains nothing, i.e., P5 = ∅. As before,

we assume that the total number of elements in each party is public knowledge. The

parties construct the corresponding incidence vectors X⟨[5]⟩ as follows,

Party P1 : P1 = {1} ⇒ X⟨1⟩ = [X
⟨1⟩
1 X

⟨1⟩
2 X

⟨1⟩
3 X

⟨1⟩
4 ]T = [1 0 0 0]T (7.46)

Party P2 : P2 = {1, 3} ⇒ X⟨2⟩ = [X
⟨2⟩
1 X

⟨2⟩
2 X

⟨2⟩
3 X

⟨2⟩
4 ]T = [1 0 1 0]T (7.47)

Party P3 : P3 = {1, 4} ⇒ X⟨3⟩ = [X
⟨3⟩
1 X

⟨3⟩
2 X

⟨3⟩
3 X

⟨3⟩
4 ]T = [1 0 0 1]T (7.48)

Party P4 : P4 = {1, 3, 4} ⇒ X⟨4⟩ = [X
⟨4⟩
1 X

⟨4⟩
2 X

⟨4⟩
3 X

⟨4⟩
4 ]T = [1 0 1 1]T (7.49)

Party P5 : P5 = ∅ ⇒ X⟨5⟩ = [X
⟨5⟩
1 X

⟨5⟩
2 X

⟨5⟩
3 X

⟨5⟩
4 ]T = [0 0 0 0]T (7.50)
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Using the MP-PSI achievable scheme in Chapter 4 as a reference, we select

party P5 as the leader party, and the remaining parties as client parties, as party P5 is

globally known as an empty party. Thus, there is no need for P5 to send any queries

to the remaining parties and the server-side common randomness employed in the

previous two examples is not necessary any more. In this example, all parties have

a single database. Besides their own incidence vectors, each client party holds the

same set of common randomness symbols5 {u⟨[4]⟩α : α ∈ [4]} from the finite field F5 as

well as the same global common randomness symbol c that is uniformly distributed

over {1, 2, 3, 4}. Moreover, {u⟨[4]⟩α : α ∈ [4]} are such that the sum
∑

i∈[4] u
⟨i⟩
α is

always equal to 0 for all α ∈ [4]. The answers from the client parties are,

A
⟨1⟩
U = {c(X⟨1⟩

1 +u
⟨1⟩
1 ), c(X

⟨1⟩
2 +u

⟨1⟩
2 ), c(X

⟨1⟩
3 +u

⟨1⟩
3 ), c(X

⟨1⟩
4 +u

⟨1⟩
4 )} (7.51)

A
⟨2⟩
U = {c(X⟨2⟩

1 +u
⟨2⟩
1 ), c(X

⟨2⟩
2 +u

⟨2⟩
2 ), c(X

⟨2⟩
3 +u

⟨2⟩
3 ), c(X

⟨2⟩
4 +u

⟨2⟩
4 )} (7.52)

A
⟨3⟩
U = {c(X⟨3⟩

1 +u
⟨3⟩
1 ), c(X

⟨3⟩
2 +u

⟨3⟩
2 ), c(X

⟨3⟩
3 +u

⟨3⟩
3 ), c(X

⟨3⟩
4 +u

⟨3⟩
4 )} (7.53)

A
⟨4⟩
U = {c(X⟨4⟩

1 +u
⟨4⟩
1 ), c(X

⟨4⟩
2 +u

⟨4⟩
2 ), c(X

⟨4⟩
3 +u

⟨4⟩
3 ), c(X

⟨4⟩
4 +u

⟨4⟩
4 )} (7.54)

Regarding reliability: The leader party P5 calculates the following expressions,

Element 1 : c(X
⟨1⟩
1 +u

⟨1⟩
1 )+c(X

⟨2⟩
1 +u

⟨2⟩
1 )+c(X

⟨3⟩
1 +u

⟨3⟩
1 )+c(X

⟨4⟩
1 +u

⟨4⟩
1 )

= c(
∑
i∈[4]

X
⟨i⟩
1 +

∑
i∈[4]

u
⟨i⟩
1 ) = c(

∑
i∈[4]

X
⟨i⟩
1 ) = c · 4 ̸= 0 (7.55)

5The common randomness symbol u
⟨i⟩
α in this MP-PSU implementation functions exactly in the

same way as the common randomness symbols ti,j functioned in the MP-PSI in Chapter 4. The

same is true for subsequent common randomness symbols w
⟨i⟩
α in the write-back implementation.
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Element 2 : c(X
⟨1⟩
2 +u

⟨1⟩
2 )+c(X

⟨2⟩
2 +u

⟨2⟩
2 )+c(X

⟨3⟩
2 +u

⟨3⟩
2 )+c(X

⟨4⟩
2 +u

⟨4⟩
2 )

= c(
∑
i∈[4]

X
⟨i⟩
2 +

∑
i∈[4]

u
⟨i⟩
2 ) = c(

∑
i∈[4]

X
⟨i⟩
2 ) = c · 0 = 0 (7.56)

Element 3 : c(X
⟨1⟩
3 +u

⟨1⟩
3 )+c(X

⟨2⟩
3 +u

⟨2⟩
3 )+c(X

⟨3⟩
3 +u

⟨3⟩
3 )+c(X

⟨4⟩
3 +u

⟨4⟩
3 )

= c(
∑
i∈[4]

X
⟨i⟩
3 +

∑
i∈[4]

u
⟨i⟩
3 ) = c(

∑
i∈[4]

X
⟨i⟩
3 ) = c · 2 ̸= 0 (7.57)

Element 4 : c(X
⟨1⟩
4 +u

⟨1⟩
4 )+c(X

⟨2⟩
4 +u

⟨2⟩
4 )+c(X

⟨3⟩
4 +u

⟨3⟩
4 )+c(X

⟨4⟩
4 +u

⟨4⟩
4 )

= c(
∑
i∈[4]

X
⟨i⟩
4 +

∑
i∈[4]

u
⟨i⟩
4 ) = c(

∑
i∈[4]

X
⟨i⟩
4 ) = c · 2 ̸= 0 (7.58)

Thus, P5 concludes that the union P1 ∪ P2 ∪ P3 ∪ P4 is {1, 3, 4} because the first,

third and fourth expressions are not equal to 0.

Regarding privacy: The leader party’s privacy constraint is trivially satisfied

since the leader party is empty and sent no queries to the clients. The clients’

privacies are protected by the common randomness symbols {u⟨[4]⟩α : α ∈ [4]} and c.

First, the values of the individual components of the incidence vector {X⟨[4]⟩
α : α ∈

[4]} are kept private from P5 by the added randomness symbols {u⟨[4]⟩α : α ∈ [4]}.

These coupled (i.e., correlated) random variables disappear when the components

coming from clients are added up as
∑

i∈[4] u
⟨i⟩
α is always 0 for all α ∈ [4]. Finally, the

global common randomness symbol c protects the actual value of the sum
∑

iX
⟨i⟩
α

for all α. That is, leader P5 can only learn whether these sums are zero or not and

nothing beyond that. Thus, this is a valid scheme satisfying reliability and privacy.

Example 14: Five-party PSU; one-database per client; two-database

leader: With respect to the MP-PSU configuration in Example 13, we only change
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the number of databases in the leader party P5, which now contains two replicated

and non-colluding databases. As these two databases do not communicate with

each other directly, a straightforward approach could be to have each client send

its answer shown in (7.51)-(7.54) to both databases in the leader party. This way,

each database could individually learn the union while the privacy constraints are

still satisfied. Here, we put forth an alternative approach, where two random client

parties are utilized as intermediaries to route the information between the two non-

colluding databases in the leader party such that there is no need for a client to

send the replicated answer to both databases in P5. To that end, each client party

also holds another duplicate set of common randomness symbols {uα : α ∈ [4]} that

are all uniformly selected from F5 on the basis of the existing common randomness

symbols {u⟨[4]⟩α : α ∈ [4]}. Since P5 does not have any element, there is no need

for the other parties to download any information from P5 in the beginning, i.e.,

D
⟨C1⟩,(1)
U,1 and D

⟨C2⟩,(2)
U,1 are both null. At this point, let the client parties P1 and

P2 form the first group. They send their respective answers A
⟨1⟩,(1)
U,1 and A

⟨2⟩,(1)
U,1 as

shown in (7.51)-(7.52) to the first database of P5 since they are associated with

database 1. This database produces a response D
⟨2⟩,(1)
U,2 to be downloaded by client

2 through element-wisely adding its received answers and appending leader party

common randomness symbols that are all uniformly selected from the finite field F5,

D
⟨2⟩,(1)
U,2 = {c(X⟨1⟩

1 +X
⟨2⟩
1 +u

⟨1⟩
1 +u

⟨2⟩
1 )+S1, c(X

⟨1⟩
2 +X

⟨2⟩
2 +u

⟨1⟩
2 +u

⟨2⟩
2 )+S2,

c(X
⟨1⟩
3 +X

⟨2⟩
3 +u

⟨1⟩
3 +u

⟨2⟩
3 )+S3, c(X

⟨1⟩
4 +X

⟨2⟩
4 +u

⟨1⟩
4 +u

⟨2⟩
4 )+S4} (7.59)
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This database then sends this response back to P2. After adding extra common

randomness to the received response, P2 forwards the following answer to both

databases in P5,

A
⟨2⟩,([2])
U,2 = {c(X⟨1⟩

1 +X
⟨2⟩
1 +u

⟨1⟩
1 +u

⟨2⟩
1 )+u1+S1, c(X

⟨1⟩
2 +X

⟨2⟩
2 +u

⟨1⟩
2 +u

⟨2⟩
2 )+u2+S2,

c(X
⟨1⟩
3 +X

⟨2⟩
3 +u

⟨1⟩
3 +u

⟨2⟩
3 )+u3+S3, c(X

⟨1⟩
4 +X

⟨2⟩
4 +u

⟨1⟩
4 +u

⟨2⟩
4 )+u4+S4}

(7.60)

Meanwhile, the client parties P3 and P4, which form the second group, send their re-

spective answers A
⟨3⟩,(2)
U,1 and A

⟨4⟩,(2)
U,1 as shown in (7.53)-(7.54) to the second database

of P5. Similarly, this database produces a response D
⟨3⟩,(2)
U,2 to be downloaded by

client 3 as follows, and sends it back to P3,

D
⟨3⟩,(2)
U,2 = {c(X⟨3⟩

1 +X
⟨4⟩
1 +u

⟨3⟩
1 +u

⟨4⟩
1 )−S1, c(X

⟨3⟩
2 +X

⟨4⟩
2 +u

⟨3⟩
2 +u

⟨4⟩
2 )−S2,

c(X
⟨3⟩
3 +X

⟨4⟩
3 +u

⟨3⟩
3 +u

⟨4⟩
3 )−S3, c(X

⟨3⟩
4 +X

⟨4⟩
4 +u

⟨3⟩
4 +u

⟨4⟩
4 )−S4} (7.61)

Then, P3 forwards the following further processed answer to both databases in P5,

A
⟨3⟩,([2])
U,2 = {c(X⟨3⟩

1 +X
⟨4⟩
1 +u

⟨3⟩
1 +u

⟨4⟩
1 )−u1−S1, c(X

⟨3⟩
2 +X

⟨4⟩
2 +u

⟨3⟩
2 +u

⟨4⟩
2 )−u2−S2,

c(X
⟨3⟩
3 +X

⟨4⟩
3 +u

⟨3⟩
3 +u

⟨4⟩
3 )−u3−S3, c(X

⟨3⟩
4 +X

⟨4⟩
4 +u

⟨3⟩
4 +u

⟨4⟩
4 )−u4−S4}

(7.62)

After collecting the answers in the second communication step, each individual

database j in P5 finds the desired submodel union by element-wisely adding A
⟨2⟩,(j)
U,2
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and A
⟨3⟩,(j)
U,2 ,

A
⟨2⟩,(j)
U,2 + A

⟨3⟩,(j)
U,2 =

{
c(
∑
i∈[4]

X
⟨i⟩
1 ), c(

∑
i∈[4]

X
⟨i⟩
2 ), c(

∑
i∈[4]

X
⟨i⟩
3 ), c(

∑
i∈[4]

X
⟨i⟩
4 )

}
, ∀j (7.63)

Regarding reliability: The MP-PSU reliability in the leader party P5 is in-

herited from the MP-PSU reliability analysis in Example 13. Specifically, each

individual database in P5 can make the same analysis as shown in (7.55)-(7.58) for

each element in the alphabet to derive the union P1 ∪ P2 ∪ P3 ∪ P4. Also, P5 can

send this union result to any client party if needed.

Regarding privacy: The privacy analysis of the client parties P1 and P4 is

trivial, since neither of them has received any information from the remaining par-

ties. Regarding the client party P2, due to the appended leader party common

randomness {Sα, α ∈ [4]}, this party cannot learn anything about the incidence

vector symbols in the remaining parties from its only received information D
⟨2⟩,(1)
U,2 .

This analysis also applies to the client party P3. Regarding the leader party P5,

it is obvious that the received information {A⟨1⟩,(1)
U,1 , A

⟨2⟩,(1)
U,1 , A

⟨2⟩,(1)
U,2 , A

⟨3⟩,(1)
U,2 } in the

first database and the received information {A⟨3⟩,(2)
U,1 , A

⟨4⟩,(2)
U,1 , A

⟨2⟩,(2)
U,2 , A

⟨3⟩,(2)
U,2 } in the

second database, individually, contain less information about the incidence vector

symbols in the client parties than the answer set A
⟨[4]⟩
U received by P5 in Example 13.

Therefore, the leader party P5 can only learn the union and nothing beyond that.

Thus, this is a valid MP-PSU scheme.

Next, we consider situations that are commonly encountered in practical im-

plementations.
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First, one or more client parties may drop-out during the MP-PSU process.

For instance, P1 may lose connection to P5, in which case, the first database of P5

will only receive the answer from P2. The download produced in the original method

now becomes,

D
′⟨2⟩,(1)
U,2 = {c(X⟨2⟩

1 +u
⟨2⟩
1 )+S1, c(X

⟨2⟩
2 +u

⟨2⟩
2 )+S2,

c(X
⟨2⟩
3 +u

⟨2⟩
3 )+S3, c(X

⟨2⟩
4 +u

⟨2⟩
4 )+S4} (7.64)

It is easy to observe that the common randomness symbols u
⟨[4]⟩
α in these two down-

loads cannot be cancelled completely as before. However, note that P2 possesses the

missing common randomness symbols incurred by P1 drop-out. Hence, P2 can add

the required common randomness itself as long as it learns from database 1 that P1

has dropped-out. Thus, the adjusted answer in the second step A
′⟨2⟩,([2])
U,2 is as follows

and will be sent back to both databases in P5,

A
′⟨2⟩,([2])
U,2 = {c(X⟨2⟩

1 +u
⟨1⟩
1 +u

⟨2⟩
1 )+u1+S1, c(X

⟨2⟩
2 +u

⟨1⟩
2 +u

⟨2⟩
2 )+u2+S2,

c(X
⟨2⟩
3 +u

⟨1⟩
3 +u

⟨2⟩
3 )+u3+S3, c(X

⟨2⟩
4 +u

⟨1⟩
4 +u

⟨2⟩
4 )+u4+S4} (7.65)

Further, if P2 loses its connection to P5, the remaining active client party P1 in the

first client party group functions as a router. Since no one in the second client group

drops-out, the download D
⟨3⟩,(2)
U,2 remains the same,

D
⟨3⟩,(2)
U,2 = {c(X⟨3⟩

1 +X
⟨4⟩
1 +u

⟨3⟩
1 +u

⟨4⟩
1 )−S1, c(X

⟨3⟩
2 +X

⟨4⟩
2 +u

⟨3⟩
2 +u

⟨4⟩
2 )−S2,
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c(X
⟨3⟩
3 +X

⟨4⟩
3 +u

⟨3⟩
3 +u

⟨4⟩
3 )−S3, c(X

⟨3⟩
4 +X

⟨4⟩
4 +u

⟨3⟩
4 +u

⟨4⟩
4 )−S4} (7.66)

The result forwarded by P3 and received by the databases in P5 remains the same,

A
⟨3⟩,([2])
U,2 = {c(X⟨3⟩

1 +X
⟨4⟩
1 +u

⟨3⟩
1 +u

⟨4⟩
1 )−u1−S1, c(X

⟨3⟩
2 +X

⟨4⟩
2 +u

⟨3⟩
2 +u

⟨4⟩
2 )−u2−S2,

c(X
⟨3⟩
3 +X

⟨4⟩
3 +u

⟨3⟩
3 +u

⟨4⟩
3 )−u3−S3, c(X

⟨3⟩
4 +X

⟨4⟩
4 +u

⟨3⟩
4 +u

⟨4⟩
4 )−u4−S4}

(7.67)

We can now verify that both databases in P5 can determine the union P2 ∪P3 ∪P4

without the participation of P1.

Second, the answer A
⟨1⟩,(1)
U,1 generated by P1 may arrive at database 1 in P5

so late that database 1 may believe that P1 has dropped-out. In such a case, the

privacy in our MP-PSU is still preserved. If we look at the received information

{A⟨1⟩,(1)
U,1 , A

⟨2⟩,(1)
U,1 , A

′⟨2⟩,(1)
U,2 , A

⟨3⟩,(1)
U,2 } in database 1 of P5, no information about the in-

cidence vector X⟨1⟩ is leaked due to the existence of extra common randomness

symbols {uα : α ∈ [4]}. Moreover, this late answer A
⟨1⟩,(1)
U,1 will never be transmitted

to any other client parties by P5 in order to avoid the further leakage of X⟨1⟩. The

usage of extra common randomness uα here is similar to the double-masking idea

in [96] so as to resolve this late arrival problem, but in a very simple manner.

Third, one of the two databases in P5 may also drop-out during the

implementation. For instance, if database 2 drops-out, the same answers

{A⟨1⟩,(1)
U,1 , A

⟨2⟩,(1)
U,1 , A

⟨2⟩,(1)
U,2 } can still be received by database 1 in P5 from P1 and

P2, but {A⟨3⟩,(1)
U,2 } cannot be received from the other client party group as usual.
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The corresponding remedy is that the surviving database asks for the values of

{c(u⟨3⟩α +u
⟨4⟩
α ) : α ∈ [4]} from P2 through one more communication step. In this way,

it is easy to see that the first database in P5 can derive the union P1∪P2 associated

with the first client party group.

Example 15: Five-party PSU; one-database per client; two-database

leader; together with FSL-write: Consider a distributed FSL problem involving

a server consisting of two replicated and non-colluding databases and four selected

clients in this round of FSL process. Each individual database stores 4 indepen-

dent submodels each containing 2 i.i.d. symbols uniformly selected from a suffi-

ciently large finite field Fq, q ≥ 5, i.e., M1 = [M1,1,M1,2],M2 = [M2,1,M2,2],M3 =

[M3,1,M3,2],M4 = [M4,1,M4,2] and some required server-side common randomness

symbols. According to the clients’ respective local training data, client 1 can be used

to update the submodel 1, client 2 can be used to update the submodels 1, 3, client

3 can be used to update the submodels 1, 4 and client 4 can be used to update the

submodels 1, 3, 4, i.e., Γ⟨1⟩ = {1},Γ⟨2⟩ = {1, 3},Γ⟨3⟩ = {1, 4},Γ⟨4⟩ = {1, 3, 4}. Both

databases in the server can communicate with each client through a secure and au-

thenticated channel. We further assume that the channels connected to database 1

have higher bandwidth than the ones connected to database 2 for clients 1, 2 and

it is the opposite for clients 3, 4. Thus, the FSL-PSU phase is executed exactly as

in the MP-PSU in Example 14, and each database in the server learns the desired

submodel union Γ = {1, 3, 4} when this phase is complete.

Due to the similarities between the formulations of FSL-PSU phase and the
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FSL-write phase, we use the idea in Example 14 one more time to execute the FSL-

write phase. Database 1 sends the submodels 1, 3, 4 to client 1 and client 2, while

database 2 sends the submodels 1, 3, 4 to client 3 and client 4, i.e., the downloads

D
⟨1,2⟩,(1)
W,1 and D

⟨3,4⟩,(2)
W,1 are both {M1,M3,M4}. After receiving the desired submodels

from the server, client 1 generates the increment
{
∆

⟨1⟩
1,1,∆

⟨1⟩
1,2

}
for submodel 1, client

2 generates the increment
{
∆

⟨2⟩
1,1,∆

⟨2⟩
1,2,∆

⟨2⟩
3,1,∆

⟨2⟩
3,2

}
for submodels 1, 3, client 3 gener-

ates the increment
{
∆

⟨3⟩
1,1,∆

⟨3⟩
1,2,∆

⟨3⟩
4,1,∆

⟨3⟩
4,2

}
for submodels 1, 4, client 4 generates the

increment
{
∆

⟨4⟩
1,1,∆

⟨4⟩
1,2,∆

⟨4⟩
3,1,∆

⟨4⟩
3,2,∆

⟨4⟩
4,1,∆

⟨4⟩
4,2

}
for submodels 1, 3, 4 after performing

their respective local training. In addition, we assume that each client has already

obtained two sets of common randomness symbols {w⟨Γ⟩
k,l : k ∈ [4], l ∈ [2]} and

{wk,l : k ∈ [4], l ∈ [2]} from the finite field Fq as in the previous examples. For all

k ∈ Γ and all l ∈ [2], the sum
∑

i∈[4]w
⟨i⟩
k,l is always equal to 0. Thus, the answers

sent to database 1 in the server from clients 1 and 2 are as follows,

A
⟨1⟩,(1)
W,1 = {∆⟨1⟩

1,1+w
⟨1⟩
1,1,∆

⟨1⟩
1,2+w

⟨1⟩
1,2, w

⟨1⟩
3,1, w

⟨1⟩
3,2, w

⟨1⟩
4,1, w

⟨1⟩
4,2} (7.68)

A
⟨2⟩,(1)
W,1 = {∆⟨2⟩

1,1+w
⟨2⟩
1,1,∆

⟨2⟩
1,2+w

⟨2⟩
1,2,∆

⟨2⟩
3,1+w

⟨2⟩
3,1,∆

⟨2⟩
3,2+w

⟨2⟩
3,2, w

⟨2⟩
4,1, w

⟨2⟩
4,2} (7.69)

After collecting the answers from clients 1, 2, database 1 performs the element-wise

summation with the aid of its own server-side common randomness symbols and

transmits the following response to client 2 in its associated client group,

D
⟨2⟩,(1)
W,2 = {∆⟨1⟩

1,1+∆
⟨2⟩
1,1+w

⟨1⟩
1,1+w

⟨2⟩
1,1+S1,1,∆

⟨1⟩
1,2+∆

⟨2⟩
1,2+w

⟨1⟩
1,2+w

⟨2⟩
1,2+S1,2,

∆
⟨2⟩
3,1+w

⟨1⟩
3,1+w

⟨2⟩
3,1+S3,1,∆

⟨2⟩
3,2+w

⟨1⟩
3,2+w

⟨2⟩
3,2+S3,2,
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w
⟨1⟩
4,1+w

⟨2⟩
4,1+S4,1, w

⟨1⟩
4,2+w

⟨2⟩
4,2+S4,2} (7.70)

Afterwards, client 2 processes the received response by adding extra common ran-

domness and then forwards the following answer to both databases in the server,

A
⟨2⟩,([2])
W,2 = {∆⟨1⟩

1,1+∆
⟨2⟩
1,1+w

⟨1⟩
1,1+w

⟨2⟩
1,1+w1,1+S1,1,∆

⟨1⟩
1,2+∆

⟨2⟩
1,2+w

⟨1⟩
1,2+w

⟨2⟩
1,2+w1,2+S1,2,

∆
⟨2⟩
3,1+w

⟨1⟩
3,1+w

⟨2⟩
3,1+w3,1+S3,1,∆

⟨2⟩
3,2+w

⟨1⟩
3,2+w

⟨2⟩
3,2+w3,2+S3,2,

w
⟨1⟩
4,1+w

⟨2⟩
4,1+w4,1+S4,1, w

⟨1⟩
4,2+w

⟨2⟩
4,2+w4,2+S4,2} (7.71)

At the same time, the answers sent to database 2 in the server from clients 3 and 4

are,

A
⟨3⟩,(2)
W,1 = {∆⟨3⟩

1,1+w
⟨3⟩
1,1,∆

⟨3⟩
1,2+w

⟨3⟩
1,2, w

⟨3⟩
3,1, w

⟨3⟩
3,2,∆

⟨3⟩
4,1+w

⟨3⟩
4,1,∆

⟨3⟩
4,2+w

⟨3⟩
4,2} (7.72)

A
⟨4⟩,(2)
W,1 = {∆⟨4⟩

1,1+w
⟨4⟩
1,1,∆

⟨4⟩
1,2+w

⟨4⟩
1,2,∆

⟨4⟩
3,1+w

⟨4⟩
3,1,∆

⟨4⟩
3,2+w

⟨4⟩
3,2,∆

⟨4⟩
4,1+w

⟨4⟩
4,1,∆

⟨4⟩
4,2+w

⟨4⟩
4,2}

(7.73)

When the collection and computation is finished, database 2 sends the following

response to client 3 who belongs to its associated client group,

D
⟨3⟩,(2)
W,2 = {∆⟨3⟩

1,1+∆
⟨4⟩
1,1+w

⟨3⟩
1,1+w

⟨4⟩
1,1−S1,1,∆

⟨3⟩
1,2+∆

⟨4⟩
1,2+w

⟨3⟩
1,2+w

⟨4⟩
1,2−S1,2,

∆
⟨4⟩
3,1+w

⟨3⟩
3,1+w

⟨4⟩
3,1−S3,1,∆

⟨4⟩
3,2+w

⟨3⟩
3,2+w

⟨4⟩
3,2−S3,2,

∆
⟨3⟩
4,1+∆

⟨4⟩
4,1+w

⟨3⟩
4,1+w

⟨4⟩
4,1−S4,1,∆

⟨3⟩
4,2+∆

⟨4⟩
4,2+w

⟨3⟩
4,2+w

⟨4⟩
4,2−S4,2} (7.74)
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Similarly, client 3 processes the received response by adding extra common ran-

domness again and then forwards the following answer to both databases in the

server,

A
⟨3⟩,([2])
W,2 = {∆⟨3⟩

1,1+∆
⟨4⟩
1,1+w

⟨3⟩
1,1+w

⟨4⟩
1,1−w1,1−S1,1,∆

⟨3⟩
1,2+∆

⟨4⟩
1,2+w

⟨3⟩
1,2+w

⟨4⟩
1,2−w1,2−S1,2,

∆
⟨4⟩
3,1+w

⟨3⟩
3,1+w

⟨4⟩
3,1−w3,1−S3,1,∆

⟨4⟩
3,2+w

⟨3⟩
3,2+w

⟨4⟩
3,2−w3,2−S3,2,

∆
⟨3⟩
4,1+∆

⟨4⟩
4,1+w

⟨3⟩
4,1+w

⟨4⟩
4,1−w4,1−S4,1,∆

⟨3⟩
4,2+∆

⟨4⟩
4,2+w

⟨3⟩
4,2+w

⟨4⟩
4,2−w4,2−S4,2}

(7.75)

At this point, both databases can update the corresponding submodels after receiv-

ing the answers in the second step and removing all the involved common random-

ness symbols through element-wise summation,

M ′
1 = {M1,1+∆

⟨1⟩
1,1+∆

⟨2⟩
1,1+∆

⟨3⟩
1,1+∆

⟨4⟩
1,1,M1,2+∆

⟨1⟩
1,2+∆

⟨2⟩
1,2+∆

⟨3⟩
1,2+∆

⟨4⟩
1,2} (7.76)

M ′
3 = {M3,1+∆

⟨2⟩
3,1+∆

⟨4⟩
3,1,M3,2+∆

⟨2⟩
3,2+∆

⟨4⟩
3,2} (7.77)

M ′
4 = {M4,1+∆

⟨3⟩
4,1+∆

⟨4⟩
4,1,M4,2+∆

⟨3⟩
4,2+∆

⟨4⟩
4,2} (7.78)

In this example, we note that the scheme used in the FSL-write phase is a sim-

plified version of the MP-PSU scheme used in Example 14 without considering the

global common randomness symbol c. Therefore, regarding this FSL-write scheme,

we can readily verify the FSL-write reliability constraint as well as the FSL-write

privacy constraint for each individual database at the server side in reference to the

leader party P5 in Example 14, and the FSL-write inter-client privacy constraint
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for clients 2, 3 in reference to the client parties P2, P3 in Example 14. Likewise,

the robustness against client drop-outs, client late arrivals and database drop-outs

possessed by this FSL-write scheme is also inherited from the one in Example 14.

Finally, as required by the FSL process itself, the FSL-PSU phase and FSL-write

phase introduced in this example can be executed repeatedly if a new set of clients

are selected to perform another round of this FSL process. New sets of common

randomness symbols and server-side common randomness symbols are needed to

ensure privacy in each round.

7.5 General FSL Achievable Scheme

In this section, we describe our general achievable scheme for a distributed FSL

model with any arbitrary initial parameters; see the model formulation in Sec-

tion 7.2.3. Our general achievable scheme has three phases: common randomness

generation phase (FSL-CRG), private determination of the union of indices of sub-

models to be updated (FSL-PSU), and private writing of the updated submodels

in the union back to the databases (FSL-write). In Section 7.4, we have given ex-

amples of FSL-PSU, and combined FSL-PSU and FSL-write. The FSL-PSU and

FSL-write phases make use of pre-established common randomness at the client

side. In Section 7.4, we have presumed that the common randomness needed for

FSL-PSU and FSL-write have already been established. In this section, we first

describe the establishment of the necessary common randomness across the clients.

Our FSL-CRG scheme exploits the distributed nature of the server databases, and
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uses one-time pads and the RSPIR scheme introduced in [116] to generate common

randomness. Then, we describe FSL-PSU and FSL-write for the most general case.

7.5.1 Common Randomness Generation (FSL-CRG) Phase

The two databases in the server aim to establish two types of common randomness

across the clients: The first type is a global common randomness symbol c that is

uniformly selected from the set Fq\{0}. The second type is a set of general common

randomness symbols {R0, R1, . . . , RC} with a flexible set length C + 1, where each

symbol is uniformly selected from Fq and the sum of the last C symbols is equal to

0, i.e.,
∑

i∈[C]Ri = 0. As a result, R0 can be used as uk or wk,l while R[C] can be

used as u
⟨[C]⟩
k or w

⟨[C]⟩
k,l in the next two phases. The FSL-CRG phase is independent

of the FSL-PSU and FSL-write phases in a practical implementation, and therefore,

can be potentially executed during the off-peak hours.

We start with a scheme for the second type of common randomness allocation.

First, each database individually selects a random client from its client group as

routing clients. Their indices are denoted by θ1 and θ2, respectively. Second, both

databases randomly select a set of symbols with size C from Fq under a uniform

distribution, and then broadcast this set to the routing clients and the last client.

Thus, these clients obtain a new set of symbols with size C through element-wise

summation, and then append one more symbol RC to the existing set such that

the sum of the last C symbols equals zero. Moreover, each database also sends its

i + 1th random symbol to client i for all i ∈ [C − 1]. Thus, client i can obtain the
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symbol Ri through summation. Each individual database has no knowledge about

client-side common randomness because of the one-time pad encryption.

We next consider the first type of common randomness allocation, i.e., the

allocation of c. Note that c needs to be uniform in Fq\{0}. We could use a modified

version of the above method as follows: Each database individually selects a random

symbol from Fq under a uniform distribution and then broadcasts its selected symbol

to each client. The global common randomness symbol c is calculated as the sum

of the two random values that are transmitted from the two databases. However, c

now can take the value 0 with probability 1
|q| , thus, the constraint that c is uniformly

distributed over Fq\{0} is not immediately satisfied. The two databases in the server

can repeat this procedure until c falls into the allowed region, which would require

feedback from the clients as explained above.

In order to overcome this shortcoming, we propose a novel common random-

ness allocation method via a broadcast variation of the RSPIR scheme introduced

in [116]. We consider a RSPIR problem with N = 2, K = |q| − 1, L = 1 and

make use of the potentially suboptimal6 RSPIR achievable scheme provided in [116,

Section V]. The corresponding message set stored in the two databases is set as

W1 = 1,W2 = 2, . . . ,W|q|−1 = |q| − 1. We note that there is no need to protect

the privacy of the remaining messages at this point since all these messages can be

globally known to the clients. As a consequence, the required server-side common

randomness in the original RSPIR problem [116] can be discarded.7 Database 1 has

6This scheme was proved to be optimal for K = 2, 3, but is a valid scheme for any K.
7The new idea proposed here seems to be closer to the definition of random private information

retrieval (RPIR) as opposed to random symmetric private information retrieval (RSPIR) studied
in [116]. RPIR and RSPIR can be further studied to design more efficient and powerful com-
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the following set of messages and broadcasts one of them randomly to active clients,

c
(1)
1 = ∅ (7.79)

c
(1)
2 = (W1 +W2,W2 +W3, . . . ,W|q|−2 +W|q|−1) (7.80)

c
(1)
3 = (W1 +W3,W2 +W4, . . . ,W|q|−2 +W1) (7.81)

...

c
(1)
|q|−1 = (W1 +W|q|−1,W2 +W1, . . . ,W|q|−2 +W|q|−3) (7.82)

Similarly, database 2 has the following set of messages and broadcasts one of them

randomly to active clients,

c
(2)
1 = W1 (7.83)

c
(2)
2 = W2 (7.84)

...

c
(2)
|q|−2 = W|q|−2 (7.85)

c
(2)
|q|−1 = W|q|−1 (7.86)

By applying the decoding procedure in the RSPIR approach in [116], all clients will

be able to obtain the same global common randomness symbol c that is uniformly

distributed over the set Fq\{0}. Moreover, the obtained random symbol c will be

unknown to each individual database in the server due to the user privacy constraint

mon randomness construction among the clients. We leave this as an interesting future research
direction.

226



in RSPIR [116].

7.5.2 Private Set Union (FSL-PSU) Phase

After the FSL-CRG phase is completed, each selected client will obtain a global

common randomness symbol c that is uniformly distributed over Fq\{0}, and a set of

common randomness symbols {u⟨[C]⟩
k : k ∈ [K]} in which the identity

∑
i∈[C] u

⟨i⟩
k = 0

is true for all k ∈ [K], and another set of common randomness symbols {uk : k ∈ [K]}

that are all uniformly distributed over Fq. Following our distributed FSL model in

Section 7.2.3, C selected clients in this round of FSL process are divided into two

groups C1 and C2. The clients in C1 send their answers to database 1 in the server,

while the clients in C2 send their answers to database 2 in the server. Then, the ith

client in C1, after mapping its desired submodel index set Γ⟨i⟩ into a corresponding

incidence vector Y ⟨i⟩, constructs its answer as,

A
⟨i⟩,(1)
U,1 = {c(Y ⟨i⟩

1 +u
⟨i⟩
1 ), c(Y

⟨i⟩
2 +u

⟨i⟩
2 ), . . . , c(Y

⟨i⟩
K +u

⟨i⟩
K )} (7.87)

Similarly, the ith client in C2 constructs its answer as,

A
⟨i⟩,(2)
U,1 = {c(Y ⟨i⟩

1 +u
⟨i⟩
1 ), c(Y

⟨i⟩
2 +u

⟨i⟩
2 ), . . . , c(Y

⟨i⟩
K +u

⟨i⟩
K )} (7.88)
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Once the first database in the server receives all the answers from its associated

clients in C1, it produces a corresponding response to be downloaded as,

D
⟨θ1⟩,(1)
U,2 =

{
c
∑
i∈C1

(Y
⟨i⟩
k +u

⟨i⟩
k )+Sk : k ∈ [K]

}
(7.89)

where {Sk : k ∈ [K]} are shared server-side common randomness symbols that are

uniformly selected from Fq as well. This produced response D
⟨θ1⟩,(1)
U,2 will then be

downloaded by a random client whose index θ1 belongs to C1. Afterwards, the θ1th

client processes the received response by adding extra common randomness to it,

and then, forwards the following answer to both databases in the server,

A
⟨θ1⟩,([2])
U,2 =

{
c
∑
i∈C1

(Y
⟨i⟩
k +u

⟨i⟩
k )+uk+Sk : k ∈ [K]

}
(7.90)

Likewise, the second database produces a response to be downloaded as follows,

after receiving all the answers in the first step from the client group C2,

D
⟨θ2⟩,(2)
U,2 =

{
c
∑
i∈C2

(Y
⟨i⟩
k +u

⟨i⟩
k )−Sk : k ∈ [K]

}
(7.91)

This produced response will then be downloaded by a random client in C2 whose

index is denoted by θ2. Afterwards, like the θ1th client, this client also forwards the

following further processed answer to both databases in the server,

A
⟨θ2⟩,([2])
U,2 =

{
c
∑
i∈C2

(Y
⟨i⟩
k +u

⟨i⟩
k )−uk−Sk : k ∈ [K]

}
(7.92)
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After collecting these two answer sets in the second communication round, each

individual database j in the server is ready to derive the desired submodel union Γ

by performing the following element-wise summation,

A
⟨θ1⟩,(j)
U,2 + A

⟨θ2⟩,(j)
U,2 =

{
c
∑
i∈C1

(Y
⟨i⟩
1 +u

⟨i⟩
1 )+u1+S1+c

∑
i∈C2

(Y
⟨i⟩
1 +u

⟨i⟩
1 )−u1−S1,

c
∑
i∈C1

(Y
⟨i⟩
2 +u

⟨i⟩
2 )+u2+S2+c

∑
i∈C2

(Y
⟨i⟩
2 +u

⟨i⟩
2 )−u2−S2,

...

c
∑
i∈C1

(Y
⟨i⟩
K +u

⟨i⟩
K )+uK+SK+c

∑
i∈C2

(Y
⟨i⟩
K +u

⟨i⟩
K )−uK−SK

}
(7.93)

=

{
c
∑
i∈[C]

Y
⟨i⟩
1 , c

∑
i∈[C]

Y
⟨i⟩
2 , . . . , c

∑
i∈[C]

Y
⟨i⟩
K

}
(7.94)

FSL-PSU reliability: Each individual database j in the server makes use of the

K elements in A
⟨θ1⟩,(j)
U,2 + A

⟨θ2⟩,(j)
U,2 to decide whether an arbitrary element in the set

[K] is in the ultimate submodel index union, and thereby, to determine Γ. Let us

use an arbitrary index k as an example to analyze the statement above. On the one

hand, if any client’s desired submodel index set includes k, the sum
∑

i∈[C] Y
⟨i⟩
k must

be a value that is not zero and the expression c
∑

i∈[C] Y
⟨i⟩
k must be in Fq\{0}. On

the other hand, if none of these clients’ desired submodel index set includes k, the

sum
∑

i∈[C] Y
⟨i⟩
k and its associated expression c

∑
i∈[C] Y

⟨i⟩
k are both equal to zero.

Therefore, each database utilizes the value of its calculated expression c
∑

i∈[C] Y
⟨i⟩
k

(whether it is zero or not) to judge whether the index k is in the union Γ or not.

Following the same analysis for each k ∈ [K], both databases can ultimately obtain
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the correct submodel union Γ. Thus, the FSL-PSU reliability is satisfied.

FSL-PSU privacy: We analyze the FSL-PSU privacy based on the availability

of the answer sets {A⟨C1⟩,(1)
U,1 , A

⟨C2⟩,(2)
U,1 }. For all i ∈ [C] and all k ∈ Γ, the common

randomness u
⟨i⟩
k is used to protect the privacy of Y

⟨i⟩
k such that each database knows

nothing about the value of Y
⟨i⟩
k because of the one-time pad encryption. Further, for

all k ∈ Γ, the common randomness c is used to protect the privacy of
∑

i∈[C] Y
⟨i⟩
k such

that each database knows nothing about the value of
∑

i∈[C] Y
⟨i⟩
k beyond that this

sum is zero or not because of the finite cyclic group under multiplication in Fq\{0}.

Hence, the FSL-PSU privacy is preserved when the answer sets {A⟨C1⟩,(1)
U,1 , A

⟨C2⟩,(2)
U,1 }

are received by each database. The concrete proof follows from the proof of client’s

privacy in [74, Subsection V.B]. In reality, the received answer set in database 1 is

{A⟨C1⟩,(1)
U,1 , A

⟨θ1⟩,(1)
U,2 , A

⟨θ2⟩,(1)
U,2 }, which is equivalent to A

⟨C1⟩,(1)
U,1 and {c∑i∈[C] Y

⟨i⟩
k : k ∈

[K]} because of the unknown extra common randomness {uk : k ∈ [K]}. Meanwhile,

the received answer in database 2 is {A⟨C2⟩,(2)
U,1 , A

⟨θ1⟩,(2)
U,2 , A

⟨θ2⟩,(2)
U,2 }, which is equivalent

to A
⟨C2⟩,(2)
U,1 and {c∑i∈[C] Y

⟨i⟩
k : k ∈ [K]} for the same reason. That means that

each database receives less information with respect to the incidence vectors Y ⟨[C]⟩

than the answer set {A⟨C1⟩,(1)
U,1 , A

⟨C2⟩,(2)
U,1 }. Thus, the FSL-PSU privacy constraint is

satisfied.

FSL-PSU inter-client privacy: Only the clients θ1 and θ2 receive information

from outside. Due to the existence of the unknown server-side common randomness

in the downloads D
⟨θ1⟩,(1)
U,2 and D

⟨θ2⟩,(2)
U,2 , neither the θ1th client nor the θ2th client can
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learn any knowledge about the incidence vector within the other clients. Therefore,

the FSL-PSU inter-client privacy constraint is satisfied as well.

FSL-PSU communication cost: Without considering the communication cost

generated in the FSL-CRG phase, the communication cost in this phase is (C+6)K

in q-ary bits. Moreover, following the common randomness generation approach

provided in Section 7.5.1, the extra communication cost is about 8CK for the re-

quired client-side common randomness. Further, for the global common randomness

symbol c, the required communication cost is approximately 2(|q|−1)C in q-ary bits,

which is negligible since the value of K is generally very large. Therefore, the total

communication cost in this phase is (9C + 6)K in q-ary bits.

FSL-PSU client drop-out robustness: In the first step of FSL-PSU phase, for

all i ∈ [C], client i sends its generated answer to its associated database in the

server. Without loss of generality, we assume that a set of clients C1,D belonging to

the first client group C1 and another set of clients C2,D belonging to the second client

group C2 drop-out in this step. Hence, the response to be downloaded produced by

database 1 is as follows,

D
′⟨θ1⟩,(1)
U,2 =

{
c
∑

i∈C1\C1,D

(Y
⟨i⟩
k +u

⟨i⟩
k )+Sk : k ∈ [K]

}
(7.95)

After receiving the response D
′⟨θ1⟩,(1)
U,2 as well as the index set of out-of-operation

clients C1,D, client θ1 can adjust the answer by additionally appending the sum of

missing common randomness symbols c
∑

i∈C1,D u
⟨i⟩
k for all k ∈ [K]. Hence, the
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answer generated by client θ1 in the second step is as follows,

A
′⟨θ1⟩,([2])
U,2 =

{
c
∑

i∈C1\C1,D

Y
⟨i⟩
k +c

∑
i∈C1

u
⟨i⟩
k +uk+Sk : k ∈ [K]

}
(7.96)

Likewise, the response to be downloaded produced by database 2 is as follows,

D
′⟨θ2⟩,(2)
U,2 =

{
c
∑

i∈C2\C2,D

(Y
⟨i⟩
k +u

⟨i⟩
k )+Sk : k ∈ [K]

}
(7.97)

The answer generated by client θ2 in the second step is as follows,

A
′⟨θ2⟩,([2])
U,2 =

{
c
∑

i∈C2\C2,D

Y
⟨i⟩
k +c

∑
i∈C2

u
⟨i⟩
k −uk−Sk : k ∈ [K]

}
(7.98)

After collecting the answers A
′⟨θ1⟩,(j)
U,2 and A

′⟨θ2⟩,(j)
U,2 , by adding them up element-wisely,

each individual database j in the server will obtain the union result as ΓC1\C1,D ∪

ΓC2\C2,D containing all the active selected clients following the steps in the FSL-PSU

reliability constraints. Another non-trivial point is that the randomly selected clients

θ1 and θ2 may also drop-out during the implementation of FSL-PSU phase step 2.

In a practical application, a potential solution is that each database individually

randomly selects a small set of clients to route the information in parallel like the

clients θ1 and θ2. Further, we may use the observed client drop-out rate to determine

the cardinality of this small relaying set.

FSL-PSU client late-arrival robustness: Without loss of generality, we assume

that an answer generated by an arbitrary client with index i ∈ Cj in the first
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step arrives at database j late. Even though database j receives the information

A
⟨i⟩,(j)
U,1 separately, it is still not able to extract any information about the incidence

vector Y ⟨i⟩ from the received answers in the two steps of FSL-PSU phase because

of the unknown extra common randomness {uk : k ∈ [K]}. This conclusion can be

extended to a set of arbitrary clients who arrive at the same database late. Moreover,

it is easy to guarantee that this late answer will never be transmitted to any other

client in order to avoid information leakage.

FSL-PSU database drop-out robustness: If database 1 drops-out and cannot

function normally, database 2 can still receive the answers A
⟨C2⟩,(2)
U,1 and A

⟨θ2⟩,(2)
U,2 as

normal but cannot receive any answer from the relaying client in C1. In order to

derive the union ΓC2 through decoding the set {c∑i∈C2 Y
⟨i⟩
k : k ∈ [K]} from its

existing information, database 2 needs to communicate with client θ2 one more time

for the sake of the values of {c∑i∈C1 u
⟨i⟩
k : k ∈ [K]}. Likewise, if database 2 cannot

function normally, this time, database 1 can still derive the union ΓC1 following the

same way. Further, if we encounter client drop-out or client late-arrival in addition

to the occurrence of database drop-out, the last two robustness analyses can be

utilized accordingly to make this scheme function well.

7.5.3 Private Write (FSL-write) Phase

When the FSL-PSU phase is complete, the server learns the desired submodel union

Γ from all the selected clients in this FSL round. Then, each database in the

server individually sends the set of submodels MΓ to its associated clients. From
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the FSL-CRG phase preceding the FSL-PSU phase, each selected client has also

obtained two sets of common randomness symbols {w⟨[C]⟩
k,l : k ∈ Γ, l ∈ [L]} and

{wk,l : k ∈ Γ, l ∈ [L]} from Fq. Likewise, we always have
∑

i∈[C]w
⟨i⟩
k,l = 0 for all k ∈ Γ

and l ∈ [L]. Therefore, the ith client in C1 will generate the increments for each

desired submodel whose index belongs to Γ⟨i⟩ according to its local training data

and then construct a well-processed answer accordingly. Specifically, for all k ∈ Γ⟨i⟩,

the answer symbols are generated in the following form,

A
⟨i⟩,(1)
W,1 (k) = {∆⟨i⟩

k,1+w
⟨i⟩
k,1,∆

⟨i⟩
k,2+w

⟨i⟩
k,2, . . . ,∆

⟨i⟩
k,L+w

⟨i⟩
k,L} (7.99)

In addition, for all k ∈ Γ\Γ⟨i⟩, the answer symbols are generated as follows without

any updates concerning the current submodel,

A
⟨i⟩,(1)
W,1 (k) = {w⟨i⟩

k,1, w
⟨i⟩
k,2, . . . , w

⟨i⟩
k,L} (7.100)

Thus, the ultimate answer generated by this client in the first step is A
⟨i⟩,(1)
W,1 =

{A⟨i⟩,(1)
W,1 (k) : k ∈ Γ}. The ith client in C2 will generate an ultimate answer A

⟨i⟩,(2)
W,1 =

{A⟨i⟩,(2)
W,1 (k) : k ∈ Γ} in the same way, where

A
⟨i⟩,(2)
W,1 (k) = {∆⟨i⟩

k,1+w
⟨i⟩
k,1,∆

⟨i⟩
k,2+w

⟨i⟩
k,2, . . . ,∆

⟨i⟩
k,L+w

⟨i⟩
k,L}, k ∈ Γ⟨i⟩ (7.101)

A
⟨i⟩,(2)
W,1 (k) = {w⟨i⟩

k,1, w
⟨i⟩
k,2, . . . , w

⟨i⟩
k,L}, k ∈ Γ\Γ⟨i⟩ (7.102)
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Subsequently, each client sends its answer to its associated database in the server.

These two databases also share another set of server-side common randomness sym-

bols {Sk,l : k ∈ [K], l ∈ [L]} from Fq. Let C
(1)
k be the index set of clients in the

first client group C1 whose desired submodel index set includes the index k, i.e.,

C
(1)
k = {i ∈ C1|k ∈ Γ⟨i⟩}. Similarly, C

(2)
k and Ck are defined as {i ∈ C2|k ∈ Γ⟨i⟩} and

{i ∈ [C]|k ∈ Γ⟨i⟩}, respectively. After collecting all the answers A
⟨C1⟩,(1)
W,1 from C1,

database 1 calculates the following aggregation increment for the lth symbol of the

kth submodel where k belongs to the union set Γ,

∑
i∈C(1)

k

(
∆

⟨i⟩
k,l+w

⟨i⟩
k,l

)
+
∑

i∈C1\C(1)
k

w
⟨i⟩
k,l =

∑
i∈C(1)

k

∆
⟨i⟩
k,l +

∑
i∈C1

w
⟨i⟩
k,l (7.103)

As in the last FSL-PSU phase, after adding server-side common randomness, the

corresponding response is produced as follows and will be downloaded by the client

θ1,

D
⟨θ1⟩,(1)
W,2 =

{∑
i∈C(1)

k

∆
⟨i⟩
k,l+

∑
i∈C1

w
⟨i⟩
k,l+Sk,l : k ∈ Γ, l ∈ [L]

}
(7.104)

Once this response is received by client θ1, this client only adds extra common

randomness and then forwards the following answer to both databases,

A
⟨θ1⟩,([2])
W,2 =

{∑
i∈C(1)

k

∆
⟨i⟩
k,l+

∑
i∈C1

w
⟨i⟩
k,l+wk,l+Sk,l : k ∈ Γ, l ∈ [L]

}
(7.105)
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Meanwhile, after collecting all the answers A
⟨C2⟩,(2)
W,1 from C2, database 2 produces the

following response and this response will be downloaded by the client θ2,

D
⟨θ2⟩,(2)
W,2 =

{∑
i∈C(2)

k

∆
⟨i⟩
k,l+

∑
i∈C2

w
⟨i⟩
k,l−Sk,l : k ∈ Γ, l ∈ [L]

}
(7.106)

The answer that is forwarded by client θ2 to both databases is as follows,

A
⟨θ2⟩,([2])
W,2 =

{∑
i∈C(2)

k

∆
⟨i⟩
k,l+

∑
i∈C2

w
⟨i⟩
k,l−wk,l−Sk,l : k ∈ Γ, l ∈ [L]

}
(7.107)

At this point, each individual database in the server is ready to aggregate

the updates as desired from all the selected clients in this round of FSL. For the lth

symbol of the kth submodel inMΓ, the ultimate aggregation increment is calculated

as follows,

∑
i∈C(1)

k

∆
⟨i⟩
k,l +

∑
i∈C1

w
⟨i⟩
k,l+wk,l+Sk,l +

∑
i∈C(2)

k

∆
⟨i⟩
k,l +

∑
i∈C2

w
⟨i⟩
k,l−wk,l−Sk,l

=
∑

i∈C(1)
k ∪C(2)

k

∆
⟨i⟩
k,l +

∑
i∈C1∪C2

w
⟨i⟩
k,l (7.108)

=
∑
i∈Ck

∆
⟨i⟩
k,l (7.109)

The updated lth symbol of the kth submodel M ′
k,l stored in the server after per-

forming this round of FSL-write should finally be

M ′
k,l =Mk,l +

∑
i∈Ck

∆
⟨i⟩
k,l (7.110)
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It is clear that this scheme satisfies the FSL-write reliability constraint. It

is important to note that the scheme in FSL-write phase is essentially a repetitive

application of a simplified version of the scheme in FSL-PSU phase without involving

the global common randomness symbol c. Thus, the FSL-write scheme satisfies the

FSL-write privacy constraint as well as FSL-write inter-client privacy constraints,

and also is robust against client drop-out, client late-arrival and database drop-out

events.

FSL-write communication cost: If we also do not consider the communication

cost generated in the accompanying common randomness generation, the communi-

cation cost is (2C+6)|Γ|L in q-ary bits in which C|Γ|L is for the clients to download

the submodels from the server. The communication cost of obtaining the required

client-side common randomness sets is 8C|Γ|L in q-ary bits. Therefore, the total

communication cost in this phase is (10C + 6)|Γ|L in q-ary bits.

The complete procedure involving FSL-PSU phase and FSL-write phase in this

round of FSL process can be executed repeatedly to update the full learning model

iteratively until a pre-specified termination criterion is met. All the characteristics

introduced above are preserved in all FSL rounds.

7.6 Conclusion

In this chapter, we proposed a new private distributed FSL achievable scheme with a

communication cost that is order-wise similar to the communication cost of existing
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schemes which provide much weaker privacy guarantees. Compared to the existing

schemes with similar privacy guarantees, our proposed scheme does not require noisy

storage of the submodels in the databases. Our proposed scheme is resilient against

client drop-outs, client late-arrivals, and database drop-outs. The main ideas of this

scheme are based on PSU and its variation for private write, together with random

PIR and one-time pads for needed common randomness generation at the client

side.

Our scheme starts with replicated storage of the submodels in two non-

colluding databases at the server together with some amount of server-side common

randomness. Our scheme privately generates needed common randomness at the

client side, privately determines the union of the indices of the submodels to be up-

dated, and privately writes the updated submodels back to the databases. Neither

the indices of the submodels updated within the union, nor their updated values are

leaked to the databases.

In this work, we considered the simplest version of this new formulation. The

issues that need to be studied further include: 1) The case when the server has

more than two databases. 2) Privacy of stored data against databases. 3) Colluding

databases. 4) Byzantine databases that send erroneous information. 5) Collusion

among clients. 6) Byzantine clients that send erroneous updates to poison the

learning process. 7) Schemes to reduce the communication and storage cost, and

potential communication-storage trade-off. 8) MDS coded storage and/or MDS

coded user-side common randomness. 9) Optimum partitioning of the clients among

databases, especially, with colluding databases under a known colluding structure.
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CHAPTER 8

Fully Robust Federated Submodel Learning in Distributed

Storage System

8.1 Introduction

In this chapter, we consider the FSL problem in a distributed storage system. At

this point, the server comprises multiple independent databases and the full model

is stored across these databases. An eavesdropper passively observes all the stor-

age and listens to all the communicated data, of its controlled databases, to gain

knowledge about the remote client data and the submodel information. In addition,

a subset of databases may fail, negatively affecting the FSL process, as FSL pro-

cess may take a non-negligible amount of time for large models. To resolve these

two issues together (i.e., security and database repair), we propose a novel coding

mechanism coined RSRC, to store the full model in a distributed manner. Using our

new RSRC method, the eavesdropper is permitted to learn a controllable amount of

submodel information for the sake of reducing the communication and storage costs.

Further, during the database repair process, in the construction of the replacement

database, the submodels to be updated are stored in the form of their latest ver-
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sion from updating clients, while the remaining submodels are obtained from the

previous version in other databases through routing clients. Our new RSRC-based

distributed FSL approach is constructed on top of our earlier two-database PSU-

based FSL scheme in Chapter 7. A complete one-round FSL process consists of: 1)

an FSL-PSU phase where the union of the submodel indices to be updated by the

selected clients in the current round is determined, 2) an FSL-write phase where the

updated submodels are written back to the databases, and 3) additional auxiliary

phases where sufficient amounts of necessary common randomness are generated

at both server and client sides. Our proposed distributed FSL scheme is also ro-

bust against database drop-outs, client drop-outs, client late-arrivals, as well as any

manipulations of database information by an active adversary who corrupts the

communicated data.

8.2 Problem Formulation

In this work, we consider a distributed FSL problem with one server that comprises

N independent databases and C clients that are selected by the server to partici-

pate in one-round of the FSL process; see Fig. 8.1. By convention, each client at

the user side establishes a direct secure and authenticated communication channel

with each database at the server side.1 In addition, the mutual communication

among databases in the server is not required in this work. The full learning model2

1Our distributed FSL scheme relies only on the client-database communication for the sake of
simplicity and stability.

2For any arbitrary positive integer Z, we use the notation [Z] = {1, 2, . . . , Z} in this work for
simplicity.
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M[K] = {M1,M2, . . . ,MK} encompasses K submodels, with each one consisting of L

i.i.d. symbols that are uniformly selected from a finite field Fq, and is stored across

the databases. Thus, we have

H(Mk) = L, ∀k (8.1)

H(M[K]) = H(M1) +H(M2) + · · ·+H(MK) = KL (8.2)

For each j ∈ [N ], database j takes as inputs the full model M[K] and the

server-side common randomness RS, and stores the coded submodel information

Gj(M[K],RS) by using its own encoder Gj. Some additional server-side common

randomness R̂S in plain form is also stored across the databases to assist the ex-

ecution of the FSL process. For each i ∈ [C], client i has its own data Di, which

is used to train some submodels. Some necessary client-side common randomness

RC will be distributed to the clients before the FSL process starts. Following the

client partition idea in [125], the large amount of C clients are separated into N

groups according to their best communication channel bandwidth (or quality) with

one specific database, i.e., if client i has the optimum communication with database

j compared with the other databases, we assume that client i belongs to the client

group Cj. As a consequence, we have Cj1 ∩ Cj2 = ∅ for any j1, j2 ∈ [N ], j1 ̸= j2 and

∪j∈[N ]Cj = [C]. Each client intends to update one or more submodels according

to its local training data. Specifically, for i ∈ [C], client i wishes to update a set

of submodels with its index set denoted by the random variable Γ⟨i⟩ (we use γ⟨i⟩

to denote the corresponding realization of Γ⟨i⟩). Moreover, for i ∈ [C], we use the
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Figure 8.1: Federated submodel learning (FSL) problem in distributed storage sys-
tem.

random variable Y ⟨i⟩ = {Y ⟨i⟩
1 , Y

⟨i⟩
2 , . . . , Y

⟨i⟩
K } to denote the corresponding incidence

vector of Γ⟨i⟩ after being mapped to the alphabet as in [72,74].

Once a full round of the FSL process is complete, the submodels whose indices

belong to the union Γ = Γ⟨1⟩ ∪ Γ⟨2⟩ ∪ · · · ∪ Γ⟨C⟩ are updated by the selected clients

collaboratively while the remaining submodels remain the same. For i ∈ [C], k ∈ Γ

and l ∈ [L], the update ∆
⟨i⟩
k,l is used to denote the corresponding increment generated

in client i for the submodel symbol Mk,l. If k /∈ Γ⟨i⟩, the update ∆
⟨i⟩
k,l is simply set

as 0. Thus, for k ∈ Γ, the overall increment applied on the submodel symbol Mk,l is∑
i∈[C] ∆

⟨i⟩
k,l. The full increment sum vector over all submodels and over all symbols

is defined as ∆Γ = {∑i∈[C] ∆
⟨i⟩
k,l, k ∈ Γ, l ∈ [L]}. Thus, the updated full learning
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model M ′
[K] for any l ∈ [L] is follows,

M ′
k,l =


Mk,l +

∑
i∈[C] ∆

⟨i⟩
k,l, if k ∈ Γ

Mk,l, otherwise

(8.3)

Likewise, within the refreshed server-side common randomness R′
S and R̂′

S, the part

coupled with the submodels inMΓ = {Mk}k∈Γ should be updated. Thus, the storage

of each database j should be updated according to the up-to-date full model M ′
[K]

and refreshed server-side common randomness R′
S, R̂′

S, while preserving its initial

coding form.

LetMj denote all the information that can be attained by database j including

transmission information and storage information. Then, the FSL reliability in one-

round of the FSL process is given by

[reliability] H(Gj(M
′
[K],R′

S), R̂′
S|Mj) = 0, ∀j ∈ [N ] (8.4)

As introduced in [85], the privacy constraint in FL typically requires that the

aggregator learns nothing about clients’ individual inputs except for their sum. In

FSL, since the full model is divided into multiple submodels, the privacy constraint

needs to be tuned, namely, the aggregator learns nothing about clients’ local data

except for their desired submodel union and submodel increment sum. Let J ⊆ [N ]

be an index set, then MJ = {Mj}j∈J is used to denote all the information involved

in a set of databases whose indices belong to J . Within this framework, we enforce
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that any set of databases with cardinality at most J cannot infer any additional

information about clients’ local data D[C] = {D1,D2, . . . ,DC} beyond the union Γ

and the full increment sum vector ∆Γ, which is expressed by

[privacy] I(MJ ;D[C]|Γ,∆Γ) = 0, ∀J ⊆ [N ], |J | ≤ J (8.5)

Following the multi-user PIR/SPIR problem formulated in [117,118], it is also

required that each participating client should not gain any knowledge about the

other clients’ local data. Let Wi denote all the information that can be attained

by client i including transmission information and storage information, and let Dī

denote the set {D1, . . . ,Di−1,Di+1, . . . ,DC}. Then, we have the following inter-client

privacy constraint,

[inter-client privacy] I(Wi;Dī) = 0, ∀i ∈ [C] (8.6)

Two different types of security threats to the FSL model are investigated in

this chapter. On the one hand, a passive eavesdropper can take control of any

arbitrary E databases at the server side. Let E be the set of indices corresponding

to these E databases where the cardinality of E is E. The eavesdropper can learn

all the transmission information and storage information denoted by ME . The

eavesdropper is honest but curious in the sense that the goal of the eavesdropper

is to obtain some additional information about the full learning model and clients’

local data, but does not corrupt any transmissions. For simplicity, we assume that
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E is smaller than or equal to J in this work, the privacy constraint (8.5) implies that

the eavesdropper cannot learn any knowledge about the clients’ local data further

than Γ and ∆Γ. Hence, the information leakage to the eavesdropper can be measured

only in the amount of up-to-date full learning modelM ′
[K]. Not like the conventional

configuration in which the eavesdropper should learn nothing about M ′
[K] [53, 55],

we use the idea in [17, 67] for reference and introduce a new parameter δ, which is

defined as the maximal fraction of latest full model information that can be learned

by the eavesdropper. Thus, δ can be any rational number between 0 and 1.3 In the

presence of a passive eavesdropper, we have the following security constraint,

[eavesdropper security]
1

KL
I(M ′

[K];ME) ≤ δ, ∀E ⊆ [N ], |E| = E (8.7)

On the other hand, an active adversary can get command of any arbitrary

A databases at the server side to overwrite their transmissions to the clients. The

adversary is Byzantine in the sense that the goal of the adversary is to intervene the

normal running of the FSL process by generating arbitrarily erroneous information,

without following the agreed upon protocol. The eavesdropper/adversary has an

unlimited computational power and full knowledge of the FSL system. Neither

the server nor the clients have any knowledge about the identities of the databases

tapped in by the eavesdropper/adversary.

A basic one-round FSL achievable scheme under distributed coded storage is

a one that satisfies the reliability constraint (8.4), the privacy constraint (8.5), the

3If δ is equal to 1, no eavesdropper security constraint is imposed in the problem formulation.
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inter-client privacy constraint (8.6) and the eavesdropper security constraint (8.7).

A fully robust one-round FSL achievable scheme in distributed coded storage should

satisfy these four basic constraints, especially the reliability constraint (8.4) at all

times, even in the presence of active adversaries, database failures, database drop-

outs, client drop-outs and client late-arrivals. Moreover, we also need to guarantee

that this one-round distributed FSL scheme can be executed iteratively with no

errors until a predefined termination criterion is satisfied. As discussed in the intro-

duction, the performance of a fully robust FSL scheme is evaluated by two metrics:

communication cost and storage cost, which are both measured in the number of

q-ary bits. Our goal is to develop a fully robust FSL scheme for a given set of FSL

system parameters such that the total communication cost and the total storage are

as small as possible.

8.3 Main Result

The main contribution of this chapter is a novel fully robust distributed FSL pro-

tocol. The performance of our protocol is evaluated in terms of the total communi-

cation cost and the total storage cost in each FSL round. The communication cost

includes the cost incurred within the client-side and server-side common randomness

generation. The main result of this chapter is presented in the following theorem,

which is proved in Section 8.6.7.

Theorem 8.1 The total communication cost and the total storage cost of the pro-

posed distributed FSL achievable scheme in one round are O(CK+C|Γ|L)) and
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O(KL), respectively, where C is the total number of participating clients, K is the

total number of submodels, and |Γ| is the number of updated submodels in the given

round.

Remark 8.1 Our new distributed FSL protocol is constructed as a generalization

of our previous two-database FSL scheme via PSU [125]. Different than [125], here

we have many databases at the server side. As in [125], we rely only on simple oper-

ations in a finite field at both client and server sides. Here, we achieve information-

theoretic privacy for the clients as in [125], and additionally information-theoretic

security against eavesdroppers. Unlike [125], here, the submodel information and

server-side common randomness are stored across the databases in a coded form

through our new RSRC technique. With RSRC, we achieve robustness against pas-

sive eavesdroppers, active adversaries and database failures, in addition to the ex-

isting resilience in [125] against database drop-outs, client drop-outs and client late-

arrivals.

Remark 8.2 The communication cost in our new FSL protocol is order-wise the

same as the one in [125]. Hence, all the conclusions in [125, Remark 6] are ap-

plicable here. In particular, once a database fails, the order-wise communication

cost incurred for the repair process is O(KL), which is not negligible compared with

the communication cost in the normal FSL process. Note that when the RSRC

mechanism is utilized, although the order-wise cost makes no difference, the commu-

nication cost of obtaining the desired submodel information at the beginning of the

FSL-write phase, the communication cost of repairing the submodel information in
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the replacement database under a database failure, and the storage cost, can be de-

creased simultaneously, while permitting the eavesdropper to learn more information

about the full learning model.

Remark 8.3 The storage cost in our new FSL protocol is O(KL), which is order-

wise the same as storing the plain full learning model in the server. If we calculate

the storage cost of the scheme in [125], it is also O(KL) including the server-side

common randomness. Compared with previous FL or FSL approaches in [87, 96],

our storage cost O(KL) does not include the term C2, which is incurred by the secret

sharing scheme across the clients.

Remark 8.4 We analyze the required number of databases here. Note that each

client needs to contact D working databases out of N databases in total to recover the

desired submodels MΓ, in the presence of an eavesdropper who controls E databases,

we must have N > D > E in general. In order to preform the FSL process reliably,

the total number of databases that drop-out or fail must be smaller than or equal

to N−D. Furthermore, in the presence of an adversary who controls A databases,

we must have N ≥ max(2A+D, (J+1)(2A+1)) according to the analysis of active

adversary robustness in Section 8.6.6.

8.4 RSRC Technique

In a distributed storage system, a set of messages are stored accross multiple

databases either in a plain form or in a coded form. The secure regenerating code is

developed such that in the presence of a passive eavesdropper or an active adversary,

248



a client can recover the message (reconstruction process) and a replacement database

can be built to replace the failed database (repair process) by communicating with

some working databases in an efficient way [107]. To evaluate the performance of a

secure regenerating code, three main metrics are considered: reconstruction commu-

nication cost that counts the total number of symbols transferred from the working

databases to the client in the reconstruction process, repair communication cost

that counts the total number of symbols transferred from the working databases

to the replacement database in the repair process, storage cost that counts the to-

tal number of symbols needed for the customized storage across all the databases.

Following our FSL system model in Section 8.2, we assume that each client is per-

mitted to contact D working databases to download submodel recovery information

(reconstruction process) and database repair information (repair process) if neces-

sary. Note that the coded storage in database j is Gj(M[K],RS) whereM[K] and RS

denote all the message symbols and randomness symbols, respectively. The follow-

ing three constraints must be guaranteed while applying a secure regenerating code

to our FSL system. First, a client can recover M[K] by communicating with any D

working databases. This is referred to as the reconstruction constraint. Second, for

all j ∈ [N ], a client can derive Gj(M[K],RS) by communicating with any D remain-

ing databases if database j fails, and then forward this database repair information

to the replacement database.4 This is referred to as the repair constraint. Third,

at most a fraction δ of M[K] can be learned by any arbitrary E databases. This is

4In a practical implementation, if this constraint is always satisfied, multiple clients can work
together with each one routing part of Gj(M[K],RS) to the replacement database. Finally, the
replacement database can still receive Gj(M[K],RS).
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referred to as the information leakage constraint.

In this chapter, we propose a novel secure regenerating coding mechanism

called RSRC, which is devised specifically for our FSL system. This secure re-

generating coding scheme is inspired by the ramp secret sharing idea in [109, 126].

Compared with previous secure regenerating code introduced in [107], there are a

number of innovative points in our coding scheme. First, the information leak-

age fraction δ is not limited to the choice of 0. Second, in addition to the repair

communication cost, reconstruction communication cost and storage cost are also

considered for optimization. Third, in our coding scheme, we find that all of re-

pair communication cost, reconstruction communication cost, and storage cost are

certain simple functions of the parameter δ. In our ultimate construction of our gen-

eral FSL achievable scheme, we use our RSRC technique as an elementary building

block.

8.4.1 Construction and Performance of General RSRC

Following the product-matrix code [127], we first define the encoding matrix Ψ.

Encoding matrix Ψ is basically an N × D Vandermonde matrix in the following

form where all the elements {ψ1, ψ2, ψ3, . . . , ψN} included in this matrix are selected
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from a sufficiently large finite field Fq and are all distinct,

Ψ =



1 ψ1 ψ2
1 · · · ψD−1

1

1 ψ2 ψ2
2 · · · ψD−1

2

1 ψ3 ψ2
3 · · · ψD−1

3

...
...

...
. . .

...

1 ψN ψ2
N · · · ψD−1

N


N×D

(8.8)

Next, we define a message matrix Ω which is simply a D×D symmetric matrix. The

D(D + 1)/2 distinct symbols in Ω consist of two parts: message symbols M[K] and

randomness symbols RS. Assume that the number of message symbols is B, then

the number of randomness symbols isD(D+1)/2−B. The code matrix ζ is obtained

from the product of encoding matrix Ψ and message matrix Ω, i.e., ζ = ΨΩ. For any

j ∈ [N ], the jth row of ζ containing D symbols denoted by ζTj is stored in database

j. As the size ofM[K] is generally large, we apply this coding method multiple times

in a duplicate way. The coded storage Gj(M[K],RS) is formed by concatenating all

the generated ζTj .

We use C1 to denote the reconstruction communication cost, C2 to denote the

repair communication cost and S to denote the storage cost in each database as

the storage cost is uniform over all the available databases. Moreover, if we use ℓλ

to measure the extent of the message information leakage in any λ databases and

Mλ to denote all the available information included in these λ databases, we have

ℓλ =
I(M[K];Mλ)

H(M[K])
. After normalizing C1, C2, S by the total number of message symbols
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B, we derive the following theorem regarding the performance of our general RSRC

scheme.

Theorem 8.2 Given the values of N and D that satisfy N > D ≥ 2, for any

arbitrary integer λ that satifies 0 < λ < D and any arbitrary rational number ℓλ that

satisfies 0 ≤ ℓλ ≤ 1, an RSRC scheme with the following normalized performance

can always be realized,

C1

B
≥


D+λ+1
D−λ+1

(1− ℓλ), if ℓλ ≤ 2λ
D+λ+1

1, otherwise

(8.9)

C2

B
≥


2D

(D−λ)(D−λ+1)
(1− ℓλ), if ℓλ ≤ 2λD−λ(λ−1)

D(D+1)

2
D+1

, otherwise

(8.10)

S

B
≥


2D2

(D−λ)(D−λ+1)
(1− ℓλ), if ℓλ ≤ 2λD−λ(λ−1)

D(D+1)

2D
D+1

, otherwise

(8.11)

Remark 8.5 When ℓλ = 0, the first inequality in Theorem 8.2 reduces to the result

in [107].

Remark 8.6 According to the results in Theorem 8.2, when 0 ≤ ℓλ ≤ 2λ
D+λ+1

,

the achieved normalized performance metrics of our RSRC scheme are all linear

functions of the parameter ℓλ. That means that, by allowing larger message in-

formation leakage, we can further reduce all of the costs simultaneously. When

2λ
D+λ+1

≤ ℓλ ≤ 2λD−λ(λ−1)
D(D+1)

, the normalized C2 and normalized S can be further de-
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creased if ℓλ is further increased, whereas the normalized C1 reaches its minimum

1. When 2λD−λ(λ−1)
D(D+1)

≤ ℓλ ≤ 1, only the fraction 2λD−λ(λ−1)
D(D+1)

of message information

is leaked, which is smaller than the given upper bound ℓλ.

Proof: We first determine the starting message matrix Ω. As shown in Fig. 8.2, we

fill the upper left corner of size (D−λ) × (D−λ) with message symbols, whereas

the remaining zone with randomness symbols. Thus, the total number of message

symbols B is (D−λ)(D−λ+1)
2

and the total number of randomness symbols is D(D+1)
2

−

(D−λ)(D−λ+1)
2

=λD− λ(λ−1)
2

. We denote the current message matrix by Ω1. Following

[107, Thm. 11], as a reduced version, any λ databases gain no information about the

message, i.e., I(M[K];Mλ) = 0 and ℓλ = 0. From another perspective of information-

theoretic security analysis, by just applying linear computation, λD coded symbols

included in these databases can be transformed into λD equivalent symbols where

λD− λ(λ−1)
2

symbols are associated with one distinct randomness symbol and λ(λ−1)
2

symbols are redundant.5 Afterwards, for the lower left corner with size λ× (D−λ),

the existing randomness symbol is substituted one-by-one by new message symbols.

Once a randomness symbol vanishes, a new symbol only involving message symbol

appears. This is also the basic idea in the construction of ramp secret sharing on

the basis of classical secret sharing [109]. As a consequence, when the the lower

left corner is filled with message symbols,6 the total number of message symbols B

now becomes (D−λ)(D+λ+1)
2

and the total number of randomness symbols is λ(λ+1)
2

. We

5This result can also be proved by simply using linear algebraic calculations where the conversion
matrix is invertible. The number of redundant symbols comes from the symmetric property of the
message matrix.

6The upper right corner with size (D−λ) × λ is also filled with message symbols since the
message matrix is always symmetric.
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RS

D−λ

D−λ

D

D

M[K]

Figure 8.2: Structure of the D ×D message matrix Ω.

denote this message matrix by Ω2. The green zone in Fig. 8.2 can be considered

as a ramp zone in which the message information leakage increases gradually. At

this point, λD coded symbols included in these databases are equivalent to λ(D−λ)

symbols only consisting of message symbols, λ(λ+1)
2

symbols associated with one

distinct randomness symbol and λ(λ−1)
2

redundant symbols. The message information

leakage ℓλ in this scheme is 2λ(D−λ)
D(D+1)−λ(λ+1)

. Furthermore, if the whole message matrix

is filled with message symbols without any randomness symbols, the total number

of message symbols B is thus D(D+1)
2

. We denote this message matrix by Ω3. Out of

λD coded symbols, λ(λ−1)
2

symbols are redundant. The message information leakage

ℓλ in this scheme is 2λD−λ(λ−1)
D(D+1)

.

Regarding the message recovery in the reconstruction process, for the scheme

with Ω1 or Ω2 or any message matrix in between, if all the coded symbols from

these D connected databases are put together to form a D×D matrix, we can only

concentrate on theD×(D−λ) left submatrix as all the message symbols have already

been included. Thus, as the encoding matrix Ψ is a Vandermonde matrix, the client

can download the full D × (D−λ) left submatrix except for the redundant upper
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right isosceles triangle (or lower right isosceles triangle) with side length D−λ−1

to recover the message. Hence, the reconstruction communication cost C1 is always

(D−λ)(D+λ+1)
2

. For the scheme with Ω3, the client is supposed to download the full

D×D matrix except for the redundant upper right isosceles triangle (or lower right

isosceles triangle) with side length D−1. Hence, the corresponding C1 is D(D+1)
2

.

Regarding the database repair, for message matrix Ω in any form, the client only

needs to download 1 symbol from each database according to [107, Thms. 6, 11].

Hence, the repair communication cost C2 is always D.

For completeness, we also state the basic idea of the repair process. For all

j ∈ [N ], let ΨT
j denote the jth row of the encoding matrix Ψ. Then, the storage

in database j is ζTj = ΨT
j Ω. Without loss of generality, let database f fail. The

corresponding storage in database f is ζTf = ΨT
f Ω, which is the exact form required in

the replacement database. Note that a client can contact any D working databases

whose index set is denoted by J . Then, for each j ∈ J , database j only needs to

pass one symbol ζTj Ψf to the client. After collecting D symbols from the working

databases, the client forwards the database f repair information ζTJΨf = ΨT
JΩΨf to

the replacement database. Since the D×D submatrix ΨT
J of Ψ is always invertible,

the replacement database can rebuild ΩΨf , and then the required ΨT
f Ω, because the

message matrix Ω is symmetric. Note that the imported information to repair the

failed database is equivalent to the original information stored in that database in

terms of the message. As a consequence, even though a database repair operation is

performed, the security analysis of information leakage constraint is not influenced.

Regarding the storage cost, for any D×D message matrix Ω, each database always
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needs to store D2 symbols, i.e., S = D2.

Now, we employ the time-sharing idea to obtain the normalized performance

result given in Theorem 8.2. For any rational number ℓλ that satisfies 0 ≤ ℓλ ≤

2λ
D+λ+1

, we can utilize the scheme with Ω1 and the scheme with Ω2 in a time-sharing

manner to achieve it. Let ℓ1 take the quotient form p1
p2

where p1 and p2 are both

positive integers. We now use the first scheme q1 times and the second scheme q2

times such that the overall message leakage fraction ℓ1 is still p1
p2
. Hence, we must

have

0q1 + λ(D − λ)q2
B

=
0q1 + λ(D − λ)q2

(D−λ)(D−λ+1)
2

· q1 + (D−λ)(D+λ+1)
2

· q2
=
p1
p2

(8.12)

If q1 takes the value 2λ(D−λ)p2−(D−λ)(D+λ+1)p1, q2 is equal to (D−λ)(D−λ+1)p1.

As a consequence, we can just use the first scheme 2λ(D−λ)p2−(D−λ)(D+λ+1)p1

times and the second scheme (D−λ)(D−λ+1)p1 times. The total number of message

symbols B is

B = λ(D − λ)q2 ·
p2
p1

= λ(D − λ)2(D − λ+ 1)p2 (8.13)

The total reconstruction communication cost C1 is

C1 =
(D−λ)(D+λ+1)

2
· (q1 + q2) = λ(D−λ)2(D+λ+1)(p2 − p1) (8.14)
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After normalizing it by B, we have

C1

B
=
D + λ+ 1

D − λ+ 1
(1− ℓλ) (8.15)

The total repair communication cost C2 is

C2 = D · (q1 + q2) = 2Dλ(D−λ)(p2 − p1) (8.16)

After normalizing it by B, we have

C2

B
=

2D

(D − λ)(D − λ+ 1)
(1− ℓλ) (8.17)

The storage cost S is always D multiple of C2, which implies

S

B
=

2D2

(D − λ)(D − λ+ 1)
(1− ℓλ) (8.18)

For any rational number ℓλ that satisfies 2λ
D+λ+1

≤ ℓλ ≤ 2λD−λ(λ−1)
D(D+1)

, we can

apply time-sharing idea once more by combining the scheme with Ω2 and the scheme

with Ω3 now. Hence, we must have

λ(D − λ)q1 + (λD − λ(λ−1)
2

)q2

B
=
λ(D − λ)q1 + (λD − λ(λ−1)

2
)q2

(D−λ)(D+λ+1)
2

· q1 + D(D+1)
2

· q2
=
p1
p2

(8.19)

If q1 takes the value (2λD−λ2+λ)p2−D(D+1)p1, q2 is now equal to (D−λ)(D+

λ+1)p1−2λ(D−λ)p2. As a consequence, we can just use the first scheme (2λD−
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λ2+λ)p2−D(D+1)p1 times and the second scheme (D−λ)(D+λ+1)p1−2λ(D−λ)p2

times. The total number of message symbols B is

B =
(D − λ)(D + λ+ 1)

2
· q1 +

D(D + 1)

2
· q2 =

λ(λ+ 1)(D − λ)(D − λ+ 1)

2
p2

(8.20)

The total reconstruction communication cost C1 is

C1 =
(D − λ)(D + λ+ 1)

2
· q1 +

D(D + 1)

2
· q2 =

λ(λ+ 1)(D − λ)(D − λ+ 1)

2
p2

(8.21)

After normalizing it by B, we have

C1

B
= 1 (8.22)

The total repair communication cost C2 is

C2 = D · (q1 + q2) = λ(λ+ 1)D(p2 − p1) (8.23)

After normalizing it by B, we have

C2

B
=

2D

(D − λ)(D − λ+ 1)
(1− ℓλ) (8.24)
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The storage cost S is still D multiples of C2, which implies

S

B
=

2D2

(D − λ)(D − λ+ 1)
(1− ℓλ) (8.25)

For any rational number ℓλ that satisfies 2λD−λ(λ−1)
D(D+1)

≤ ℓλ ≤ 1, we can use the

scheme with Ω3 all the time. Hence, we must have

C1

B
=

D(D+1)
2

D(D+1)
2

= 1 (8.26)

C2

B
=

D
D(D+1)

2

=
2

D + 1
(8.27)

S

B
=

D2

D(D+1)
2

=
2D

D + 1
(8.28)

concluding the proof. ■

8.4.2 Examples to Illustrate the Basic Idea of RSRC

Consider the special case of N = 4, D = 3, all the symbols are operated in the finite

field F13, and the encoding matrix Ψ is

Ψ =



1 1 1

1 2 3

1 3 9

1 4 3


4×3

(8.29)
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The message matrix Ω thus contains 9 symbols and 6 of them are distinct. If λ =

D = 3, the study on ℓ3 is trivial. Due to the reconstruction constraint that a client

can always recover the messageM[K] by connecting to any 3 working databases, these

3 databases must include all the information about M[K], namely, H(M[K]|M3) = 0

and ℓ3 = 1. Without loss of generality, we now assume that database 4 fails.

Example 16: We first consider the situation where λ = 1. If the message matrix Ω

takes the following form whereM1,M2,M3 are i.i.d. and uniformly selected message

symbols from F13, R1, R2, R3 are i.i.d. and uniformly selected randomness symbols

from F13,

Ω =


M1 M2 R1

M2 M3 R2

R1 R2 R3

 (8.30)

The message length B is 3 and the coded storage across the databases is as follows,

DB 1 : M1+M2+R1, M2+M3+R2, R1+R2+R3 (8.31)

DB 2 : M1+2M2+3R1, M2+2M3+3R2, R1+2R2+3R3 (8.32)

DB 3 : M1+3M2+9R1, M2+3M3+9R2, R1+3R2+9R3 (8.33)

DB 4 : M1+4M2+3R1, M2+4M3+3R2, R1+4R2+3R3 (8.34)

For any one database, as the value of the randomness symbol R3 is unknown, the

database cannot learn any knowledge about the randomness symbols R1, R2 from the
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third coded symbol. Furthermore, as none of R1, R2 are known, the database cannot

learn any knowledge about the message symbolsM1,M2,M3 from the first two coded

symbols. Therefore, each individual database learns nothing about the message set

M[K], i.e., I(M[K];M1) = 0 and ℓ1 = 0. Following the performance analysis of

RSRC in the last subsection, a client can download {M1+M2+R1,M2+M3+R2},

{M1+2M2+3R1,M2+2M3+3R2}, M1+3M2+9R1 from database 1, 2, 3, respectively,

to recover the message, and downloadM1+M2+R1+4(M2+M3+R2)+3(R1+R2+R3),

M1+2M2+3R1+4(M2+2M3+3R2)+3(R1+2R2+3R3), M1+3M2+9R1+4(M2+

3M3+9R2)+3(R1+3R2+9R3) from database 1, 2, 3, respectively, to repair the failed

database because of the following equality,


M1+M2+R1+4(M2+M3+R2)+3(R1+R2+R3)

M1+2M2+3R1+4(M2+2M3+3R2)+3(R1+2R2+3R3)

M1+3M2+9R1+4(M2+3M3+9R2)+3(R1+3R2+9R3)



=


1 1 1

1 2 3

1 3 9




M1 M2 R1

M2 M3 R2

R1 R2 R3




1

4

3

 =


1 1 1

1 2 3

1 3 9




M1+4M2+3R1

M2+4M3+3R2

R1+4R2+3R3

 (8.35)

This scheme achieves C1 = 5, C2 = 3, S = 9, which implies C1

B
= 5

3
, C2

B
= 1, S

B
= 3.

If one more message symbol is added to the message matrix Ω in place of the
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existing randomness symbol, the new Ω becomes

Ω =


M1 M2 M3

M2 M4 R1

M3 R1 R2

 (8.36)

The message length B is 4 and the coded storage across the databases is follows,

DB 1 : M1+M2+M3, M2+M4+R1, M3+R1+R2 (8.37)

DB 2 : M1+2M2+3M3, M2+2M4+3R1, M3+2R1+3R2 (8.38)

DB 3 : M1+3M2+9M3, M2+3M4+9R1, M3+3R1+9R2 (8.39)

DB 4 : M1+4M2+3M3, M2+4M4+3R1, M3+4R1+3R2 (8.40)

For any one database, due to the existence of the randomness symbols R1, R2, the

only information concerning the message that can be learned by the database is the

first coded symbol, which contains the ambiguity of 1
4
H(M[K]). Therefore, we have

ℓ1 = 1
4
for each individual database. This scheme achieves the same performance,

i.e., C1 = 5, C2 = 3, S = 9, which implies C1

B
= 5

4
, C2

B
= 3

4
, S

B
= 9

4
. Therefore,

by allowing the leak of partial information about the messages to the database, the

normalized values of C1, C2 and S can be reduced. This partial information leakage

idea can be considered as setting up a ramp zone where information leakage is not

strictly prohibited.

If another message symbol is added to the current message matrix Ω in place
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of one of the two remaining randomness symbols, the new Ω becomes

Ω =


M1 M2 M3

M2 M4 M5

M3 M5 R1

 (8.41)

The message length B is 5 and the coded storage across the databases is as follows,

DB 1 : M1+M2+M3, M2+M4+M5, M3+M5+R1 (8.42)

DB 2 : M1+2M2+3M3, M2+2M4+3M5, M3+2M5+3R1 (8.43)

DB 3 : M1+3M2+9M3, M2+3M4+9M5, M3+3M5+9R1 (8.44)

DB 4 : M1+4M2+3M3, M2+4M4+3M5, M3+4M5+3R1 (8.45)

Because of the existence of the randomness symbol R1, each database can learn

some information concerning the message from the first two coded symbols, which

contains the ambiguity of 2
5
H(M[K]). Therefore, we have ℓ1 =

2
5
for each individual

database. The performance of this scheme is still exactly the same as before, i.e.,

C1 = 5, C2 = 3, S = 9, which implies C1

B
= 1, C2

B
= 3

5
, S

B
= 9

5
.

For any rational number ℓ1 that satisfies 0 ≤ ℓ1 ≤ 2
5
, we can utilize the scheme

with Ω in (8.30) q1 times and the scheme with Ω in (8.41) q2 times in a time-sharing

manner to achieve ℓ1, which can also be expressed in the form of p1
p2
. Hence, we must
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have

0q1 + 2q2
3q1 + 5q2

=
p1
p2

(8.46)

If q1 takes the value 2p2 − 5p1, q2 is now equal to 3p1. As a consequence, we can

just use the first scheme 2p2 − 5p1 times and the second scheme 3p1 times. After

simple calculation, the overall message length B is 6p2, the overall reconstruction

communication cost C1 is 10(p2 − p1), the overall repair communication cost C2 is

6(p2−p1), and the overall storage cost S is 18(p2−p1). By normalizing these values

by B, for 0 ≤ ℓ1 ≤ 2
5
, we obtain

C1

B
=

5

3
· p2 − p1

p2
=

5

3
(1− ℓ1),

C2

B
=
p2 − p1
p2

= 1− ℓ1,
S

B
= 3 · p2 − p1

p2
= 3(1− ℓ1)

(8.47)

Note that by using these two schemes jointly to achieve ℓ1 = 1
4
, it has exactly the

same normalized performance as the one obtained by using the scheme with Ω in

(8.36) directly.

If all the symbols in the message matrix Ω are message symbols without any

randomness symbols, Ω is in the following form,

Ω =


M1 M2 M3

M2 M4 M5

M3 M5 M6

 (8.48)
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Now, the message length B becomes the maximal possible value 6 and the coded

storage across the databases is as follows,

DB 1 : M1+M2+M3, M2+M4+M5, M3+M5+M6 (8.49)

DB 2 : M1+2M2+3M3, M2+2M4+3M5, M3+2M5+3M6 (8.50)

DB 3 : M1+3M2+9M3, M2+3M4+9M5, M3+3M5+9M6 (8.51)

DB 4 : M1+4M2+3M3, M2+4M4+3M5, M3+4M5+3M6 (8.52)

Each individual database learns three coded symbols with each one only containing

message symbols. Therefore, we have ℓ1 = 3
6
= 1

2
for each database. For the

message recovery, a client can download {M1+M2+M3,M2+M4+M5,M3+M5+M6},

{M1+2M2+3M3,M2+2M4+3M5},M1+3M2+9M3 from database 1, 2, 3, respectively.

The corresponding performance of this scheme now becomes, C1 = 6, C2 = 3, S = 9,

which implies C1

B
= 1, C2

B
= 1

2
, S

B
= 3

2
.

For any rational number ℓ1 that satisfies 2
5
≤ ℓ1 ≤ 1

2
, we can utilize the time-

sharing idea again by combining the scheme with Ω in (8.41) and the scheme with

Ω in (8.48). At this point, the first scheme is used q1 times and the second scheme

is used q2 times such that the overall ℓ1 is equivalent to p1
p2
, and we must have

2q1 + 3q2
5q1 + 6q2

=
p1
p2

(8.53)

If q1 takes the value 3p2−6p1, q2 equals 5p1−2p2. As a result, we can just apply the

first scheme 3p2 − 6p1 times and the second scheme 5p1 − 2p2 times. After simple
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calculation, B is 3p2, C1 is 3p2, C2 is 3(p2 − p1) and S is 9(p2 − p1). By normalizing

these values by B, for 2
5
≤ ℓ1 ≤ 1

2
, we obtain

C1

B
=

3p2
3p2

= 1,
C2

B
=
p2 − p1
p2

= 1− ℓ1,
S

B
= 3 · p2 − p1

p2
= 3(1− ℓ1) (8.54)

By combining the results in (8.47), (8.54) and the performance of the scheme using

Ω in (8.48) for 1
2
≤ ℓ1 ≤ 1, we can get the full normalized performance in the case

of N = 4, D = 3, λ = 1, which matches the result in Theorem 8.2.

Example 17: We then consider the situation where λ = 2. The starting message

matrix now takes the following form,

Ω =


M1 R1 R2

R1 R3 R4

R2 R4 R5

 (8.55)

The message length B is 1 and the coded storage across the databases is as follows,

DB 1 : M1+R1+R2, R1+R3+R4, R2+R4+R5 (8.56)

DB 2 : M1+2R1+3R2, R1+2R3+3R4, R2+2R4+3R5 (8.57)

DB 3 : M1+3R1+9R2, R1+3R3+9R4, R2+3R4+9R5 (8.58)

DB 4 : M1+4R1+3R2, R1+4R3+3R4, R2+4R4+3R5 (8.59)

For any two databases, according to the last two coded symbols from these two

databases, neither of the randomness symbols R1 and R2 are decodable. Thus,
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for the first coded symbols from these two database, the message symbol M1 is

completely unknown to two databases. Therefore, we have I(M[K];M2) = 0 and

ℓ2 = 0. To recover the message, a client can simply download the first coded symbol

from each database. The corresponding C1 is 3 while C2 = 3 and S = 9 are not

changed, that means C1

B
= 3, C2

B
= 3, S

B
= 9.

As in Example 16, we import message symbols into the message matrix Ω

gradually to replace the randomness symbols, and the new Ω first becomes

Ω =


M1 M2 R1

M2 R2 R3

R1 R3 R4

 (8.60)

The message length B is 2 and the coded storage across the databases is follows,

DB 1 : M1+M2+R1, M2+R2+R3, R1+R3+R4 (8.61)

DB 2 : M1+2M2+3R1, M2+2R2+3R3, R1+2R3+3R4 (8.62)

DB 3 : M1+3M2+9R1, M2+3R2+9R3, R1+3R3+9R4 (8.63)

DB 4 : M1+4M2+3R1, M2+4R2+3R3, R1+4R3+3R4 (8.64)

For any two databases, one useful value that only involves a linear combination

of message symbols M1 and M2 can be attained, whereas the other information is

useless in terms of the message. We use database 1 and database 2 as an example

here, by subtracting the coded symbol in database 2 from the triple coded symbol
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in database 1 and the double coded symbol in database 1 element-wisely, the six

coded symbols from these two databases are equal to 2M1+M2, M1−R1, 2M2+R2,

M2−R3, R1−R4 and redundant 2R1+R3. Therefore, we have ℓ2 = 1
2
for any two

databases. Regarding the performance of this scheme, all metrics remain the same,

i.e., C1 = 3, C2 = 3, S = 9, which implies C1

B
= 3

2
, C2

B
= 3

2
, S

B
= 9

2
.

When we move forward, the new Ω next becomes

Ω3 =


M1 M2 M3

M2 R1 R2

M3 R2 R3

 (8.65)

The message length B is 3 and the coded storage across the databases is follows,

DB 1 : M1+M2+M3, M2+R1+R2, M3+R2+R3 (8.66)

DB 2 : M1+2M2+3M3, M2+2R1+3R2, M3+2R2+3R3 (8.67)

DB 3 : M1+3M2+9M3, M2+3R1+9R2, M3+3R2+9R3 (8.68)

DB 4 : M1+4M2+3M3, M2+4R1+3R2, M3+4R2+3R3 (8.69)

Note that this construction is different from the one in (8.30), although the message

length is the same. By downloading the first coded symbol from each database, the

reconstruction communication cost C1 in this scheme is now 3 rather than 5. For

any two databases, two useful values only involving a linear combination of message

symbols can be attained, whereas the other information is still useless in terms of
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the message. If we look at database 1 and database 2, the six coded symbols from

these two databases are equivalent to 2M1+M2, M1−M3, 2M2+R1, M2−R2, M3−R3

and redundant 2M3+R2. Therefore, we have ℓ2 = 2
3
for any two databases. The

performance of this scheme is maintained, i.e., C1 = 3, C2 = 3, S = 9, which implies

C1

B
= 1, C2

B
= 1, S

B
= 3.

Following the time-sharing idea in Example 16, by unifying the scheme with

Ω in (8.55) and the scheme with Ω in (8.65), we obtain the following normalized

performance for 0 ≤ ℓ2 ≤ 2
3
,

C1

B
= 3(1− ℓ2),

C2

B
= 3(1− ℓ2),

S

B
= 9(1− ℓ2) (8.70)

When ℓ2 takes the value
1
2
, this is exactly the performance of the scheme that uses Ω

in (8.60). If we keep importing message symbols and using the time-sharing idea, we

can obtain the remaining normalized performance in this situation when 2
3
≤ ℓ2 ≤ 5

6
,

namely,

C1

B
= 1,

C2

B
= 3(1− ℓ2),

S

B
= 9(1− ℓ2) (8.71)

The normalized reconstruction communication cost C1

B
reaches the limit 1 yet the

other two values remain the same. By putting the results in (8.70), (8.71) and the

performance of the scheme using Ω in (8.48) for 5
6
≤ ℓ1 ≤ 1 together, we can derive

the full performance for N = 4, D = 3, λ = 2, which also matches the result in

Theorem 8.2.
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8.5 Distributed FSL Motivating Example

In this section, we consider a simple FSL setting as a toy example and provide

a secure and robust achievable scheme in the presence of a passive eavesdropper

and a database failure. The full learning model is divided into K = 4 submodels,

M[4] = {M1,M2,M3,M4} with each submodel consisting of L = 2 symbols from the

finite field F13 is stored in a coded form across N = 4 individual databases in the

server. Any arbitrary J = 2 databases can collude with each other to learn the

remote client data. In addition, C = 4 random clients are selected by the server to

update the submodels in this round of the FSL process. Each client should be able

to obtain the required submodel information by communicating with any arbitrary

D = 3 working databases. The desired submodel index set for each client is

Client 1 ∈ C1 : Γ⟨1⟩ = {1} ⇒ Y ⟨1⟩ = [Y
⟨1⟩
1 Y

⟨1⟩
2 Y

⟨1⟩
3 Y

⟨1⟩
4 ]T = [1 0 0 0]T (8.72)

Client 2 ∈ C1 : Γ⟨2⟩ = {1, 3} ⇒ Y ⟨2⟩ = [Y
⟨2⟩
1 Y

⟨2⟩
2 Y

⟨2⟩
3 Y

⟨2⟩
4 ]T = [1 0 1 0]T (8.73)

Client 3 ∈ C2 : Γ⟨3⟩ = {1, 4} ⇒ Y ⟨3⟩ = [Y
⟨3⟩
1 Y

⟨3⟩
2 Y

⟨3⟩
3 Y

⟨3⟩
4 ]T = [1 0 0 1]T (8.74)

Client 4 ∈ C3 : Γ⟨4⟩ = {1, 3, 4}⇒ Y ⟨4⟩ = [Y
⟨4⟩
1 Y

⟨4⟩
2 Y

⟨4⟩
3 Y

⟨4⟩
4 ]T = [1 0 1 1]T (8.75)

Example 18: A passive eavesdropper can tap in on any arbitrary E = 2 databases

to learn the storage data as well as all the communication data that comes in and

goes out. Assuming that the submodel leakage parameter δ is 0.5, the submodel

information is then coded through the RSRC scheme with encoding matrix Ψ in

(8.29) and message matrix Ω in (8.60) for better FSL performance. Thus, the stor-
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age across the databases including coded submodel information and extra uncoded

server-side common randomness is initialized as in Table 8.1. At this point, database

4 has a failure and cannot provide any reliable responses. In this example, the gen-

eration of client-side common randomness and server-side common randomness are

skipped, but it will be introduced in detail in the general FSL achievable scheme.

Database Storage

DB 1

M1,1+M1,2+R1,1, M1,2+R1,2+R1,3, R1,1+R1,3+R1,4 R̂1, R̂1,1, R̂1,2

M2,1+M2,2+R2,1, M2,2+R2,2+R2,3, R2,1+R2,3+R2,4 R̂2, R̂2,1, R̂2,2

M3,1+M3,2+R3,1, M3,2+R3,2+R3,3, R3,1+R3,3+R3,4 R̂3, R̂3,1, R̂3,2

M4,1+M4,2+R4,1, M4,2+R4,2+R4,3, R4,1+R4,3+R4,4 R̂4, R̂4,1, R̂4,2

DB 2

M1,1+2M1,2+3R1,1, M1,2+2R1,2+3R1,3, R1,1+2R1,3+3R1,4 R̂1, R̂1,1, R̂1,2

M2,1+2M2,2+3R2,1, M2,2+2R2,2+3R2,3, R2,1+2R2,3+3R2,4 R̂2, R̂2,1, R̂2,2

M3,1+2M3,2+3R3,1, M3,2+2R3,2+3R3,3, R3,1+2R3,3+3R3,4 R̂3, R̂3,1, R̂3,2

M4,1+2M4,2+3R4,1, M4,2+2R4,2+3R4,3, R4,1+2R4,3+3R4,4 R̂4, R̂4,1, R̂4,2

DB 3

M1,1+3M1,2+9R1,1, M1,2+3R1,2+9R1,3, R1,1+3R1,3+9R1,4 R̂1, R̂1,1, R̂1,2

M2,1+3M2,2+9R2,1, M2,2+3R2,2+9R2,3, R2,1+3R2,3+9R2,4 R̂2, R̂2,1, R̂2,2

M3,1+3M3,2+9R3,1, M3,2+3R3,2+9R3,3, R3,1+3R3,3+9R3,4 R̂3, R̂3,1, R̂3,2

M4,1+3M4,2+9R4,1, M4,2+3R4,2+9R4,3, R4,1+3R4,3+9R4,4 R̂4, R̂4,1, R̂4,2

DB 4

M1,1+4M1,2+3R1,1, M1,2+4R1,2+3R1,3, R1,1+4R1,3+3R1,4 R̂1, R̂1,1, R̂1,2

M2,1+4M2,2+3R2,1, M2,2+4R2,2+3R2,3, R2,1+4R2,3+3R2,4 R̂2, R̂2,1, R̂2,2

M3,1+4M3,2+3R3,1, M3,2+4R3,2+3R3,3, R3,1+4R3,3+3R3,4 R̂3, R̂3,1, R̂3,2

M4,1+4M4,2+3R4,1, M4,2+4R4,2+3R4,3, R4,1+4R4,3+3R4,4 R̂4, R̂4,1, R̂4,2

Table 8.1: Storage across the databases in the server when D = 3, J = E = 2 and
δ = 0.5.

FSL-PSU phase: In the first step of FSL-PSU phase, according to the client

partition, the client answers are generated as follows7 where the symbols c and {w⟨i⟩
k :

i ∈ [4], k ∈ [4]} are both client-side common randomness that satisfies
∑

i∈[4]w
⟨i⟩
k = 0

7As in our previous work [125], the value in ⟨⟩ is used to denote the index of client and the value
in () is used to denote the index of database. In addition, the first subscript of the download D or
the answer A is used to show it is within the FSL-PSU phase or FSL-write phase as the letter U
stands for union and the letter W stands for write, whereas the second subscript is used to denote
the step number within this phase.
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for all k ∈ [4] and is unknown to any 2 databases at the server side,

A
⟨1⟩,(1)
U,1 = {c(Y ⟨1⟩

1 +w
⟨1⟩
1 ), c(Y

⟨1⟩
2 +w

⟨1⟩
2 ), c(Y

⟨1⟩
3 +w

⟨1⟩
3 ), c(Y

⟨1⟩
4 +w

⟨1⟩
4 )} (8.76)

A
⟨2⟩,(1)
U,1 = {c(Y ⟨2⟩

1 +w
⟨2⟩
1 ), c(Y

⟨2⟩
2 +w

⟨2⟩
2 ), c(Y

⟨2⟩
3 +w

⟨2⟩
3 ), c(Y

⟨2⟩
4 +w

⟨2⟩
4 )} (8.77)

A
⟨3⟩,(2)
U,1 = {c(Y ⟨3⟩

1 +w
⟨3⟩
1 ), c(Y

⟨3⟩
2 +w

⟨3⟩
2 ), c(Y

⟨3⟩
3 +w

⟨3⟩
3 ), c(Y

⟨3⟩
4 +w

⟨3⟩
4 )} (8.78)

A
⟨4⟩,(3)
U,1 = {c(Y ⟨4⟩

1 +w
⟨4⟩
1 ), c(Y

⟨4⟩
2 +w

⟨4⟩
2 ), c(Y

⟨4⟩
3 +w

⟨4⟩
3 ), c(Y

⟨4⟩
4 +w

⟨4⟩
4 )} (8.79)

In the second step of FSL-PSU phase, after collecting the answers from its associated

clients 1 and 2, database 1 does the element-wise summation with the aid of its own

extra uncoded server-side common randomness {R̂k : k ∈ [4]} that is unknown to

each individual client. This information is subsequently downloaded by a randomly

selected client from the client group C1, say client 2,

D
⟨2⟩,(1)
U,2 = {c(Y ⟨1⟩

1 +Y
⟨2⟩
1 +w

⟨1⟩
1 +w

⟨2⟩
1 )+R̂1, c(Y

⟨1⟩
2 +Y

⟨2⟩
2 +w

⟨1⟩
2 +w

⟨2⟩
2 )+R̂2,

c(Y
⟨1⟩
3 +Y

⟨2⟩
3 +w

⟨1⟩
3 +w

⟨2⟩
3 )+R̂3, c(Y

⟨1⟩
4 +Y

⟨2⟩
4 +w

⟨1⟩
4 +w

⟨2⟩
4 )+R̂4} (8.80)

After further processing the received information D
⟨2⟩,(1)
U,2 through additional client-

side common randomness {w(j)
k : j ∈ [3], k ∈ [4]} that satisfies

∑
j∈[3]w

(j)
k = 0 for all

k ∈ [4] and is unknown to any 2 databases, client 2 forwards the following answer

to all the functioning databases, i.e., database 1, 2, 3,

A
⟨2⟩,([3])
U,2 ={c(Y ⟨1⟩

1 +Y
⟨2⟩
1 +w

⟨1⟩
1 +w

⟨2⟩
1 )+R̂1+w

(1)
1 ,c(Y

⟨1⟩
2 +Y

⟨2⟩
2 +w

⟨1⟩
2 +w

⟨2⟩
2 )+R̂2+w

(1)
2 ,
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c(Y
⟨1⟩
3 +Y

⟨2⟩
3 +w

⟨1⟩
3 +w

⟨2⟩
3 )+R̂3+w

(1)
3 ,c(Y

⟨1⟩
4 +Y

⟨2⟩
4 +w

⟨1⟩
4 +w

⟨2⟩
4 )+R̂4+w

(1)
4 }

(8.81)

Likewise, after downloading the following information D
⟨3⟩,(2)
U,2 and D

⟨4⟩,(3)
U,2 from

database 2 and database 3, respectively, client 3 and client 4 forward the follow-

ing generated answers A
⟨3⟩,([3])
U,2 and A

⟨4⟩,([3])
U,2 to all the functioning databases as well,

D
⟨3⟩,(2)
U,2 = {c(Y ⟨3⟩

1 +w
⟨3⟩
1 )+R̂1, c(Y

⟨3⟩
2 +w

⟨3⟩
2 )+R̂2,

c(Y
⟨3⟩
3 +w

⟨3⟩
3 )+R̂3, c(Y

⟨3⟩
4 +w

⟨3⟩
4 )+R̂4} (8.82)

D
⟨4⟩,(3)
U,2 = {c(Y ⟨4⟩

1 +w
⟨4⟩
1 )+R̂1, c(Y

⟨4⟩
2 +w

⟨4⟩
2 )+R̂2,

c(Y
⟨4⟩
3 +w

⟨4⟩
3 )+R̂3, c(Y

⟨4⟩
4 +w

⟨4⟩
4 )+R̂4} (8.83)

A
⟨3⟩,([3])
U,2 = {c(Y ⟨3⟩

1 +w
⟨3⟩
1 )+R̂1+w

(2)
1 , c(Y

⟨3⟩
2 +w

⟨3⟩
2 )+R̂2+w

(2)
2 ,

c(Y
⟨3⟩
3 +w

⟨3⟩
3 )+R̂3+w

(2)
3 , c(Y

⟨3⟩
4 +w

⟨3⟩
4 )+R̂4+w

(2)
4 } (8.84)

A
⟨4⟩,([3])
U,2 = {c(Y ⟨4⟩

1 +w
⟨4⟩
1 )+R̂1+w

(3)
1 , c(Y

⟨4⟩
2 +w

⟨4⟩
2 )+R̂2+w

(3)
2 ,

c(Y
⟨4⟩
3 +w

⟨4⟩
3 )+R̂3+w

(3)
3 , c(Y

⟨4⟩
4 +w

⟨4⟩
4 )+R̂4+w

(3)
4 } (8.85)

For all j ∈ [3], each an alive database j is able to find the desired submodel

union through element-wise summation after collecting the available answers A
⟨2⟩,(j)
U,2 ,

A
⟨3⟩,(j)
U,2 and A

⟨4⟩,(j)
U,2 from the routing clients 2, 3, 4. For all k ∈ [4], database j can get

the result c(
∑

i∈[4] Y
⟨i⟩
k )+3R̂k since

∑
i∈[4]w

⟨i⟩
k = 0 and

∑
j∈[3]w

(j)
k = 0, which implies

the value of c(
∑

i∈[4] Y
⟨i⟩
k ) since R̂k is a known constant. It is straightforward to see

that submodel k is in the union if c(
∑

i∈[4] Y
⟨i⟩
k ) ̸= 0, otherwise, k is not in the union.
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Therefore, the union result Γ = {1, 3, 4} is obtained by each alive database. Due

to the limited information uploaded by the selected clients, it is easy to verify that

the server can only learn this union and nothing beyond the union, even though all

these databases can collude with each other.

FSL-write phase: First, by downloading information from 3 functioning

databases, each selected client needs to recover all the submodels in the submodel

unionMΓ = {M1,M2,M4} to be updated in this FSL round. For all i ∈ [3], we have

D
⟨i⟩,(1)
W,1 = {M1,1+M1,2+R1,1,M3,1+M3,2+R3,1,M4,1+M4,2+R4,1} (8.86)

D
⟨i⟩,(2)
W,1 = {M1,1+2M1,2+3R1,1,M3,1+2M3,2+3R3,1,M4,1+2M4,2+3R4,1} (8.87)

D
⟨i⟩,(3)
W,1 = {M1,1+4M1,2+3R1,1,M3,1+4M3,2+3R3,1,M4,1+3M4,2+9R4,1} (8.88)

Meanwhile, without loss of generality, client 4 is utilized to route the required infor-

mation of submodel M2 to the replacement database as a substitution for the failed

database 4. Thus,

D
⟨4⟩,(1)
W,1 ={D⟨i⟩,(1)

W,1 ,M2,1+M2,2+R2,1+4(M2,2+R2,2+R2,3)+3(R2,1+R2,3+R2,4)}

(8.89)

D
⟨4⟩,(2)
W,1 ={D⟨i⟩,(2)

W,1 ,M2,1+2M2,2+3R2,1+4(M2,2+2R2,2+3R2,3)+3(R2,1+2R2,3+3R2,4)}

(8.90)

D
⟨4⟩,(3)
W,1 ={D⟨i⟩,(3)

W,1 ,M2,1+3M2,2+9R2,1+4(M2,2+3R2,2+9R2,3)+3(R2,1+3R2,3+9R2,4)}

(8.91)
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Due to the reconstruction constraint of the RSRC scheme, each client can reliably

decode the desired submodels MΓ as well as the server-side common randomness

symbols R1,1, R3,1, R4,1. When the local training is done, the answers sent by the

clients in the first step of FSL-write phase are as follows where the symbols {w⟨i⟩
k,l :

i ∈ [4], k ∈ Γ, l ∈ [2]} are client-side common randomness that satisfy
∑

i∈[4]w
⟨i⟩
k,l = 0

for all k ∈ Γ, l ∈ [2] and is unknown to any 2 databases,

A
⟨1⟩,(1)
W,1 = {∆⟨1⟩

1,1+w
⟨1⟩
1,1,∆

⟨1⟩
1,2+w

⟨1⟩
1,2, w

⟨1⟩
3,1, w

⟨1⟩
3,2, w

⟨1⟩
4,1, w

⟨1⟩
4,2} (8.92)

A
⟨2⟩,(1)
W,1 = {∆⟨2⟩

1,1+w
⟨2⟩
1,1,∆

⟨2⟩
1,2+w

⟨2⟩
1,2,∆

⟨2⟩
3,1+w

⟨2⟩
3,1,∆

⟨2⟩
3,2+w

⟨2⟩
3,2, w

⟨2⟩
4,1, w

⟨2⟩
4,2} (8.93)

A
⟨3⟩,(2)
W,1 = {∆⟨3⟩

1,1+w
⟨3⟩
1,1,∆

⟨3⟩
1,2+w

⟨3⟩
1,2, w

⟨3⟩
3,1, w

⟨3⟩
3,2,∆

⟨3⟩
4,1+w

⟨3⟩
4,1,∆

⟨3⟩
4,2+w

⟨3⟩
4,2} (8.94)

A
⟨4⟩,(3)
W,1 = {∆⟨4⟩

1,1+w
⟨4⟩
1,1,∆

⟨4⟩
1,2+w

⟨4⟩
1,2,∆

⟨4⟩
3,1+w

⟨4⟩
3,1,∆

⟨4⟩
3,2+w

⟨4⟩
3,2,∆

⟨4⟩
4,1+w

⟨4⟩
4,1,∆

⟨4⟩
4,2+w

⟨4⟩
4,2}

(8.95)

Following the similar execution in the previous FSL-PSU phase, client 2 downloads

the following information from database 1 in the second step of FSL-write phase

where the symbols {R̂k,l : k ∈ Γ, l ∈ [2]} are extra uncoded server-side common

randomness that is unknown to each individual client,

D
⟨2⟩,(1)
W,2 = {∆⟨1⟩

1,1+∆
⟨2⟩
1,1+w

⟨1⟩
1,1+w

⟨2⟩
1,1+R̂1,1,∆

⟨1⟩
1,2+∆

⟨2⟩
1,2+w

⟨1⟩
1,2+w

⟨2⟩
1,2+R̂1,2,∆

⟨2⟩
3,1+w

⟨1⟩
3,1

+w
⟨2⟩
3,1+R̂3,1,∆

⟨2⟩
3,2+w

⟨1⟩
3,2+w

⟨2⟩
3,2+R̂3,2, w

⟨1⟩
4,1+w

⟨2⟩
4,1+R̂4,1, w

⟨1⟩
4,2+w

⟨2⟩
4,2+R̂4,2}

(8.96)

Afterwards, client 2 transmits the different coded answers to the different working

databases after appending its own randomness {w(1)
k,l0

: k ∈ Γ, l0 ∈ [4]} that is
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randomly selected only by client 2 under a uniform distribution from F13, and thus,

completely unknown to all the databases in the server,

A
⟨2⟩,(1)
W,2 = {M1,1+∆

⟨1⟩
1,1+∆

⟨2⟩
1,1+w

⟨1⟩
1,1+w

⟨2⟩
1,1+R̂1,1+M1,2+∆

⟨1⟩
1,2+∆

⟨2⟩
1,2+w

⟨1⟩
1,2

+w
⟨2⟩
1,2+R̂1,2+w

(1)
1,1,

M1,2+∆
⟨1⟩
1,2+∆

⟨2⟩
1,2+w

⟨1⟩
1,2+w

⟨2⟩
1,2+R̂1,2+w

(1)
1,2+w

(1)
1,3, w

(1)
1,1+w

(1)
1,3+w

(1)
1,4,

M3,1+∆
⟨2⟩
3,1+w

⟨1⟩
3,1+w

⟨2⟩
3,1+R̂3,1+M3,2+∆

⟨2⟩
3,2+w

⟨1⟩
3,2+w

⟨2⟩
3,2+R̂3,2+w

(1)
3,1,

M3,2+∆
⟨2⟩
3,2+w

⟨1⟩
3,2+w

⟨2⟩
3,2+R̂3,2+w

(1)
3,2+w

(1)
3,3, w

(1)
3,1+w

(1)
3,3+w

(1)
3,4,

M4,1+w
⟨1⟩
4,1+w

⟨2⟩
4,1+R̂4,1+M4,2+w

⟨1⟩
4,2+w

⟨2⟩
4,2+R̂4,2+w

(1)
4,1,

M4,2+w
⟨1⟩
4,2+w

⟨2⟩
4,2+R̂4,2+w

(1)
4,2+w

(1)
4,3, w

(1)
4,1+w

(1)
4,3+w

(1)
4,4} (8.97)

A
⟨2⟩,(2)
W,2 = {M1,1+∆

⟨1⟩
1,1+∆

⟨2⟩
1,1+w

⟨1⟩
1,1+w

⟨2⟩
1,1+R̂1,1+2(M1,2+∆

⟨1⟩
1,2+∆

⟨2⟩
1,2+w

⟨1⟩
1,2

+w
⟨2⟩
1,2+R̂1,2)+3w

(1)
1,1,

M1,2+∆
⟨1⟩
1,2+∆

⟨2⟩
1,2+w

⟨1⟩
1,2+w

⟨2⟩
1,2+R̂1,2+2w

(1)
1,2+3w

(1)
1,3, w

(1)
1,1+2w

(1)
1,3+3w

(1)
1,4,

M3,1+∆
⟨2⟩
3,1+w

⟨1⟩
3,1+w

⟨2⟩
3,1+R̂3,1+2(M3,2+∆

⟨2⟩
3,2+w

⟨1⟩
3,2+w

⟨2⟩
3,2+R̂3,2)+3w

(1)
3,1,

M3,2+∆
⟨2⟩
3,2+w

⟨1⟩
3,2+w

⟨2⟩
3,2+R̂3,2+2w

(1)
3,2+3w

(1)
3,3, w

(1)
3,1+2w

(1)
3,3+3w

(1)
3,4,

M4,1+w
⟨1⟩
4,1+w

⟨2⟩
4,1+R̂4,1+2(M4,2+w

⟨1⟩
4,2+w

⟨2⟩
4,2+R̂4,2)+3w

(1)
4,1,

M4,2+w
⟨1⟩
4,2+w

⟨2⟩
4,2+R̂4,2+2w

(1)
4,2+3w

(1)
4,3, w

(1)
4,1+2w

(1)
4,3+3w

(1)
4,4} (8.98)

A
⟨2⟩,(3)
W,2 = {M1,1+∆

⟨1⟩
1,1+∆

⟨2⟩
1,1+w

⟨1⟩
1,1+w

⟨2⟩
1,1+R̂1,1+3(M1,2+∆

⟨1⟩
1,2+∆

⟨2⟩
1,2+w

⟨1⟩
1,2

+w
⟨2⟩
1,2+R̂1,2)+9w

(1)
1,1,

M1,2+∆
⟨1⟩
1,2+∆

⟨2⟩
1,2+w

⟨1⟩
1,2+w

⟨2⟩
1,2+R̂1,2+3w

(1)
1,2+9w

(1)
1,3, w

(1)
1,1+3w

(1)
1,3+9w

(1)
1,4,

M3,1+∆
⟨2⟩
3,1+w

⟨1⟩
3,1+w

⟨2⟩
3,1+R̂3,1+3(M3,2+∆

⟨2⟩
3,2+w

⟨1⟩
3,2+w

⟨2⟩
3,2+R̂3,2)+9w

(1)
3,1,
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M3,2+∆
⟨2⟩
3,2+w

⟨1⟩
3,2+w

⟨2⟩
3,2+R̂3,2+3w

(1)
3,2+9w

(1)
3,3, w

(1)
3,1+3w

(1)
3,3+9w

(1)
3,4,

M4,1+w
⟨1⟩
4,1+w

⟨2⟩
4,1+R̂4,1+3(M4,2+w

⟨1⟩
4,2+w

⟨2⟩
4,2+R̂4,2)+9w

(1)
4,1,

M4,2+w
⟨1⟩
4,2+w

⟨2⟩
4,2+R̂4,2+3w

(1)
4,2+9w

(1)
4,3, w

(1)
4,1+3w

(1)
4,3+9w

(1)
4,4} (8.99)

A
⟨2⟩,(4)
W,2 = {M1,1+∆

⟨1⟩
1,1+∆

⟨2⟩
1,1+w

⟨1⟩
1,1+w

⟨2⟩
1,1+R̂1,1+4(M1,2+∆

⟨1⟩
1,2+∆

⟨2⟩
1,2+w

⟨1⟩
1,2

+w
⟨2⟩
1,2+R̂1,2)+3w

(1)
1,1,

M1,2+∆
⟨1⟩
1,2+∆

⟨2⟩
1,2+w

⟨1⟩
1,2+w

⟨2⟩
1,2+R̂1,2+4w

(1)
1,2+3w

(1)
1,3, w

(1)
1,1+4w

(1)
1,3+3w

(1)
1,4,

M3,1+∆
⟨2⟩
3,1+w

⟨1⟩
3,1+w

⟨2⟩
3,1+R̂3,1+4(M3,2+∆

⟨2⟩
3,2+w

⟨1⟩
3,2+w

⟨2⟩
3,2+R̂3,2)+3w

(1)
3,1,

M3,2+∆
⟨2⟩
3,2+w

⟨1⟩
3,2+w

⟨2⟩
3,2+R̂3,2+4w

(1)
3,2+3w

(1)
3,3, w

(1)
3,1+4w

(1)
3,3+3w

(1)
3,4,

M4,1+w
⟨1⟩
4,1+w

⟨2⟩
4,1+R̂4,1+4(M4,2+w

⟨1⟩
4,2+w

⟨2⟩
4,2+R̂4,2)+3w

(1)
4,1,

M4,2+w
⟨1⟩
4,2+w

⟨2⟩
4,2+R̂4,2+4w

(1)
4,2+3w

(1)
4,3, w

(1)
4,1+4w

(1)
4,3+3w

(1)
4,4} (8.100)

Likewise, the following information is downloaded by client 3,

D
⟨3⟩,(2)
W,2 = {∆⟨3⟩

1,1+w
⟨3⟩
1,1+R̂1,1,∆

⟨3⟩
1,2+w

⟨3⟩
1,2+R̂1,2, w

⟨3⟩
3,1+R̂3,1,

w
⟨3⟩
3,2+R̂3,2,∆

⟨3⟩
4,1+w

⟨3⟩
4,1+R̂4,1,∆

⟨3⟩
4,2+w

⟨3⟩
4,2+R̂4,2} (8.101)

Exactly like client 2, client 3 transmits the coded answers to the corresponding

databases as follows where {w(2)
k,l0

: k ∈ Γ, l0 ∈ [4]} is its own randomness,

A
⟨3⟩,(1)
W,2 = {∆⟨3⟩

1,1+w
⟨3⟩
1,1+R̂1,1+∆

⟨3⟩
1,2+w

⟨3⟩
1,2+R̂1,2+w

(2)
1,1,

∆
⟨3⟩
1,2+w

⟨3⟩
1,2+R̂1,2+w

(2)
1,2+w

(2)
1,3, w

(2)
1,1+w

(2)
1,3+w

(2)
1,4,

w
⟨3⟩
3,1+R̂3,1+w

⟨3⟩
3,2+R̂3,2+w

(2)
3,1,
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w
⟨3⟩
3,2+R̂3,2+w

(2)
3,2+w

(2)
3,3, w

(2)
3,1+w

(2)
3,3+w

(2)
3,4,

∆
⟨3⟩
4,1+w

⟨3⟩
4,1+R̂4,1+∆

⟨3⟩
4,2+w

⟨3⟩
4,2+R̂4,2+w

(2)
4,1,

∆
⟨3⟩
4,2+w

⟨3⟩
4,2+R̂4,2+w

(2)
4,2+w

(2)
4,3, w

(2)
4,1+w

(2)
4,3+w

(2)
4,4} (8.102)

A
⟨3⟩,(2)
W,2 = {∆⟨3⟩

1,1+w
⟨3⟩
1,1+R̂1,1+2(∆

⟨3⟩
1,2+w

⟨3⟩
1,2+R̂1,2)+3w

(2)
1,1,

∆
⟨3⟩
1,2+w

⟨3⟩
1,2+R̂1,2+2w

(2)
1,2+3w

(2)
1,3, w

(2)
1,1+2w

(2)
1,3+3w

(2)
1,4,

w
⟨3⟩
3,1+R̂3,1+2(w

⟨3⟩
3,2+R̂3,2)+3w

(2)
3,1,

w
⟨3⟩
3,2+R̂3,2+2w

(2)
3,2+3w

(2)
3,3, w

(2)
3,1+2w

(2)
3,3+3w

(2)
3,4,

∆
⟨3⟩
4,1+w

⟨3⟩
4,1+R̂4,1+2(∆

⟨3⟩
4,2+w

⟨3⟩
4,2+R̂4,2)+3w

(2)
4,1,

∆
⟨3⟩
4,2+w

⟨3⟩
4,2+R̂4,2+2w

(2)
4,2+3w

(2)
4,3, w

(2)
4,1+2w

(2)
4,3+3w

(2)
4,4} (8.103)

A
⟨3⟩,(3)
W,2 = {∆⟨3⟩

1,1+w
⟨3⟩
1,1+R̂1,1+3(∆

⟨3⟩
1,2+w

⟨3⟩
1,2+R̂1,2)+9w

(2)
1,1,

∆
⟨3⟩
1,2+w

⟨3⟩
1,2+R̂1,2+3w

(2)
1,2+9w

(2)
1,3, w

(2)
1,1+3w

(2)
1,3+9w

(2)
1,4,

w
⟨3⟩
3,1+R̂3,1+3(w

⟨3⟩
3,2+R̂3,2)+9w

(2)
3,1,

w
⟨3⟩
3,2+R̂3,2+3w

(2)
3,2+9w

(2)
3,3, w

(2)
3,1+3w

(2)
3,3+9w

(2)
3,4,

∆
⟨3⟩
4,1+w

⟨3⟩
4,1+R̂4,1+3(∆

⟨3⟩
4,2+w

⟨3⟩
4,2+R̂4,2)+9w

(2)
4,1,

∆
⟨3⟩
4,2+w

⟨3⟩
4,2+R̂4,2+3w

(2)
4,2+9w

(2)
4,3, w

(2)
4,1+3w

(2)
4,3+9w

(2)
4,4} (8.104)

A
⟨3⟩,(4)
W,2 = {∆⟨3⟩

1,1+w
⟨3⟩
1,1+R̂1,1+4(∆

⟨3⟩
1,2+w

⟨3⟩
1,2+R̂1,2)+3w

(2)
1,1,

∆
⟨3⟩
1,2+w

⟨3⟩
1,2+R̂1,2+4w

(2)
1,2+3w

(2)
1,3, w

(2)
1,1+4w

(2)
1,3+3w

(2)
1,4,

w
⟨3⟩
3,1+R̂3,1+4(w

⟨3⟩
3,2+R̂3,2)+3w

(2)
3,1,

w
⟨3⟩
3,2+R̂3,2+4w

(2)
3,2+3w

(2)
3,3, w

(2)
3,1+4w

(2)
3,3+3w

(2)
3,4,

∆
⟨3⟩
4,1+w

⟨3⟩
4,1+R̂4,1+4(∆

⟨3⟩
4,2+w

⟨3⟩
4,2+R̂4,2)+3w

(2)
4,1,
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∆
⟨3⟩
4,2+w

⟨3⟩
4,2+R̂4,2+4w

(2)
4,2+3w

(2)
4,3, w

(2)
4,1+4w

(2)
4,3+3w

(2)
4,4} (8.105)

At the same time, the following information is downloaded by client 4,

D
⟨4⟩,(3)
W,2 = {∆⟨4⟩

1,1+w
⟨4⟩
1,1+R̂1,1,∆

⟨4⟩
1,2+w

⟨4⟩
1,2+R̂1,2,∆

⟨4⟩
3,1+w

⟨4⟩
3,1+R̂3,1,

∆
⟨4⟩
3,2+w

⟨4⟩
3,2+R̂3,2,∆

⟨4⟩
4,1+w

⟨4⟩
4,1+R̂4,1,∆

⟨4⟩
4,2+w

⟨4⟩
4,2+R̂4,2} (8.106)

As client 4 is also employed to route the information of submodel 2 to the replace-

ment database, it transmits the coded answers to the corresponding databases in

the following way where {w(3)
k,l0

: k ∈ Γ, l0 ∈ [4]} is its own randomness and A
⟨4⟩,(4)
W,2 is

particularly different,

A
⟨4⟩,(1)
W,2 = {∆⟨4⟩

1,1+w
⟨4⟩
1,1+R̂1,1+∆

⟨4⟩
1,2+w

⟨4⟩
1,2+R̂1,2+w

(3)
1,1,

∆
⟨4⟩
1,2+w

⟨4⟩
1,2+R̂1,2+w

(3)
1,2+w

(3)
1,3, w

(3)
1,1+w

(3)
1,3+w

(3)
1,4

∆
⟨4⟩
3,1+w

⟨4⟩
3,1+R̂3,1+∆

⟨4⟩
3,2+w

⟨4⟩
3,2+R̂3,1+w

(3)
3,1,

∆
⟨4⟩
3,2+w

⟨4⟩
3,2+R̂3,2+w

(3)
3,2+w

(3)
3,3, w

(3)
3,1+w

(3)
3,3+w

(3)
3,4,

∆
⟨4⟩
4,1+w

⟨4⟩
4,1+R̂4,1+∆

⟨4⟩
4,2+w

⟨4⟩
4,2+R̂4,2+w

(3)
4,1,

∆
⟨4⟩
4,2+w

⟨4⟩
4,2+R̂4,2+w

(3)
4,2+w

(3)
4,3, w

(3)
4,1+w

(3)
4,3+w

(3)
4,4} (8.107)

A
⟨4⟩,(2)
W,2 = {∆⟨4⟩

1,1+w
⟨4⟩
1,1+R̂1,1+2(∆

⟨4⟩
1,2+w

⟨4⟩
1,2+R̂1,2)+3w

(3)
1,1,

∆
⟨4⟩
1,2+w

⟨4⟩
1,2+R̂1,2+2w

(3)
1,2+3w

(3)
1,3, w

(3)
1,1+2w

(3)
1,3+3w

(3)
1,4

∆
⟨4⟩
3,1+w

⟨4⟩
3,1+R̂3,1+2(∆

⟨4⟩
3,2+w

⟨4⟩
3,2+R̂3,1) + 3w

(3)
3,1,

∆
⟨4⟩
3,2+w

⟨4⟩
3,2+R̂3,2+2w

(3)
3,2+3w

(3)
3,3, w

(3)
3,1+2w

(3)
3,3+3w

(3)
3,4,
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∆
⟨4⟩
4,1+w

⟨4⟩
4,1+R̂4,1+2(∆

⟨4⟩
4,2+w

⟨4⟩
4,2+R̂4,2)+3w

(3)
4,1,

∆
⟨4⟩
4,2+w

⟨4⟩
4,2+R̂4,2+2w

(3)
4,2+3w

(3)
4,3, w

(3)
4,1+2w

(3)
4,3+3w

(3)
4,4} (8.108)

A
⟨4⟩,(3)
W,2 = {∆⟨4⟩

1,1+w
⟨4⟩
1,1+R̂1,1+3(∆

⟨4⟩
1,2+w

⟨4⟩
1,2+R̂1,2)+9w

(3)
1,1,

∆
⟨4⟩
1,2+w

⟨4⟩
1,2+R̂1,2+3w

(3)
1,2+9w

(3)
1,3, w

(3)
1,1+3w

(3)
1,3+9w

(3)
1,4

∆
⟨4⟩
3,1+w

⟨4⟩
3,1+R̂3,1+3(∆

⟨4⟩
3,2+w

⟨4⟩
3,2+R̂3,1) + 9w

(3)
3,1,

∆
⟨4⟩
3,2+w

⟨4⟩
3,2+R̂3,2+3w

(3)
3,2+9w

(3)
3,3, w

(3)
3,1+3w

(3)
3,3+9w

(3)
3,4,

∆
⟨4⟩
4,1+w

⟨4⟩
4,1+R̂4,1+3(∆

⟨4⟩
4,2+w

⟨4⟩
4,2+R̂4,2)+9w

(3)
4,1,

∆
⟨4⟩
4,2+w

⟨4⟩
4,2+R̂4,2+3w

(3)
4,2+9w

(3)
4,3, w

(3)
4,1+3w

(3)
4,3+9w

(3)
4,4} (8.109)

A
⟨4⟩,(4)
W,2 = {∆⟨4⟩

1,1+w
⟨4⟩
1,1+R̂1,1+4(∆

⟨4⟩
1,2+w

⟨4⟩
1,2+R̂1,2)+3w

(3)
1,1,

∆
⟨4⟩
1,2+w

⟨4⟩
1,2+R̂1,2+4w

(3)
1,2+3w

(3)
1,3, w

(3)
1,1+4w

(3)
1,3+3w

(3)
1,4

∆
⟨4⟩
3,1+w

⟨4⟩
3,1+R̂3,1+4(∆

⟨4⟩
3,2+w

⟨4⟩
3,2+R̂3,1) + 3w

(3)
3,1,

∆
⟨4⟩
3,2+w

⟨4⟩
3,2+R̂3,2+4w

(3)
3,2+3w

(3)
3,3, w

(3)
3,1+4w

(3)
3,3+3w

(3)
3,4,

∆
⟨4⟩
4,1+w

⟨4⟩
4,1+R̂4,1+4(∆

⟨4⟩
4,2+w

⟨4⟩
4,2+R̂4,2)+3w

(3)
4,1,

∆
⟨4⟩
4,2+w

⟨4⟩
4,2+R̂4,2+4w

(3)
4,2+3w

(3)
4,3, w

(3)
4,1+4w

(3)
4,3+3w

(3)
4,4,

M2,1+M2,2+R2,1+4(M2,2+R2,2+R2,3)+3(R2,1+R2,3+R2,4),

M2,1+2M2,2+3R2,1+4(M2,2+2R2,2+3R2,3)+3(R2,1+2R2,3+3R2,4),

M2,1+3M2,2+9R2,1+4(M2,2+3R2,2+9R2,3)+3(R2,1+3R2,3+9R2,4)}

(8.110)

As it is easy to check that the privacy constraint (8.5) and the inter-client

privacy constraint (8.6) are both inherited directly from our previous FSL-PSU
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scheme in [125], our emphasis here will be on the analysis of the reliability constraint

(8.4), the eavesdropper security constraint (8.7) and the database failure robustness.

Regarding the reliability constraint: After collecting the answers from the

routing clients 2, 3, 4 in the second step of the FSL-write phase, each database just

does the element-wise summation. Without loss of generality, let us focus on the

first coded submodel symbol M1,1+2M1,2+3R1,1 in database 2, then we have the

following calculation where
∑

i∈[4]w
⟨i⟩
1,1 =

∑
i∈[4]w

⟨i⟩
1,2 = 0,

M1,1+∆
⟨1⟩
1,1+∆

⟨2⟩
1,1+w

⟨1⟩
1,1+w

⟨2⟩
1,1+R̂1,1+2(M1,2+∆

⟨1⟩
1,2+∆

⟨2⟩
1,2+w

⟨1⟩
1,2+w

⟨2⟩
1,2+R̂1,2)+3w

(1)
1,1

+∆
⟨3⟩
1,1+w

⟨3⟩
1,1+R̂1,1+2(∆

⟨3⟩
1,2+w

⟨3⟩
1,2+R̂1,2)+3w

(2)
1,1

+∆
⟨4⟩
1,1+w

⟨4⟩
1,1+R̂1,1+2(∆

⟨4⟩
1,2+w

⟨4⟩
1,2+R̂1,2)+3w

(3)
1,1 (8.111)

=M1,1+
∑
i∈[4]

∆
⟨i⟩
1,1+2(M1,2+

∑
i∈[4]

∆
⟨i⟩
1,2)+3(w

(1)
1,1+w

(2)
1,1+w

(3)
1,1)+3R̂1,1+6R̂1,2 (8.112)

=M ′
1,1+2M ′

1,2+3R′
1,1+3R̂1,1+6R̂1,2 (8.113)

As 3R̂1,1+6R̂1,2 is a known constant to database 2 and w
(1)
1,1+w

(2)
1,1+w

(3)
1,1 can be

treated as R′
1,1, this database is able to decode the value of M ′

1,1+2M ′
1,2+3R′

1,1,

which will be stored as a new coded submodel symbol for the next round of the FSL

process. For the other needed symbols across the databases, the same calculation

can be performed. In addition, in order to make the storage consistent across the

databases and achieve perfect privacy in the next round, all the extra uncoded

server-side common randomness also needs to be refreshed. When this round of the

FSL process is complete, the updated storage in the server is shown in Table 8.2.
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Database Storage

DB 1

M ′
1,1+M

′
1,2+R

′
1,1, M

′
1,2+R

′
1,2+R

′
1,3, R

′
1,1+R

′
1,3+R

′
1,4 R̂′

1, R̂
′
1,1, R̂

′
1,2

M2,1+M2,2+R2,1, M2,2+R2,2+R2,3, R2,1+R2,3+R2,4 R̂′
2, R̂

′
2,1, R̂

′
2,2

M ′
3,1+M

′
3,2+R

′
3,1, M

′
3,2+R

′
3,2+R

′
3,3, R

′
3,1+R

′
3,3+R

′
3,4 R̂′

3, R̂
′
3,1, R̂

′
3,2

M ′
4,1+M

′
4,2+R

′
4,1, M

′
4,2+R

′
4,2+R

′
4,3, R

′
4,1+R

′
4,3+R

′
4,4 R̂′

4, R̂
′
4,1, R̂

′
4,2

DB 2

M ′
1,1+2M ′

1,2+3R′
1,1, M

′
1,2+2R′

1,2+3R′
1,3, R

′
1,1+2R′

1,3+3R′
1,4 R̂′

1, R̂
′
1,1, R̂

′
1,2

M2,1+2M2,2+3R2,1, M2,2+2R2,2+3R2,3, R2,1+2R2,3+3R2,4 R̂′
2, R̂

′
2,1, R̂

′
2,2

M ′
3,1+2M ′

3,2+3R′
3,1, M

′
3,2+2R′

3,2+3R′
3,3, R

′
3,1+2R′

3,3+3R′
3,4 R̂′

3, R̂
′
3,1, R̂

′
3,2

M ′
4,1+2M ′

4,2+3R′
4,1, M

′
4,2+2R′

4,2+3R′
4,3, R

′
4,1+2R′

4,3+3R′
4,4 R̂′

4, R̂
′
4,1, R̂

′
4,2

DB 3

M ′
1,1+3M ′

1,2+9R′
1,1, M

′
1,2+3R′

1,2+9R′
1,3, R

′
1,1+3R′

1,3+9R′
1,4 R̂′

1, R̂
′
1,1, R̂

′
1,2

M2,1+3M2,2+9R2,1, M2,2+3R2,2+9R2,3, R2,1+3R2,3+9R2,4 R̂′
2, R̂

′
2,1, R̂

′
2,2

M ′
3,1+3M ′

3,2+9R′
3,1, M

′
3,2+3R′

3,2+9R′
3,3, R

′
3,1+3R′

3,3+9R′
3,4 R̂′

3, R̂
′
3,1, R̂

′
3,2

M ′
4,1+3M ′

4,2+9R′
4,1, M

′
4,2+3R′

4,2+9R′
4,3, R

′
4,1+3R′

4,3+9R′
4,4 R̂′

4, R̂
′
4,1, R̂

′
4,2

DB 4

M ′
1,1+4M ′

1,2+3R′
1,1, M

′
1,2+4R′

1,2+3R′
1,3, R

′
1,1+4R′

1,3+3R′
1,4 R̂′

1, R̂
′
1,1, R̂

′
1,2

M2,1+4M2,2+3R2,1, M2,2+4R2,2+3R2,3, R2,1+4R2,3+3R2,4 R̂′
2, R̂

′
2,1, R̂

′
2,2

M ′
3,1+4M ′

3,2+3R′
3,1, M

′
3,2+4R′

3,2+3R′
3,3, R

′
3,1+4R′

3,3+3R′
3,4 R̂′

3, R̂
′
3,1, R̂

′
3,2

M ′
4,1+4M ′

4,2+3R′
4,1, M

′
4,2+4R′

4,2+3R′
4,3, R

′
4,1+4R′

4,3+3R′
4,4 R̂′

4, R̂
′
4,1, R̂

′
4,2

Table 8.2: Updated storage across the databases in the server after one FSL training
round when D = 3, J = E = 2 and δ = 0.5.

Regarding the eavesdropper security constraint: Because the FSL-PSU phase

has nothing to do with the updated full learning model M ′
[4], we only need to con-

sider the FSL-write phase. In terms ofM ′
[4], for all j ∈ [4], it is easy to prove that all

the storage data and communication data that can be obtained by each database j

is equivalent to the middle box in database j in Table 8.2, i.e., Gj(M
′
{1,3,4},R′

S) and

Gj(M{2},RS) after cancelling the carefully-designed client-side common random-

ness. Therefore, the guarantee of eavesdropper security is directly inherited from

the information leakage constraint of the RSRC scheme.

Regarding the database failure robustness: From the last 3 symbols in A
⟨4⟩,(4)
W,2 ,

the replacement database can correctly decode the original storage for submodel

2 in failed database 4 due to the repair constraint of the RSRC scheme. For the

updated submodels 1, 3, 4, the desired storage can also be attained from the routing

282



clients due to the satisfaction of the reliability constraint. The current replacement

database is reflected in the database 4 part in Table 8.2.

8.6 General Distributed FSL Achievable Scheme

Following the distributed FSL problem formulated in Section 8.2, we provide our

fully robust FSL achievable scheme for the general case in this section. Based

on our previous work [125], the complete one-round FSL training is composed of

four phases: client-side common randomness generation (FSL-CRG) phase that

aims to distribute necessary client-side common randomness across all the selected

clients, FSL-PSU phase that aims to privately determine the union of the submodel

indices to be updated, FSL-write phase that aims to securely write the updated

submodels in the union back to the databases, and server-side common randomness

refresh (FSL-CRR) phase that aims to refresh the necessary server-side common

randomness in preparation for the next round of the FSL process. In a practical

implementation, the auxiliary FSL-CRG and FSL-CRR phases can be executed

during the off-peak times because they are independent of the FSL-PSU and FSL-

write phases.

8.6.1 FSL-CRG Phase

All the databases in the server aim to collectively establish the desired client-side

common randomness across the clients such that every client-side common random-

ness symbol is completely unknown to any set of J colluding databases. The first
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type of client-side common randomness is a set of symbols {w1, w2, . . . , wL} with

a flexible set length L. Within this set, each symbol is randomly and uniformly

selected from Fq and the sum of these symbols is exactly 0, i.e.,
∑

i∈[L]wi = 0. The

second type of client-side common randomness is a random symbol c that is uniform

over the set Fq\{0}.

For the first type, every J+1 databases can collaborate with each other to

allocate the same set of client-side common randomness {w1, w2, . . . , wL} across a

small set of clients. To that end, each database in a database set of size J+1 first

individually selects L−1 random symbols from Fq under a uniform distribution,

and then simply broadcasts them to N distinct routing clients with indices θ[N ] =

{θ1, θ2, . . . , θN} randomly chosen from N distinct client groups. After collecting all

the random symbols from J+1 databases, these routing clients can just perform

the element-wise summation over these J+1 random symbol sets of size L−1 to

obtain a new set of size L− 1. Subsequently, one more symbol is appended to

the existing new set such that the set sum equals zero. At this point, this newly

formed set can be used as {w1, w2, . . . , wL} because the one-time pad encryption

guarantees the privacy of this client-side common randomness set against any J

colluding databases.

If the value of L is N , the symbols in this set can be used as w
(j)
k or w

(j)
k,d2

for

the next two phases. However, if the value of L is C, for all i ∈ [C−1]\θ[N ], each

database in this database set also needs to send its ith random symbol to client

i. For client C, if C does not belong to θ[N ], these J+1 databases send all the

generated random symbols to client C like routing clients. Thus, client C is able
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to calculate wC . Now, the symbols in this set are ready to be used as w
⟨i⟩
k or w

⟨i⟩
k,l

for the next two phases. As the required number of client-side common randomness

sets is very large, the communication time in this phase can be further optimized

by wisely constituting some database subset of size J+1 from a set of N databases

according to the actual situation. For example, if client i has a high-bandwidth

communication channel with a particular database and the bandwidth utilization

ratio of this database with all the clients is currently low, client i may select this

database to participate in the client-side common randomness distribution.

For the second type, we can also select a set of J+1 databases to participate.

Each database first selects a random symbol from Fq\{0} under a uniform distribu-

tion, and then simply broadcasts it to each selected client. Once the client receives

all the random symbols from J+1 databases, it just calculates the product of these

J+1 symbols within Fq. This new product can be used as c because the finite cyclic

group Fq\{0} under multiplication ensures the privacy of this client-side common

randomness symbol against any J colluding databases. This symbol c can be used

in the next FSL-PSU phase.

8.6.2 FSL-PSU Phase

The FSL-PSU phase in this work is similar to the private set union (FSL-PSU)

phase in [125, Sect. 5.2] where nothing needs to be downloaded from the server to

the clients at the beginning of FSL-PSU phase. After receiving required client-side

common randomness in the last phase, each client uploads the index information of
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its desired submodels to the server in a private way. For any client i that belongs

to the client group Cj, this client generates the following answer and sends it to

database j in the first step of FSL-PSU phase,

A
⟨i⟩,(j)
U,1 = {c(Y ⟨i⟩

k +w
⟨i⟩
k ) : k ∈ [K]}, ∀i ∈ [C] (8.114)

In the second step of FSL-PSU phase, for all j ∈ [N ], once database j completes the

collection of all the answers from its associated clients in Cj, it produces a response

via element-wise summation as follows where θj is the index of the randomly selected

routing client in Cj and R̂k is shared server-side common randomness,

D
⟨θj⟩,(j)
U,2 =

{
c
∑
i∈Cj

(Y
⟨i⟩
k +w

⟨i⟩
k )+R̂k : k ∈ [K]

}
, ∀j ∈ [N ] (8.115)

Then, this response is merely downloaded by its associated client θj. After further

processing this response, each client θj forwards the following answer to all the

databases in the server,

A
⟨θj⟩,([N ])
U,2 =

{
c
∑
i∈Cj

(Y
⟨i⟩
k +w

⟨i⟩
k )+w

(j)
k +R̂k : k ∈ [K]

}
, ∀j ∈ [N ] (8.116)

Each database j receives the same N answer sets. By summing these N answer

sets up element-wise, each database derives the value of the expression c
∑

i∈[C] Y
⟨i⟩
k

for all k ∈ [K] because server-side common randomness is known to the database

286



and client-side common randomness is eliminated,

∑
j0∈[N ]

A
⟨θj0 ⟩,(j)
U,2 =

∑
j0∈[N ]

(c
∑
i∈Cj0

(Y
⟨i⟩
k +w

⟨i⟩
k )+w

(j0)
k +R̂k) (8.117)

= c
∑

j0∈[N ]

∑
i∈Cj0

Y
⟨i⟩
k +c

∑
j0∈[N ]

∑
i∈Cj0

w
⟨i⟩
k +

∑
j0∈[N ]

w
(j0)
k +

∑
j0∈[N ]

R̂k (8.118)

= c
∑
i∈[C]

Y
⟨i⟩
k +c

∑
i∈[C]

w
⟨i⟩
k +

∑
j0∈[N ]

w
(j0)
k +

∑
j0∈[N ]

R̂k (8.119)

= c
∑
i∈[C]

Y
⟨i⟩
k +NR̂k (8.120)

For any arbitrary submodel index k, if at least one client wishes to update the

submodel k, the value of the expression c
∑

i∈[C] Y
⟨i⟩
k cannot be zero. Otherwise,

this value is equal to zero. Therefore, each individual database is able to determine

the desired submodel union Γ without any error by analyzing each submodel index

one-by-one.

8.6.3 FSL-Write Phase

In the presence of an eavesdropper who can control any arbitrary E databases and

get at most the fraction δ of the up-to-date full learning model M ′
[K], we can always

find a RSRC-based FSL approach to satisfy the eavesdropper security constraint

(8.7). Here, the variables λ and ℓλ in Section 8.4.1 take the values E and δ, re-

spectively. By permitting the dummy message symbols to fill the message matrix

Ω, if 0 ≤ δ ≤ 2E
D+E+1

, we can use the Ω1-based RSRC scheme and the Ω2-based

RSRC scheme in a time-sharing manner to store the coded submodel information
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across the databases. If 2E
D+E+1

≤ δ ≤ 2DE−E(E−1)
D(D+1)

, we can use the Ω2-based RSRC

scheme and the Ω3-based RSRC scheme in a time-sharing manner. Otherwise, if

2DE−E(E−1)
D(D+1)

≤ δ ≤ 1, we can just use the Ω3-based RSRC scheme.

Given the concrete form of N × D encoding matrix Ψ in (8.8), the concrete

form of D × D message matrix Ω for the submodel k is as follows without loss of

generality,

Ω =



Xk
1,1 Xk

1,2 Xk
1,3 · · · Xk

1,D

Xk
2,1 Xk

2,2 Xk
2,3 · · · Xk

2,D

Xk
3,1 Xk

3,2 Xk
3,3 · · · Xk

3,D

...
...

...
. . .

...

Xk
D,1 Xk

D,2 Xk
D,3 · · · Xk

D,D


(8.121)

For the first B message symbols in the submodel k, its corresponding storage in

database j consisting of D symbols is in the following form,

ζTj,k =

{ ∑
d1∈[D]

ψd1−1
j Xk

d1,d2
: d2 ∈ [D]

}
, ∀j ∈ [N ], ∀k ∈ [K] (8.122)

where the symbol Xk
d1,d2

in Ω can be a message symbol in submodel k or a random-

ness symbol depending on the realization of message matrix Ω.

When the FSL-PSU phase is finished, each database learns the desired sub-

model union Γ privately. In this subsection, we focus on the update of the first B

symbols in each submodel whose index belongs to Γ. According to the statements in

Section 8.4.1, all the remaining symbols can be fully updated through the repetition
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and time-sharing ideas. In the first step of the FSL-write phase, each client needs to

download C1 coded symbols from D working databases in order to recover the first

B message symbols in each submodel in MΓ. For client i, let Ni denote the index

set of D databases it communicates with, then,

D
⟨i⟩,(Ni)
W,1 =

{
Zk,α : k ∈ Γ, α ∈ [C1]

}
, ∀i ∈ [C] (8.123)

where Zk,α is picked from the set ζTj,k. Afterwards, this client generates the incre-

ments for its desired submodels whose index belongs to Γ⟨i⟩ when its local training is

complete. Therefore, for any client i in the client group Cj, the answer transmitted

from client i to database j is in the following form,

A
⟨i⟩,(j)
W,1 =

{
∆

⟨i⟩
k,l+w

⟨i⟩
k,l : k ∈ Γ, l ∈ [B]

}
, ∀i ∈ [C] (8.124)

Like the second step of the FSL-PSU phase, each database j now generates an

answer to be downloaded by the randomly selected routing client θj from the client

group Cj as follows,

D
⟨θj⟩,(j)
W,2 =

{∑
i∈Cj

(∆
⟨i⟩
k,l+w

⟨i⟩
k,l)+R̂k,l : k ∈ Γ, l ∈ [B]

}
, ∀j ∈ [N ] (8.125)

Finally, each routing client θj needs to transfer different answers in different coded

forms to all the available databases. Specifically, if Xk
d1,d2

is a submodel symbol, say

Mk,l, then X k
d1,d2

is equal to Mk,l+
∑

i∈C1(∆
⟨i⟩
k,l+w

⟨i⟩
k,l)+R̂k,l if j = 1 and is equal to∑

i∈Cj(∆
⟨i⟩
k,l+w

⟨i⟩
k,l)+R̂k,l if j = 2, . . . , N . Otherwise, if Xk

d1,d2
is a randomness symbol,
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then X k
d1,d2

is a random value selected only by client θj under a uniform distribution

from Fq. Therefore, we have

A
⟨θj⟩,(j0)
W,2 =

{ ∑
d1∈[D]

ψd1−1
j0

X k
d1,d2

: k ∈ Γ, d2 ∈ [D]

}
, ∀j ∈ [N ], ∀j0 ∈ [N ] (8.126)

Moreover, for some d2, if all the symbols in the set {Xk
d1,d2

: d1 ∈ [D]} are submodel

symbols, a client-side common randomness needs to be appended, i.e.,

A
⟨θj⟩,(j0)
W,2 =

{ ∑
d1∈[D]

ψd1−1
j0

X k
d1,d2

+w
(j)
k,d2

: k ∈ Γ, d2 ∈ [D]

}
, ∀j ∈ [N ], ∀j0 ∈ [N ]

(8.127)

8.6.4 FSL-CRR Phase

In this phase, all the selected clients aim to jointly refresh the uncoded server-

side common randomness R̂S coupled with the submodels that are updated in this

round of the FSL process. In other words, the server-side common randomness

symbols {R̂k : k ∈ [K]} and {R̂k,l : k ∈ Γ, l ∈ [L]} need to be refreshed. As each

server-side common randomness symbol should be unknown to any individual client,

every pair of clients can collaborate with each other to complete this task. More

specifically, both clients select a random symbol from Fq and then forward it to each

available database. By simply adding these two received random symbols together,

the databases can now share a new server-side common randomness symbol that

can be used as refreshed R̂′
k or R̂′

k,l for the next round of the FSL process. Like the
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FSL-CRG phase, the required number of refreshed server-side common randomness

symbols is also large. Hence, in a practical implementation, the communication time

in this phase can also be optimized through partitioning the clients in a smart way.

8.6.5 Basic Characteristics Verification

In this section, we verify the basic characteristics of a complete round of the FSL

process including the four phases mentioned above.

Reliability: According to the FSL-write phase in Section 8.6.3, for all j ∈ [N ],

database j selects a random client θj from its associated client group to forward

the information in the second step of the FSL-write phase. Thus, each database j

receives the N answer sets {A⟨θ1⟩,(j)
W,2 , A

⟨θ2⟩,(j)
W,2 , . . . , A

⟨θN ⟩,(j)
W,2 } from these N randomly

selected routing clients. By summing these N answer sets up in an element-wise

manner, for all k ∈ Γ and all d2 ∈ [D], we have

∑
j0∈[N ]

A
⟨θj0 ⟩,(j)
W,2 =

∑
j0∈[N ]

∑
d1∈[D]

ψd1−1
j X k

d1,d2
=
∑

d1∈[D]

ψd1−1
j

∑
j0∈[N ]

X k
d1,d2

(8.128)

because the sum
∑

j∈[N ]w
(j)
k,d2

is equal to 0. If Xk
d1,d2

is a submodel symbol, sayMk,l,

ψd1−1
j

∑
j0∈[N ]

X k
d1,d2

= ψd1−1
j (Mk,l+

∑
j0∈[N ]

(
∑
i∈Cj0

(∆
⟨i⟩
k,l+w

⟨i⟩
k,l)+R̂k,l)) (8.129)

= ψd1−1
j (Mk,l+

∑
i∈[C]

∆
⟨i⟩
k,l+

∑
i∈[C]

w
⟨i⟩
k,l+NR̂k,l) (8.130)

= ψd1−1
j (Mk,l+

∑
i∈[C]

∆
⟨i⟩
k,l+NR̂k,l) (8.131)
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= ψd1−1
j (M ′

k,l+NR̂k,l) (8.132)

At this point, each database j is able to derive the value of ψd1−1
j M ′

k,l since the

server-side common randomness R̂k,l is known. Otherwise, if Xk
d1,d2

is a randomness

symbol,

ψd1−1
j

∑
j0∈[N ]

X k
d1,d2

= ψd1−1
j W (8.133)

where W is a random value that is completely unknown to the databases. For all

d2 ∈ [D], by adding the available ψd1−1
j M ′

k,l and ψ
d1−1
j W over d1 ∈ [D], the expected

storage in database j for the first B symbols in the submodel k is attained, which

can be easily extended to all the submodel information in MΓ through repetition

and time sharing. However, for all k ∈ [K]\Γ, as these submodels are not updated

at all, the corresponding storage in database j is not changed. That means the

required storage Gj(M
′
[K],R′

S) is now achieved in all databases. Meanwhile, the

additional plain server-side common randomness R̂′
S can be directly attained as we

expect through the approach in Section 8.6.4. Thus, the reliability constraint is

satisfied.

Privacy: For any set of databases with index set J that meets |J | ≤ J , the

answer sets {A⟨Cj⟩,(j)
U,1 , A

⟨θ[N ]⟩,(j)
U,2 , A

⟨Cj⟩,(j)
W,1 , A

⟨θ[N ]⟩,(j)
W,2 : j ∈ J } are received. With respect

to the clients’ local data D[C], it is easy to verify that these answer sets contain less

information than the answer sets {A⟨Cj⟩,(j)
U,1 , A

⟨Cj⟩,(j)
W,1 : j ∈ [N ]}. Now, we can use the
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answer sets {A⟨Cj⟩,(j)
U,1 , A

⟨Cj⟩,(j)
W,1 : j ∈ [N ]} as a base to analyze the privacy constraint.

Note that each client-side common randomness symbol is completely unknown to

this set of databases as it is generated by J+1 clients collectively. In the answer sets

{A⟨Cj⟩,(j)
U,1 : j ∈ [N ]}, for all k ∈ [K], the client-side common randomness symbol w

⟨i⟩
k

can be used to protect the privacy of Y
⟨i⟩
k , and the client-side common randomness

symbol c can be used to protect the privacy of
∑

i∈[C] Y
⟨i⟩
k . As a result, these |J |

databases can only learn the union Γ and nothing beyond that.8 The concrete proof

can be checked in the client’s privacy proof in [74, Subsect. V.B]. Then, we turn to

the answer sets {A⟨Cj⟩,(j)
W,1 : j ∈ [N ]}. As a reduced version, for all k ∈ [K] and l ∈ [L],

the client-side common randomness symbol w
⟨i⟩
k,l can be used to protect the privacy

of ∆
⟨i⟩
k,l. As a result, these |J | databases can only learn the the full increment sum

∆Γ and nothing beyond that. Thus, any set of databases with cardinality less than

or equal to J cannot gain any additional information about D[C] beyond Γ and ∆Γ.

Thus, the privacy constraint is satisfied.

Inter-Client Privacy: Only one client from each client group is able to receive

the information concerning the other clients’ local data. For each client group Cj,

the routing client θj downloads D
⟨θj⟩,(j)
U,2 and D

⟨θj⟩,(j)
W,2 from database j. Due to the

existence of the unknown server-side common randomness R̂k and R̂k,l in the down-

loads, client θj cannot learn any knowledge about the other clients’ local data. Thus,

the inter-client privacy constraint is satisfied.

8The fact that both of
∑

i∈[C] Y
⟨i⟩
k and

∑
i∈[C] ∆

⟨i⟩
k,l are always 0 for k ∈ [K]\Γ is implied by

the union Γ.
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Security Against the Eavesdropper: To verify the security against the eaves-

dropper, we need to observe the storage information and the transmission informa-

tion ME in any arbitrary E databases whose index set is E . Before an FSL training

round begins, the storage information in each database j is the coded submodel in-

formation Gj(M[K],RS) and additional server-side common randomness R̂S, while

the latter has nothing to do with the updated full learning model M ′
[K]. During

this FSL training round, the transmission information that can be known by each

database j is {A⟨Cj⟩,(j)
U,1 , A

⟨θ[N ]⟩,(j)
U,2 , A

⟨Cj⟩,(j)
W,1 , A

⟨θ[N ]⟩,(j)
W,2 }. The first two answers only in-

volve the information concerning clients’ incidence vectors. The third answer is

useless because of the coupled client-side common randomness symbol for each sub-

model increment symbol. Following the analysis of reliability constraint, the last

answer is equivalent to Gj(M
′
Γ,R′

S) due to the existence of carefully-designed client-

side common randomness. Hence, for the submodels in MΓ, we have the following

relationship by using our specific RSRC-based approach in Section 8.6.3,

1

|Γ|LI(M
′
Γ;ME) ≤ δ, ∀E ⊆ [N ], |E| = E (8.134)

For the submodels in M[K]\Γ, the identity M ′
[K]\Γ = M[K]\Γ is true. Likewise, from

the coded submodel information Gj(M[K]\Γ,RS), we have

1

(K−|Γ|)LI(M
′
[K]\Γ;ME) ≤ δ, ∀E ⊆ [N ], |E| = E (8.135)
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BecauseM ′
[K] andM

′
[K]\Γ are always independent, we are able to derive the following

outcome, which is sufficient to guarantee the eavesdropper security,

I(M ′
[K];ME) = I(M ′

Γ;ME)+I(M
′
[K]\Γ;ME) ≤ |Γ|L · δ+(K−|Γ|)L · δ = KL · δ

(8.136)

Thus, the security constraint against an eavesdropper is satisfied.

8.6.6 Full Robustness Verification

In this subsection, we analyze the robustness of our proposed achievable scheme in

the face of all kinds of non-ideal situations. If multiple such incidents happen simul-

taneously, we can simply incorporate the idea for each incident into the adjusted

scheme one-by-one.

Client Drop-Outs Robustness: In this case, our expectation is that the training

process proceeds normally only relying on the data from the active clients. Without

loss of generality, for each client group Cj, we assume that a subset of clients with

indices C̃j drop-out. In the FSL-PSU phase, for all j ∈ [N ], the response D
⟨θj⟩,(j)
U,2 to

be downloaded by client θj becomes

D
⟨θj⟩,(j)
U,2 =

{
c
∑

i∈Cj\C̃j

(Y
⟨i⟩
k +w

⟨i⟩
k )+R̂k : k ∈ [K]

}
, ∀j ∈ [N ] (8.137)

With the knowledge of the index set C̃j corresponding to the out-of-operation clients,

each routing client θj can adjust the answer by additionally appending the value of
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c
∑

i∈C̃j w
⟨i⟩
k corresponding to the missing client-side common randomness symbols

for all k ∈ [K]. Thus, the answer to be forwarded to all the available databases

becomes

A
⟨θj⟩,([N ])
U,2 =

{
c
∑

i∈Cj\C̃j

Y
⟨i⟩
k +c

∑
i∈Cj

w
⟨i⟩
k +w

(j)
k +R̂k : k ∈ [K]

}
, ∀j ∈ [N ] (8.138)

In this way, each database is still able to decode the union ∪j∈[N ]Γ
⟨Cj\C̃j⟩ for all the

active clients from the element-wise summation results {c∑i∈∪j∈[N ](Cj\C̃j) Y
⟨i⟩
k : k ∈

[K]}.

In the FSL-write phase, for all j ∈ [N ], the response D
⟨θj⟩,(j)
W,2 to be downloaded

becomes

D
⟨θj⟩,(j)
W,2 =

{ ∑
i∈Cj\C̃j

(∆
⟨i⟩
k,l+w

⟨i⟩
k,l)+R̂k,l : k ∈ Γ, l ∈ [B]

}
, ∀j ∈ [N ] (8.139)

Using the reliability constraint analysis in the last subsection as reference, if Xk
d1,d2

is

a submodel symbol, sayMk,l, after eliminating the server-side common randomness,

for each database j, we have

ψd1−1
j

∑
j0∈[N ]

X k
d1,d2

= ψd1−1
j (Mk,l+

∑
j0∈[N ]

∑
i∈Cj0\C̃j0

(∆
⟨i⟩
k,l+w

⟨i⟩
k,l)) (8.140)

= ψd1−1
j (Mk,l+

∑
i∈∪j0∈[N ](Cj0\C̃j0 )

∆
⟨i⟩
k,l+

∑
i∈∪j0∈[N ](Cj0\C̃j0 )

w
⟨i⟩
k,l) (8.141)

Otherwise, if Xk
d1,d2

is a randomness symbol, ψd1−1
j

∑
j0∈[N ] X k

d1,d2
is not changed.

Hence, for all k ∈ Γ and all d2 ∈ [D], each routing client θj first selects an empty
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value β, i.e., β = 0. Then, for each d1 in the set [D], as long as Xk
d1,d2

is some

submodel symbol Mk,l, we add the value of ψd1−1
j

∑
i∈∪j0∈[N ]C̃j0

w
⟨i⟩
k,l to the current

β. After finishing the loop over d1, each working database j asks for the value of β

along with A
⟨θj⟩,(j0)
W,2 from client θj. Although we only consider the first B symbols

of each submodel here, this idea can be extended to all the updates in MΓ through

repetition and time-sharing. In this way, each submodel in the union Γ can be

updated as desired through the training data from the active clients ∪j∈[N ]Cj\C̃j.

Client Late-Arrivals Robustness: If the answers generated by some clients in

the first step of the FSL-PSU or FSL-write phases arrive at the server late, which is

different from the wrong judgement made by the databases that these clients have

dropped-out, the privacy constraint (8.5) is still satisfied, i.e., these late answers

do not disclose any extra information about the local data possessed by these late-

arriving clients. The fact that the reliability constraint is satisfied is inherited from

the one in client drop-outs robustness. For each client group Cj, we assume that

a subset of clients with indices C̄j cause the answer late-arrivals. In the FSL-PSU

phase, for all j ∈ [N ], due to the wrong judgement, the broadcasting answerA
⟨θj⟩,([N ])
U,2

takes the following form according to the analysis in client drop-outs robustness,

A
⟨θj⟩,([N ])
U,2 =

{
c
∑

i∈Cj\C̄j

(Y
⟨i⟩
k +w

⟨i⟩
k )+w

(j)
k +R̂k : k ∈ [K]

}
, ∀j ∈ [N ] (8.142)

It is easy to see that no information about the incidence vectors Y ⟨C̄j⟩ can be ex-

tracted by database j from the late answers A
⟨C̄j⟩,(j)
U,1 and the answers A

⟨θ[N ]⟩,(j)
U,2 in

297



the form of (8.142) because of the extra client-side common randomness w
(j)
k . In

the FSL-write phase, the privacy constraint can be guaranteed in the same way

because of the randomness selected by the routing clients or the extra client-side

common randomness w
(j)
k,d2

. This conclusion is still true for any set of databases

with size smaller than or equal to J as the randomness truly used here is completely

unknown to any set of J colluding databases.

Database Drop-Outs Robustness: Under this situation, we rely on the re-

maining working databases to complete the training task normally. For instance,

say database f drops-out and cannot provide any helpful response to the clients

in this FSL round. In the FSL-PSU phase, each working database j ∈ [N ]\f can

still receive the answers A
⟨Cj⟩,(j)
U,1 and A

⟨θ[N ]\f ⟩,(j)
U,2 , but cannot receive any answer from

the routing client θf in the client group Cf . Thus, our adjusted aim is to derive

the desired submodel union Γ\Γ⟨Cf ⟩ instead. For all k ∈ [K], in order to obtain

the needed c
∑

i∈[C]\Cf Y
⟨i⟩
k from A

⟨θ[N ]\f ⟩,(j)
U,2 , each working database j can ask for the

value of c
∑

i∈Cf (w
⟨i⟩
k )+w

(f)
k from the routing client θj through one more communi-

cation step. After eliminating the known server-side common randomness R̂k, we

have the following identity for all k ∈ [K] as all the client-side common randomness

can be cancelled,

∑
j0∈[N ]\f

(c
∑
i∈Cj0

(Y
⟨i⟩
k +w

⟨i⟩
k )+w

(j)
k )+c

∑
i∈Cf

(w
⟨i⟩
k )+w

(f)
k = c

∑
i∈[C]\Cf

Y
⟨i⟩
k (8.143)
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In the FSL-write phase, likewise, each working database j ∈ [N ]\f can obtain the

answers A
⟨Cj⟩,(j)
W,1 and A

⟨θ[N ]\f ⟩,(j)
W,2 without any answer from the routing client θf for

the client group Cf . Following the analysis of the reliability constraint in the last

subsection, if Xk
d1,d2

is a submodel symbol, say Mk,l, we have the following result in

each database j when the known server-side common randomness is eliminated,

ψd1−1
j

∑
j0∈[N ]\f

X k
d1,d2

= ψd1−1
j (Mk,l +

∑
j0∈[N ]\f

∑
i∈Cj0

(∆
⟨i⟩
k,l+w

⟨i⟩
k,l)) (8.144)

= ψd1−1
j (Mk,l +

∑
i∈[C]\Cf

∆
⟨i⟩
k,l +

∑
i∈[C]\Cf

w
⟨i⟩
k,l) (8.145)

Otherwise, if Xk
d1,d2

is a randomness symbol, and we still have

ψd1−1
j

∑
j0∈[N ]\f

X k
d1,d2

= ψd1−1
j W (8.146)

Hence, for all k ∈ Γ and all d2 ∈ [D], each routing client θj first selects an empty

value β = 0. Then, for each d1 in the set [D], provided Xk
d1,d2

is some submodel

symbol Mk,l, the value of ψ
d1−1
j

∑
i∈Cf w

⟨i⟩
k,l is added to the current β. When the loop

is finished, each working database j asks for the value of β along with A
⟨θj⟩,(j0)
W,2 from

client θj. Again, this idea works for all the submodel updates in the union Γ\Γ⟨Cf ⟩

via repetition and time-sharing. That means even if database f drops-out, the FSL

process can proceed normally without collecting the updates from the clients in the

client group Cf . This remedy for single database drop-out can be extended to the

case of multiple database drop-outs by replacing index f with an index set.
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Database Failure Robustness: Once one of the available databases at the server

side fails permanently rather than drops-out temporarily, our solution is to construct

a replacement database such that the FSL protocol configured in the beginning is not

affected by the database failure at all. If database f fails, for the submodels in MΓ,

we can rely on N−1 routing clients with indices θ[N ]\f to transmit the submodel

update information that is an encoding function Gf of the latest submodels M ′
Γ

and their coupled refreshed server-side common randomness R′
S to the replacement

database. The concrete realization is inherited from the above-mentioned remedy for

single database drop-out. Meanwhile, for the other submodels in M[K]\Γ, the clients

can be used to forward the database f repair information that is an encoding function

Gf of the previous submodelsM[K]\Γ and their coupled previous server-side common

randomnessRS to the replacement database according to the database repair part in

the proof of Theorem 8.2. Since the size of this repair information is generally large,

a large number of clients can work in parallel, i.e., each client forwards a small part

of the overall repair information to reduce the communication time. In addition,

to make the plain server-side common randomness R̂S in the replacement database

consistent with the other databases, all the plain server-side common randomness

R̂S is refreshed through the approach in FSL-CRR phase whether it is coupled with

submodels in MΓ or in M[K]\Γ. If multiple databases fail, the failed databases can

be repaired one-by-one for each FSL round.

Active Adversary Robustness: If there is an active adversary taking control

of any arbitrary A databases, the responses received by the clients from these A
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corrupted databases will not be reliable any more. The core idea of our solution

is to force the clients to download more responses than usual and then extract

required information from different databases. In the original FSL-PSU phase, for

all j ∈ [N ], each routing client θj needs to download D
⟨θj⟩,(j)
U,2 from database j.

Now, each client i in the client group Cj sends the answer in the form of (8.114) to

2A+1 working databases in an efficient manner. Afterwards, these 2A+1 working

databases individually transmit the response in the form of (8.115) back to client θj.

Hence, client θj is able to decode the correctD
⟨θj⟩,(j)
U,2 according to the error correcting

property of [2A+1, 1, 2A+1] repetition code. In the original FSL-write phase, for all

i ∈ [C], each database i needs to download D
⟨i⟩,(Ni)
W,1 from D databases in order to

recover the desired submodels MΓ. If the maximal number of symbols downloaded

from a database is η, then D+2A working databases individually transmit η symbols

with the same positions to client i. Hence, client i is able to decodeMΓ without any

error according to the error correcting property of [2A+D,D, 2A+1] Reed-Solomon

code. Then, for all j ∈ [N ], each routing client θj needs to download D
⟨θj⟩,(j)
W,2 from

database j. By utilizing [2A+1, 1, 2A+1] repetition code again, the process is the

same as the above-mentioned one for downloading D
⟨θj⟩,(j)
U,2 .

For the remaining auxiliary phases, in the FSL-CRR phase, there is no need

for the clients to download any information from the databases. Therefore, the ex-

istence of active adversary has no influence on this phase. However, in the original

FSL-CRG phase, every J+1 databases are collaborating with each other to dis-

tribute client-side common randomness symbols. As a malicious database can send

the same symbol with different values to different clients in the broadcasting process,
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the procedure in the current FSL-CRG phase will be a bit more complicated. Now,

each database will not broadcast its randomly selected symbol any more. Instead,

the server-side partial common randomness is broadcast to the clients. To be more

concrete, for the first type of client-side common randomness, by adjusting the FSL-

CRR phase such that every pair of clients are forwarding the data to exactly 2A+1

databases, a server-side partial common randomness symbol RS,1 can be owned by

these 2A+1 databases. Afterwards, these 2A+1 databases broadcast this symbol

to N routing clients. Thus, each routing client can decode the desired RS,1 reliably

through [2A+1, 1, 2A+1] repetition code. Likewise, another 2A+1 databases are

employed to broadcast another server-side partial common randomness symbol RS,2

to all the routing clients. Following this way, each routing client can obtain the same

set of server-side partial common randomness symbols {RS,1,RS,2, . . . ,RS,J+1} from

(J+1)(2A+1) different databases. By adding these (J+1) symbols up, N rout-

ing clients can share a randomness symbol that is unknown to any J colluding

databases. Therefore, the FSL-CRG phase can proceed as we desire even in the

presence of an active adversary. By repeating this step L−1 times, the required set

{w1, w2, . . . , wL−1} can be shared among these N routing databases. By incorporat-

ing this idea into the original FSL-CRG phase, the necessary client-side common

randomness can also be obtained by the other clients. The process of distributing

the client-side common randomness symbol c is very similar where all the selected

clients are equally treated.
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8.6.7 Performance Evaluation

We consider the performance of our proposed achievable scheme in this section. As

we formulated in Section 8.2, the evaluation consists of communication cost and

storage cost.

Communication Cost: First, we consider the basic scheme without any adjust-

ment for additional robustness. In the FSL-CRG phase, for each client-side common

randomness symbol in the form of w
(j)
k or w

(j)
k,d2

, the communication cost is (J+1)N .

For each client-side common randomness symbol in the form of w
⟨i⟩
k or w

⟨i⟩
k,l, the

communication cost is at most (J +1)(N +2). The communication cost for the

client-side common randomness symbol c is (J+1)C, which can be neglected as

it is distributed only once. Therefore, the total communication cost in this phase

is at most (J+1)N(N−1)(K+D|Γ|L)+(J+1)(N+2)(C−1)(K+ |Γ|L), which is

approximately O(C(K+|Γ|L)) since the values of D, J,N are small compared with

the values of K,L. In the FSL-PSU phase, the communication cost is (C+N+N2)K,

which is approximately O(CK). In the FSL-write phase, the communication cost

for the recovery of the desired submodels MΓ across all the clients is C · C1

B
|Γ|L

where C1

B
comes from (8.9) in Theorem 8.2. For the remaining transmission, the

communication cost is at most (C+N)|Γ|L+N2D|Γ|L. Therefore, the total commu-

nication cost in this phase is approximately O(C|Γ|L)). In the FSL-CRR phase, for

each server-side common randomness symbol whether it is in the form of R̂k or R̂k,l,

the communication cost is always 2N . Therefore, the total communication cost in
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this phase is 2N(K+|Γ|L), which is approximately O(K+|Γ|L). By summing the

communication cost results from all four phases, the overall communication cost in

our one-round distributed FSL achievable scheme is approximately O(C(K+|Γ|L)).

When the situations of client drop-outs, client late-arrivals or database drop-

outs happen, it is easy to show that the overall communication cost will not be

influenced significantly. Further, in the presence of an active adversary, as the value

of A is also small, the order of the overall communication cost will not change. It

will still be O(C(K+ |Γ|L)). However, once the situation of database failure hap-

pens, for each failed database, the additional communication cost of transmitting

the database repair information concerning M[K]\Γ to the replacement database is

2C2

B
(K−|Γ|)L, where the coefficient 2 comes from the fact that clients are used to

route the information between databases and C2

B
comes from (8.10) in Theorem 8.2.

In addition, the additional communication cost of refreshing server-side common

randomness symbols {R̂k,l : k ∈ [K]\Γ, l ∈ [L]} is 2N(K−|Γ|)L. Therefore, as the

value of |Γ| is generally much smaller than the value of K, the additional commu-

nication cost for the sake of database failure robustness is approximately O(KL).

Storage Cost: In order to ensure the security against eavesdropper (8.7) in the

presence of a passive eavesdropper, without considering the server-side common

randomness, the storage cost in each database is S
B
KL where S

B
comes from (8.11)

in Theorem 8.2. In addition, the storage cost in each database for the plain server-

side common randomness is KL+L. Therefore, the overall communication cost is

N(SKL+KL+L) which is approximately O(KL).
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8.7 Conclusion

In this chapter, we proposed a new RSRC-based distributed FSL scheme that ex-

tends our previous two-database FSL scheme in Chapter 7. This new scheme has

higher resilience than our previous scheme, while having the same order-wise com-

munication cost and storage cost. More specifically, this new scheme is now fully

robust against passive eavesdroppers, active adversaries, database failures, database

drop-outs, client drop-outs and client late-arrivals.

In this work, we mainly considered the privacy and security from the perspec-

tive of the databases. In reality, it is also possible that the clients collude with each

other or with the server [101, 128]. Furthermore, the clients can also be malicious

and return arbitrarily erroneous answers to the server. These are interesting re-

search directions. MDS coding or Lagrange coding in [129] across the clients can be

utilized for this purpose.

Regarding our RSRC technique that aims to reduce the reconstruction com-

munication cost, repair communication cost, and storage cost simultaneously by

allowing information leakage, we did not investigate a converse proof in this chap-

ter. It is quite likely that there exists a better coding scheme that outperforms our

RSRC scheme in terms of part or all of the evaluation metrics. Another non-trivial

point is how to group the databases and clients to improve the communication effi-

ciency in the two auxiliary phases, i.e., FSL-CRG phase and FSL-CRR phase, in a

practical implementation. These are basically optimization problems and would be

interesting to explore in an actual distributed FSL configuration.
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CHAPTER 9

Conclusions

In this dissertation, we utilized the information-theoretic techniques to explore se-

cure computation and secure learning problems with SPIR serving as a starting

point. We developed both new efficient and robust achievable schemes for these

problems, and also converse bounds for them.

In Chapter 2, we investigated the two-party PSI problem over a finite set,

which is the universal alphabet. We showed that the problem can be recast as

an MM-SPIR problem with a fixed message size 1. This is under the assump-

tion that the data sets and their corresponding incidence vectors can be stored in

replicated and non-colluding databases. Furthermore, the elements in each data

set are generated in an i.i.d. fashion under some probability distribution from the

universal alphabet. To that end, we explored the information-theoretic capacity of

MM-SPIR as a stand-alone problem. We showed that joint multi-message retrieval

does not outperform the successive application of SM-SPIR. For the converse proof,

we extended the proof techniques of SM-SPIR to the setting of multi-messages. To

unify the query structures of MM-PIR and MM-SPIR, we proposed a new capacity-
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achieving scheme as an alternative to the successive usage of the SM-SPIR scheme.

Based on these results, we derived the optimal download cost for two-party PSI.

In Chapter 3, we considered an extended version of the SPIR problem, where

the user randomly fetches a portion of the available shared common randomness

at the databases. This fetched database common randomness can be viewed as a

form of side information at the user. We showed that this side information can

be utilized as auxiliary randomness data to increase the SPIR rate to the level of

PIR rate. The non-trivial use of this new user-side common randomness makes

single-database SPIR feasible. Finally, we determined the exact capacity region

of the download cost, database-side common randomness and user-side common

randomness. According to these results, we obtained the minimum download cost

for two-party PSI with this type of auxiliary randomness data, especially in the

setting where each party has one database to store the information.

In Chapter 4, we formulated the MP-PSI problem by investigating a spe-

cific mode of communication where only a single communication round between the

leader party and client parties is needed. Under this assumption, we proposed a

novel achievable scheme for MP-PSI. Our scheme hinges on a careful design and

sharing of randomness among the client parties prior to starting the MP-PSI pro-

cess. This is not a straightforward extension to the two-party PSI scheme. By means

of this type of auxiliary randomness data that is distributed across the client parties,

the download cost of our scheme matches the sum of download cost of pair-wise PSI

despite the stringent privacy constraint in MP-PSI. We note that this work provides

only an achievable scheme with no claim of optimality.
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In Chapter 5, we investigated the overall communication cost of two-database

SPIR. As a first work of its kind, by utilizing CDS/CDMS as intermediates, we now

understand how to construct the general upload cost for two-database SPIR, and

develop a few principles of building two-database SPIR schemes. For a simple two-

database SPIR example, we determined its exact optimal overall communication cost

by providing a complete upload-download cost achievable region. All the conclusions

obtained in this chapter can be applied to PSI as the PSI problem itself involves

upload cost and download cost.

In Chapter 6, we investigated the capacity of two-party RSPIR. Even though

the capacity of two-database SPIR is independent of the number of messages stored

in the databases, the capacity of two-party RSPIR does depend on this value. In ad-

dition, a linear download cost for perfect digital blind box delivery can be achieved

due to the equivalence between RSPIR and the digital blind box. An important

application of RSPIR is the practical implementation of user-side common random-

ness introduced in Chapter 3. Another potential application arises in Chapter 7. We

determined the exact capacity of two-party RSPIR for small number of messages.

In Chapter 7, we proposed a brand-new efficient and robust two-database FSL

achievable scheme. The communication cost of our proposed scheme is order-wise

similar to the communication cost of existing schemes with much weaker privacy

guarantees. Compared to the existing schemes with similar privacy guarantees, our

proposed scheme does not require noisy storage of the submodels in the databases.

Our scheme is resilient against client drop-outs, client late-arrivals, and database

drop-outs. The main ideas of this scheme are based on PSU and its variation
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for private write, together with RSPIR and one-time pads for required common

randomness generation at the client side. Neither the indices of the submodels

updated within the union, nor their updated values are leaked to the databases.

In Chapter 8, we proposed a new RSRC-based distributed FSL achievable

scheme that extends our two-database FSL achievable scheme in Chapter 7. This

new scheme has higher resilience than our previous scheme, while having the same

order-wise communication cost and storage cost. More specifically, this new scheme

is now fully robust against passive eavesdroppers, active adversaries, database fail-

ures, database drop-outs, client drop-outs and client late-arrivals. In this work, we

mainly considered the privacy and security from the perspective of the databases.

Regarding our RSRC technique that aims to reduce the reconstruction communi-

cation cost, repair communication cost and storage cost simultaneously by allowing

information leakage, we did not investigate a converse proof. Another non-trivial

point is how to group the databases and clients to improve the communication ef-

ficiency during the two auxiliary phases in a practical implementation. These are

basically optimization problems.

The contents of Chapter 2 are published in [72, 130], Chapter 3 in [75, 131],

Chapter 4 in [74, 132], Chapter 5 in [115], Chapter 6 in [116], Chapter 7 in [125],

Chapter 8 in [133].
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