ABSTRACT

Title of dissertation: TOWARDS SECURE COMPUTATION
AND LEARNING FROM SYMMETRIC
PRIVATE INFORMATION RETRIEVAL
Zhusheng Wang, Doctor of Philosophy, 2023

Dissertation directed by: Professor Sennur Ulukus
Department of Electrical and Computer Engineering

This dissertation focuses on secure computation and learning from the per-
spective of information-theoretic symmetric private information retrieval (SPIR).
Private information retrieval (PIR) is an elementary and classical problem in com-
puter science, aiming to protect the privacy of users. In a typical PIR setting,
a user wishes to correctly download the desired message out of a set of messages
from multiple non-colluding and replicated databases. This constraint is known as
the reliability constraint. Meanwhile, no individual database should learn anything
about which message the user has downloaded. This constraint is known as the
user privacy constraint. In SPIR, further, the user should learn nothing beyond the
particular message it has downloaded. This constraint is known as the database
privacy constraint.

As a fundamental problem in secure multi-party computation, two-party pri-
vate set intersection (PSI) refers to the problem where two parties wish to collab-

oratively determine the common elements without leaking any further information

about the remaining elements to each other. There are three requirements for two-
party PSI: At least one of the two parties should be able to decode the intersection
correctly (reliability), queried party should not learn the information being queried
(user privacy) and the querying party should not learn anything further than what
it has queried (database privacy). The last two constraints protect the privacy of
the remaining elements in two parties. Thus, the constraints in SPIR and two-
party PSI are equivalent and have a one-to-one correspondence. Further, SPIR is
a distributed (multi-database) version of 1-out-of-K oblivious transfer (OT). It is
well-known that reliability, user privacy and database privacy contradict each other,
and thus, basic single-database SPIR, and basic two-party PSI are infeasible. In or-
der to achieve a valid two-party PSI protocol, our primary solutions are to relax the
privacy constraints via use of multiple databases and utilize auxiliary randomness
data. Further, we study the secure computation problem via SPIR and apply it to
the secure learning problem.

First, we investigate the problem of two-party PSI by using SPIR. It is well-
known that single-database SPIR is not feasible. Hence, in our two-party PSI set-
ting, we assume that each party stores its data set across multiple non-colluding
and replicated databases instead of a single database. As a relaxation of the pre-
vious privacy requirements, the remaining elements of each party only needs to be
kept private from each individual database in the other party. As a consequence, we
propose a new valid two-party PSI achievable scheme under this new privacy require-
ment. More concretely, we consider the multi-message SPIR (MM-SPIR) problem,

which is an extension of the conventional single-message SPIR (SM-SPIR). In MM-

SPIR, the user retrieves multiple messages at a time from the databases. We obtain
the capacity of MM-SPIR as a stand-alone result and show that the MM-SPIR ca-
pacity equals the SM-SPIR capacity. We also unify the schemes of multi-message
PIR (MM-PIR) and MM-SPIR by proposing a new capacity-achieving MM-SPIR
scheme. Finally, we establish the equivalence between two-party PSI and MM-SPIR
with i.i.d. messages of length 1 through an incidence vector mapping, which implies
the minimum download cost for two-party PSI.

Second, we investigate the problem of SPIR with user-side common random-
ness where the user is provided with a random subset of the shared database common
randomness, which is unknown to the databases. We determine the exact capacity
region of the triple (d, pgs, pv), where d is the download cost, pg is the amount of
shared database common randomness, and py is the amount of available user-side
common randomness. With an appropriate amount of py, this new SPIR can achieve
the conventional PIR capacity. As a corollary, single-database SPIR becomes fea-
sible. Consequently, the user-side common randomness in SPIR can be deemed as
auxiliary randomness data and then applied to two-party PSI problem where each
party now possesses only a single database. Likewise, the minimum download cost
for two-party PSI in this case is derived.

Third, we consider the problem of multi-party PSI (MP-PSI). In MP-SPI,
several parties wish to jointly determine the intersection of their respective elements
while protecting the information about the remaining elements. MP-PSI is a non-
trivial extension of the two-party PSI as it cannot be implemented via multiple

use of two-party PSI. We propose a new information-theoretic MP-PSI scheme that

builds on the connection between PSI and MM-SPIR. Our scheme is a non-trivial
generalization of the two-party PSI scheme since it needs an intricate design of
the shared common randomness among the parties. With the aid of this auxiliary
randomness data, we show that our scheme does not incur any penalty, in terms
of the download cost, due to the more stringent privacy constraints in MP-PSI
compared to two-party PSI.

Fourth, as the communication cost in the PSI problem consists of upload cost
and download cost, we consider the total (upload plus download) communication
cost of SPIR with a focus on two-database setting through its relationships to con-
ditional disclosure of secrets (CDS) and conditional disclosure of multiple secrets
(CDMS). In CDS, two parties each holding an individual input and sharing a com-
mon secret wish to disclose this secret to an external party efficiently when their
inputs satisfy some condition. As a natural extension of CDS, in CDMS, two parties
share multiple i.i.d. common secrets. Inspired by the equivalence between a special
configuration of CDMS and two-database SPIR, we design download cost efficient
SPIR schemes for given upload cost using bipartite graph representations of CDS
and CDMS.

Fifth, as a novel and interesting extension of SPIR, we consider the problem of
random SPIR (RSPIR) where the user does not pick a specific message to download,
instead is content with any one of the messages stored in the databases. This is
digital blind box, also known as gachapon, which implements this specified setting
with physical objects for entertainment. This is also the blind version of 1-out-of-K

OT, an important cryptographic primitive. We explore the capacity of two-database

RSPIR and provide its corresponding achievable scheme.

Sixth, we consider the private set union (PSU) problem and then apply it to
the federated submodel learning (FSL) problem. As a dual problem of two-party
PSI, two-party PSU refers to the problem where two parties wish to collaboratively
compute the union of their elements without revealing anything beyond this union
to each other. Hence, we also establish the equivalence between two-party PSU
and MM-SPIR. In FSL, the full learning model in the server is divided into mul-
tiple submodels such that a large number of clients collectively update the model
by downloading only the needed submodels and uploading the corresponding in-
crements while keeping clients’ local training data private from the server. As a
conventional approach in FSL, secure aggregation ensures that the server can only
learn the aggregate model from the clients and nothing beyond that. By contrast,
if one of the parties is selected as a leader party to derive the union, multi-party
PSU (MP-PSU) requires that this leader party obtains only the union from the
remaining parties and nothing beyond that. By unifying secure aggregation and
MP-PSU in the same framework, we propose a new FSL scheme that achieves low
communication cost, and is also robust against client drop-outs, client late-arrivals
and database drop-outs.

Finally, seventh, we consider the FSL problem in a distributed storage sys-
tem. The server now comprises multiple independent databases and the full model
is stored through ramp secure regenerating coding (RSRC) across these databases.
This novel RSRC mechanism is proposed to resolve passive eavesdropper and database

failure issues together in an efficient manner by allowing the eavesdropper to learn

a controllable amount of submodel information. Our new RSRC-based distributed
FSL approach is constructed on the basis of our previous two-database FSL scheme
which uses PSU. In addition to the previous robustness against client drop-outs,
client late-arrivals and database drop-outs, and newly-added robustness against
database failures and a passive eavesdropper, this advanced FSL approach also guar-

antees robustness against an active adversary.

Towards Secure Computation and Learning from
Symmetric Private Information Retrieval

by

Zhusheng Wang

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
2023

Advisory Committee:

Professor Sennur Ulukus, Chair/Advisor
Professor Sanghamitra Dutta

Professor Prakash Narayan

Professor Adrian Papamarcou

Professor Nirupam Roy

Professor Lawrence C. Washington

© Copyright by
Zhusheng Wang
2023

Dedication

To my family and friends.

i

Acknowledgments

First and foremost, I would like to thank my advisor Professor Sennur Ulukus
for her support and guidance throughout my Ph.D. career. I am very lucky to learn
the truth no pains no gains from her at the beginning of my Ph.D. career. This
truth motivates me to produce academic achievements all the way. She also taught
me how to write a good paper and give an excellent presentation from scratch. After
our first project, she gave me enough freedom to pursue new projects that intrigued
me. Her door was always open whenever I encountered any difficulty and needed to
talk with her. Her broad knowledge and rich experience enlightened me a lot. It is
really my honor to collaborate with such a nice mentor in the past five years.

Second, I would like to thank Professors Sanghamitra Dutta, Prakash Narayan,
Adrian Papamarcou, Nirupam Roy and Lawrence C. Washington for being in my
dissertation committee. I appreciate their time, energy and valuable feedback. I am
also thankful to all the professors that I once interacted with throughout my Ph.D.
career at the University of Maryland. In particular, I would like to thank Profes-
sor Alexander Barg for being my academic advisor, research proposal committee
member and teaching three meaningful classes I took.

Third, I would like to thank Professor Huifang Chen at Zhejiang University
who introduced me to the joy of research, and Professor Sandeep Pradhan at the
University of Michigan who led me into the fascinating realm of information theory.

Next, I would like to thank my research group mates Sajani Vithana, Priyanka

Kaswan, Matin Mortaheb, Cemil Vahapoglu, Purbesh Mitra, Mustafa Doger, Sub-

1ii

hankar Banerjee, Shreya Meel, Alptug Aytekin, Sahan Liyanaarachchi, Mohamed
Nomeir, Arunabh Srivastava, Batuhan Arasli, Brian Kim, Baturalp Buyukates,
Melih Bastopcu. I am very fortunate to work with these brilliant and earnest people.
In particular, I would like to thank Sajani Vithana. We had many enlightening dis-
cussions about privacy and security issues. I am also thankful to Karim Banawan.
Even though we did not meet with each other, he provided much help of great value
to me during my first two projects.

Besides, I would like to thank my friends at or outside the Univeristy of Mary-
land. I really cherish our friendship. Without their company, my life cannot be such
colorful and fulfilling. In particular, I would like to thank Yuan Liu. Ever since we
met, she has been inspiring me throughout my growth process. Until now, she is
still believing in me and encouraging me to pursue what I truly love. I am also
thankful to Haoran Li and Xingyu Ren. I knew Haoran through house renting, and
then we participated in many interesting activities together. With Xingyu, we took
many common classes and talk about many gossipy topics beyond classes as well.

Finally, I would like to thank my family for their unconditional love and sup-
port. Sometimes, words cannot express my sincere gratitude to my father, Xiguang
Wang, and my mother Guiju Xu. No matter what happens, they are always my last

resort.

v

Table of Contents

[List of Figures| viii
[List of Tabled X
[l__Introductionl 1
[2 Private Set Intersection: A Multi-Message Symmetric Private Information |
[Retrieval Perspectivel 22
2.1 Introductionl 22
2.2 PSIL: Problem Formulationl o0 23
2.3 From PSIto MM-SPIRI. oo 0. 27
24 Mam Resultl 32
2.0 MM-5SPIR as a Stand-Alone Problem! 34
[2.5.1 MM-SPIR: Formal Problem Descriptionl 34

2.5.2 MM-SPIR: Main Resultsl 37

2.5.3 MM-SPIR: Converse Prooff 39

[2.5.4 MM-SPIR: Achievability Proof] 53

[2.5.4.1 Motivating Examples|. 54

2.5.42 General Achievable Schemel 61

2.5.4.3 Rate and Common Randomness Amount Calculationl 63

2.6 MM-LSPIR: Arbitrary Message Lengths| 67
2.6.1 MM-LSPIR: Converse Proofl 68

[2.6.2 MM-LSPIR: Achievability Proof| 69

[2.6.3 Mapping MM-LSPIR Back to PSI}. 71

2.7 Conclusionl. 72
2.7.1 Data Generation Modell 73

[2.7.2 Upload Cost Reductionl. 74

2.7.3 Communication Model 75

[2.7.4 Single Database Assumption|. 76

[3 Symmetric Private Information Retrieval at the Private Information Re- |
[__trieval Ratel 7
3.1 Introduction|o 7
8.2 Problem Formulationl oo 78
8.3 Main Resultlo 84
[3.4 Motivating Examples|o o000 88
8.5 Converse Proofl 92
[3.6 Achievability Proofl o000 107
B.7 Conclusionl. 110

4 Multi-Party Private Set Intersection: An Information-Theoretic Approachl 112
4.1 Introduction| 112
4.2 Problem Formulationl 113
43 Main Resultl oo 117
1.4 Motivating Example: 3 Parties with 3 Databases Each (M = 3 with |

| Ni=No=N3=3)|. 119
[4.5 Achievability Prooff o000 127
[4.5.1 General Achievability Scheme| 127

[4.5.2 Download Cost, Reliability, Leader’s Privacy, Clients” Privacy| 132

4.6 Further Examples| oo 139
1M.6.1 An Example for N; < [Py |+ 1]o 139

[4.6.2 An Example for Heterogeneous Number of Databases| 142

M7 Conclusionl. 148

[> Communication Cost of Two-Database Symmetric Private Information Re- |
| trieval: A Conditional Disclosure of Multiple Secrets Perspectivel 150
[Hh.1 Introductionl 150
H.2 Problem Formulation| oo 151
[5.2.1 Symmetric Private Information Retrievall 151

[5.2.2 Conditional Disclosure of a Secretl 153

[>.2.3 Conditional Disclosure of Multiple Secrets| 155

Hh.3 Main Results o 156
[>.4 Exact Upload-Download Region N =2 K =3 162
. Conclusionl 167

6 Digital Blind Box: Random Symmetric Private Information Retrieval| 169
6.1 Introduction|o 169
0.2 ROSPIR: Problem Formulation| 170
6.3 Main Results 175
6.4 Converse Proofl 176
[6.5 Achievability] o o 180
6.6 Conclusionl. 186

vi

[7 Private Federated Submodel Learning via Private Set Union| 187

(f.1 TIntroduction|.o 187
(.2 Problem Formulation| 0oL 188
721 MM-SPIRI 188
722 PSUl 191
[7.2.3 Private Distributed FST] 196
(.3 Main Resultl o000 o 203
[7.4 Examples for Blocks of Private Distributed FSL| 207
[r.b General FSI, Achievable Schemel00 L 223
7.5.1 Common Randomness Generation (FSL-CRG) Phase| 224

7.5.2 Private Set Union (FSL-PSU) Phase] 227
[7.5.3 Private Write (FSL-write) Phase] 233
(.6 Conclusionl. 237
(8 Fully Robust Federated Submodel Learning in Distributed Storage System| 239
.1 Introduction| o 239
B2 Problem Formulationl o 240
83 Main Result] 246
8.4 RSRC Techniquel oL 248
[B.4.1 Construction and Performance of General RSRCl. 250
[8.4.2 Examples to Illustrate the Basic Idea of RSRC|{. 259

[8.5 Distributed FSL Motivating Examplel 270
8.6 General Distributed FSL Achievable Schemel 283
B.6.1 FSI-CRG Phasel 283
862 FSI-PSU Phasel 285
8.6.3 FSI-Write Phasel 287
B.6.4 FSI-CRR Phasel 290
[8.6.5 Basic Characteristics Verification| 291
[8.6.6 Full Robustness Verificationl 295
B.6.7 Performance Evaluationl 303

R7 Conclusionl. 305
9__Conclusions| 306
Bibliograp 310

vil

List of Figures

[L.1 Multi-party private set intersection (MP-PSI) system model| 12
[T.2™ Techniques used, their relationships, and the roadmap of the devel- |

opment of the private FSL in Chapter|d| 20

[2.1 Example for the private set intersection (PSI) problem. F; has the
set P1 = {a,b,c,d} and Es has the set P, = {a,c,e, f,g,h}. E;
submits queries to F» that do not leak information about P;, while |
FE» responds with answers that do not leak information about e, f, g, h |
(or non-existence of 7, 7). By decoding the answers, £, learns that |
PrNPy={a,ct| . .. 25
2.2 Example for the transformation from sets to incidence vectors. F; |
has the set P; = {a,b,c,d} and E, has the set P, = {a,c,e, f,q,h}.
The alphabet is Py, = {a,b,c,d, e, f, g, h,i,7}. Entity F; constructs
an incidence vector X; to facilitate MM-SPIR] 29
[2.3 Example for the transformation from the PSI problem to an MM- |
SPIR problem. F£; needs to retrieve the elements corresponding to Py |
from the incidence vector Xs without revealing P;, while F> responds |
with answer strings that do not leak P;.| 30
2.4 The relation ot the index sets presented in Lemma 2.3 and used in |
| LemmasRAland R0 42
[3.1 System model tor SPIR with user-side common randomness.| 80
4.1 MP-PSI for the motivating example.| 122
5.1 Relationship among CDS, CDMS and SPIR.|. 156
[>.2 Bipartite graph for K = 3 messages and U = 2log, 3 upload cost.| . . 160
[>.3 Bipartite graph for K = 3 messages and U = 4 upload cost.[. 160
[>.4 Bipartite graph for A = 2 messages and U = 2 upload cost.[. 161
5.0 Bipartite graph for K = 4 messages and U = 4 upload cost.|. 162
5.6 Achievable (U, D) region for two-database SPIR with K =3, L =1 . 167
[6.1 A two-database RSPIR bipartite graph for A = 4 messages.| 185
[7.1 Distributed federated submodel learning (FSL) system model| 197

viil

[7.2 Data flow in the FSL-PSU phase ot our FSL system model.|. 199
[7.3 Data flow in the FSL-write phase of our FSL system model.| 201

8.1 Federated submodel learning (FSL) problem in distributed storage |

system.]. 242

[8.2 Structure of the D x D message matrix 2| 254

1X

List of Tables

[2.1 The query table for the case K =3, P=1,N=3]. 56
[2.2 The query table tor the case K =5, P =3, N=2). 59
[3.1 'T'he query table for the case N =1, K =3, L = 1. The table on the |

right denotes the query sets compactly as ¢;, go and g3 88
[3.2 The query table tor the case N =2, K =2, L =4 90
[3.3 The query table tor the first 9 bits in the case N =3, K =2, L =36.] 91
[8.1 Storage across the databases in the server when D =3, J = F =2 |
and 0 = 0D 271
[8.2 Updated storage across the databases in the server after one FSL |

training round when D =3, J=FE =2and 0=0.5. 282

CHAPTER 1

Introduction

In the era of big data, it is common to complete a task by utilizing the data with a
large size distributed in the form of isolated islands, e.g., perform a target computa-
tion over the personal data possessed by a few parties or train a global learning model
by collecting local data from many clients. Therefore, during the data exchange pro-
cess, preserving the privacy of data is an essential but challenging problem. In this
dissertation, we investigate privacy and security issues arising in such settings from
an information-theoretic perspective.

As an elementary two-party secure computation problem, two-party private
set intersection (PSI) refers to the problem of determining the common elements
in two data sets without leaking any further information about the remaining el-
ements in the sets. This problem has been a major research topic in the field of
cryptography starting with the work |1]. The PSI problem can be motivated by
many practical examples, for instance: The national security agency (NSA) and
the customs and border protection (CBP) need to check whether a specific group

of suspected criminals has entered the country. The NSA has a list of suspected

criminals, while the CBP has a complete list of individuals who entered the country.
Both agencies want to find the intersection between these lists. However, the NSA
does not want to share its complete list of suspects, and the CBP cannot reveal
the entire catalog of records either. As another example, consider a major service
provider (e.g., Whatsapp) and a new customer who wishes to join this service. The
user wishes to find out which members of his/her contact list are already using this
service without revealing his/her entire contact list to the service provider. Simi-
larly, the service provider wishes to determine the intersection without revealing its
entire list of customers.

To formulate the two-party PSI problem information-theoretically, consider a
setting where party P, stores a data set P; in a single database and party Ps stores
another data set P, in another single database. They want to jointly calculate the
intersection P; N P, in a private way. Without loss of generality, we assume here
that the party P; initiates the PSI process by sending some query information @) to
the other party P,. Subsequently, P, sends some answer information A as a response
back to P;. Hence, we have the following three constraints. First, P, should be able

to derive the intersection P; N Py reliably,

[PSI reliability] ~ H(P1 N Ps|Q, A, P1) =0 (1.1)

Second, P; wants to protect its personal elements in P; \ (Py NPy) = Py \ Po from
P;. However, since P; does not know Ps, the query () cannot depend on Ps, and P;

should protect all of P; in query. Therefore, the query sent by P; should not leak

any information about the data set P;,

[P, privacy] I(P1;Q,A,Py) =0 (1.2)

Third, by symmetry, P, wants to protect its personal elements in Py \ (P; N Py) =
Py \ P; from P;. Moreover, P; should not learn the absence of the remaining
elements in the set (P; U Ps). Therefore, P, should not learn any information about

P,’s inclusion status of the elements in (P \ Py) U (P; UPy) = Py (we denote this

information by Esp,),

[P privacy] I(Ep,;Q, A, P1) =0 (1.3)

Here, we prove that these three constraints conflict with each other such that
the basic two-party PSI is indeed not feasible, which matches our intuition. Note
that given the knowledge about P,’s inclusion status of the elements in P; (we
denote this information by Ep,), P; is able to obtain the intersection P; N Py, and

vice versa. Hence, the reliability constraint becomes

[PSI reliability] ~ H(Ep,|Q, A, P;) =0 (1.4)

Due to the P, privacy constraint ((1.2)), the query () and answer A are identically
distributed for any P;. Then, due to the reliability constraint (1.4)), from @, A, Py,
the information Ep, is always decodable to P; for any P;. Putting these two facts

together, from @), A and variable P;, we must have that P; can obtain the informa-

tion about P’s inclusion status of all the elements, which obviously contradicts the
P, privacy constraint .

All the existing PSI works in the computer science community uses compu-
tational guarantees to ensure the privacy of the elements beyond the intersection;
see [1H4]. Computational security relies on the fact that there is no computer system
powerful enough to crack the cipher in a reasonable amount of time, and thus can be
broken by an attack with unlimited computation power. By contrast, information-
theoretic security is secure against an adversary with unlimited computing resources
and time. According to the indistinguishability of limited computation power, it is
apparent that previous valid two-party PSI protocols relax the stringent requirement
of information-theoretic security to computational security. In this dissertation, we
aim to achieve valid two-party PSI protocols in different ways, but still under the
umbrella of information-theoretic security. In brief, our first approach is to relax
the privacy constraint through including multiple databases in each party, while the
second approach is to distribute and utilize additional auxiliary randomness data at
both parties. By convention, the performance of our new valid two-party PSI pro-
tocols is still evaluated in terms of the total communication cost that is generated
within the whole process.

In the cryptography field, private information retrieval (PIR) refers to a fun-
damental problem where a user wishes to retrieve a specific message out of a set
of messages that is stored across multiple non-colluding and replicated databases
without leaking any information about this desired message index to any individual
database [5]. The requirement that the user can obtain the desired message without

4

any error is referred to as the reliability constraint, and the requirement that each
individual database learns no knowledge about the index of this desired message is
referred to as the user privacy constraint. The capacity of PIR, which is defined as
the maximum number of desired message bits that can be privately retrieved per
downloaded bit from the databases, is proved to be Cpir = (1 — +)/(1 — (%)K)
in [6] for an N-database K-message system. As an extended version of PIR, sym-
metric PIR (SPIR) additionally requires that the user learns no knowledge about
the remaining messages in the databases after downloading its desired message [7].
This requirement is referred to as the database privacy constraint. Following the
same definition as in the capacity of PIR, the capacity of SPIR is proved to be
Cepir = 1— % in [8]. Although PIR does not need any shared common randomness
among the databases, it is well-known that information-theoretic SPIR is possible
only when the databases share a certain minimum amount of common randomness
that is unknown to the user. Following the seminal paper on information-theoretic
PIR capacity [6], PIR and SPIR problems have attracted tremendous attention in
the information theory community recently, e.g., [9H63].

In this dissertation, we concentrate on the SPIR problem taking into consid-
eration the fact that two-party PSI and SPIR share three essential constraints with
similar characteristics. In addition, we note that SPIR is basically a multi-database
version of 1-out-of-K oblivious transfer (OT). OT, first introduced in [64] and then
developed in [65], is an essential building block in modern cryptography because of a
variety of applications that can be built based on it [64]. A 1-out-of-K OT protocol

consists of two parties, a sender with K input messages and a receiver with a choice

k € [K]. The objective of the protocol is that the receiver will receive the kth mes-
sage without the sender learning the index k, while the sender can guarantee that
the receiver only received one of the K messages. We explore secure computation
and learning by utilizing SPIR as an essential building block from the perspective
of information theory. In particular, we use a probabilistic idea as in [66,/67] to
design new SPIR achievable schemes with better performance and then apply them
to secure computation and learning problems with the main objective of reducing
the overall communication cost.

In Chapter [2, we study the two-party PSI problem on the basis of SPIR. Fol-
lowing the conventional configuration in SPIR [§], each party now stores its own
data set across multiple non-colluding and replicated databases. As a consequence,
the previous privacy requirements can be relaxed such that only the privacy of the
remaining elements in each party needs to be guaranteed against each individual
database in the other party. In this way, the information-theoretic privacy can
be still satisfied in our new two-party PSI scheme. In our PSI problem formu-
lation, there are two parties P;, for ¢ = 1,2, each storing a data set P;, whose
elements are picked from a finite set S (a.k.a. global alphabet), on N; replicated
and non-colluding databases. Now, to use SPIR to implement PSI, one party needs
to privately check the presence of each element in the other party. This implies that
the ith party needs to retrieve multiple messages from the other party, where the
messages here correspond to the incidences of each element of the set P;. This estab-
lishes the connection between two-party PSI and multi-message SPIR (MM-SPIR).

The papers that are most closely related to our work are the ones that focus on sym-

metry and multi-message aspects of PIR. Reference [8] derives the SPIR capacity.
Reference [23] considers multi-message PIR (MM-PIR) and determines the exact
capacity when the number of desired messages P is at least half of the total number
of messages K or when K/P is an integer; for all other cases [23] provides a novel
PIR scheme which is near-optimal. Reference [35] studies multi-database MM-PIR
with private side information. References [36,37] study single-database MM-PIR
with side information. Reference [13] studies SPIR from MDS-coded databases.
None of these works consider the interplay between the data privacy constraint and
the joint retrieval of multiple messages, as needed in MM-SPIR.

In this chapter, we first focus on MM-SPIR as a stand-alone problem, we derive
its capacity. Our results show that the sum capacity of MM-SPIR is exactly equal to
the capacity of single-message SPIR (SM-SPIR), i.e., Csyr—sprir = Cyunm—spir = 1—
%. We show that the databases need to share a random variable S such that H(.S) >
% per desired symbol, which is P multiple of the common randomness required for
SM-SPIR. This implies that, unlike MM-PIR, there is no gain from jointly retrieving
the P messages, and it suffices to download the P messages successively using the
SM-SPIR scheme in [8], provided that statistically independent common randomness
symbols are used at each time. Further, for MM-SPIR, we propose a novel capacity-
achieving scheme for 1 < P < K — 1. Compared with the one in [8], the form of
this achievable scheme is much closer to the achievable scheme in [6]. The query
structure of the scheme resembles its counterpart in [23], in particular, we construct
the greedy algorithm in [6] backwards as in [23]. The major difference between
our proposed scheme and the MM-PIR scheme in [23] is the fact that databases

7

add the common randomness to the returned answer strings to satisfy the database
privacy constraint. Our scheme is surprisingly optimal for all P and K in contrast
to the scheme in [23] which is proved to be optimal only if P is at least half of
K or K/P is an integer. By plugging P = 1, our scheme serves as an alternative
capacity-achieving scheme for the SM-SPIR scheme in [8]. Finally, we consider two-
party PSIL. In transforming two-party PSI into MM-SPIR, each party constructs
the incidence vector of its own elements with respect to the global alphabet. The
incidence vector is a binary vector of length K that stores a 1 in jth position
if jth element is in the data set. Then, P; performs MM-SPIR of the messages
corresponding to its incidence vector of P; within the databases of the other party.
Thus, the equivalence between two-party PSI and MM-SPIR with i.i.d. messages of

length 1 can be established. We show that the optimum download cost of two-party

PSI is min { Pﬁ;'_]\ff—‘ , Pffii\ff} }, which is linear in the size of the smaller set, i.e.,
min{|P,|, |P2|}. The linear scaling appears in the problem of determining the set
intersection even without any privacy constraints.

In Chapter [3, we study the problem of SPIR with user-side common random-
ness. As we discussed above, the privacy constraint of two-party PSI is loosened by
considering the setting of multiple non-colluding and replicated databases in each
party. However, in practical applications, enforcing non-collusion among databases
could be difficult, as in some cases, all databases may naturally belong to the same
entity. If all databases collude or belong to the same entity, the system essentially
becomes a single-database system. In addition, we are interested in exploring new

ways to further increase the SPIR capacity. The information-theoretic capacity of

PIR and SPIR have been found in [6] and [8] as

1
and CSPIR =1—— (15)

1
Cpir = —NK
1-(3) N

First, Cspir is smaller than Cpr, since SPIR is a more constrained problem than
PIR. Second, single-database SPIR is infeasible as Cspig = 0 for N = 1, while
single-database PIR is feasible as Cpir = % for N = 1. Our goal in this chapter is
two-fold: To explore ways to increase SPIR capacity to the level of PIR capacity,
and as importantly, to make single-database SPIR feasible. In SPIR, the databases
share two sets of information systems: a message information system and a common
randomness information system. As stated in [33, Theorem 2|, the capacity of SPIR
with private side information is exactly equal to the capacity of SPIR without any
private side information. This means that the message information system cannot
be utilized as private side information to improve the capacity of SPIR. As an
alternative, we turn to the common randomness information system.

In this chapter, we introduce SPIR with user-side common randomness to
solve two issues mentioned above together. It is an extension of the classical SPIR
problem where the user is provided with a random subset of the shared database
common randomness, which is unknown to the databases. One way to implement
this is for the user to fetch a part of the common randomness from the databases
uniformly randomly, i.e., without the user knowing what it will get and without
the databases knowing what it got, except for its cardinality. That is, all subsets

of a certain size are equally likely to be obtained by the user. Another practical

implementation could be for an external helper to distribute common randomness
to the user and the databases randomly. For database-side (server-side) common
randomness of amount pg and user-side common randomness of amount py, we
determine the exact capacity region of the triple (d, ps, pr), where d is the download
cost which is the inverse of the capacity. We show that with a suitable py, SPIR
capacity becomes equal to the conventional PIR capacity. For the single-database

case, since the conventional PIR capacity is this implies that single-database

e
SPIR with user-side common randomness is feasible. In addition, the presence of
user-side py reduces the amount of required server-side pg. As a consequence, by
utilizing user-side common randomness as auxiliary randomness data, two-party PSI
with the setting of single database in each party becomes feasible, and the minimum
download cost in this case is obtained.

In Chapter [] following our work on two-party PSI problem, we investigate
the multi-party PSI (MP-PSI) problem, which is a multi-party secure computation
problem; see [68-71]. Unlike PIR/SPIR, the PSI problem may involve more than
two parties in the practical setting. Returning to the example involving the NSA
and CBP above, suppose now that the NSA needs to narrow down the search to
check whether the suspects have entered the country via a specific airline. The
airline company has a list of all passengers that took its flights all over the world.
The company needs to protect the privacy of its passengers as well. The problem of
finding the set of suspects who entered the country via this specific airline becomes a
three-party PSI. Unfortunately, the NSA cannot just apply a two-party PSI scheme

with the airline company and the CBP, as the NSA will learn extra information than

10

the intersection of the three lists, for example, the NSA will learn about some of
its suspects who boarded a flight with this airline company but never landed in this
country. This illustrates that the MP-PSI is a non-trivial extension of the two-party
PSI because it cannot be realized through multiple implementations of two-party
PSI.

In this chapter, we investigate MP-PSI from an information-theoretic perspec-
tive. There are M independent parties. For ¢ = 1,--- | M, the ¢th party denoted by
P; possesses a data set P;. The elements of all data sets are picked from a finite set
Sk. The data set P; is stored in N; replicated and non-colluding databases. We aim
at privately determining the intersection of all the M data sets, i.e., P = NM,P;
in such a way that no party can learn any information beyond the intersection P.
Inspired by the classical achievable scheme in |1,|68], we focus on a specific commu-
nication strategy between the parties in this work; see Fig. [[.I} In particular, we
assume that the parties agree on choosing one of them as a leader party, while the
remaining parties act as client parties. Without loss of generality, we pick P,; as
a leader party, and then the remaining parties Py, --- , Py_1 are all client parties.
The leader party P, initiates the MP-PSI determination protocol by generating
and submitting queries to the client parties. Before MP-PSI, the client parties are
allowed to generate and share well-designed intricate common randomness (common
randomness residing in the jth database of party F; is shown by R;; in Fig. .
This is motivated by the results of [7,|8], which assert that using common ran-
domness is strictly necessary to enable symmetrically private communication. The
client parties then respond truthfully to the leader’s queries. The download cost

11

P P, Py

7)1 7)1 7)1 7)2 PZ 7)2 P;‘\I -1 PA’U -1 ’PJW -1
Rit | |Ri2 |°°°|Rim, Rop || Roz |°°°|Rem| |°°°| | Ramrn| |Rarmrz| *°° | Rar—1ma s

Figure 1.1: Multi-party private set intersection (MP-PSI) system model.

of our scheme is mingeqy,... any Zie{l M [%-‘ . Note that the optimal download

‘E;l_jvﬂ , PZ?'_NH} in two-party

cost with one-round communication is D* = min { [
PSI [72]. This means that although in MP-PSI, the privacy constraints are more
stringent than that in two-party PSI, we incur no penalty for the download cost.
This indeed comes from the common randomness shared among the client parties,
which can be deemed as auxiliary randomness data. In addition, our achievable
download cost scales linearly with the cardinality of the leader set, which outper-
forms the best-known MP-PSI scheme, which scales with the sum of the cardinalities
of all the data sets [70].

In Chapter | we consider the total communication cost of SPIR. The total
communication cost of SPIR consists of two parts: the total number of bits sent
from the user to the databases (upload cost) denoted by U, and the total number of
bits downloaded by the user from the databases (download cost) denoted by D. For

a message length of L bits, the total communication cost (U + D) of SPIR depends

on three basic parameters (N, K, L). In [§], without any constraints on U and L,

12

NL

~—> Which does not depend on

the optimal download cost for SPIR is found to be
K. In [73], without any constraints on D and L, the optimal upload cost for SPIR
is found to be logQ([KﬁD which does not depend on L. In addition, |13}/15,52,72}
74576 explore the optimal download cost of SPIR under various extended conditions
without a consideration on the upload cost. As a classical cryptographic primitive,
conditional disclosure of secrets (CDS) is first introduced in |7] as well to help devise
an achievable SPIR scheme. Since CDS itself functions as an essential building block
in applications such as secret sharing and attribute based encryption [77-79], CDS
has also attracted significant attention as a stand-alone computer science problem.
Recently, information-theoretic CDS is formulated in [80,81] to characterize the
maximum number of secret bits that can be securely disclosed per communication bit
whenever a pre-defined condition is satisfied. Through extending CDS, we introduce
a new concept called conditional disclosure of multiple secrets (CDMS) where two
parties now share multiple i.i.d. common secrets instead of a single common secret
as in CDS.

In this chapter, we investigate the overall communication cost of two-database
SPIR with a particular focus on L = 1 in an information-theoretic setting. Our
focus on L = 1 is motivated by two observations: 1) as pointed out in [6], when L
is allowed to approach infinity, download cost dominates the upload cost, and the
consideration of total cost becomes trivial. 2) in some cryptographic applications,
e.g., two-party PSI and MP-PSI, only L. = 1 may make practical sense. We first show
the equivalence between a special CDMS configuration and the two-database SPIR.

Following this equivalence, we explore the total communication cost of two-database

13

SPIR through the characteristics of CDS and CDMS. We utilize CDS/CDMS to
determine an upload cost, and proceed to minimize the download cost for the given
fixed upload cost. We then consider the feasible upload and download cost achievable
region. In the example of K = 3 and L = 1, we find two optimal corner points for
the upload and download cost pair. These two corner points outperform the best-
known results in the literature [8,[73] and lead to the optimal total communication
cost. Finally, we can apply total communication cost conclusion in SPIR to PSI as
the PSI problem itself consists of upload cost and download cost.

In Chapter [6] we consider the random SPIR (RSPIR) problem. Gachapon
is a vending machine-dispensed capsule toy by means of a roulette mechanism,
which makes it random and unpredictable for customers [82]. In addition, gachapon
is being adapted as a random-type item in online games and 3D printing, and its
digital form is catching on quickly in the worldwide market [83,84]. Due to packaging
requirements prior to official distribution, gachapon is also referred to as a blind
box [82]. Following the concepts of gachapon as well as blind box, we introduce a
digital blind box between a user and a server in a communication network with the
following characteristics: 1) A user will ultimately receive a random box (content)
from the server. However, the user does not know anything about what is in the
box (what the content is) until it receives a box (content) from the server. 2) For
the sake of unpredictability, a user should also know nothing about the current box
(content) based on what it has received in the previous transactions. A user should
not know anything about what other users have received before communicating with
them. In other words, a user should not know anything beyond what it receives from

14

the current box (content). This requirement also protects the content privacy of the
server. 3) In order to protect the privacy of the users, the server should learn
nothing about what a specific user has received. Therefore, a new concept called
RSPIR is put forward. In reference to the conventional SPIR, the only difference
is that, in RSPIR there is no input at the user side. That is, the user does not
send any queries to the databases, and ultimately receives a random message from
the databases. This requirement is referred to as random reliability. Interestingly,
the three requirements of RSPIR, namely, random reliability, database privacy and
user privacy, strictly correspond to the three characteristics of the digital blind
box described above. Thus, the digital blind box is equivalent to the RSPIR. An
instance of RSPIR is that users can share symmetric keys if the databases operate
in a broadcasting manner to transmit the information. In addition, an important
variant of 1-out-of-K OT is that the receiver has no input. For example, this variant
can be used as a subroutine in contract signing and certified mail protocols [65].
Thus, RSPIR can be viewed as a distributed version of this variant of 1-out-of-K
OT.

In this chapter, we formulate two-database RSPIR and investigate its capac-
ity. We determine its capacity as well as the minimal amount of required common
randomness in the cases of K = 2, 3,4 messages. This determines the capacity of
digital blind box. While we give a general achievable scheme for any number of
messages, the exact capacity of RSPIR for K > 5 remains an open problem.

In Chapter [7, we consider the federated submodel learning (FSL) problem,

which is a particular federated learning (FL) model involving the PIR problem. In

15

FL, multiple isolated clients collaboratively perform a learning task while protecting
the privacy of their stored local data against the global server [8586]. Recently,
a new framework called FSL has been proposed to further reduce the communi-
cation and computation overhead at both server and client sides [87]. In the FSL
framework, the full learning model stored in the server is divided into multiple sub-
models based on their data characteristics. Instead of accessing and updating the
full model as in conventional FL, each selected client downloads only the needed
submodel(s) from the server and then uploads the corresponding submodel updates
based on the local data type in FSL. As pointed out by [87], there are two fun-
damental problems that can be abstracted out of the FSL framework: One is how
can each client download its desired submodels without disclosing these submodel
indices to the server. This is basically a private read problem, which is equivalent to
PIR. The other is how can each client update/write-back these desired submodels
still without disclosing the indices or the content of the updated submodels to the
curious server. This is basically a private write problem, which is tightly related to
oblivious random-access machine (ORAM) and secure aggregation.

At present, there are a few different FSL approaches relying on different ideas.
One class of approaches is based on ORAM. Assume that the storage in the server en-
compasses multiple data blocks with the same size. ORAM is introduced to hide the
data access pattern from the server, namely, which blocks are read /written from/to
the server [88], by making sure that any two data access patterns are completely
indistinguishable from the perspective of each individual database. Most ORAM

schemes are based on computational security [89,/90]. Using the idea in ORAM as

16

reference and the X-secure T-PIR scheme in [55,(91] as a building block, [92] puts
forward an FSL approach to achieve information-theoretic security. Specifically, as
the databases in the server are distributed [89], the complete model is divided into
submodels which are viewed as data blocks and encrypted by the server-side common
randomness, and then stored across multiple distributed databases in the server. For
each round of the FSL process, one client who is interested in accessing and updating
a specific submodel participates in the training by sending two carefully-designed
queries (a read query and a write query) to each database. Along this research line,
a new technique called private read update write (PRUW) is proposed in order to
further improve the total communication cost efficiency of FSL [93]. In PRUW, a
user downloads (reads), updates and uploads (writes) the increments back to the
chosen data blocks while taking the privacy of the content downloaded, uploaded
and their positions into account simultaneously. Through over-designing the PRUW
with additional server-side common randomness in storage, the communication cost
is decreased notably. Moreover, PRUW is extended by incorporating gradient spar-
sification where only a subset of the overall parameters in the full learning model
is downloaded and updated [94,95]. Another class of approaches is based on secure
aggregation. As a critical building block of FL, secure aggregation aims to aggre-
gate the locally trained model updates from a large number of clients at the server
side in a secure manner, namely, no information about each client’s local training
data is leaked to the others except that the aggregated result can be learned by the
server [96]. Most previous secure aggregation works concentrate on computational

security, see e.g., [97H99]. Similar to PSI, private set union (PSU) refers to the

17

problem of determining the union of elements in all the available data sets with-
out revealing any more information than this union result [68,/100]. Using secure
aggregation and PSU separately, an FSL approach is put forward in [87] with com-
putational security guarantee. Basically, in this approach, the server first calculates
the union of the clients’ desired submodels through a Bloom filter-based PSU proto-
col. Then, through secure aggregation, the training model is updated by the clients
within this submodel union at the sever side. The drawback of this approach is that
the submodel union result is not accurate, and thus, the potential update efficiency
of clients is not fully utilized. Recently, several secure aggregation protocols towards
achieving information-theoretic security are proposed, see e.g., [101-104]. Thus, the
second fundamental problem in FSL has close connections with PRUW and PSU;
see detailed discussions in [105].

In this chapter, through unifying secure aggregation and PSU in the same
framework, we propose a new FSL scheme that retains the main advantages of
the above-mentioned two classes of approaches still with an information-theoretic
security. First, the server securely calculates the clients’ desired submodel index
union. This is well-known as the PSU problem and referred to as FSL-PSU phase.
Then, the server securely aggregates clients’ generated updates in the calculated set
union. This is well-known as the secure aggregation problem and referred to as FSL-
write phase. In both phases, the server can only learn the ultimate result, without
knowing which client has made which contribution to the ultimate result. Note that
the constraints in PSI and PSU are analogous, we first establish the equivalence

between PSU and MM-SPIR, and then extend PSU to multi-party PSU (MP-PSU).

18

Similar to typical PIR/SPIR formulations, we consider the simplest setting where
the FSL server has two databases. In Fig. [1.2] we show the techniques used, their
relationships, and the roadmap of the development in this chapter. The classical
information-theoretic SPIR serves as a starting point to formulate our new FSL
scheme. Due to the long duration of FSL process, it is possible for some clients to
drop-out. Thus, we design our scheme in such a way that even if some clients lose
their connection to the server, our scheme continues to work normally. It is also
possible that some clients’ generated answers arrive at their associated databases
late and the corresponding databases make the wrong judgement that the clients
have dropped-out. Our scheme is designed such that these late answers do not leak
any additional information about these late clients to the databases. Moreover,
our scheme continues to work normally even when some of the databases become
inactive, especially when the total number of databases is large enough. Finally, our
FSL scheme can be run iteratively in multiple rounds until a pre-defined termination
criterion is met.

In Chapter [§, we consider the FSL problem in a distributed storage system
where our above-mentioned two-database FSL approach is extended by considering
more databases at the server side. As the number of databases is large now, several
issues may arise, such as: a set of databases may be captured by an eavesdropper
who can passively read database content and listen to database communications
to capture database and client information [53]; a set of databases may fail [106].
To solve the eavesdropping and database failure challenges in a distributed storage

setting, [107] proposes secure regenerating codes, where the eavesdropper learns no

19

o equivalence
(MM-)SPIR |+— PSU
extension i i extension
R(S)PIR MP-PSU
randomness allocation i><i building block
next phase .
FSL-PSU |— | FSL-write

private FSL

Figure 1.2: Techniques used, their relationships, and the roadmap of the develop-
ment of the private FSL in Chapter [7}

useful information, and a replacement database can be constructed to replace the
failed database by communicating with the remaining databases. Further, classical
secret sharing refers to a setting where a secret is shared among multiple parties in
such a way that any ¢ parties can recover the secret, but any fewer than ¢ parties
learns nothing about the secret [108]. In ramp secret sharing [109], a ramp zone
is established such that, any t parties can recover the secret, any ¢ parties learns
nothing about the secret, and a set of parties whose cardinality is between ¢ and t
learns partial knowledge about the secret. This partial knowledge can be quantified
by the mutual information and goes up as the cardinality of this set of parties in the
ramp zone increases. By combining the idea in ramp secret sharing [109] together
with the idea in secure regenerating codes [107], we put forward a new customized
coding scheme that we coin ramp secure regenerating code (RSRC) to develop an
FSL scheme that is resilient to passive adversaries and database equipment failures.

Hence, in our RSRC scheme, the useful information learned by the eavesdropper is

20

quantifiable and controllable, and the performance of our RSRC-based distributed
FSL scheme is adjustable. Further, a set of databases may be captured by an
adversary who may actively overwrite the responses generated by its controlled
databases [25]. In this case, the clients will receive erroneous information. The per-
formance of an FSL scheme is evaluated by three critical metrics: computation cost,
communication cost, and storage cost. Towards achieving information-theoretic se-
curity, the schemes generally rely on operations in a finite field. As these operations
are simple, the computation cost can be neglected. Moreover, since we are concen-
trating on distributed storage across the databases, we consider only the server-side
storage cost and neglect the client-side storage cost.

In this chapter, we propose a new RSRC-based FSL scheme that is efficient in
terms of communication cost and server-side storage cost under the circumstance of
distributed storage. We also prove that our proposed scheme is fully robust against
permanent database failures, eavesdroppers, active adversaries, database drop-outs,
client droup-outs, client late-arrivals, for one-round distributed FSL. Again, this
one-round distributed FSL scheme can be performed in an iterative manner until a
termination criterion is satified.

In Chapter 9] we present the conclusions of this dissertation.

21

CHAPTER 2

Private Set Intersection: A Multi-Message Symmetric Pri-

vate Information Retrieval Perspective

2.1 Introduction

In this chapter, we study the two-party PSI problem where each party stores its per-
sonal data set across multiple non-colluding and replicated databases. In particular,
there are two entities F;, for ¢ = 1,2, each storing a data set P;, whose elements
are picked from a finite set Sk, on NV; replicated and non-colluding databases. It
is required to determine the set intersection P; N Py without leaking any infor-
mation about the remaining elements to the other entity, and to do this with the
least amount of downloaded bits. We first show that the two-party PSI problem
can be recast as an MM-SPIR problem with certain added restrictions. Next, as a
stand-alone result, we derive the information-theoretic sum capacity of MM-SPIR,
Cruni—sprr- We show that with K messages, N databases, and a given size of the
desired message set P, the exact capacity of MM-SPIR is Cyjp—sprr = 1 — % when
P < K — 1, provided that the entropy of the server-side common randomness S

satisfies H(S) > %1 per desired symbol. When P = K, the MM-SPIR capacity is

22

trivially 1 without the need for any server-side common randomness S. This result
implies that there is no gain for MM-SPIR, over successive SM-SPIR. For the MM-
SPIR problem, we present a novel capacity-achieving scheme which builds seamlessly
over the near-optimal MM-PIR scheme in [23] without any database privacy con-
straints. Surprisingly, our scheme here is exactly optimal for MM-SPIR for any P,
in contrast to the scheme for MM-PIR, which was proved only to be near-optimal.
Our scheme is an alternative to the successive usage of the SM-SPIR scheme in [8].
Based on this capacity result for the MM-SPIR problem, and after addressing the
added requirements in its conversion to the two-party PSI problem, we show that
the optimal download cost for two-party PSI is given by min { [%—‘ , {%-‘ },

where P; is the cardinality of set P;.

2.2 PSI: Problem Formulation

Consider the problem of privately determining the intersection of two sets (or lists)
picked from a finite sefl] Sx. For convenience, we denote a random variable and
its realization by using the same general uppercase letter when distinction is clear
from the context. We address this issue additionally whenever clarification is needed.

Consider a setting where there are two entities £y and Es. For ¢ = 1,2, the entity F;

!The restriction of generating the set from a finite set is without loss of generality as the set
elements of any kind can be mapped into corresponding finite set elements for sufficiently large
size. For example, the elements of the set that contains the names of suspected terrorists in the
United States can be mapped into elements from the finite set Sk, where K is the population
size on this planet. As we will show next, the download cost is independent of K. Hence, the
optimization of the alphabet size is irrelevant to our formulation. Nevertheless, it is advisable to
choose K to be the lowest integer such that P;, P> C Sk to minimize the upload cost. It suffices
to have K > P; + Ps.

23

stores a set P;. For each element of the finite set Sk, the entity E; addsE| this element
to its set P; independently from the remaining field elements with probability ¢;. In
this work, we focus on the case of ¢; = % for i = 1,2. After generation of the set
P;, the cardinality of P; C Sf(" is denoted by |P;| = P;, and is public knowledge.
The entity F; stores P; in a replicated fashion on N; replicated and non-colluding
databases.

The entities F; and Fy want to compute the intersection P; NPy privately (see
Fig.|2.1). To that end, the entityﬁ E; sends N, queries to the databases associated
with Fy. Specifically, F; sends the query Qg;l] to the naoth database for all ny € [Ny,
where [Ns] (and also [1 : No]) denotes integers from 1 to N,. Since F; does not know
P, in advance, it generates the queries Q[f]l\,]Q = { Qjﬂ ‘N € [Ng]} independently

from P,, hence,

Q7 :P) =0 (2.1)

The databases associated with E, respond truthfully with answers A[E{,]Q =

{Ag;ﬂ i Ny € [Ng}}. The nsth answer Ag;l] is a deterministic function of the set Ps,

2We note that our achievability scheme works for any statistical distribution imposed on the
sets, i.e., the i.i.d. generation assumption presented here is not needed for the achievability proof.

3We note that choosing to have P; to be a global knowledge is for the consistency with MM-
SPIR problem and convenient execution. This knowledge enables the entities to determine which
entity should initiate the PSI process to have the least download cost (or if any is needed at all, as
in the case of P; = K, for an i; see Remark . If the cardinalities are not public knowledge, our
achievability works by choosing one of the entities arbitrarily to initiate the PSI process assuming
that the other entity has sufficient common randomness. We note, however, that keeping the
cardinalities private is indeed a challenging problem and it is outside the scope of this work.

4The entities F1, E» should agree on a specific order of retrieval operations such that this order
results in the minimal download cost. Without loss of generality, we assume here that the optimal
order of operation starts with entity F; sending queries to the databases associated with entity
Es.

24

...

A[ZPll
B <— Decoder AP
N.

Figure 2.1: Example for the private set intersection (PSI) problem. FE; has the set
Py ={a,b,c,d} and E; has the set Py = {a,c,e, f,g,h}. E; submits queries to Fy
that do not leak information about P;, while F, responds with answers that do not

leak information about e, f, g, h (or non-existence of i, j). By decoding the answers,
E, learns that P; NPy = {a, c}.

the query ngl] and the existing common randomness S, thus,

H(A@”Q[Pl] Pa,8) =0, mng €[Ny (2.2)

ng

Denote the cardinality of the intersection |P;NPy| by M. The entityﬂ FE; should
be able to reliably compute the intersection PP; NPy based on the sent queries Q%}Q,

the collected answers A[f]{,]Q and the knowledge of P; without knowing M in advance.

5After calculating P; NP, at E;, the entity F; sends the result of P; N Py directly to E if
needed.

25

This is captured by the following PSI reliability constraint,

[PSI reliability] — H(Py N P|Q7A AP Py =0 (2.3)

The privacy requirements can be expressed as the following two privacy con-
straints: E; privacy and F, privacy. First, the queries sent by E; should not leak
any information aboutlﬂ Py, i.e., any individual database associated with Fy learns
nothing about P; from the query Qg;l], the answer Ag;ﬂ, the knowledge of P, and
the existing common randomness S,

[E1 privacy] I(Pr; QP AP P, S) =0, nge€ [Ny (2.4)

ngy ny

Second, E; should not be able to learn anything further than P, NPs, i.e., £ should
not learn the elements in P, other than the intersection, Py \ (P; N Py) = Py \ Py.
Moreovexﬂ, E; should not learn the absence of the remaining field elements in Fs,
i.e., the set m Thus, E; should learn nothing about whether E5 contains

(P2 \ P1) U (P1UPy) = Py or not (we denote this information by E, 5) from the

SWhile checking the presence of elements of P; in P,, E; wants to protect P; \ P2. However,
since F does not know P, the queries cannot depend on P> (see also), and F; should protect
all of P; in queries.

"Although it is tempting to formulate the Ey privacy constraint as I(Po \ Pi; A[lpji,]z) = 0, this
constraint permits leaking information about the remaining field elements that do not exist in Ps.
More specifically, if we adopted this constraint in the example in Fig. the answers should not
leak information about e, f, g, h, however, E; may learn that the elements 7, j do not exist in Ps.
To properly formalize the constraint that F; learns nothing other than the intersection, we need
to protect (P1 U Pa) as well.

26

collected answers A[EIV]Z given the generated queries Q[lpi,}z and the knowledge of Py,

[Es privacy] I(Eyp,; Q[lpji,g, A[f]i,]z,Pl) =0 (2.5)

For given finite set size K, set sizes P; and P,, and number of databases
N; and Nj, an achievable PSI scheme is a scheme that satisfies the PSI reliability
constraint , the E; privacy constraint , and the Ey privacy constraint .
In this chapter, we measure the efficiency of a scheme by the maximal number of
downloaded bits by one of the entities F; or E, in order to compute P; N Py. We
denote the maximal number of downloaded bits by D. Then, the optimal download

cost is D* = inf D over all achievable PSI schemes[l

2.3 From PSI to MM-SPIR

In this section, we show that the PSI problem can be reduced to an MM-SPIR
problem, if the entities allow storing their sets in a specific searchable format. This
transformation has the same flavor as [110] and [42], where the original contents of

the databases are mapped into searchable lists to enable PIR, which assumes that

8A more natural efficiency metric is to consider the sum of the maximal number of uploaded
bits (denoted by U) and the maximal number of downloaded bits (denoted by D) by one of the
entities F or Ey to compute P, NPs. In this case, the most efficient scheme is the scheme with the
lowest communication cost, i.e., that achieves the optimal communication cost C* = inf(U + D)
over all achievable PSI schemes. The SPIR problem [8] under combined upload and download costs
is still an open problem. As we will see, our framework builds on the SPIR problem. Therefore,
in this work, we consider only the download cost. The PSI under combined upload and download
costs is an interesting future direction, which is outside the scope of this chapter. In Section [2.7.2
we provide an illustrative example to show that the upload cost can be reduced without affecting
the download cost. Nevertheless, we argue that if the PST determination is repeated (for example,
if one list is kept the same and the other list is regularly updated, we always use the fixed list
to initiate the PSI process), the queries could be used repeatedly without compromising the user
privacy as long as the databases do not collude. In this case, the upload cost would not scale with
the number of PSI determination rounds, unlike the download cost.

27

the user knows the position of the desired file in the databases. To that end, define
the incidence vector X; € FX as a binary vector of size K associated with the set

P;. Denote the jth element of the incidence vector X; by X;(j) where

1, jeP
Xi(j) = (2.6)

for all j € Sk. Hence, X;(j) is an i.i.d. random variable for all j € [K] such that
X;(j) ~ Ber(g;). The entity E; constructs the incidence vector X; corresponding
to the set P; (see Fig. [2.2)). The entity F; replicates the vector X; at all of its NV;
associated databases (see Fig. . Note that X; is a sufficient statistic for P; for a
given K. The PSI determination process is performed over X; or X5, and not over
the original P; or Ps.

To solidify ideas, we state the variables defined so far explicitly over a spe-
cific example. Consider the example in Fig. 2.1, Here, the entity F; has the set
Py ={a,b,c,d} and the entity E, has the set Py = {a,c,e, f,g,h}. Therefore, the
intersection is Py NP2 = {a,c}. Let us assume that the alphabet, Py, for this
example is Pypn = {a,b,c,d, e, f, g, h,i,j} as shown in Fig. . Then, the incidence
vectors at the entities are X1 =[1111000000] and Xo=[101011110 0],
which are also shown in Fig. 2.2l For this example, P, = 4, P, = 6, K = 10, and
M = 2. Finally, the MM-SPIR is conducted over the replicated incidence vectors
at the two entities as shown in Fig. [2.3

Without loss of generality, assume that E; initiates the PSI process. F; does

28

alphabet

E, By

Y oo TTTTTTEEEEET ;(---hl |‘---------------);---.l
: v : :
1 DB 1 [|DBl :
]]]) R]
N ge— Lo ' L
' @ 1 ' : a 0 '
L] L] L] 1
1 ' 1 '
5 2k [z |
1 L] L] 1
|m| T AN
: : bl e :
' 0 ' : 1 :
' ' : '
1 0 1 1 . 1 1
' ¢ ' : :
' 0| : . 1]
1 1 L] L]
L] L] L] 1
' 0| ' Lo
: 0] : 0|
1 ~——— 1 ' ——/ '
= 7 s ol

1] 1

Figure 2.2: Example for the transformation from sets to incidence vectors. F; has
the set Py = {a,b,c,d} and Es has the set P, = {a,c,e, f,g,h}. The alphabet
is Paupn = {a,b,c,d,e, f,g,h,1,7}. Entity E; constructs an incidence vector X; to
facilitate MM-SPIR.

not know M in advance. The only information F; has is P;. Consequently, £ wants
to verify the existence of each element of P; in Py to deduce P; N Po. Thus, E;
needs to jointly and reliably download the bits Wp, = {X5(j) : j € P1} by sending
Ny queries to the databases associated with Fy and collecting the corresponding
answers with the knowledge of X7, i.e., H(P; N Po|Wp,, X;) = 0. Hence, we can

write the PSI reliability constraint as,

HWp, QP AT X)) =0 (2.7)

This is exactly the reliability constraint in MM-SPIR noting that P is known to the

29

1
H
=l
jos i |
-1
H
H
=
ool
N
H
\
H
H
=i
N
H
'
=H
(soh]
H
T
VS
H
g
|:°_._
RN
&
. g
[ss}
=
o|c|H|H|M|H|o|H|c|H|»_-_
o)
5]

AlP
! AP
[Lo Lo Jo F— pecoter

e) 9.0 099 |

Figure 2.3: Example for the transformation from the PSI problem to an MM-SPIR
problem. FE; needs to retrieve the elements corresponding to P; from the incidence

vector X, without revealing Py, while F, responds with answer strings that do not
leak P;.

user; see Section [2.5.1] Meanwhile, given the knowledge of X; and the intersection
Py NPy, Wp, can also be deduced by Ey, i.e., H(Wp,|P;y NPy, X1) = 0. Hence, the
MM-SPIR reliability constraint can revert back to the PSI reliability constraint.
Since F; is searching for the existence of all elements of P; in P, without
leaking any information about P; to any individual database associated with FEs,

the F; privacy constraint in (2.4)) dictates,
I(P; QAP X5, 8) =0, ny € [Ny (2.8)

ng ng

This is exactly the privacy constraint in MM-SPIR if we treat X, as the messages

30

in the databases with length 1; see Section [2.5.1]
As the databases associated with Fy store X, now, to ensure the Ey privacy
constraint in ({2.5)), the answers from F, databases should not leak anything about

E, p,, which can be further mapped to not leaking any information about Wp =

{Xa(j) : 7 ¢ Pr} as,

P1 P1
I(W,ﬁ17 Q[llj\/L? A[1:]V]27 Xl) = 0 (29)

This is exactly the database privacy constraint in MM-SPIR as P is known to the
user; see Section [2.5.1]

Consequently, with the cardinality of sets in each entity being global knowl-
edge, the PSI problem is formally equivalent to the MM-SPIR problem with
i.i.d. messages of length 1 bit each (also see Fig. [2.3), when the entities F; and
FE5 are allowed to construct the corresponding incidence vectors for the original sets
P, and P,. The message length constraint of 1 bit per message, i.e., H(W}) =1 for
all k € [K], comes due to messages representing incidences in the SPIR problem.
The i.i.d. property of the messages that we have here in this chapter is a consequence
of the i.i.d. generation of the sets with probability ¢;, and it is not true in general.
In Section , we derive in detail the capacity of the MM-SPIR problem (see also
Section , which in turn gives the most efficient information-theoretic PSI scheme

in terms of the download cost.

31

2.4 Main Result

In this section, we present our main result concerning the PSI problem. The re-
sult provides the optimal (minimum) download cost for the PSI problem under the
assumptions in Sections [2.2] and The result is based on the optimal download
cost of the MM-SPIR problem, which is presented in detail in Section 2.5 see also

Section

Theorem 2.1 In the PSI problem, the elements of the sets are added independently
with probability q; = % from a finite set of size K. Once the set generation is fin-
ished, the fized set Py where |P1| = Py < K is stored among Ny databases and the
fized set Py where |Py| = Py < K is stored among Ny databases. The set cardi-

nalities Py and P, are made public. The amount of common randomness satiesfies

H(S) > min{{Nfil-‘ , {Nfil-‘}. Then, the optimal download cost with one-round

communication (one entity sends the queries to the other entity and then receives

feedback) is,

D — minﬂj\];lj_%J , L\]f?]jll” (2.10)

The proof of Theorem is a direct consequence of the capacity result for
MM-SPIR presented in Section 2.5} see also Section We have the following

remarks.

Remark 2.1 In the special case of having P; = K for 1 =1 ori = 2, the download

32

cost is trivially zero. This is due to the fact that if P, = K for ezample, the entity
Ey directly concludes that the intersection Py NPy = Py without sending any queries

to E1 or requiring any common randommness.

Remark 2.2 The relationship M = |Pi| + [Pz — |P1 U Pa| > |P1| + |Pe| — K is
always satisfied automatically. However, in the special case of M = |Py|+|P2| — K,
the entire list of the entity that starts the PSI determination will be inevitably leaked
to the second entity, as the list sizes |P1|, |Pa| are globally known. Consequently, our
results hold for the strict inequality case M > |Py|+|Pa| — K. It is worth noting that
this restriction is due to the nature of the PSI problem itself and not an artifact of
our proposed scheme. Furthermore, entity 1 cannot simply announce its list directly

as the cardinality of the intersection set M is unknown in advance.

Remark 2.3 The min term wn Theorem comes from the fact that either en-
tity can wnitiate the PSI determination process so that the overall download cost is

manimized.

Remark 2.4 We note that although our result is exact, i.e., the download cost
capacity (in the sense of matching achievability and converse proofs) under the as-
sumptions of independent generation model for the lists with q; = %, our scheme 1is

achievable for any list generation model with arbitrary q; (see Footnote @)

Remark 2.5 Our result is private in information-theoretic (absolute) sense and
does not need any assumptions about the computational powers of the entities. Fur-

thermore, the achievable scheme is fairly simple and easy to implement compared to

33

the fully homomorphic encryption needed in [5]. A drawback of our approach is that
it needs multiple non-colluding databases (N1 or Ny needs to be strictly larger than

1), otherwise, our scheme is infeasible.

Remark 2.6 The linear scalability of our scheme matches the linear scalability of

the best-known set intersection algorithms without any privacy constraints.

2.5 MM-SPIR as a Stand-Alone Problem

In this section, we consider the MM-SPIR problem. We present the problem in a
stand-alone format, i.e., we present a formal problem description in Section [2.5.1],
followed by the main result in Section [2.5.2] the converse in Section [2.5.3] and a

novel achievability in Section [2.5.4]

2.5.1 MM-SPIR: Formal Problem Description

There are N non-colluding databases each storing K i.i.d. messages. Each message
is composed of L ﬂ i.i.d. and uniformly chosen symbols from a sufficiently large finite

field IF,. Then,

HW,) =L, kelK] (2.11)

H(Wy.x) = KL (2.12)

In the MM-SPIR problem, our goal is to retrieve a set of messages Wp out

9As in most PIR problems, the message length L can approach infinity.

34

of the K available messages without leaking any information regarding the index
set P to any individual database where P = {iy,is, -+ ,ip} C [K] such that its
cardinality is |P| = PB We assume that the cardinality of the potential message
set, P, is known to all databases in the server. This is the user privacy constraint. In
addition, our goal is to not retrieve any messages beyond the desired set of messages
Wp. This is the database privacy constraint.

Following the SPIR formulation in [§], let F denote the randomness in the
retrieving strategy adopted by the user. Because of the user privacy constraint, F
is a random variable whose realization is only known to the user, but is unknown
to the databases. A necessary common randomness S must be shared among the
N databases to satisfy the database privacy constraint. The random variable S is
generated independent of the message set Wy.x. Similarly, F is independent of Wy.x
as the user does not know message realizations in advance. Moreover, F and S are

generated independently without knowing the desired index set P. Then,

H(F,S,P,Wik)=H(F)+ H(S)+ H(P)+ HWi.k) (2.13)

To perform MM-SPIR, a user generates one query QQD ! for each database
according to the randomness F and then sends it to the nth database. Hence, the

. P e e . . .
queries Q[l:]]V are deterministic functions of F, i.e.,

HQP QP ... QP \F)=0, vP (2.14)

10We use the symbol P to denote the random variable corresponding to the desired set and its
realization with little abuse of notation.

35

Combining (2.13) and (2.14)), the queries are independent of the messages, i.e.,
QYL Wik) = 0 2.15
(QI:N7 13K) (.)

After receiving a query from the user, each database truthfully generates an

answer string based on the messages and the common randomness, hence,
H(APQIP, Wik, S) =0, Vn,vP (2.16)

After collecting all the answer strings from the N databases, the user should

be able to decode the desired messages Wp reliably, therefore,
veliability] H(WelATL, QL F) & HWp AT, Py =0, P (217)

In order to protect the user’s privacy, the query generated to retrieve the set
of messages Wp, should be statistically indistinguishable from the one generated to

retrieve the set of messages Wp, where |Py| = [Py = P, i.e.,

[user privacy] (QP', AP Wy,)

~ QP2 APl Wy 4o S), Yn, VP, Pyst. [P =P (2.18)
The user privacy constraint in (2.18)) is equivalent to,

[user privacy] I(P; QTN APL Wik, S) =0, VP (2.19)

36

In order to protect the databases’ privacy, the user should learn nothing about

W5 which is the complement of Wp, i.e., W5 = Wi.x\Wp,

[database privacy] I(Wp; Q[IP]]V, A[lﬁ]v, F)=0, VP (2.20)

An achievable MM-SPIR scheme is a scheme that satisfies the MM-SPIR reli-

ability constraint (2.17]), the user privacy constraint (2.18)-(2.19)), and the database

privacy constraint (2.20)). The efficiency of the scheme is measured in terms of the
maximal number of downloaded bits by the user from all the databases, denoted by

Dyrv—sprr- Thus, the sum retrieval rate of MM-SPIR is given by

PL
Rym-spir = Dorr—srin (2.21)

The sum capacity of MM-SPIR, Cy/pr—sprr, is the supremum of the sum retrieval

rates Ryra—sprr over all achievable schemes.

2.5.2 MM-SPIR: Main Results

Our stand-alone result for MM-SPIR is stated in the following theorem. We only

consider N > 2 as SPIR is infeasible for N = 1.

Theorem 2.2 The MM-SPIR capacity for N > 2, K > 2, and a fired P < K, 1is

37

given by,

1, P=K
Cum-sPIR=91- L+ 1<P<K-—1, H(S)> £L (2.22)
0, otherwise

\

The converse proof is given is Section [2.5.3] and the achievability proof is given

in Section [2.5.40 We have the following remarks concerning Theorem [2.2]

Remark 2.7 The result implies that the capacity of MM-SPIR is exactly the same
as the capacity of SM-SPIR [§]. Hence, there is no gain from joint retrieval in
comparison to successive single-message SPIR [§]. This in contrast to the gain
in MM-PIR [23] in comparison to successive single-message PIR [6]. MM-SPIR

capacity expression in Theorem inherits all of the structural remarks from [§].

Remark 2.8 Similar to the SM-SPIR problem, we observe a threshold effect on the
size of the required common randommness. Specifically, we note that there is a minimal
required size for the common randomness above which the problem is feasible. This
threshold is P times the threshold in SM-SPIR. Using a common randomness in the
amount of the threshold achieves the full capacity, and there is no need to use any

more randomness than the threshold.

Remark 2.9 For the extreme case of P = K, the SPIR capacity is 1 without using
any common randomness. This is due to the fact that the user privacy and the

database privacy constraints are trivially satisfied, and hence the user can simply

38

download all of the messages from one of the databases without using any common

randommness.

2.5.3 MM-SPIR: Converse Proof

In this section, we derive the converse for Theorem [2.2] In the converse proof, we
focus on the case P < K — 1. Because when P = K, the trivial upper bound for
the retrieval rate R < 1 and the trivial lower bound for the common randomness
H(S) > 0 suffice. Further, we exclusively focus on the case K > 3. When K = 1,
we have P = 1, and the converse trivially follows since P = K. When K = 2: If
P = 2, the converse trivially follows from the converse of P = K, and when P = 1,
the converse follows from the converse of SM-SPIR [§].

Now, focusing on the case K > 3, and P < K —1, the total number of possible
choices for the index set P is § = (f;) > 3. Thus, there always exist at least three
non-identical index sets Py, P, P3 such that |P;| = P, i =1,2,3.

To prove the converse of Theorem we first need the following lemmas.
Lemmas are are direct extensions to [8, Lemmas 1 and 2] to the setting of
MM-SPIR. Lemma simply states that an answer string AP which is received
at the user to retrieve Wp, has the same size as AlP 2}, i.e., all answer strings are
symmetric in length, even if we condition over the desired message set Wp,. This

lemma is a direct consequence of the user privacy constraint.

39

Lemma 2.1 (Symmetry)

HAPYWp,, QP = H(APWp,, QIP), ¥n, YPy, Py s.t. Pi # Pa, [P1| = [Py

(2.23)
H(Ag)l”@g)ﬂ) = H(AEZDQHQQDZ}% Vn, VP, Py s.t. P1 # Pa, |P1| = | P,
(2.24)

Proof: From the user privacy constraint (2.18)), we have
H(A?IhWPNQ?[ZDI]) = H<A7[ZD2]7W7’17Q£ZD2}) (2'25>
H(Wp,, Q) = HWp,, Q) (2.26)

Using the definition of conditional entropy H(X|Y) = H(X,Y) — H(Y), we obtain
(2.23). The proof of follows from the user privacy constraint as well with
noting that H(ATY, Q") = g(Al? Qi) and H(ATY) = HAT)). =

Next, Lemma [2.2] states that knowing the user’s private randomness F does

not help in decreasing the uncertainty of the answer string AP

Lemma 2.2 (Effect of conditioning on user’s randomness)

H(APYWp, F, QPN = H(AP | Wp, QIP), ¥n,vP (2.27)

40

Proof: We start with the following mutual information,

I(ATY FIwp, QPN < 1(AP), Wik, S; FIWp, Q) (2.28)
= (W, S; FIWp, Q) + 1AL FIWok, S, Wp, Q)

(2.29)

= I(Wix, S; FIWp, Q) + I(AP; FIWik, S, Q) (2.30)

= I(Wik, S; FIWp, QY + H(AP W, i, S, Q)

— H(APNF, Wik, S, Q) (2.31)
= (Wi, S; F|Wp, Q7)) (2.32)
< I(Whk, S; FIWe, Q1) + I(Wp; FIQIT) (2.33)
= I(Wyk, Wp, S; FIQI) (2.34)
= I(Wi.k, S; F|QP (2.35)
< I(Wik, S; FIQT) + T(Wik, S; Q) (2.36)
= I(Wh.k, S; F, QP (2.37)
=0 (2.38)

where (2.32)) follows from the fact that the answer strings are deterministic func-
tions of the queries and the messages, and ([2.38) follows from the independence of
(Wi.k,S,F) and (2.14]). Since mutual information cannot be negative, it must be

equal to zero, and

H(AP [Wp, QP — HAP YW, F, QPN = I(AP, Flwp, QP =0 (2.39)

41

Figure 2.4: The relation of the index sets presented in Lemma and used in

Lemmas and

completing the proof. W

Next, we need Lemma [2.3, which is an existence proof for index sets with
specific properties. This technical lemma is needed in the proofs of upcoming two
lemmas, Lemma and Lemma [2.5] First, we give the definitions of relevant index
sets Pa, Py, P, Py, and an element i,,. Given P; and P,, we divide P; into two
disjoint partitions P, and P, (i.e., P, UP, = P; and P, NP, = 0), where P, C P,
(i.e., PLNPy = P,), Py € Py. Suppose |P,| = M € [1: P — 1]. Note that since
Py # Py, we cannot have M = P. We assume that P, = {iy,--- iy} for clarity
of presentation. Given an arbitrary number m € [1 : M], we define a new index
set P. = {i1,- -+ , i, } which consists of exactly the first m elements in the index set
P,. Let 1, be the last element from the index set P.. We obtain a new index set
Py = {i1, - ,im—1} after removing this element. That means P, = Py U {i,,}. The

relation of all these mentioned index sets is shown in Fig. [2.4]

42

Lemma 2.3 For K > 3,1 < P < K—1, given index sets Py, Py such that |P;| = P

fori=1,2 and Py # P, we can construct an index set Ps such that,
Z) P3 ?é ,Pl and 7)3 7é 7)2,
i) |Ps| = P, and

iii) P includes P, U Py but does not include the common element i, in Py N Ps.

Proof: The key is to construct an index set P, which satisfies the following two
constraints: P, C [1 : K\{Py,P.} and |P.| = M — (m — 1). As we can see,
[P \P:| = M —m and |P>\P,| > 1. One way to construct the index set P, is to
include all the (M — m) elements from the index set P,\P. and one more element

from the index set Po\P,, i.e.,

Pe = (P,\P.) U {i.} (2.40)

where i, € P\ P,. The index set P, is generally not unique (for some examples, see

Examples 1| and [2] below). Now, we are ready to construct the index set Pj as,

Py =P, UP;UP. (2.41)

Since Py, Py, P are disjoint sets, |Ps| = |Po| + |Pa| + |Pe| = (P — M)+ (m —1) +
(M —m+1) = P. Thus, we are able to construct P3 such that |Ps| = P. Based on
the formulation of P,, P; and P,, these three index sets do not include the element

im. Hence, i, ¢ P3. Since both P; and P, have the element i,, as i,, belongs to

43

their intersection P,, Ps is not the same as P; or Py, i.e., P3 # P1, P3 # Py and
|Ps|=P. 1
The following two examples illustrate the relations between the aforementioned

sets, which will be important for the converse proof through the proofs of Lemmas[2.4]

and 2.5]

Example 1: Suppose K = 3, P = 2 and N > 2 is an arbitrary positive integer.
The total possible number of index sets is ([;) = 3. Assume P; = {1,2}, P, ={1,3}
without loss of generality. Then, P, = {1}, P, = {2} and the corresponding M is
1. Thus, m can only take the value 1. That means P. = {1} and P, has to be an
empty set. For P,, we cannot take any element from the set P,\P. as it is empty,
instead we can take the element 3 from the set P,\P,. Thus, P, is formed as {3},

and we construct Ps = {2, 3}.

Example 2: Suppose K = 6, P = 4 and N > 2 is an arbitrary positive integer.
The total possible number of index sets is (’;) = 15. Assume P; = {1,3,5,6},
Py = {2,3,5,6} without loss of generality. Then, P, = {3,5,6}, P, = {1} and
the corresponding M is 3. Thus, m can take the values 1, 2 or 3. To avoid being
repetitive, we only consider the cases of m = 2 or m = 3, which are different from
Example [1}

When m = 2, P. = {3,5} and P; = {3}. For P., we can take the element 6
from the set P,\P. and then take the element 2 from the set P;\P,. Alternatively,

we can pick the element 4 outside the union P; U P, instead of the element 6 from

the set P,\P.. Thus, P, is formed as {2,6} (or {4,6}). Therefore, we finally obtain

44

Ps = {1,2,3,6} (or {1,3,4,6}).

When m = 3, P. = {3,5,6} and P; = {3,5}. For P., we cannot take any
element from the set P,\P,. since it is empty. We take the element 2 from the set
P2\ P, or take the element 4 outside the union P; U P,. Thus, P, is formed as {2}
(or {4}), and we construct P3 = {1,2,3,5} (or {1,3,4,5}).

Next, we need the following lemma. Lemma [2.4] states that revealing any
individual answer given the messages (Wp,, Wp,) does not leak any information

about the message W;, .

Lemma 2.4 (Message leakage within any individual answer string) When
1< P<K-—1and M > 1, for arbitrary m € [1 : M], the following equality is

always true,

H(VVZm |pr7 WPd’ AWDQ]» QQDQ]) = H(Wim|W7’b7 Wpd’ QQDQU (2'42)

n

Remark 2.10 The goal of Lemma is to prove a key step, equation (2.63)), in
the proof of Lemma . We remark that Lemma is true for any m € [2 : M]

when M > 1 as proved below. In the case when m = 1, the messages set Wy .; |

(i.e., Py) is an empty set and thus Lemma 18 still true in this case.

Proof: From the user privacy constraint (2.18)), we have,

H(Wp,, Wp,, AP Q) = H(Wp,, Wp,, AP QP4 (2.43)

H(W'Pb? WPd’ AEZ%], QQDQ]) = H<pr7 WPd? AQDS}J QEPS}) (244>

45

Since P. = Py U i,,, we have

H<Wim|W7’b7 WPd’ AEPQ]7 Qg)ﬂ) = H(VVimWVva WPd’ AQDS}v QQDS}) (2'45>

Similarly,

(|W7’b> WPd’ Q P2]) (Wlm ‘pr WPd’ QLZDS]) (2'46>

From the database privacy constraint (2.20)), we have,

0= I(Wp,; ALY, QUN, F) (247)
= [(Wp,; AN, We,, QT3 F) (2.48)
> [(Wp,; AT W, Wi, Q7)) (2.49)
> I(W;,; AP wp, W, Q%)) (2.50)
> 1(W;,; AP, W, W, QIF#) (2.51)
= [(W,,; AT [Wp,, Wp,, Q7)) (2.52)
= H(W;, [Wp,, Wp,, Q) — H(W,, | AT, Wp,, W, Q7)) (2.53)

where (2.48) comes from the MM-SPIR reliability constraint (2.17)), comes
from the relationship P3 = P, U Py U P, (ie, P, U Py C P3), and -
comes from the relationship i, € Ps;. Thus, H(W,, |[Wp,, Wp,, 733]) <

H(W; APl Wp,, Wp,, [7)3]). This concludes the proof by observing that

m ’

HW,;, |Wp,, Wp,, [P3]) H(W, ,m|AP“ Wp,, Wp,, [5]) trivially as conditioning

46

cannot increase entropy. H
Finally, the following lemma states that conditioning on an undesired message
set does not decrease the uncertainty on any individual answer string. This is a

consequence of the database privacy constraint.

Lemma 2.5 (Effect of conditioning on an undesired message set)

H(AP Wy, QP = H(APQPN i, WPy, Py s.t. Py # Pa, |Pi| = |Pa| (2.54)

Remark 2.11 We note that although Lemma has the same flavor as [8,
eqn. (39)], the proof is much more involved. The main reason for this difficulty is
the inter-relations between subsets of messages of size P. Specifically, in SM-SPIR,
all message subsets are of size P =1, and therefore, they are disjoint. However, in
MM-SPIR, the message subsets are of size P, and they intersect in general, i.e., for
a given Py, Po such that |Py| = |Ps| = P, the intersection Py N Py is not an empty
set in general in contrast to SM-SPIR. Dealing with message subset intersections is

the essence of introducing and proving Lemmas and[2.5

Proof: From the database privacy constraint ([2.20]), we have,

0= I(Wp,; AT, QUL F) (2.55)
> I(Wp,; AP, Q) (2.56)
> I(Wp,; AP QI2)) (2.57)
= I(Wp,; ATZ|QI72)) (2.58)

47

= H(Wp,|QIP) — H(Wp,|A, QIP]) (2.59)

where ([2.57)) comes from the relationship P, C Ps, (2.58) follows from the indepen-

dence of messages and queries. Hence, H (pr\Q,[Z) 2]) =H (pr\A,[Z) A Q) as the

reverse implication follows form the fact that conditioning cannot increase entropy.
Case 1: M = 0: In this case, there is no intersection between P; and Ps.

Wp, is an empty set of messages and then Wp, = Wp,. Hence,

[(Wpy; ATNQI) = 1(Way; ATQI) = 0 (2.60)

where (2.60) follows from ([2.58]). This proves ([2.54]), the claim of lemma, when
M = 0.

Case 2: M > 1: In this case, Wp, = Wp, UWp, and Wp, = {W,,,--- , W;,, }.

H(Wpa’WPb7 AQDQ}’ Qgpﬂ) - H(Wh:iM‘WPb’ ALPQL Q?EPQ]> (2'61)
= H(W;,|[Wp,, A2, QIP2)) + H(W,, Wi, Wp,, AP QIF2))
+"'+H(M/iMWVil:iM—l’pr7Ag)2]7QgD2]) (2'62)

- H(Wil|WPb7Qg>2]) + H(VVi2|VVi17 prv Qgpﬂ)

et H(I/VZM |Wi11iM—17 WPb’ Qv[fﬂ) (263>
= H(Wil:iM ‘W’Pba QLZDQ]) (264)
= H(Wp,[Wp,, Q) (2.65)

48

where (2.63)) comes from the direct application of Lemma,

Thus, we have,

[(Wp,; APHQIP2)) = H(Wp, |QI) — H(Wp, | AT, QIF2) (2.66)
= H(Wp,|Q)) — H(Wp,, Wp,| AP, Q1) (2.67)
= H(Wp,|QT*)) — H(Wp, |AT?, Q1))

— H(Wp, |Wp,, AL QIP]) (2.68)

= H(Wp, Q") = H(Wp,|Q") — H(Wp,|Wp,, Q7)) (2.69)

= H(Wp,|QT*)) — H(Wp,, Wp,|Q*)) (2.70)
= H(Wp,|QT*)) — H(Wp, Q) (2.71)
—0 (2.72)

where ([2.69)) follows from ([2.59)) and (2.65]). This proves (2.54)), the claim of lemma,

when M > 1.

Combining (2.60) and (2.72)) proves (2.54) in all cases completing the proof.

Remark 2.12 The intuition behind Lemma 1s as follows: If the pair

(Ag%], 7[?2]) provide any information about Wp,, they have to provide some in-

formation about Wp, under the user privacy constraint. However, database privacy

constraint is thus obviously violated if the user receives any information about Wp, .
[P]

Consequently, the pair (A[fﬂ, n ') can never provide any information about W, .

Therefore, we are able to derive H(W’}D1|A7[Zj2]7 Z’Q]) = H(Wp,) H(Wp1|Q1[Z)2]),

49

and hence I(Wp,; A?2]|Q£ZD2]) =0.

Now, we are ready to construct the main body of the converse proof for MM-

SPIR, as well as the minimal entropy of common randomness required to achieve

perfect MM-SPIR. Since we dealt with the inter-relations between message subsets

in the previous lemmas and reached similar conclusions to those in SM-SPIR [g],

the main body of the converse proof will be similar in structure to its counterpart

in SM-SPIR.

The proof for R < Cyy_spir:

PL = H(Wp,)
= H(Wp,|F)
= H(Wp,|F) — H(Wp, |AT}, F)
=I(Wp,; A 7)1]|]:)
= HADNF) - HAN W), F)
= H(ATY|F) — HAL W, F.QP)
< HADNF) = HAP Wy, F, QM)
= H(ATN|F) = HAP W, , Q)
= H(ATN|F) = HAP W, , Q)
= H(ATN|F) = H(AP) Q)
= H(ADNF) = HAP|QIPY)

H(APIF) — HAPY QPP F)

20

(2.73)
(2.74)
(2.75)
(2.76)
(2.77)
(2.78)
(2.79)
(2.80)
(2.81)
(2.82)
(2.83)

(2.84)

= H(APH|F) — H(AP|F) (2.85)

where follows from the independence of the user’s private randomness and
the messages, follows from the MM-SPIR reliability constraint ,
follows from the fact that the queries are deterministic functions of the user’s pri-
vate randomness F , follows from Lemma , follows from the
first part of Lemma , follows from Lemma , follows from the
second part Lemma , and again follows from the fact that the queries are
deterministic functions of the user’s private randomness F .

By summing up for all n € [1 : N] and letting P denote the general

desired index set, we obtain,

NPL < NH(ATL|17) - Z H(A (2.86)
< NH(AT}|F) - H(ATL|F) (2.87)
= (N = DH (AT |F) (2.88)
<(N-1) i H(AP)|F) (2.89)
<(N-1) i H(AD) (2.90)

which leads to the desired converse result on the retrieval rate,

PL PL N -1 1
R _ = < < =1—- — 2.91
MM=SPIR =D vi—spir ZnN=1 H(ALP]) - N N (2:91)

o1

The proof for H(S) > %

0= I(Wp,; ALY, QU F)
> I(Wp,; ALY, F)
= I(Wp,; ALY, Wp,, F)
= [(Wp,; ATN|Wp,, F)
> [(Wp,; AW, , F)
= H(AP)|Wp,, F) — H(AP)| Wk, F)
= H(ATWp,, F) — HAP Wi, F) + HAT Wy, F, S)
= H(AP|Wp,, F) — 1(S; APV Wy, F)
= H(APWp,, F) — H(S|Wy.k, F) + H(S|AP, Wik, F)
= H(APYWp,, F) — H(S) + H(S|APY) Wy, F)
> H(API Wy, F) — H(S)
= H(AP Wy, F, Q")) — H(S)

= H(APYQIP) - H(S)

(2.92)
(2.93)
(2.94)
(2.95)
(2.96)
(2.97)
(2.98)
(2.99)
(2.100)
(2.101)
(2.102)
(2.103)

(2.104)

where (2.92)) follows from the database privacy constraint ([2.20)), (2.94]) follows from

the MM-SPIR reliability constraint (2.17)), (2.98)) follows from the fact that the

answer strings are deterministic functions of messages and queries which are also

functions of the randomness F as in (2.14)) and (2.16]), (2.101) follows from the

independence of the common randomness, messages, and user’s private randomness

as in (2.13)), (2.103)) follows from ([2.14)), and (2.104)) follows from the steps between

52

(2.80)-(2.83)) by applying Lemma and again.
By summing (2.104) up for all n € [1 : N] and letting P denote the general

desired index set again, we obtain,

N
0>> HAMQT) — NH(S) (2.105)
n=1
> H(ADYQP) — NH(S) (2.106)
> H(ATLQIP, F) — NH(S) (2.107)
= HAPL|F) - NH(S) (2.108)
>]i TPL— NH(S) (2.109)

where (2.108)) follows from ([2.14]) and (2.109)) follows from (2.88]), which leads to a

lower bound for the minimal required entropy of common randomness S,

PL

H(S) > +—

(2.110)

2.5.4 MM-SPIR: Achievability Proof

Since the MM-SPIR capacity is the same as the SM-SPIR capacity, and the required
common randomness is P times the required common randomness for SM-SPIR, we
can use the achievable scheme in [§] successively P times in a row (by utilizing
independent common randomness each time) to achieve the MM-SPIR capacity.
Although the query structure for the capacity-achieving scheme for SPIR in [8] is

quite simple, it is fundamentally different than the query structure for the capacity-

93

achieving scheme for PIR in [6]. This means that user/databases should execute
different query structures for different database privacy levels. In this chapter,
by combining ideas for achievability from [23] and [15], we propose an alternative
capacity-achieving scheme for MM-SPIR for any['!] P. Our achievability scheme
enables us to switch between MM-PIR and MM-SPIR seamlessly, and therefore
support different database privacy levels, as the basic query structures are similaﬂ.
We start with two motivating examples in Section|2.5.4.1), give the general achievable
scheme in Section [2.5.4.2, and calculate its rate and required common randomness
amount in Section 2.5.4.3

For convenience, we use the k-sum notation in [6,23]. A k-sum is a sum of k
symbols from k different messages. Thus, a k-sum symbol appears only in round k.
We denote the number of stages in round £k by ay, which was originally introduced
in [23]. In addition, we use v to denote the number of repetitions of the schemd™|

in [23] we need before we start assigning common randomness symbols.

2.5.4.1 Motivating Examples

Example 3: Consider the case K = 3, P =1, N = 3. Our achievable scheme is

as follows: First, we generate an initial query table, which strictly follows the query

We note that the capacity-achieving scheme for K = P is simply to download all messages
from one of the databases, hence, without loss of generality, we focus on the case 1 < P < K —1
in this section.

12We note that the presented scheme in this section can be thought of as a stand-alone capacity-
achieving scheme for the MM-SPIR problem when the message lengths are unconstrained. Conse-
quently, our proposed scheme in Section [2.5.4] cannot be applied to the PSI problem, as it requires
the message size to be constrained to L = 1.

13 When we refer to the scheme in [23], we refer to the near-optimal scheme in [23] which was
introduced for K/P > 2. Reference 23] has a different, optimal, scheme for K/P < 2. However,
in this chapter, even when K/P < 2, we still refer to (and use) the near-optimal scheme in |23].

o4

table generation in [23]. For this case, from [23], we obtain the number of stages
needed in each round as a; = 1, as = 2, a3 = 4. From the perspective of a database,
before the assignment of common randomness symbols begins, the total number
of downloaded desired symbols in round 1 is oy P = 1 x 1 = 1. Thus, we need 1
previously downloaded common randomness symbol for this desired symbol. Since
this common randomness symbol needs to come from the other N —1 = 2 databases,
the required common randomness to be downloaded from each database is % symbols
(assuming a symmetric scheme that distributes downloads equally over the other 2
databases). Thus, in order to obtain an integer number of common randomness
symbols to be downloaded from each database, we repeat the scheme in [23] two
times (i.e., v = 2) before we begin assigning the common randomness symbols.
Hence, the number of stages in each round become vay, = 2q4, for £ = 1,2, 3.
That is we have 2 stages of 1-sums, 4 stages of 2-sums and 8 stages of 3-sums; see
Table 211

We are now ready to start assigning the common randomness symbols. We
first download 1 common randomness symbol from each database; for instance, we
download s; from database 1. In round 1, we mix (i.e., add) a common randomness
symbol to each 1-sum. All the common randomness symbols at each database should
be distinct; for instance, observe that, we add s», s3, S4, S5, S¢, S7 at database 1.
Second, the common randomness symbols added to the desired symbols (a symbols
in this example) must be downloaded from other databases; for instance, note that
so and s3 added to symbols a; and ay are downloaded from databases 2 and 3. Note

that the indices of the common randomness symbols added to the undesired symbols

95

a1 + C3 + S10
a12 + ¢4+ 511
a13 + C5 + S14
14 + Cg + S15
b7 + c7 + S16
bg + Cg + S17
by + ¢g + 518
bio + C10 + S19

Q19 + C1 + Sg
(g0 + C2 + S7
921 + Cy + S14
QA92 + Cg + Si5
bi1 + c11 + S20
big + c12 + 521
b1z + c13 + 522
bis + c14 + 523

Database 1 Database 2 Database 3
S1 52 S3
ai + Sa as + s1 as + 81
a9 + S3 a4 + S3 e + S2
bl + S84 b3 + Sg b5 “+ S19
bQ + S5 b4 + S9 b(; + S13
c1+ Se c3 + S10 Cs + S14
Co + Sv c4 + S11 Ce + S15
ar + b3 + sg ais + by + sy g3 + by + 34
a8+b4—|—89 a16+bg+85 (124+b2—|—35
ag + b5 + S19 a7 + b5 —+ S19 o5 + bg + Sg
aio + b6 + S13 aig + bﬁ + S13 26 + b4 + Sog

Qo7 + C1 + Sg
ags + o + 57
29 + C3 + S10
aszp + C4 + S11
bis + c15 + S24
bis + c16 + S25
bi7 + c17 + S26
big + c18 + Sa7

as; + by + c11 + 520
asy + bia + ci2 + 521
azs + b1z + 13 + S22
azq + D13 + g + S3
azs + bis + c15 + S
aze + big + 16 + 525
azy + bir + ci7 + S26
azg + big + c18 + So7

asg + by + c7 + s16
a4 + bg + cg + S17
a4 + bg + Cg + S18
g2 + bio + c10 + S19
ag3 + bis + 15 + su
aaq + b1 + 16 + S25
ags + bi7 + c17 + 526
a46 + b1g + 18 + So7

ag7 + by + c7 + 516
48 + bg + Cg + S17
Q49 + bg —+ C9 + S13
aso + big + c10 + S19
as1 + b + 11+ S20
as2 + big + c12 + 591
asg + b1z + c13 + S22
as4 + b1g + C14 + S23

Table 2.1: The query table for the case K =3, P =1, N = 3.

In round 2, for every 2-sum containing a desired message symbol, we add a

o6

(symbols b and c¢) increase cumulatively, e.g., s4, 5, S6, S7 at database 1 in round 1,

and these symbols are not separately downloaded by the user.

side information symbol downloaded from another database which already contains a
common randomness symbol; for instance, we add b3+ sg that is already downloaded
from database 2, to the desired symbol a7 at database 1, i.e., we download a;+bs+ss.

On the other hand, for every 2-sum not containing any desired message symbols,

we add a new distinct common randomness symbol with a cumulatively increasing
index; for instance, for the download b; 4+ ¢; from database 1, we add s;¢ which is
a new non-downloaded common randomness symbol, and download b; + ¢7 + si6.
Finally, in round 3, where we download 3-sums, and hence every download contains
a desired symbol, we add the side information generated at other databases; for
instance, we add b1 + ¢11 + S99 downloaded from database 2, to asz; and download
az1+b11+c11+S99. This completes the achievable scheme for this case. The complete
query table is shown in Table [2.1]

Now, we calculate the rate of this scheme. The length of each message is
L = 54, and the total number of downloads is D = 81. Thus, the rate R of this
scheme is g—‘ll = % =1- %, which matches the capacity expression. In addition,

we used 27 common randomness symbols, hence the required common randomness

H(S) is 27 = &!, which matches the required minimum.

Example 4: Consider the case K = 5, P = 3, N = 2. Our achievable scheme is
as follows: Again, first, we generate an initial query table, which strictly follows
the query table generation in [23|. Note that, we still use the near-optimal scheme
in [23], even though for this case K/P < 2 (see Footnote[L3)). For this case, from [23],
we obtain the number of stages needed in each round as a; =3, as =1, a3 = a4 =0
and as = 1. In this case, from the perspective of a database, before the assignment
of common randomness symbols begins, the total number of downloaded desired
symbols in round 1 is a1 P = 3 x 3 = 9. Thus, we need 9 previously downloaded

common randomness symbols for these desired symbols. These common randomness

27

symbols need to come from the other N — 1 = 1 database. In this case, since
9/1 =9 is an integer already, we do not need to repeat the scheme unlike the case
in Example (3| Thus, v = 1 here, there is no need for repetition, and the underlying
query structure before adding common randomness symbols is exactly the same
as [23]; see Table [2.2]

We are now ready to start assigning the common randomness symbols. We
first download 9 common randomness symbols from each database; for instance, we
download sq,---,s9 from database 1. In round 1, we add a common randomness
symbol to each 1-sum. All the common randomness symbols at each database should
be distinct; for instance, observe that, we add sig,--- , so4 at database 1. Second,
the common randomness symbols added to the desired symbols (a, b, ¢ symbols
in this example) must be downloaded from the other databases; for instance, note
that s19,- -, s1s added to symbols aq, by, ¢1, as, b, c9, az, bz, c3 are downloaded from
database 2. Note that the indices of the common randomness symbols added to
the undesired symbols (symbols d and e) increase cumulatively, e.g., 19+ , So4 at
database 1 in round 1, and these symbols are not separately downloaded by the
user.

In round 2, for every 2-sum containing only one desired message symbol, we
add a side information symbol downloaded from the other database which already
contains a common randomness symbol; for instance, we add d4 + s95 that is already
downloaded from database 2, to the desired bit ag at database 1, i.e., we download
ag + d4 + So5. On the other hand, for every 2-sum containing two of the desired
message symbols, we add a new distinct common randomness symbol and download

o8

Database 1 Database 2
81,52, 53 8105 S11, 512
S4, S5, 56 513, 514, 515
87, 58, 59 816, 517, 518

531, 532, 533 534, 535, 536
a1 + S1o as + S1
b1 + S11 b4 + S9
c1 + S12 Cq + 83
di + s19 dy + S25
e1 + Sa0 eq4 + So6
as + S13 as + S4
b2 + S14 b5 + S5
C2 + 515 Cs + S
dy + 591 ds + s27
€2 + So9 es + Sog
as + Sig ag + S7
b3 + S17 bG + Sg
C3 + S18 Ce + S
d3 + S23 dg + S29
€3 + So4 ee + S30

ar + by + S34 aio + b1 + s31
a4 + c7 + S35 ai + C1og + S32
as + d4 + So5 ap; + d1 + S19
a9 + €4 + Sog a2 + €1 + Soo
b7 + ¢4 + S36 b10 + C1 + S33
bs + ds + sar b1y +dy + s2
bg + €5 + Sog b12 + €2 + So9
cs + dﬁ + So9 c11 + dg + So3
Cg + €g + S3p C1o + €3 + So4
d7+67+837 d8+€8+338
a13+b5+C5+dg+€8+838 a2+b13—|—02—|—d7—|—e7+337

Table 2.2: The query table for the case K =5, P =3, N = 2.

it separately from the other database; for instance, for the download a; + by from
database 1, we add s34 and download s34 separately from database 2, and download
a7 + by + s34. Therefore, for this, we need to download 3 common randomness
symbols (s34, S35, S36) from database 2. Further, for every 2-sum not containing any

desired message symbols, we add a new distinct common randomness symbol with a

29

cumulatively increasing index; for instance, for the download d; + e7 from database
1, we add s3; which is a new non-downloaded common randomness symbol, and
download b; 4+ ¢; + s37. We skip rounds 3 and 4 because a3 = a4 = 0. Finally, in
round 5, where we download 5-sums, we add the side information generated at the
other databases; for instance, we add dg + eg + s3g downloaded from database 2, to
a13+ bs + c5 and download aq3+ b5 + ¢5+ dg + eg + s3g. This completes the achievable
scheme for this case. The complete query table is shown in Table 2.2

Now, we calculate the rate of this scheme. We downloaded 13 a symbols, 13
b symbols and 12 ¢ symbols, hence a total of L = 38 desired symbols. The total
number of downloads is D = 76. Thus, the rate R of this scheme is % = % =1- %,
which matches the capacity expression. In addition, we used 38 common randomness
symbols, hence the required common randomness H(S) is 38 = %, which matches
the required minimum.

We finally note that, since we downloaded asymmetric number of symbols
from desired messages, i.e., 13 a symbols, 13 b symbols and 12 ¢ symbols, we can
repeat this scheme 3 times changing the roles of a, b and ¢, and have a symmetric
scheme where we download 38 a symbols, 38 b symbols and 38 ¢ symbols. This will
not change the normalized download cost and normalized downloaded common ran-

domness symbol numbers, hence, all the calculations (rate and common randomness

calculations) will remain the same.

60

2.5.4.2 General Achievable Scheme

Our achievability scheme is primarily based on the one in [23], with the addition of
downloading and/or mixing common randomness variables into symbol downloads

appropriately. We note that, here we extend the near-optimal algorithm in [23],

K

5, and therefore, use

which was originally proposed for P < %, to the case of P >
it for all 1 < P < K — 1 (see Footnote . Our achievability scheme comprises the

following steps:

1. Initetal MM-PIR Query Generation: Generate an initial query table strictly

following the near-optimal procedure in [23] for arbitrary K, P and N.

2. Repetition: Repeat Step [1] for a total of v times. The purpose of the repeti-
tion is to ¢) get an integer number of common randomness generated at each
database by a symmetric algorithm (as exemplified in Example [3]), and i) get

equal number of symbols downloaded from each desired message (as exem-

K*PNVO
P

plified in Example . Let vy be the smallest integer such that (V=1)
i.e., “xNY0) i an integer. Similarly, for 1 < k < min{P, K — P}, let v, be
() g Y,)) k

P
(%) arv

%~ is an integer (k < K — P comes from

the smallest integer such that
ag-_py1 = -+ = ap_; = 0in [23, eqn. (51)]). Then, choose v as the lowest

common multiple of these v, where k& € [0 : min{P, K — P}|.

3. Common Randomness Assignment: Assign the common randomness as fol-

lows:

vPoq

1 independent common randomness symbols to

(a) In round 1, assign

61

each database, and download them. At each database, mix every 1-sum
symbol containing a desired message symbol with an arbitrary common
randomness symbol already downloaded from another database, making
sure that every 1-sum symbol at each database is mixed with a different
common randomness symbol. Mix all other 1-sum symbols not containing
a desired symbol with a new common randomness symbol which is not

downloaded by the user.

(b) Inround k (k > 2), assign Vg@?k independent common randomness sym-
bols to each database, and download them. At each database: Mix
every k-sum symbol containing only desired message symbols with an
arbitrary common randomness symbol already downloaded from another
database. Mix every k-sum symbol containing p desired message sym-
bols (1 < p < k — 1) with the common randomness symbol from the
(k — p)-sum symbol having the same k — p undesired message symbols
downloaded at any other database. Mix every k-sum symbol not con-

taining any desired message symbols with a new common randomness

symbol which is not downloaded by the user.

(c) Repeat Step [3b| until k reaches K. Note that if oy, = 0, nothing is done.

This scheme inherits the user privacy property from the underlying scheme
in [23], as the new common randomness symbols, which are separately downloaded
and subtracted out, make no difference. Due to the procedure in Step [3| where non-

downloaded common randomness symbols are added to the downloads, no undesired

62

symbol is decodable because of the added unknown common randomness, ensuring

the database privacy constraint.

2.5.4.3 Rate and Common Randomness Amount Calculation

We calculate the achievable rate and the minimal required common randomness for
only one repetition of the scheme. The reason for this is that, in every repetition,
every involved term would be multiplied by 7', and thus 7" can be cancelled in the
numerator and the denominator of the normalized rate and normalized required
common randomness expressions.

For each database, before the assignment of common randomness, let D; be
the total number of downloaded symbols, U; be the total number of downloaded
undesired symbols, U; be the total number of downloaded symbols including only
desired message symbols, and D, be the total number of downloaded common ran-
domness symbols. The achievable rate is then given by,

DU

=1 2.111
D. T Dy (2.111)

Using the respective results in [23, eqns. (66)-(69) and (70)-(72)], we have

K K P 1 K
_ K-P
D, _’; (k>ak—;%rl (HE) —1] (2.112)
K-P P K—P
K—P 1
U, = = a1+ = -1 2.113
1 k=1 (k >ak ;fyn (! Ti)] ()

In the proposed new achievable scheme, every k-sum symbol (1 < k < min{P, K —

63

P}) containing only desired message symbols is mixed with an arbitrary common
randomness symbol which is downloaded from another database. In addition, these

downloaded common randomness symbols are uniformly requested from the other

(N — 1) databases. Thus,

min{K—P,P}

P
U= > (k)ak (2.114)
k=1
min{K—P,P}
1 1 P
Dy =l = ; (k)ak (2.115)

With these observations we have the following two lemmas where we compute

the MM-SPIR rate and the required common randomness amount.

Lemma 2.6 The rate of the proposed achievable scheme is,

R=1-— (2.116)

Proof: We first calculate D5 in two possible settings. When P < %, ie, P< K—P,

DQI

=

2‘

| —
—_

x
I~
VRS

)@k (2.117)

>

P
> Pk (2.118)

I I
- 1
= =
M= 1+
-Mw R
~—~ —~ —
=

ik (2.119)

B
Il
—
.
Il
—

)
>%r.K —bek (2.120)

2‘]
N .
M=

@
Il
—
£
Il
—

64

1 P P P
K—-2P P—k
- Ny A 2.121
N1 ;lwz ’?1 (k)r (2.121)

P
1
= 57 > (N = Drf (2.122)
=1
1 P
== > il (N - 1) (2.123)
=1

where (2.122)) follows because r; is a root of the characteristic equation [23, eqn. (59)].

When%SPSK—l,i.e.,K—PSP,

1 & (P
Do — 2.124
o= 2 () 2.121)
P P
1 P P
:ﬁz(k)a’“_ > (k>ak (2.125)
k=1 k=K —P+1
P
1 P
k=1
T
R — P E=PN 2.12
N . 1 izl/ylrz () (7)
where (2.126)) follows because ax_pi1 = -+ = ap_; = 0 due to |23} eqn. (51)], and

(2.127)) follows from ([2.123)).
Therefore, from (2.123) and (2.127), for all P, where 1 < P < K — 1, we

always have

1 (P 1 <
Dy= —— =— i P(N -1 2.128
: N_lkzz;(k)ak s DOR AU B ICAED
Now, in order to show that R = % =1- %, we need to equivalently show

65

that D1 = NU; 4+ (N — 1)D,. Thus, we proceed as,

(2.129)

~N+N-— 1] (2.130)
P B K—-P
1
=> PN (1 +— - 1] (2.131)
P 1 —-P 1 K
=> PN (1 + — (1 + —) — 1] (2.132)
- T T
P K
1
=y " (1 + ;) - 1] (2.133)

— D, (2.134)

where (2.133) follows because N(1 + L)~ = 1, which comes from [23, eqn. (62)].

T

Lemma 2.7 The minimal required common randomness in the proposed achievable

scheme 1s,

H(S) = —— (2.135)

Proof: In our proposed scheme, at each database, a new common randomness sym-
bol is employed only in two cases. The first case is when a new common randomness
symbol is added to a k-sum symbol that contains only desired message symbols. In

this case, the common randomness symbols are equally distributed over the (N —1)

66

databases and downloaded from them. The second case is when a new common
randomness symbol is assigned to a k-sum symbol that does not contain any desired
message symbol. In this case, the common randomness symbols are not downloaded.

Therefore, we count the total number of distinct common randomness symbols as

H(S) =U; + D,. We note that L can be written as 5(D; — Uy). Thus,

PL (D1 —Uh)

PL_ pDi (2.136)
_ % (2.137)
_NUi+ (]]\(7:11)1)2 — U (2.138)
(N - 1)U]1V+_(i\f — 1D, (2.139)
U +D, (2.140)
_ () (2.141)

where (2.138) comes from (2.134)), i.e., D; = NU; + (N —1)D,. R

2.6 MM-LSPIR: Arbitrary Message Lengths

Since the message sizes in the PSI problem are given and fixed, in particular, they
are fixed to be 1 (as the incidence vectors are composed 0s and 1s), we need to
determine the capacity of MM-SPIR with a given and fixed message size L. We call

this setting MM-LSPIR. The capacity of MM-LSPIR is given in the next theorem.

Theorem 2.3 The MM-LSPIR capacity for N > 2, K > 2, and P < K, for an

67

arbitrary message length L is given by,

1, P=K
O _ oL PL 2.142
MM~LSPIR TREET I1<P<K-1, H(S) > (mW ()
0, otherwise

We give the converse of Theorem in Section [2.6.1] the achievability in

Section [2.6.2, and map MM-LSPIR back to PSI in Section [2.6.3]

2.6.1 MM-LSPIR: Converse Proof

From the converse proof of Theorem [2.2] using (2.21)) and (2.91)), we have

PL . PL N1 1y
Dyy-rspin = 2N H(AT) ~ N |

Ryv—rspir =

Note that, for an arbitrary finite fixed message length L, the download cost

Dyv—rsprr must be a positive integer. Thus, we have,

NPL
Dari— —_— 2.144
MM-LSPIR 2 [N—l—‘ ()
and therefore, the converse result for a finite and fixed L, is
PL PL
Ryvi-rspir = < +NFPL (2.145)
DMM—LSPIR (m—‘

Similarly, the entropy of common randomness must also be a positive integer,

68

as the common randomness symbols are picked uniformly and independently from

the same field as the message symbols. Thus, with a careful look at going from

(2.109)) to (2.110]), we have,

(2.146)

Therefore, ([2.145)) and (2.146|) constitute the converse for Theorem .

2.6.2 MM-LSPIR: Achievability Proof

Following the converse results in and , we provide an achievable
scheme for MM-SPIR with any arbitrary parameters K, N, P, L in this section.
Starting with the achievable scheme presented in [8, Section IV.B.1], we set the
value of [to be 1 and build a corresponding SPIR achievable scheme for the case
of (%1 ,N,1, PL. The value of % is taken to ensure that the total number of mes-
sage symbols in the databases are the same for SPIR and MM-SPIR. If % is not an
integer, we choose (%W, in which case there exist some redundant message symbols
in SPIR. The remedy is to make all these redundant message symbols dummy. In
other words, all these redundant message symbols are set to be 0, and thus will not
make any difference in the following process. Thus far, the only remaining step is
to change the message symbol index such that the converted scheme is consistent
with the original MM-SPIR problem with message length L.

For clarity, we consider a simple MM-SPIR problem with K =4, N =3, P =

2, L = 1. The first step is to build an achievable scheme with K =2, N = 3, P =

69

1, L = 2 according to [8, Section IV.B.1]. Assume that we are only interested in
the first message W, = [Wy 1, Wi but not the second message Wy = [Wa 1, Wa]
without loss of generality. The concrete scheme is given next: The queries sent to

the databases are,

U=[h hy hs hi (2.147)
W=[hi+1 hy hs hy (2.148)
W= 1[hy hy+1 hs hy (2.149)

where hi, ho, hs, hy are all uniform bits in Fy. The corresponding answers received

from all the database are,

A[ll] = Wi+ hoWio+ hsWay + haWao + S (2.150)
A[Ql] = hlwl,l + hQWLQ + h3W271 + h4W2,2 + Wl,l + S (2'151>
Agl] = h1W171 + hQWLQ + h3W271 + h4W2,2 + WI,Z + S (2152)

After tuning the message symbol index to coincide with the original MM-SPIR
problem, again assuming that the desired message indices are 1 and 2, the ultimate
scheme for original MM-SPIR problem with K = 4 N = 3,P = 2, L = 1 is as

follows: The queries sent to the databases are,

le’z}:[hl hy hs h (2.153)

Qv =[h+1 hy hy hy (2.154)

70

qu} =[h1 ho+1 hz hy (2.155)

where hy, ho, hs, hy are all uniform bits in Fy. The corresponding answers received

from all the databases are,

AP = W+ haWa + hsWs + hyWy + S (2.156)
A[21’2] = hi Wi+ hoWo + haWs + bWy + W1 + S (2157)
A = W+ haWs + haWs + ha Wy + Wa + S (2.158)

In summary, we can always readily construct an MM-SPIR scheme with pa-
rameters P, L on the basis of a single-message SPIR scheme with parameters 1, PL
such that the induced download cost and the amount of common randomness for

an arbitrary fixed message length are both optimal. The optimal values are exactly

the ones given in ([2.144)) and ([2.140)).

2.6.3 Mapping MM-LSPIR Back to PSI

Finally, we map our MM-SPIR results back to the PSI problem to obtain Theo-
rem [2.1 Recall that, in the PSI problem, by generating the sets P; and P, by
i.i.d. drawing the elements from the alphabet P, we obtain i.i.d. messages in the
corresponding MM-SPIR problem. Further, by choosing the probability ¢; of choos-
ing each element to be included in the set P; to be ¢; = %, for i = 1,2, we obtain

uniformly distributed messages, with message size L = 1. Therefore, the PSI prob-

71

lem is equivalent to an MM-LSPIR problem with L = 1. Now, using Theorem

with L = 1, we obtain the ultimate result of this chapter in Theorem

2.7 Conclusion

In this chapter, we investigated the two-party PSI problem over a finite set Sx from
an information-theoretic point of view. We showed that the problem can be recast
as an MM-SPIR problem with a message size 1. This is under the assumption that
the sets (or their corresponding incidence vectors) can be stored in replicated and
non-colluding databases. Further, the set elements are generated in an i.i.d. fashion
with a probability % of adding any element to any of the sets.

To that end, we explored the information-theoretic capacity of MM-SPIR as
a stand-alone problem. We showed that joint multi-message retrieval does not out-
perform the successive application of single-message SPIR. This is unlike the case of
MM-PIR, where significant performance gains can be obtained due to joint retrieval.
We remark that SM-SPIR is a special case of the problem studied in this chapter by
plugging P = 1. For the converse proof, we extended the proof techniques of [8] to
the setting of multi-messages. In particular, the proof of Lemma [2.5]is significantly
more involved than the proof in [8]. This is due to the fact that the desired message
subsets in the case of MM-SPIR may not be disjoint. To unify the query structures
of MM-PIR and MM-SPIR, we proposed a new capacity-achieving scheme for any P
as an alternative to the successive usage of the scheme in [§]. Our scheme primarily

consists of three steps: Exploiting the achievable scheme in 23], making necessary

72

repetitions to symmetrize the scheme, and adding the needed common randomness
properly. The last step is inspired by [15]. Based on these results, we showed that
the optimal download cost for PSI is min { [%W , [%W }

In the following subsections, we make a few remarks about assumptions made

in this chapter, and directions for further research.

2.7.1 Data Generation Model

In this work, we add elements to each set in an i.i.d. manner and with probability
%. This assumption is made for two reasons, first, to have i.i.d. incidence vectors,
therefore, i.i.d. messages in the MM-SPIR problem, and second, to have uniform
messages to avoid the need for compressing the messages Wi.x before/within re-
trieval. However, this assumption may be restrictive, as with this assumption, the
expected sizes of both sets are % Even with keeping the i.i.d. generation assump-
tion, the probability of adding each element to set i could be generalized to be an
arbitrary ¢;. In this more general case, the expected sizes of the sets, K¢, and
Kgqs, could be arbitrary. This may be done by using appropriate compression be-
fore/during retrieval, but needs to be studied further. Regarding the i.i.d. selection
of elements, while this assumption is not needed from the achievability side, it is
needed for the converse proof. To overcome these restrictions, as future work, it

may be worthwhile to investigate the MM-SPIR problem with correlated messages.

73

2.7.2 Upload Cost Reduction

In this chapter, we have focused on the download cost as the sole performance metric.
A more natural performance metric is to consider the combined upload and download
cost. In this section, we provide an illustrative example, which shows that the
upload cost may be reduced without sacrificing the download cost. Nevertheless, the
characterization of the optimal combined upload and download cost is an interesting

future direction that is outside the scope of this chapter.

Example 5: Consider the SPIR problem with K =3, N =2, P=1, L =1. The
original SPIR scheme in [8] achieves the optimal download cost of D = 2 bits, while
the upload cost is U = 6 bits. Inspired by [73], we show that the upload cost can
be reduced to just 4 bits without increasing the download cost. Our new achievable
scheme is as follows:

For any one of the two databases, there are four possible answers A%Q), where

n € [2],q € [4] and common randomness S is a uniformly distributed bit:

AW =Wy + Wy + W + S, AW =Wy + Wy + S (2.159)
AP =Wy + 5, AP =5 (2.160)
AP =W, + 8, AP =W+ Wy + S (2.161)
AY =Wy 4 8, AW =Wy + W5+ S (2.162)

The corresponding queries for different desired messages are generated accord-

74

ing to the following distributions:

Wy ([1”, [21}) is uniform over {(1,1),(2,2),(3,3),(4,4)},
Ws : (QP1 Q) is uniform over {(1,4),(2,3),(3,2), (4, 1)},

Wi (QF.QFY s uniform over {(1,3), (2,4), (3,1), (4,2)}.

The reliability constraint follows from the fact for every query pair, the user
can cancel the interfering messages and the common randomness S from the other
database. For the database-privacy constraint, we note that the undesired messages
are always mixed with S. Hence, the information leakage from undesired messages
is zero. For the user-privacy constraint, we have

PQF = ¢q) = P(Q¥ =¢), Yk, k' e[3], Vne[2], Vqe 4] (2.163)

n

i.e., from the point of view of any database, the same set of queries is used for any
desired message W;, where ¢ = 1,2, 3 with the same probability distribution.

For the proposed scheme, the required download cost is D = 2 bits and the
required upload cost is U = 4 bits, which outperforms the one in [§] in terms of

upload cost.

2.7.3 Communication Model

We note that our optimality result is restricted to the presented communication

scenario, where a sender submits queries to a receiver in one round. An interesting

5

future direction is to investigate whether there is a more efficient communication
scheme or whether there can be an impossibility result that can assert that no other

communication scheme can outperform our presented scheme.

2.7.4 Single Database Assumption

Our scheme is infeasible for Ny = Ny = 1 due to the capacity result for MM-
SPIR. It would be interesting to see if MM-SPIR can be made feasible with certain
modifications to the problem, e.g., side information, or alternatively, if PSI can be
transformed into other problems, in the case of a single-server. We can refer to the

work in Chapter 3]

76

CHAPTER 3

Symmetric Private Information Retrieval at the Private In-

formation Retrieval Rate

3.1 Introduction

In this chapter, we consider the problem of SPIR with user-side common random-
ness. Note that the privacy constraint in SPIR is symmetric between the user and
the databases, SPIR has the following three properties: its capacity is smaller than
the capacity of PIR which requires only user privacy; it is infeasible in the case of
a single database; and it requires presence of shared common randomness among
the databases. We introduce a new variant of SPIR where the user is provided with
a random subset of the shared database common randomness, which is unknown
to the databases. We determine the exact capacity region of the triple (d, pg, pv),
where d is the download cost, pg is the amount of shared database (server) com-
mon randomness, and py is the amount of available user-side common randomness.
The user-side common randomness utilized here can be deemed as auxiliary ran-
domness data. We show that with a suitable amount of py, this new variant of

SPIR achieves the capacity of the conventional PIR. As a corollary, single-database

7

SPIR becomes feasible. Further, the presence of user-side py reduces the amount of

required server-side pg.

3.2 Problem Formulation

We consider a system of N > 1 non-colluding databases each storing the same set of
K > 2i.i.d. messages each of which consisting of L i.i.d. symbols uniformly selected

from a sufficiently large finite field I, i.e.,

HW,) =L, ke K] (3.1)

H(Wix) = HW) + -+ HWg) = KL (3.2)

For convenience, we denote a random variable and its realization by using
the same general uppercase letter when distinction is clear from the context. We
address this issue additionally whenever clarification is needed. As in [8], we use a
random variable F to denote the randomness in the retrieval strategy implemented
by the user. Due to the user privacy constraint, the realization of F is only known
to the user, and is unknown to any of the databases. Due to the database privacy
constraint, databases need to share some amount of common randomness Rg; we
will call this server-side common randomness. The server-side common randomness
Rs with size M is a set of i.i.d. symbols {S1,Ss,- -+, Sy} uniformly selected from

Fy, ie.,

H(S,) =1, me[M] (3.3)

H(Sya0) = H(S)) + -+ H(Sy) = M (3.4)

Moreover, the set of indices {1,2,---,M} forms an alphabet A, ie., A =
{1,2,---, M}. Before the retrieval process starts, the user obtains a partial knowl-
edge of Rg. We denote it by Ry, and call it user-side common randomness. There-
fore, we introduce a new random variable Ay corresponding to the uniform selection
of elements without replacement from A (the sample space of Ay is the power set of
A). User-side common randomness Ry is a set of i.i.d. symbols from [, where the
indices of the symbols are constituted by Ay. Further, we assume that Ay is not
known to any individual database and also is kept private throughout the retrieval
processﬂ although the cardinality of Ay can be public information to the databases.
In addition, we introduce another new random variable A, which is the comple-
ment of Ay with respect to the universe A, i.e., Ay = A\Ayp. Likewise, Rs\Ry is
also a set of i.i.d. symbols from F, where the indices of symbols are constituted by
Ay, Thus, after determining the selection Ay, Ay is also deterministic; see Fig. [3.1
for the specific system model.

The server-side common randomness Rg is generated independently of the
stored message set in the databases. The desired message index k, the random
selection Ay and the retrieval strategy randomness JF, are all determined at the

user-side before the retrieval process starts. Moreover, all these random variables

"'We note that this assumption is with some loss of generality. There could be a version of the
problem where we do not care about the privacy of Ay against the databases during the retrieval
process. This version of the problem could potentially have a higher retieval rate. This choice
is akin to enforcing “W-privacy” versus “W-S privacy” (see [27}/29,[30.[32H34L|36}/37}/39,/111,{112],
especially [32,/33]), where W-privacy stands for message privacy only and W-S privacy stands for
message and side-information privacy in a PIR setting with side information.

79

Figure 3.1: System model for SPIR with user-side common randomness.

are mutually independent, thus,

H(Wik, Rs, ky Au, F) = HWhk) + H(Rs) + H(k) + H(Av) + H(F) (3.5)

Using the desired message index and the user-side common randomness indices,
the user generates a query for each database according to the retrieval strategy

randomness F. Hence, the queries QZ“ ’AU], n € [N] are deterministic functions of F,

H(QPA QA QA FY =0, vk, VAy (3.6)

During the independent query generation stage, (3.5) and (3.6) lead to the

following relationship,

LQYR Wik, Rs) =0, Vk, YAy (3.7)

80

After receiving a query from the user, each database generates a truthful an-

swer based on the stored message set Wi.x and the server-side common randomness

RS)
H(AFAN QAL Wy Rg) =0, Vn, Yk, YAy (3.8)

After collecting all N answers from the databases, the user should be able to

decode the desired messages W, reliably,

reliability] H (W, |QFA0) aAlbAr) 2y €D w7 ABAY Ry — 0 Wk, VAL

(3.9)

Due to the user privacy constraint, the query generated to retrieve the desired
message should be statistically indistinguishable from other queries. Specifically, for
all k, k', all n, and all Ay, there exists some A}, with |A};| = |Ayl, i.e., HRy) =

H(Ry)P} such that,

QA

[user privacy] (QEC’AU],AQC’AU],WLK,RS) ~] A[k Al Wik, Rs) (3.10)

As in [46//66], the joint probability distribution of all random variables at the

2In the single-database case, Ay and Aj; can not be exactly the same although some overlap is
allowed, nor can Ry and Ry;. Otherwise, user-privacy, database-privacy and reliability constraints
jointly form a contradiction, and as a consequence, the problem degenerates to the infeasible
conventional single-database SPIR problem, which is trivial. However, this constraint on the strict
difference between Ay and Ay, (also Ry and Ry;) does not apply to the multi-database case. This
is because its accompanying reliability constraint requires the user to collect the answers from all
the databases, not only an individual one. Moreover, in the remaining content of this chapter, we
always assume that A7, has the same cardinality as Ay and Ry, has the same entropy as Ry .

81

databases can be factorized in the following way,

P((QU%AU% AEC’AU}; Wl:K7 RS) = (Q7 a, W1:K, TS))

- P(QgﬁAU] =q)- P((W1:K7R5> = (wlzK,T’s)|Q7[f’AU] = Q)
- P(AFA] = | (QFAY] Wik, Rs) = (g, wik, 7s)) (3.11)

= P<Q§7AU] = q)) P((WllKvRS) = (wlszrS)) - C (312)

where the second term in (3.12) comes from the independent query generation of
message set as well as server-side common randomness and becomes a constant
depending on the realizations of the pair (W;.x, Rgs), and the third term ¢ in is
also a constant either taking the value of 0 or 1 depending on the choice of a because
of the fact that the generated answer in a database is a deterministic function of
the information that database possesses . As a consequence, we obtain the

following equivalent expression for user privacy for all potential query realizations

q,

KAyl
n

[user privacy] P(QFAv) = ¢) = P(=q) (3.13)

Due to the database privacy constraint, the user should learn nothing about

Wi which is the complement of Wy, i.e., Wi = {W4, -+ Wiy, Wiiq, -+, Wk},

[database privacy] I(Wg;F, A[llf}fU],RU) =0, Vk, VAy (3.14)

82

Again due to the database privacy, the user should not learn all the information
about the remaining common randomness among the databases when the retrieval
is complete. However, in order to formulate the problem in an easier and clearer
way, we add an additional requirement that the user should not gain any knowledge
about the remaining common randomness among the databases even after retrieving

the desired message,

I(Rs\Ry:; F, AW Wi Ry) =0, Wk, VAu (3.15)

An achievable SPIR scheme is a scheme that satisfies the reliability constraint
, the user privacy constraint and the database privacy constraint .
The efficiency of a scheme is measured in terms of the number of downloaded bits by
the user from all databases denoted by D. We define the normalized download cost
d, the normalized server-side common randomness pg, and the normalized user-side

common randomness pPuU, aS

) pPs I) PU I ()

where L is the message length. Thus, the triple (d, ps, pv) is said to be achievable
if all three values can be realized simultaneously by a valid achievable scheme. Our

goal in this chapter is to determine the capacity region over all achievable triples

(d7 IOSJpU)'

83

3.3 Main Result

We state the main result of this chapter in the following theorem which is the

capacity region for the triple (d, ps, pv).

Theorem 3.1 With user-side common randomness, the multi-database SPIR ca-

pacity region for N > 2 and K > 2 s

1 1 1
le-l—N—f-m'f‘""f‘m (3.17)
1 1 1
pS_pU2N+m+"'+NK—1 (3.18)
N -1
—d >1 3.19
N +pu 2 (3.19)
Npg > 3.20
NPT ANPs 2 Ty (3.20)

Remark 3.1 The capacity region is defined in the form of a triple (d, ps, pv), where
d is the reciprocal of the capacity defined in [6,|8], ps is the required amount of com-
mon randomness shared among the databases relative to the message size, py s
the total amount of common randomness obtained by the user before the retrieval
starts relative to the message size. Theorem gives the optimal tradeoff among
these three variables and determines the exact capacity region. There are two cor-

L_.0), which is

ner points in this capacity region. The first corner point is (%, NI

an intersection point among (19), (20) and the implicit constraint py > 0. The

second corner point is (14 ~ + -+ a1, v + 73 T - +

w7 wr), which is an

=2

intersection point among (17), (18) and (20). The achievability of the first corner

84

point is provided in the existing paper [8]. The new achievability of the second cor-
ner point is introduced in Section[3.6. Furthermore, any point on the line segment
joining these two corner points can be achieved by time-sharing between these two
different schemes. Any other remaining point in the capacity region can be achieved
by adding extra common randomness at the user- and server-side simultaneously, or

by increasing the server-side common randomness and the download cost.

Remark 3.2 The right hand side of 15 the optimum normalized download
cost of classical PIR, dpjp =1+ + + 5z + -+ + v [0]. Thus, states that
d > dprg.

When py = 0, i.e., when there is no user-side common randomness, (3.19

becomes d > dgpir, where dgpip = NL_ 18 the optimum normalized download cost of

1

classical SPIR [§], gives ps > =, and and are non-binding.

Note that dspir > dprr for all N. Therefore, when py = 0, Theorem [3.1] reduces to

the capacity of classical SPIR [§], and it corresponds to the first corner point.

When py = NLK, both (f?l’/l) and (fS’Iﬂ) become equivalent to d > dprr, and the

new SPIR download cost achieves d = dprg. In addition, from and , we
deduce that ps > %+%+~ . -+ﬁ+ﬁ = %dpm, which implies that the minimum
amount of required server-side common randomness must be no smaller than the
download cost in each database with symmetry across databases. Therefore, when

pU = ﬁ, the new SPIR download cost equals the download cost of the traditional

PIR, and it corresponds to the second corner point.

Corollary 3.1 When py = 0, Theorem[3.1| reduces to the capacity of classical SPIR.

85

That is, d > {5 = dspr and ps > 55 = ~dspir.

Corollary 3.2 When py = ﬁ, new SPIR download cost equals the download cost
of the traditional PIR, d = dpr. The required amount of server-side common

randomness becomes ps > %dpm.

Remark 3.3 The gap between ps and py must be no smaller than a specific value
as a function of N and K as given on the right hand side of . This comes
from the database privacy constraint, where part of the common randomness, i.e.,

Rs\Ru, is utilized to hide the undesired messages.

Remark 3.4 From , we observe that the existence of user-side common ran-
domness can help reduce the required amount of server-side common randomness.
In fact, from C’orollary when py = 0, we need pg > %dsp[R, whereas from
C’omllary when py = Nl—K, we need ps > %dp[R. Noting that dpr < dsprr,
the required server-side common randomness in Corollary 15 smaller compared
to Corollary [3.1. For instance, for N = 2 databases and K = 2 messages, clas-
sical SPIR optimum download cost d = dgpir = 2 is achieved by ps = 1 [§]. In

Thearem d =2 can be achieved by ps = % with py = %.

Remark 3.5 It is well-known that, for N = 1, classical SPIR is not feasible [§].
With user-side common randomness, single-database SPIR becomes feasible. The

following corollary states the capacity region of this case as a reduction from Theo-

rem [3_].

86

Corollary 3.3 With user-side common randomness, the single-database SPIR ca-

pacity region for N =1 and K > 2 is

d>K (3.21)
ps —pu = K —1 (3.22)

Remark 3.6 The optimal normalized download cost for single-database PIR is d =
K [6,32], which is achieved by downloading all messages from the database. One
of the difficulties of single-database SPIR is that downloading all messages is not a
valid SPIR scheme. Corollary shows that single-database PIR capacity can be

achieved for single-database SPIR by means of user-side common randommness.

Remark 3.7 The first two terms in Corollary (3.3 follow from the first two terms
in Theorem[3.1. The third term in Corollary[3.3 follows from the last two terms in

Theorem [3.1] by multiplying both sides of the fourth term in Theorem[3.1 by N — 1.

Remark 3.8 Like multi-database SPIR, in the single-database SPIR as well, the
gap between ps and py must be no smaller than a specific value as a function of K

as given in to avoid information leakage on undesired messages.

Remark 3.9 From Corollary the minimum download cost for single-database
SPIR with user-side common randomness is d = K, the minimum required server-
side common randomness is ps = K, of which py = 1 must be acquired randomly
by the user.

87

3.4 Motivating Examples

Example 6: We consider a single-database case N =1, K =3 and L = 1. We use
W1, W5 and W3 to denote the three message symbols uniformly selected from a finite
field F,. The common randomness 51, S2 and S3 stored in the database are also three
uniformly selected symbols from [F,. Our new achievable scheme is given in Table[3.1}
In Table 3.1} we go from the table on the left hand side to the table on the right
hand side by compact denotation of the queries as ¢, = [W; + 51, Wa + Sa, W3 + Ss,
G2 = [Wi+ Sy, Wo+ S3, W3+ 51] and g3 = [W; + S3, Wo+.S1, W3+ S5]. This compact
notation on the right hand side table makes it more apparent that queries q1, go, g3
are used for all user-side common randomness settings, e.g., Sy, S, S3 and for all

desired messages, e.g., Wi, Wy, W3, with equal probability.

» desired message
ITw W, Ws
Sy | Wi+S51 | W+ S | Ws+ 5

Wy + Sy | Wa+ Sy | Wi + .5, » desired message
Wi+ S5 | Wi+ Sz | Wa+ Ss VW T W, | W
Sy | Wi+ Sy | Wod 8 | Wa+ .5, S ¢ q3 q2
Wy + 53 | W3+ 53 | Wi+ 53 Sy Qo Q1 q3
Wi+ S5 | Wi +51 | Wa+ Sy S q3 G2 ¢

Sz | Wi+ 853 | Wa+ S5 | W3+ S5
Wo+ S, | W+ 51 | Wi+ 5

Table 3.1: The query table for the case N =1, K = 3, L = 1. The table on the
right denotes the query sets compactly as g1, g2 and ¢s.

The reliability constraint follows from the fact that the user can always decode
the desired message by using its own common randomness. The database privacy
constraint follows from the fact that the undesired messages are always mixed with

88

unknown common randomness. For the user-privacy constraint, we have for all
k,k' € [3],k' # k and a random selection Ay € {{1},{2},{3}} under a uniform

distribution, there exists another different Aj; € {{1},{2},{3}}, such that,

PO — g) = PO — g) = % (3.24)

where ¢ € {q1, q2, q3}. Specifically from the point of view of the database, the same
set of queries can be invoked for any desired message W;,i € [3] with the same
probability distribution. This scheme achieves d = 3, py = 1 and pg = 3, which

exactly matches the boundary of the SPIR capacity region for N =1 and K = 3 in

Corollary [3.3

Example 7: We consider a multi-database case N = 2, K = 2 and L = 4. We
use W; and W5 to denote the two messages each consisting of 4 symbols that are
uniformly selected from a finite field F,. The common randomness S;,.Sy and S
shared between the two databases are also uniformly selected symbols from F,.
Then, we use [ay,ag,as3,a4] as a random uniform permutation of the symbols in
the first message Wi, and independently, [b1, by, b3, by] as another random uniform
permutation of the symbols in the second message W5. Our new achievable scheme
is given in Table . Each set of queries shown in Table (e.g., a1 + S1,b1 +
Sa, az + by + S3, as + S1,bs + Sz, a4 + by + S2) is one possible choice after performing
message symbol index permutation and unknown server-side common randomness
index permutation. Due to space limitations, we use one particular permutation to

represent all possible permutation outcomes. During an actual implementation, the

89

user should uniformly randomly select one random permutation out of all possible

permutations.

R» desired message: W, desired message: W5

v DBI DB2 DBI DB2

Sl ap + Sl as + Sl b1 + S1 bz + Sl

b1+52 b2+53 (11+SQ CL2+53
az+by+ Ss | ag+ by + Sy | b3 +ay+ Sz | by + ay + 52

SQ aq + SQ a9 + SQ b1 + SQ bQ + SQ

by + S by + 51 a; + Ss as + S
a3+bg+51 (I4+b1+53 53+CL2+51 b4~|—a1+53

S3 a; + Ss as + Ss by + 53 by + S5

b1+51 b2—|-52 (Z1+Sl a2+52
a3+b2+52 a4—|—b1—|—51 bg+&2+52 b4+a1—|—51

Table 3.2: The query table for the case N =2, K =2, L = 4.

Verification that this proposed scheme achieves reliability, user privacy and
database privacy constraints is similar to the one analyzed in Example[6] Specifically
with regard to the user privacy, for any n € [2], given a random selection Ay €
{{1}.{2},{3}} under a uniform distribution, a user wishes to retrieve Wj, that
database can always find A}, € {{1},{2},{3}} such that Q%C/’Agj] = Q] for all
k" # k. In other words, that database is not able to recognize the desired message
index from the query taking into consideration message symbol index permutation
and unknown server-side common randomness index permutation. This scheme
achieves d = %, pu = i and pg = %. This is the second corner point of the capacity
region in Theorem where all inequalities are satisfied with equality, i.e., here

pu = %, d=dpr =1+ %, and ps = ~dp.

Example 8: We consider a multi-database case N = 2, L = 36 and

We use Wy and W, to denote the two messages each consisting of 36

90

symbols that are uniformly selected from a finite field IF,. The common randomness
S1,- -+, S17 shared among the three database are also uniformly selected symbols
from F,. Then, We use [a4,...,ass] as a random uniform permutation of the sym-
bols in the first message Wi, and independently, [b,...,bss] as another random
uniform permutation of the symbols in the second message W5. For the first 9 bits
of the desired message after message symbol index permutation, i.e., [ay, ..., ag], we
utilize server-side common randomness {57, Ss, S3, S4} and then our new achievable
scheme for one random selection of unknown server-side common randomness index
permutation is given in Table 3. For the next 9 bits, i.e., [ajg,...,a1s], we select
another set of server-side common randomness, e.g., {Ss, Sg, S7, Ss}, and then use

our scheme in Table 3 once more. For the last 18 bits, we use the classical SPIR

scheme in [8].

R» desired message: Wy desired message: Wy

v DB1 DB2 DB3 DBI DB2 DB3

Sl a1+31 a2+Sl CL3+51 b1+51 b2+51 b3+81

by + S5 by + S5 bs + S a1 + 5o as + S as + Sy
as+by+S3 | ag+b1+ 5 | ag+bi +S2 | bat+as+ S5 | bg+ a1+ 52 | bs+ar + 5,
as +bz + Sy | ar+b3+ Sy | ag+ba+ 53| bs+az+ Sy | by +az+ Sy | by + az + S3

SQ a1+SQ a2+52 a3+52 b1+52 b2+S2 b3+32

b1+33 b2+S4 b3+51 (11+53 a2+S4 CL3+Sl
a4+bg+54 a6+b1+53 a8+b1+53 b4+a2+54 bG+a1+Sg b8+a1+53
CL5+b3+S1 a7+b3+51 a9+b2+54 b5+a3+51 b7+a3—0—51 b9+CL2+S4

Sg a1+53 a2+53 CL3+S;; b1+53 b2+53 b3+53

by + Sy by + 54 bs + So ai + Sy as + 51 ag + S
as+by+S1 | ag+bi+Ss | ag+by +Ss | by+as+ Sy | bg+ay + Sy | bg+ay + Sy
as+bs+ Sy | ar+bg+ Sy | ag+by+ Sy | bs+as+ Sy | by +as+ Sy | by +as + Sy

Sy ap + Sy az + Sy az + Sy by + Sy by + 54 bz + 54

by + 5 by + 5o bs + S3 a; + 51 az + S az + Sz
ag+by+ Sy | ag +by+ 51 | ag +br + 51 | by +az+ Sy | b +ar +51 | bs+ar +5;
a5+b3+53 a7+b3+53 a9+b2+52 b5+a3+53 b7—|—a3+5'3 b9+CL2+SQ

Table 3.3: The query table for the first 9 bits in the case N =3, K = 2, L = 36.

91

We observe from Table that, for the first 9 bits, this scheme achieves

D =12, H(Ry) = 1 and H(Rs) = 4. Doubling these, for the first 18 bits, this
scheme achieves D = 24, H(Ry) = 2 and H(Rg) = 8. For the last 18 bits, we
use the classical SPIR scheme in [8], which achieves D = 27, H(Ry) = 0 and
H(Rs) = 9. Thus, by combining these two different schemes in a time-sharing
24427 _ 17 240 _ 1 849 _ 17

22 = and pg = 5= =

manner, we ultimately have d = === = 7, py = 55 = 15, o 36

which corresponds to a point on the line segment joining the first corner point

where py = 0 and the second corner point where py = % of the capacity region in

Theorem [3.1]

3.5 Converse Proof

In this section, we provide the converse proof of Theorem [3.1 The four inequalities

in Theorem [3.1] are proved in Lemmas [3.3] [3.4] [3.9 and below. Towards proving

these four lemmas, we need Lemmas |3.1 and Lemmas below. We note
that Lemmas extend [6, Lemmas 5-6], and Lemmas extend [8, Lem-
mas 1-2, Eqn. (39)]. These extensions are needed because we have two additional
sets of random variables in our system model: Rg and Ry with respect to techniques

in [6], and Ry with respect to techniques in [§].

Lemma 3.1 (Messages Dependence Upper Bound)

[(Wage; Qv AWl paqwyy < D — L (3.25)

92

Proof:

[(Wage; QU1 Al R)

= T(Waue; QU1 ALY R W) 4+ T(Wauge; Wh) (3.26)
= T(Waue; QU1 A0y Rg) (3.27)
= I(War; QU3 ALY R) 4 T(Wou QUL ALY Rs) - (3.28)

= [(Wae; QU] 4lbAol (3.29)

= T(Waue; ANQI Rg) + T(Waue: Q1Y) R) (3.30)
= I(Wa; A QI R) (3.31)
= H(ALFQLY, Re) — H(ALZQURY, Waux, Rs) (3.32)

_ H(A[ll:vj\’;\U]’Q[l JAU] R) (A[l AU]|Q 1,Au] W2:K,RS)

— HWQER, AN, Wae, Rs) (3.33)
_ H(ALA QA R oy (wy, AR QA Ry (3.34)
< H(A[f;}?d) — HW;, A Al Aul|Q[1 Au] Wak, Rs) (3.35)
< D — HWy, Al QUA0 py, o R) (3.36)

— D — HW QU Whe, Re) — HANIQUAT Wy Whk, Rs) (3.37)
_ [1,Ay]
=D - HW|Q;.x", Wa.k, Rs) (3.38)

_D-1 (3.39)

where (3.26) follows from the i.i.d. message setting in the databases (3.2, (3.29)

follows from the reliable decoding of the first message . - 3.31)) follows from the

93

independence of the message set (3.5) and the independent query generation ({3.7)),

(3.33) follows from the reliable decoding of the first message (3.9) again, (|3.38))

follows from the truthful deterministic answer generation at each database (3.8)),

(3.39) follows from the joint application of (3.1)), (3.2)), (3.5) and (3.7). H

Lemma 3.2 (Messages Dependence Lower Bound)

(WkK Q[k 1,Ay] A[k 1,Ay] RS|W1:k—1)

1 ; ; L
N](Wk—‘rl K5 Qlk]?U] A[lk}?U]vRS|Wlk) + N7 Vk € [2 : K]

Proof:

NT(Wiere; QYA A AT R W)

N
Z Z [<WkK7 Qgﬂ_l’AU}a A[rig_LAU}a 7?'S“/Vlskfl)
n=1
N

ZZI(WkK, oAl AR R W)

(WkKyA[kA |Q[kA Wik-1,Rs)

AV
Mx 1

3
I
—_

(H (AR 1QNA Wy Re) — HAR Qi) Wk, Rs))

WE

1

3
Il

H(AR QB w1 Re)

] =

1

3
Il

VA VA
H(ARA Qo] gl Al) R)

WE

3
Il
,_.

((kAU]|Q Avl A1knAUl]>W1¢k—1’RS)

Mz

i
I

94

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

H(ARA Qo) A4l g7, R)) (3.47)

N
= N I(Wiares AT|QER AR W1 R) (3.48)
n=1
= I(Wri; A kAU]|QkAU Wik—1,Rs) (3.49)
= T(Wire: ABZNQE w1 Re) + T(Whore: QU7 Wiy, Rs) (3.50)
= [(Wh.k; [1]?}(;%}, [kAU\Wlk 1, Rs) (3.51)
= I(Wiage; QU201 AP w1 Re) + T(Wires Wi QU0 A w1 R
(3.52)
= I(Wiuie; Q) AN Wy, Rs) (3.53)
[kAU [kAU
= I (Whrre; We|Wig—1, Rs) + I (Whi.k; A Wik, Rs) (3.54)
= L+ I(Wipe; QU0 ARy R (3.55)
:[(sz-i-l:K; [kA A[f]\v;l ‘Wl kaRS)
4 I(Wi; QU0 A iy Wik Re) + L (3.56)
= [(Wigs; QU0 A, Re) + L (3.57)
[k.AU [k.AU .
= I Witk Qin U ALy U Wik, Rg) + I(Wigr.x; Rs|Wa) + L (3.58)
= I (Wigric; Q20 A4 W) + L (3.59)

where (3.42]) follows from the application of user-privacy (3.10f), (3.45) and ({3.47))

both follow from truthful deterministic answer generation by each database (3.8)),

(3.50) follows from (3.2), (3.5) and (3.7)), (3.52)) follows from reliability constraint
B9), E59) follows from (1), §2) and (3, 58 follows from (32) and (33

again. Dividing both sides by N completes the proof. H

95

Lemma 3.3 (Minimal download cost d)

1 1 1
le—i-N—i-m-i-"'—FW (3.60)

Proof: Following steps similar to [6, Eqns. (62)-(67)] for Lemma [3.2] we obtain

A A 11 1
I(Wage; QU AT 2wy > (N +mt ot) L (3.61)

Combining the upper bound in Lemma and the lower bound in (3.61)) completes

the proof. W

Lemma 3.4 (Minimal difference between ps and py)

1 1 1
pS_PUZN+m+"‘+W (362)
Proof: From (3.61)), we have,
](WQ:K; Q[1171<74U]7 A[ll}éU}’ RS|W1)
= H(Wauxc|[Wh) — H(Wac QU ALZY, 7, Ry) (3.63)
= (K = 1)L — HWau| Q15" ALY, Wi, Rs) (3.64)
1 1 1
Z(N—i_ﬁ—i_”'—i_NK—l)L (3.65)

96

Thus, we obtain,

A A 11 1
H(Waur| QU AT 7 Ry < (K — 1)L — (N AR

(3.66)

Next, we have the following upper bound,

I(Wo.k; RS\RU|Q[11;}<[4U]7 A[ll;}(?U], Wi, Ru)

= HRs\Ru| QU7 ALY Wi, Ry) — HRS\Ru QU ALY Wik, Ry

(3.67)
< H(Rs\RulQUR", AL, Wi, Ry) (3.68)
= H(Rs\Rv) (3.69)
= H(Rs) — H(Ry) (3.70)

where (3.69)) follows from the presumed independence of the remaining common
randomness among the databases when the retrieval is complete ((3.15)).

In addition, we have the following lower bound,

I(Wae; Rs\Ru QU201 AT v Ry)

= HWax | QU3 AN W, Ry) — HWae| QU ALY W, R (3.71)

= (K = 1)L — HWax| Q3" ALY, W7, Rs) (3.72)
1 1 1
> (K —-1)L— (K —1)L + Nyttt R) b (3.73)

97

1 1 1

where (3.72)) follows from the database privacy constraint (3.14]) in the realization

of k =1 and reliability constraint (3.9)), and (3.73) follows from (3.66)).

Combining (3.70)) and (3.74]) yields the desired result. W

Lemma 3.5 (Different Indices Effect on the Same Message)

HAY AN QW Ay Ry — HARA QA W Ry) < H(Ry), VE 4k

(3.75)
Proof: From the user privacy constraint (3.10)), we have,
H(W, QA0 AlAV] Ry = (Wi | QF 0!, A4 Ry (3.76)

From the deterministic queries relying on the retrieval strategy (43.6]), database pri-

vacy constraint (3.14)), and the fact Wy, € Wi, we have,

0= I(Wp QL ALY RY) (3.77)
= I(Wi; Qi AT Ry (3.78)
= I(Wy, QYA AV Ry) (3.79)
= HW QR L Al — mwi Qi AT Ry (3.80)

98

Using the equations derived above, we derive an upper bound for the following term,

H(W, | QYA Al Ry — (W QIAu], AlAV] Ry)

= H(W,|Q¥) AWl _ prowy Qi Av!, ANAv) Ry (3.81)
= I(Wi; Ryl Qn), Al) (3.82)
= H(Ry|Qw ™, A4 — H(Ry|Qu 0 A7 i) (3.83)
H(Ry|Qu "), A0 (3.84)
< H(Ry) (3.85)

where follows from and . This is different from the equivalence
H(Wk|Qg§/],A§l]) = H(WHQW,A@) in the SPIR problem without user-side com-
mon randomness and it leads to the difference between our Lemma and [8,
Lemma 1].

Once again from the user privacy constraint (3.10)), we have,

H(QPA ARAY] R oy = H(QY V), AN R) (3.86)

which is gives the following equality,

H(Rs\Ry| QAT ARAVL Ry H(QEAV AlRAUT Ry

[k, A [kA}A[kA

= H(Rs\ R} |QF A0l A4l piy 4 Hy(ol R1) (3.87)

Noting the independence of the remaining common randomness among the databases

99

after the retrieval process (3.15)), thus, we have,

H(Rs\Ry) + HQEA ABAY R)Y = H(RA\RY) + H(QY), A0 Ry

(3.88)
which leads to
H(QEA0), AlAYl Ry = H(QW A0 A Ry (3.89)
Likewise, without taking into consideration the answers, we also have,
[k, Au] _ (K" AL o
H(Qy " Ry) = H(Qn ™", Ry) (3.90)

As a consequence, we derive the following relation by utilizing the independent

message set (3.5) and also deterministic queries (3.6)),

H(QWA), Wi, Ry) = H(QW), Ry) + H(Wy) (3.91)
= H(QY) RL) + HWy) (3.92)

Now, we are ready to prove the Lemma |3.5]

H(ARAL QAT Wi Ry)

= H(QIAL, AL Wy Ry) — H(QUA, Wi, Ryy) (3.94)

100

= H(Wk|Q7[f7AU]a Aq[‘{ﬁAU]a RU) + H(Q[k7AU]a A%7AU]a RU) - H(QZC’AU% ka RU)

(3.95)
HWil QA R — H(Ry) + H(QUEAY], Al Ry)
H QWA Wi, Ry) (3.96)
H(W, |Q[k Ay A[k Ayl Ry + H(Qn Ayl A R’)
— HQ¥AY W, A — H(Ry) (3.97)
= H(QWA AW Ay — HQE A W, AL — H(RY) (3.98)
— (AN QM W, Ay — H(Ry) (3.99)

where (3.96)) follows from , and (3.97) follows from (3.89) and (3.93). M

Lemma 3.6 (Symmetry)

H(ABA QAN Ry = H(A Qi Ry, vk # & (3.100)

Proof: The proof of Lemma [3.6| follows from (3.89)) and (3.90). W

Lemma 3.7 (Effect of conditioning on retrieval strategy randomness)

H(ARANF QWAL Wy Ry) = H(ARAYQEAYT Wy, Ryy) (3.101)

Proof: We prove Lemma by showing that the following conditional mutual

101

information is non-positive and thus is zero,

[(AFAVL FIQIAYT Wi, Ryr)
S [(A%:-AU]’ Wl:K7 RS\RUa F‘QL]C“AU}’ Wk7 RU) (3102)

= [(Wik, Rs\Ru; FIQIEAY Wi Ryy) + I(ARAYL FIQWAY Wk Ry)

(3.103)
= I(Whi.i, Rs\Ru; F|QEAY Wy Ryy) (3.104)
< I(Wig, Rs\Ru; FIQFA Wi, Ry) + I(Wy; QWA Ry) (3.105)
= I(Wi.k, Rs\Ru; FIQUA, Ry) (3.106)
< I(Whk, Rs\Ru; F, Q471 Ry) (3.107)
= I[(Rs\Ru; F, QWA Ry) + I(Whi; F, QWA Ry Rs\Ryy) (3.108)

= I(RS\RU7F7 QEC’AULRU) + H(WlKlRS\RU) - H(W12K|f7 Q%’AULRS)

(3.109)
= I(Rs\Ru; F, Q¥ Ry) + H(Wik) — H(Whk) (3.110)
= I(Rs\Ru; F, Q] Ryy) (3.111)
= H(Rs\Ru) — H(Rs\Ru|F, Qi Ry) (3.112)
= H(Rs\Ru) — H(Rs\Ruv) (3.113)
=0 (3.114)

where (3.104]) follows from the fact that the answer is a deterministic function of the

corresponding query, message set and server-side common randomness (3.8]), (3.110))

102

follows from the independence of message set (3.5) and the query is a deterministic
function of the realization of retrieval strategy randomness (3.6)), and m follows

from the independence of the remaining common randomness among the databases

and . [|

Lemma 3.8 (Effect of conditioning on an undesired message)

HAY A QA oy — (AR 1WA W RL), YK £k (3.115)

Proof: From the database privacy constraint (3.14)) and noting that Wy, € Wi, we

have,

0= I(We: Q1 ALY RY) (3.116)
= f(Wk;QE’f}’VA’U%AE’?}’VA“,Rw (3.117)
= 1(A 1w Y Ry (3.118)

= H(A QW Ry — H(AY QI W, Ay (3.119)

which is the desired result. W

Lemma 3.9 (Minimal bound for d and py)

N —
—d >1 3.120
N +pu 2 ()

103

Proof: Starting from the message length assumption ({3.1),

L = H(W;) (3.121)
= H(W,|F,Ry) (3.122)
= HW,|F,Ry) — HW,|F, A =) (3.123)
= I(Wi; ALY F Ry) (3.124)
= HAFYF Ry) — HARMF, Wi, Ry) (3.125)
= H(AYYF Ry) — HAFAYF, QEA Wy, Ry) (3.126)
= HALR|F Ry) — HABAQEAY W, Ry) (3.127)
< H(AY{Y|F. Ry) — H(AY ““UH@’“ AL WLRY) +HRy) (3.128)
= H(AFNF Ry) — HAS Q4 Ry) + H(Ry) (3.129)
= H(ALRNF, Ry) — H(AFAQEAY Ryy) + H(Ry) (3.130)
< HAFWIF Ry) — HAFAF Ry + H(RY) (3.131)

where follows from independence of the message set , follows
from the reliable decoding of message W, and both follow from the
fact that each query is determined by the retrieval strategy , follows
from Lemma follows from Lemma , follows from Lemma ,
follows from Lemma

By summing (3.131]) over all n € [1 : N|, we obtain the following relationship,

N
NL < NHALRVF Ry) =Y HARYF Ry) + NH(Ry) (3.132)
n=1

104

< (N = 1DHAFYF Ry) + NH(RY) (3.133)

N

<(N-1)) HAFYF Ry) + NH(Ry) (3.134)
< (N =1)D+ NH(Ry) (3.135)

which completes the proof. W

Lemma 3.10 (Minimal bound for py and pg)

N
Npe > ——— 3.136
N—lpU+ 'OS_N—l ()

Proof: Starting with the database privacy constraint (3.14),

0= I(Wg: F, ALY Ry) (3.137)
= I(Wi; AU, Ryl F) (3.138)
= LW AYRY RulF) + 1(We Wil F, ALY, Ro) (3.139)
_ . [k’AU]
= I(Wi; Avy " Wi, Ru|F) (3.140)
= I(Wy: AN F Wi, Ry) + T(Wi; W, Ro| F) (3.141)
— . [kvAU]

- I(Wk’AlzN |‘F7 Wk‘aRU) (3142)
> 1(Wi; A F, Wy, Ry) (3.143)

= H(APAY F Wy, Ry) — HAFANF Wy, Ry) + H(ABANF Wik, Rs)

(3.144)

105

> H(ARAYF Wy, Ry) — HAFANF Wy, Ry) + HAFAYNF Wik, Rs, Ro)
(3.145)
= H(APANF Wy, Ry) — (AP R | F, Wik, R (3.146)

= H(ARAYNF W, Ry) — H(Rs|F, Wik, Ry) + H(Rg|F, A4 W Ry)

(3.147)
> H(ARAY F Wi, Ry) — H(Rs|F, Wi, Ry) (3.148)
= H(AWMAY F Wi, Ry) — HRuy, Rs\Ru|F, Wi, Riy) (3.149)
= H(APF, Wi, Ry) — H(Rs\Ru | F, Wi, Ryy) (3.150)
= H(AFAYF, Wy, Ry) — H(Rs\Ry) (3.151)
= H(AFAYF, QWA Wi, Ry) — H(Rs) + H(Ry) (3.152)
= H(ARA QAT R) — H(Rs) (3.153)

where (3.139) follows from the reliability constraint (3.9)), (3.142) follows from (3.2))

and , follows from the deterministic answer generation by each database
and , follows from the independent remaining common randomness
among the databases , follows from the deterministic queries relying
on the retrieval strategy , and follows from the steps between (|3.127])-
by applying Lemma through Lemma again.

By summing (3.153]) over all n € [1 : N|, we obtain the following relationship,

0> HARQIA Ry) — NH(Rs) (3.154)

WE

n=1

106

> H(ALGYF, QY Ry) — NH(Rs) (3.155)

= H(AURY|F, Ry) — NH(Rs) (3.156)

N N
> — _
> L~ = H(Ru) - NH(Rs) (3.157)

where (3.157)) follows from (3.133)), completing the proof. W

3.6 Achievability Proof

Following the critical idea in [113], our new achievable scheme corresponding to the
second corner point in Theorem is based on the principle of converting a given
PIR scheme into a valid SPIR scheme using the server-side and user-side common
randomness in a manner that does not compromise the download cost. To that
end, given any existing information-theoretic PIR achievable scheme, we add a new
distinct common randomness to each message symbol. The common randomness
added to the desired symbols are substracted out as they are available at the user
side, and the remaining common randomness unknown to the user are used to
protect the undesired messages. There are two main challenges to constructing
such an achievable scheme: first is to simultaneously reduce the amount of required
server-side and user-side common randomness to the extent possible, and second is
to implement this achievable scheme for all possible user-side common randomness
realizations which are unknown ahead of time. By means of converting the PIR
scheme in [6] to a corresponding valid SPIR scheme, our proposed new achievable

scheme consists of the following steps:

107

1. Initial PIR query generation: For given N and K, generate an initial PIR
query table for each desired message using the scheme in [6], e.g., Tables

without common randomness S;’s.

2. Server-side common randomness assignment: Mix all 1-sum symbols from the
desired message across all the databases with the same new common ran-
domness. We call it seed common randomness (e.g., Sy in first three rows of
Table . Assign a new distinct common randomness to every 1-sum symbol
from the undesired messages. For every k-sum symbol containing a desired
message symbol, mix it with the common randomness from the (k—1)-sum
symbol having the same k£ —1 undesired message symbols queried at another
database. For every k-sum symbol not containing any desired message sym-
bol, assign a new distinct common randomness. Repeat this until & reaches

K. We call this whole modified query table a query cellﬂ

3. Server-side common randomness cycling: While keeping each query cell, create
a new one by adding 1 (mod |A|) to each common randomness index (e.g., S;
becomes S in Table . Repeat it |A| times such that each query cell has a

different seed common randomness index.

4. Query cell determination: The user has |Ay| server-side common randomness.
The user determines the query cell to be invoked, and selects a random per-

mutation within that cell, by matching its user-side common randomness to

3As we did in Example E in this step and next step, we use one particular permutation to
represent all possible permutation outcomes coming from message symbol index permutation and
unknown server-side common randomness index permutation. We do not show all possible permu-
tations for simplicity.

108

the seed common randomness of the cell.

Reliability: The reliability follows from the reliability of the PIR achievable
scheme in [6]. One of the desired message symbols is coupled with a common
randomness that is known to the user in advance. The other desired message symbols
are coupled with interference that are downloaded from other databases.

User Privacy: From the perspective of each database, the same query can
be adopted for any desired message with equal probability. Specifically, as in (3.13)),
for any n € [N], any k € [K], any provided Ay, any selected query ¢, we always
have P(thAv] q) being a constant, which does not depend on the realizations of
n, k, Ay and q.

Database Privacy: From the perspective of the user, every undesired mes-
sage symbol is always mixed with some unknown common randomness. As a result,
no information about undesired message is leaked to the user.

Performance: We compute the performance of the proposed achievable
scheme with regard to pg, py and d. As in [6], the message length L is NKﬁ and d
is 1+ % + ﬁ 4+ ﬁ because the total number of downloaded symbols across
all the databases does not change. Combining the first statement of |6, Lemma 1]

and our assignment of server-side common randomness in step 2, we calculate the

4In Examples @-Iﬂ the message length is strictly L = N*. However, in Example we note that
the classical SPIR scheme achieving dgprr in [8] requires the message length to be a multiple of
N —1 =2, and our new SPIR scheme achieving dpir requires the message length to be a multiple of
NX = 9. In order to execute an appropriate half-to-half time-sharing between these two different
schemes, we set the overall message length to be 36.

109

value of |A|,

- K-1
Al=1+N- N—1k1<) 3.158
A DB (3.158)
K-1
N K-1
=14+ —": N —1)* 1
DML G (3.159)
K-1
N K—1
=14+ —- N — DF1E-1=F 3.160
+N_1 <k:0< k ><) ()
:1+L~((N—1+1)K_1—1) (3.161)
N -1
N
=1+ ——(NF1T -1 162
+ 7) (3.162)
_ N (3.163)
- N-1 ‘
=1+ + N (3.164)

@ = Mg ++- 4~ since L = N¥. The total amount

which implies that pg = =

of required user-side common randomness |Ay| is 1 since the user only has one seed

HRy) _ |Aul i
- L

common randomness before the retrieval takes place. Thus, py = =%

S

% since L = NX,

3.7 Conclusion

In this chapter, we considered SPIR which is a fundamental primitive in cryptogra-
phy, as an essential building block in many cryptographic applications, such as OT,
secure multi-party computation and zero knowledge proofs. Single-database SPIR
could be critical in applications where colluding of all databases cannot be ruled out.

Further, side-information and /or cached information is a useful dimension to explore

110

to improve private download rates. Hence, we introduced an extended version of the
SPIR problem, where the user randomly fetches a portion of the available shared
common randomness at the databases. This fetched database common randomness
can be viewed as a form of side-information at the user. We showed that this side-
information increases the SPIR rate, and it can increase it to the level of PIR rate.
Since single-database SPIR is infeasible while single-database PIR is feasible, the
proposed non-trivial use of user-side common randomness makes single-database
SPIR feasible. Finally, we determined the exact capacity region of the download
cost, database-side common randomness, and user-side common randomness. Open
problems include considering upload cost together with download cost in this sys-

tem and encoding user-side and server-side common randomness as in the coded

PIR problem.

111

CHAPTER 4

Multi-Party Private Set Intersection: An Information-

Theoretic Approach

4.1 Introduction

In this chapter, we investigate the problem of MP-PSI. In particular, there are M
parties, each storing a data set P; over NN; replicated and non-colluding databases,
and we want to calculate the intersection of the data sets N, P; without leaking any
information beyond the set intersection to any of the parties. We consider a specific
communication protocol where one of the parties, called the leader party, initiates
the MP-PSI protocol by sending queries to the remaining parties which are called

client parties. The client parties are not allowed to communicate with each other.

We propose an information-theoretic scheme that privately calculates the intersec-

tion N, P; with a download cost of D = mingeqy,... ary > ety PZ\’;E\H Similar
to the two-party PSI problem, our scheme builds on the connection between the PSI
problem and the MM-SPIR problem. Our scheme is a non-trivial generalization of
the two-party PSI scheme as it needs an intricate design of the shared common ran-

domness among the client parties before the MP-PSI process starts. Interestingly,

112

by means of this auxiliary randomness data, in terms of the download cost, our
scheme does not incur any penalty due to the more stringent privacy constraints in

the MP-PSI problem compared to the two-party PSI problem.

4.2 Problem Formulation

Consider a setting where there are M independent partieﬂ, denoted by P;, i =
1,2,-+- M. The ith party possesses a data set P; for i € [1 : M]. The data set P;
is stored within N; replicated and non-colluding databasesﬂ. Given that K is large
enough, the elements in each data set P; are picked independently from a finite
set Sk of cardinality K with an arbitrary statistical distributionﬂ. More specifically,
before the data sets generation, the data sets P;,i € [1 : M| are all random variables
and they are mutually independent. We assume that the cardinality of data set ||
is public knowledge.

Motivated by the relation between 2-party PSI and MM-SPIR in [72], the ith
party maps its data set P; into a searchable list to facilitate PIR. To that end,

the party P; constructs an incidence vector X;, which is a binary vector of size K

In this work, we only consider semi-honest (honest but curious) parties in the sense that
parties exactly follow the prescribed scheme but curious to learn more about the others. MP-PSI
under malicious/adversarial attacks and in the presence of dishonest parties is an interesting future
direction that is outside the scope of this work.

2We note that the multi-server assumption exists in almost all information-theoretic PIR lit-
erature. In practice, the data content may be distributed to the databases by a central content
generator who does not communicate directly with other parties, i.e., does not have access to the
exchanged queries. The databases do not have any direct communication links among each other
and they update their content by downloading the data from the content generator. Hence, in this
setting, the databases are replicated but not colluding.

3The presented achievability scheme works for any data set generation model and even for
distribution-free data sets. The specific data set generation model in the 2-party PSI problem
in [72] was introduced only for settling the converse.

113

associated with the data set P; for all ¢ € [1 : M], such that

1, je€ P;
Xi; = (4.1)

where X, ; is the jth element of X; for all j € Sg. Note that X; is a sufficient
statistic for P; for a given K. Hence, the MP-PSI determination is performed over
X; instead of P;.

We consider a specific communication protocol in this work. The parties agree
on a leader party, which sends queries to the remaining parties and eventually
calculates the desired intersection NM,P;. The remaining parties are called client
parties. Without loss of generality, assume that the leader party is Py;. The leader
party Py sends the query QEEM I'to the jth database in the client party P; for all
ie€[l:M—1]and j € [1 : N;]. Since Py has no information about data set P;
before the communication, the generated queries QEZM] are independent from P;.

Hence,
QPP =0, Vie[l:M—1], ¥je[l:N] (4.2)

The jth database associated with the client party P; responds truthfully with

an answer AEM I for alli e [1:M—1],and j € [1: N;]. The answer is a deterministic

[P]

function of the query @);;*", the data set P;, and some common randomnes Ri;

4We note that the common randomness (key) exchange is an interesting stand-alone problem
that is outside the scope of this chapter. One practical solution to this problem in our setting
is to have an external helper, who generates and shares the common randomness prior to the

114

that is available to the jth database of P;. Thus,

HAPQP P R,) =0, Vie[l:M—1], ¥je[l:N] (4.3)

Let us denote all the queries generated by Py, as Q[f;)]]\?]q,h , and all the answers

collected by P as A[I?A]Z]—I,I:Nw ie.,

Q[l?ll\?}—l,lzNi = {QEZM} e[l M—1],j€(l: Nz]} (4.4)
AP {A“’M e[l M1l Ni]} (4.5)

Three formal requirements are needed to be satisfied for the MP-PSI problem:
First, the leader party P,s should be able to reliably determine the intersec-
tion P = N, P; based on Q[f](‘j 11N> A[fﬁLM;Ni and the knowledge of Py; without
knowing |P| in advance. This is captured by the following MP-PSI reliability con-

straint,

[MP-PSI reliability] ~— H(P|QTal, v, AT Par) =0 (4.6)

Second, the queries sent by Py, should not leak any information about P,
except the cardinality of Py, to any individual database. Thus, P,; should be

independent of all the information available in the jth database of P; for all i €

MP-PSI determination process. The external helper is not involved in the MP-PSI process itself,
i.e., it does not observe the queries or the answers. In this case, the client parties do not need to
communicate with each other to exchange the common randomness and there is no leakage from
their queries/answers to the external helper. We note that the SPIR problem [8] (and by extension
our scheme) is infeasible if no common randomness exists.

115

[1: M —1)and j € [1 : N;]. This is described by the following leader’s privacy
constraint,

[Leader’s privacy| I(Pu; Q[-PM},AEM],PZ-,RZ-J) =0, Vie[l:M—1], Vje[l:N]

Z?]

(4.7)

Note that the communication between any two client parties is not allowed in our
protocol. This implies that the party P; is not able to get any information about
the remaining M — 2 client parties. Thus, the mutual independence required by the
problem formulation is thereby satisfied from the perspective of the party P;.
Third, client’s privacy requires that the leader party does not learn any infor-
mation other than the intersection P from the collected answer strings. Let X; » be
the set of elements in X; that do not belong to P, i.e., X; 5 = {Xj : k € P}. Hence,
the set {Xlﬂs, e 7XM—1,75} = {X1,k, o Xvak k€ 75} should be independent of
all the information available in Py;. Note that if an element in P, is not in the inter-
section P, the leader party is supposed to conclude that not all the client parties con-
tain this element simultaneously. On the basis of this fact, we define a new set X =
{{X1,757 o Xyast X+ Xyop <M —1L,VE € Py N 75}}, we have the

following client’s privacy constraint,

[Client’s privacy] I(Xp; [17:)]\%171,1:Ni> A@}’LLLM,PM) =0 (4.8)

For a given field size K and individual parties with associated databases, an

MP-PSI achievability scheme is a scheme that satisfies the MP-PSI reliability con-

116

straint , the leader’s privacy constraint and the client’s privacy constraint
(4.8). The efficiency of an achievable MP-PSI scheme is measured by its download
costﬂ which is the number of downloaded bits (denoted by D) by one of the parties
in order to compute the intersection P. The optimal download cost is D* = inf D

over all MP-PSI achievability schemes.

4.3 Main Result

In this section, we state our main result concerning the performance of our MP-PSI
scheme in terms of the download cost. This is summarized in the following theorem,

whose proof is given in Section [4.5]

Theorem 4.1 In the MP-PSI problem with M independent parties with data sets
Pi, assuming that the parties follow a leader-to-clients communication policy, if
the data sets are stored within N; replicated and non-colluding databases for i =

1,---, M, then the optimal download cost, D*, is upper bounded by

- te{1,~~~,M}i€{1,mM}\t N; —1

D*< min > [Mw (4.9)

Remark 4.1 In the special case of having an arbitrary party P, where |P;| = K,

5We note that although a more natural performance metric is to consider the combined upload
and download cost, we argue that the upload cost may not scale with the number of MP-PSI
determination rounds if the MP-PST is regularly repeated |72} footnote 8]. Since the core of [72] (and
this chapter also) relies on SPIR, we give a detailed discussion of how to reduce the upload cost of
the SPIR scheme without sacrificing the download cost in [72), Section 7.2]. The optimal download
cost of the SPIR problem is characterized in [§8] with keeping the upload cost unconstrained. In
addition, the optimal upload cost of the SPIR problem is characterized in [73] with keeping the
download cost unconstrained. The optimal combined download and upload cost for the canonical
SPIR problem is still an open problem.

117

we discard this party P; before we perform the MP-PSI determination process, and
thereby, the M -party MP-PSI problem reduces to an M — 1-party MP-PSI problem.
In the extreme case, where all parties have |P;| = |Sk| = K, the download cost
becomes zero, i.e., no party needs to exchange any information with any other, as

the intersection is immediate.

Remark 4.2 The minimization problem in (@) mn Theorem corresponds to the

|7’t\N¢-‘

fact that the parties can agree on the party with the minimum Zie{LmM}\t [ﬂ

to be the leader party. We note that the leader party may not be the party with the
least |P;|, as the download cost also depends on the number of the databases at all

parties.

Remark 4.3 The download cost of our achievability scheme is equal to the sum
of the download costs of M — 1 pair-wise PSI schemes. This implies that there is
no penalty incurred due to adopting a stringent clients’ privacy constraint over the
FEs5 privacy constraint. Note that the Ey privacy constraint is a relaxed version of
client’s privacy when M =2 [72]. More specifically, the Eq privacy constraint
asserts that the leakage from elements outside the set Py in the answers returned by

Es is zero, i.e., 1(751;14[173{7]2) =0.

Remark 4.4 Our achievability scheme is private in the information-theoretic (ab-
solute) sense and is fairly simple to implement. A drawback of our approach is that
it needs multiple replicated non-colluding databases as in the 2-party PSI problem

in [72]; otherwise, our scheme is infeasible if N; =1 for all i.

118

Remark 4.5 Comparing our result with the most closely related information-
theoretic MP-PSI schemes [09], we argue that our scheme outperforms theirs in
terms of the communication cost as our download cost is linear in both the number
of parties M and the size of the sets p, assuming that |P;| =p for alli=1,--- /M
in contrast of O(M*p?) in [69]. We note, however, that the work [69] allows for
potential distrust between the parties in the sense that an active adversary may cor-
rupt up to M/3 parties. The issue of parties’ misbehavior is an interesting future

direction for our work, which is outside the scope of this chapter.

4.4 Motivating Example: 3 Parties with 3 Databases Each (M = 3

with N1 :N2=N3:3)

In this section, we motivate our scheme by presenting the following example. In
this example, we have M = 3 parties, each possessing N; = 3 replicated and non-
colluding databases. Assume that each party stores an independently generated
set P; C Sk, where Sy = {1,2,3,4}. Specifically, we assume that P; = {1,2},
Py = {1,3}, and P3 = {1,4}. We aim at reliably calculating the intersection
P; N PyN Py = {1} without leaking any further information to any of the parties
according to the defined communication policy. Without loss of generality, we pick
P; to be the leader party. The remaining parties P;, P, are referred to as clients.

We map the sets into the corresponding incidence vectors as in [72], i.e., we

119

construct a vector X;, such that X, = 1 if k € P;, hence,

Party Pl : 7)1 = {1,2} = X1 = [Xl,l XLQ X173 X1?4]T = [1 10 O]T (410)
Party P2 : 732 = {1,3} = X2 = [X271 X272 X273 XQA]T = [1 01 O]T (411)

Party P3 : 7)3 = {1,4} = X3 = [X371 X372 X373 X374]T = [1 00 1]T (412)

To carry out the MP-PSI calculations, the parties agree on a finite field Fy,
where L is a prime number such that L > M. Therefore, we pick L = 3 in our case,
i.e., all summations are performed as modulo-3 arithmetic.

The leader party Pj initiates the MP-PSI determination protocol by sending
queries QZ[ZS] for : € {1,2} and j € {1,2,3}. The queries aim at privately retrieving
the messages X; 1, X14 and Xo1, Xy 4 using the SPIR retrieval scheme in [8] (the
same query structure was introduced in the original work of [5]). Note that in this
example we have N; = |P3| + 1, thus, the leader party sends exactly 1 query to each
client database. More specifically, let hy, where £k =1,--- ,4, be a random variable
picked uniformly and independently from [F3, then, for client party P;, the queries

sent from the leader party P; are generated as follows,

7ol = [hy ha g ha)” (4.13)
[Ps] _ T
1o = [h1+1 ha hy hy] (4.14)
[Ps] _ T
13 =[h1 ho hg hy+1] (4.15)

i.e., the leader party sends a random vector h = [hy hy hs hy] € F% to the first

120

database as a query. The queries for the remaining databases add a 1 to the positions
corresponding to Ps. For client party P,, the leader party submits the same set of

queries,

[27)13] = [h1 hy hg hy]" (4.16)
[2P23] = [h1+ 1 hy hs hg)” (4.17)
[27,35] = [h1 hy hg hy+1]" (4.18)

Originally in 2-party PSI, the client databases obtain the inner product of
X; and QE‘“’] and add a common randomness. In MP-PSI, however, we note that
applying the answering strategy of [8,(72] compromises the clients’ privacy constraint
. This is due to the fact that the leader, in this case, can decode that X; 4 =0
and X5, = 0 and not only the intersection N;=; 23 P;. Consequently, the clients’
databases need to share intricate common randomness prior to the retrieval phase
to prevent that. To that end, the client parties generate and/or share the following

randomness (see Fig. 4.1)):

1. Local randomness: This is denoted by the random variable s;, for ¢« = 1, 2.
The random variable s; is picked uniformly from 3 independent of all data
sets and other randomness sources. The local randomness s; is shared among
all the databases belonging to the ith client party and not shared with other
parties. This local randomness acts as the common randomness needed for

SPIR [8], and is added to the inner product of the incidence vector and the

121

Figure 4.1: MP-PSI for the motivating example.

query.

2. Individual correlated randomness: This is possessed by each client’s database,

and is denoted by the random variables ¢, ; for ¢ = 1,2, and j = 1,2,3. This

is needed to prevent the leader party from decoding X, 4, and X5 4. However,

since we also need the leader party to decode the intersection, the random

122

variables t; ; need to be correlated such that their effect can be removed if X; ;
belongs to the intersection. To that end, we choose t;; = 51 = 0. Database
2 of the party P, generates uniformly and independently ¢; o from F3 and
sends it to database 2 of party P,. Database 2 of the party P, calculates
to2 = 1 —t1 2. Similarly, database 3 of the party P, generates ¢; 3 uniformly

and independently from 3 and shares it with database 3 of P,. Hence,

t1; ~ uniform{0, 1,2}, j=2,3 (4.19)

tl,j + tQ,j — 1, j - 2, 3 (420)

This randomness is added to each response as well. Note that client parties

do not know each other’s data sets while generating/sharing this randomness.

3. Global randomness: This is denoted by the random variable ¢. The random
variable ¢ is generated randomly and independently of all data sets and other
randomness variables. The global randomness ¢ is picked uniformly from Fj \
{0} = {1,2}. The global randomness is shared among all databases of all
client parties P, and P». The global randomness is used as a multiplier to the

responses.

After sharing the common randomness needed to construct the answer strings

as shown above, the jth database of the ith client party responds to the query QE?]

123

as follows,

AP = o(XTQP s+ ty), i=1,2, 5=1,2,3 (4.21)

5] J

Hence, noting that ¢, ; = 0, the answer strings from P, can be explicitly written as,

4
AT = [X+ 81> (4.22)
k=1
4
A[17,D23] =c Z heXik+ Xig + 81+ t1,2> (4.23)
k=1
4
AT = [Y mXip + X+ 51+ t1,3> (4.24)
k=1

Similarly, the answer strings from P; are,

4
A[27,D13] = Z hypXo) + 82) (4.25)
k=1
4
A[27,D23] =c Z hpXop + Xon + 2+ t2,2> (4.26)
k=1
4
AT = e [Y mXop + Xou + 52+ t2,3> (4.27)
k=1

Note that, by this construction, the local randomness s; is used to protect the
random sum Zi:l hi X as in SPIR, and the individual randomness ¢; ; is needed
to prevent the leader party from directly decoding X, ;+;. Note that s; and sy need
to be independent to avoid the information leakage about the relationship between
S e Xg and S hp X

Reliability: To calculate M;—;123 P; based on the answer strings the leader

124

party has received, the leader party subtracts A[ff] and A[ff] from the remaining
answer strings. Denote the result of subtraction related to the jth element in Sk at

P; by Z; ;. This leads to,

Ziy = e(Xoq + trg) = AFS - Al (4.28)
ZL4 = C(X174 —+ t173) = A[f;] — A[ff] (429)
Zay = c(Xoq +ta2) = A[g?éﬁ’] - A[;f] (4.30)

Zog = c(Xou+toz) = ATs — AT (4.31)

Now, let E; be an indicator of having the jth element in Sk in the intersection
Ni=1,2,3 Pj, such that F; = 0 if and only if 7 € Nj=1 23 P;. To that end, define F; as

the modulo-L sum of Z; ; along all clients, i.e.,

M—-1

Ej=)Y 7 (4.32)

=1

Looking deeper at F;, we note that,

Ey =211+ Za; (4.33)
=c(X11+ Xo1 +tia+122) (4.34)
= C(Xl,l + X2,1 + 1) (435)

where t;9 + t32 = 1 by the construction of the individual correlated randomness.

Therefore, Fy = 0 if and only if X;; = 1 and X,; = 1 simultaneously. In this

125

case, Fy = 0 irrespective of the value of ¢ and the leader party verifies that {1} C
Ni=12.3 Pi.

On the other hand, when P; calculates Fy,

E4 = Zl,4 + Z2’4 = C(X174 + X274 + 1) 7£ 0 (436)

Consequently, the leader party confirms that N;,—;23 P; = {1} and does not
include 4.

Leader’s Privacy: The leader’s privacy constraint follows from the user’s
privacy constraint of the inherent SPIR scheme [§]. The queries of the leader to any
party have the same structure as the queries of the user in the SPIR problem. More
specifically, the privacy of leader party is preserved as each element in the queries
is uniformly distributed over the finite field F3. Hence, no information about Pj is
leaked from the queries.

Client’s Privacy: To see the client’s privacy, we note that no information

is leaked about P; NP3 or P, NP3 due to s; and s, respectively. Nevertheless,
in MP-PSI, we need to verify that the leader does not know which of the two
parties possesses the element {4}, i.e., knowing the fact that E4; # 0, we need to
show that P(X14+ Xoy = 0) = P(Xj4+ Xou =1) = % Specifically, if E, is 1,
PX1a+Xos =0) =P(Xg4+Xos=1) = % because ¢ is uniformly distributed
over 1 and 2 and the sum ¢, 3 + 23 = 1 by construction. The conclusion is exactly

the same when F, equals 2. Thus, the only information that P; can obtain for the

element 4 is that client parties P; and P, do not contain it at the same time (this is

126

no further leak, as if they did contain it at the same time, it would have been in the
intersection). Hence, ¢ is used such that the leader party P; does not know whether
the sum X; 4 + X545 0 or 1.

Download Cost: In our example, the leader party P; downloads N; = |Pys|+
1 symbols from each client party. Hence, the total download cost is D = (M —

)(|Pu|+1) =6.

4.5 Achievability Proof

In this section, we describe our general achievable scheme for MP-PSI for arbitrary
number of parties M, arbitrary set sizes |P;|, and arbitrary number of databases
per party N;, for i € {1,--- ,M}. The leader’s querying policy is based on the
SPIR scheme presented in [§] (originally introduced in [5]). Our novel ideas in
this scheme are concerned with the construction of the answering strings. More
specifically, the scheme hinges on the intricate design of generating and sharing
common randomness among the clients’ databases in such a way that the leader

party cannot learn anything but the intersection ﬂf\iﬂ%.

4.5.1 General Achievability Scheme

In the following, assume that P; C Sk, where |Sk| = K.

1. Initialization: The parties agree on a retrieval finite field Fy to carry out the

127

calculations needed for MP-PSI determination protocol. L is chosen such that,

L=min{L > M : Lis a prime} (4.37)

The parties agree on a leader P+ such that:

t = 4.
i, 3 5 (432)

Without loss of generality, we assume that t* = M in the sequel. Furthermore,

assume that Py = Py = {Y1,Ys, -+, Yg} with cardinality |Py| = R.

. Query generation: The leader party P, independently and uniformly gener-

ates k random vectors {hy, hy,--- h,}, where k is given by,

kR =

[P
4.
e [Ni - (4.39)

The vector hy, for £ =1,2,-- -,k is picked uniformly from F¥ such that,

hy =[he(1) he(2) -+ (K] (4.40)

Denote n; = “\z—lfﬂ, and let Pﬁ}'[= {Yf",YZZi, . --Y]ffifl}, fore=1,---, M — 1.

The leader party Py, submits 7; random vectors from {hy, hy,--- 'h,} to the
first database of the ith client party as queries. Each submitted random vector
can be reused in the remaining N; — 1 databases to retrieve N; — 1 symbols.

This can be done by adding 1 to the positions corresponding to the desired

128

symbols. More specifically, take ¢; to be a running index, i.e., {; = 1,2,--- n;,
and assume that Py = Uglepﬁ, where Pﬁj[C Py are disjoint partitions of

Py such that P4

= N; — 1 (except potentially for the last subset Pj7), then

fori=1,2,---, M — 1, the query structure is given by:

Pyl _

Qi = [h(1) h(2) -+ h(K)] (4.41)

L1

Qi = (1) -+ MV = 1) (V) + 1 (Y 1) - m(K)] (442)

01
QI = [hy(1) -+ (Y, =) (Vi)+ 1 bV +1) - hi(K)]

(4.43)
QU = [hy (1) By (2) <+ By () (4.44)
QU = [hy (1) -+ By (V7 = 1) gy (V) 1 Ry (V1) < iy (K]

(4.45)

pli)))
QE]% = [hm(1> hm(%@jﬂ - 1) hm(Yz@;l) +1 hm‘(Y]:Zfl + 1) hm<K)]

(4.46)

i.e., Py simply partitions the set Py, into subsets of size N; — 1. For each set,
Py uses different h,. P); submits h, into the first database. For the remaining

databases, it adds 1 for the positions that corresponds to the partition.

3. Common randomness generation: In order to respond to the leader party, the

129

clients need to generate and share common randomness. Specifically, there are

three types of randomness:

e Local randomness: This is denoted by s; = [s;(1) s;(2) si(n;)]. Each
element of s; is generated independently and uniformly from F;. The
local randomness s; is shared between the databases associated with P;.
The local randomness is added to the responses as in SPIR [§]. Note that

each database uses a different element from s; for each submitted query.

o [ndividual correlated randomness: The jth database associated with the
ith client possesses an individual randomness t; ; = [t; ;(1) ¢ ;(2) t;;(m:)]
fori=1,--- M —1,and j = 1,---,N;. The elements ¢;; = 0 for all
i. For¢=1,---, M — 2, the vector t,; is independently and uniformly
picked from F7'. All these random vectors are sent to the party Py 1.
The client Py;_; generates its individual randomness t;;—1; according
to the received individual randomness from the remaining parties. For
simplicity, let us (re)denote the individual randomness components by
tir, where i is the index of the client party and k = 1,2,--- , R is just a
monotonically increasing index of the randomness component used within

the databases 2 to IV; of the ith client. Thus,

i =tio(1), tin=t2(2), -, tig = tin,(m) (4.47)

With this re-definition, the client P,,_; calculates its individual random-

130

ness as,

M-2

by =L—(M-1)=> fy, j=12-,R (4.48)

=1

This ensures that the individual randomness are correlated such that
Zf\ifl ti; = L — (M —1). The individual randomness is added to the

respomnses.

e Global randomness: This is denoted by c. ¢ is picked uniformly and
independently from Fy, \ {0}. ¢ is shared among all the databases at all

clients. ¢ is used as a multiplier for the answering string.

4. Response generation: The clients respond to the submitted queries by using
the queries as a combining vector to their contents, i.e., each database cal-
culates the inner product of the query and its contents. Next, it adds the
local and individual randomness. Finally, it multiplies the result by the global
randomness. More specifically, the answer string of the jth database, which is
associated with the ith client to retrieve one of the elements of the partition

6 AP s
Py, A; M, is given by,

7/7] ’

[Pyi] [Pyi]
Ai,jM =c (Xz'TQiJM + si(€;) + ti,j(@)) (4.49)

From the collected answers the leader party can determine the intersection N, 7P;

reliably and privately.

131

4.5.2 Download Cost, Reliability, Leader’s Privacy, Clients’ Privacy

Download cost: By observing the queries associated with the MP-PSI scheme

in the previous section, one can note that the desired symbols are divided into

N = {%-‘ subsets. Each subset consists of N; — 1 desired symbols. The leader

needs to download 1 bit from all /N; databases to query the entire subset, as the

leader downloads useless random linear combination of the contents from the first

database. Hence, the download cost is given by,

M-—1
=1
M-1
Pt | Ni
= 4.51
i=1 [N" -1 oy

Reliability: To verify reliability, we follow the leader’s processing of the
responses. First, we note that the answer string that is returned from database 1 is
a random linear combination of the contents of the database besides the common

randomness, and is given by,

¢ K
AEﬁM} =c (Z he, (k) Xie + 3i(£i)> , i=1- M—1 (4.52)
k=1

Note that t;; = 0 by construction. The leader subtracts this response from each

response that belongs to the same partition. Denote the subtraction result at the

132

tth client that contains the element X, by Z; ;, hence,

Zik=c(Xip+tip) = A[yi AyiM], ke Pl (4.53)

Z

for some unique j* that A m

is a response of the query that adds 1 to the kth
position of the query vector. In particular, for the special case of N; = |P;| + 1 for
alli=1,---, M — 1, we have j* = k + 1 and Pﬁ} = Py (one partition). Note that
we used the alternative notation f@k as it is counted in sequence.

Next, the leader constructs the intersection indicator variable Ej, where E}, is

given by,

E), = Mg (4.54)
= <Mz ik Z_ & k) (4.55)
(T~

where (4.56)) follows from the construction of the individual randomness. Now, the

element Ey = 0 if and only if Zf\ifl Xir = M — 1, which implies that X;; =1
for all i = 1,2,--- , M — 1. Consequently, Y, € N, P; if and only if E, = 0. This
proves the reliability of the scheme.

Leader’s privacy: The leader’s privacy follows from the fact that the random
vectors {hy,--- h,} are uniformly generated over FX. Adding 1 to these vectors

does not change the statistical distribution of the vector. Since the leader submits

133

independent vectors each time it queries a database, all queries are equally likely
and the leader’s privacy is preserved.

Clients’ privacy: Without loss of generality, we derive the proof of the
client’s privacy for the homogeneous number of databases, i.e., N; = R+1,Vi € [1 :
M —1]. The general proof in the heterogeneous case follows the same steps and after
removing the response of the first databases, we will be left with Z; ; that has the
same structure of homogeneous case. Consequently, we present the homogeneous
case here for convenience only. In the following proof, we adopt the notation that

for a random variable ¢; ; indexed by two indices (4, j),

<i1:iM,j1:jR = {CZ,] RS {ilv e JiM}7 j € {.j17 e 7jR}} (457)

For the proof, we need the following lemmas. Lemma [4.1]shows that the effect
of the local randomness is to make the response of the first database at all parties

independent of X5.

Lemma 4.1 For the presented achievable scheme, we have,

P P
I<X75; A[LZ\A/?]*LJZLM*LYPYR? [1:]1\?]71,1:Ni77DM) =0 (4'58>
Proof: Intuitively, the proof follows from the fact that AE?M},Z' efl:M-—1]is

a random variable uniformly distributed over [0 : L — 1] because of the local ran-

domness s;, and thus, is independent of the data sets, queries and the subtraction

134

results. More specifically,

P P
[(Xﬁ; A[lzﬁll,l |Zl:M71,Y1;YR7 [1:1\1;}11,1:N,‘7 PM)
= HADD 2y Q0 v Pa)
— HADY X, Ziar1yvive, Qi 1 1x, Par) (4.59)

P P P
< H(A[lzﬁl—1,1) - H(AE:JJ\\/;]—1,1|X1:M—L Cy Xﬁa Zl:M—l,leYRv [1:A]>II]—1,1:Niv7DM)

(4.60)
<(M-1)—H(s1, - ,5m-1) (4.61)
=M-1)-(M-1)=0 (4.62)

This concludes the proof, since I(Xp; A[f](‘j]fl’l\leM_lyylzyR, [17};]71,1:Ni7 Pu)>0. R

Lemma [4.2] asserts that for ¢ € [1 : M — 2], j € [1: R] the effect of individual
randomness ¢; ;41 is to force the random variables Z;y, to be independent of Xp.
Note that we do not claim anything about Zj; 1)y, as the individual randomness

are correlated at party M — 1.

Lemma 4.2 For the presented scheme, we have,

I(Xp; Z1im 21 ve | Bvi v, [17:311\?}—1,1:NNPM) =0 (4.63)

Proof: Intuitively, similar to the proof of Lemma the proof follows from the
fact that Z;y,,i € [l : M —2|,j € [1 : R] is a random variable uniformly distributed

over [0 : L —1] because of the individual randomness ¢; ;1 1, and thus, is independent

135

of the data sets, queries, and the data sets in the client parties Ey,,

I(Xp: Zv.vi—2,v1:ve | Bviive, [17;)%],171:1\;1, Pur)
—H(Z E [Pum] P
(1:M72,Y1:YR’ Yi:Yr> Ql;Mfl,l:N,ﬂ M)
- H(Zl:M—2,Y1:YR |X75a EY1:YR7 Q[l?ﬁ}—l,lzNﬂ PM) (464)

P
S H<Z1:M—27Y1:YR) - H(Zl:M—27Y1:YR|X1:M—17 c, X757 EYl:YRa [1;;\;]_171;]\[2.7 PM)

(4.65)
< (M =2)R) — H(ti.v—2,v1:vz) (4.66)
=((M =2)R) — (M -2)R) =0 (4.67)

This concludes the proof as the reverse implication is true by the non-negativity of
mutual information. W
The following lemma asserts that indicator functions Ey, for all j do not leak

any information about Xp.

Lemma 4.3 For the presented scheme, we have,

I(X5; Eviovg, Q[fﬁ}—l,l:Np Pu) =0 (4.68)

Proof: Note that if Y; € Py is in the intersection, Ey, = 0 has nothing to do with
Xp since Xp is defined on the elements not in the intersection. However, if Y} is not
in the intersection, By, = ¢(X1y, +- - -+ Xy-1y, +L—(M—1)),Y; € Py NP received

by the leader party would be a realization within the range of Fy \ {0} because

136

of the global randomness ¢. However, the leader party only knows that the global
randomness ¢ is uniformly distributed over F1\ {0} and has no information about the
specific value of ¢ in the client parties. As a result, from the perspective of the leader
part Py, X1y, +- -+ Xy-1y, + L — (M —1) is uniformly distributed over [1 : L —1]
according to the information contained in Ey,. This comes from the fact that the
set Fr, \ {0} of all L — 1 non-zero elements must form a finite cyclic group under
multiplication given a finite field F;,. That means that, in the additive table under
multiplication operation, each element in [F; \ {0} appears precisely once in each row
and column of the table. The probability P(Xyy, +---+Xy_1y, +L—(M —1) =)
would always be +— for any [€ [1: L —1]. Then, Xy, +---+ X/_1y, is uniformly
distributed over [M — L : M —2] (i.e., [0: M —2]U[M : L —1]) and we can further
conclude that Xy, +-- -4 Xy_1)y; is uniformly distributed over [0 : M — 2] because
its largest possible value is M — 2 if Y; is not in the intersection. Thus, the only

information we can learn from FEy,,---, By,

. and the accompanying queries about

Xpis Xop+ -+ Xy < M —1,VE € Py N P without knowing the specific
value of X + -+ Xjps_1%, which already exists in the definition of X5. Thus, we

obtain,

I(XP7 EYl YR7Q[1P]J\? 1,1:N; 7PM>

= I(Xp; By, | QUat L1y Por) (4.69)
(XP’QEPJ]\? 1,1:N; >7DM> (XP’EE Ylepﬁ 1,1:N; >7DM) (4-70)
= H(Xp) — H(Xp) (4.71)

137

_0 (4.72)

where (4.69) follows from the fact that queries and Py, are independent of the data
sets in the client parties Ey, in (4.2). W
Now, we are ready to show that our achievability satisfies the client’s privacy

constraint,

P P
I(Xp; [1:]\”4[]—1,1:Ni’A[l:l\]\/}]—leNiva)
= I(Xp;s ATM L Ziar- vy QVat s n, s Par) (4.73)

= [(Xp; Z1M-1,Y1:Yg ij\]\;]—l,lzNu Pum)

+I(X753 A[I?AJ?}—IJ |Zl:M—LY1:YRv [17:)]1\\4/[}—1,1:Ni7 PM) (4'74)
:[<X75;ZLM*17Y12YR7 [I?AA//[I]fl,lzNiva) (4'75>
= 1(Xp; Ziar—2v1 ¥ Bviovies Qa1 1o, Pr) (4.76)

= I(Xp: Eyiovs Qvtl 1 1ones Par) + L(Xp3 Zionr—avival Byiovns Quatl 1 1ox,s Par)

(4.77)
= [(Xﬁ; By, v, Q[I?Z\A//[I]fl,lzNiv PM) (4'78>
—0 (4.79)

where (4.73)) follows from the fact that there is a bijective transformation between

APy, and (AT Ziar vi), (ET5) follows from Lemma [4.1] ({76) fol-

lows from the fact that there is a bijective transformation between Zi.a—1y,.v,

and (Z1.m—2v1:vm, Evive), (4.78)) follows from Lemma , and (4.79) follows from

138

Lemma (4.3

4.6 Further Examples

In this section, we present two examples of our achievable scheme. Unlike the
motivating example in Section [£.4] in these examples, the number of databases per

party does not need to be N; = |Pys| + 1 or even be homogeneous in generalﬁ.

4.6.1 An Example for N; < |Py| + 1

In this example, we use the same setting of Sectionwith Py ={1,2}, P, = {1,3},
and P3 = {1,4} with P; being the leader party and the retrieval field being F3. The
incidence vectors X;, for « = 1,2 remain the same. However, to illustrate that our

scheme works for N; < |Py| + 1, we assume that Ny = Ny = 2. As we will show

[Pl

Nﬁl-‘ = 2 queries to the

next, when N; < |Py| + 1, we need to send k = n; = [
first database of the ith party (in contrast to 1 query only when N; > |Py| + 1).

Moreover, the common randomness components s;, and t; ; need to be vectors of

size P?M |—‘ = 2. Note that, in this case, the leader’s set is divided into 2 subsets

Py = {1} and Py} = {4} as |Py;

=N;,—1=1.

For the queries, since both client parties have the same number of databases,
the leader P3 submits the same query vectors to the databases of both clients. The
first databases of each client receives 2 uniformly generated vectors h, h € F4, where

h = [h; hy hs hy]” and h = [h; hy hs hy]". P; submits the same two vectors to

6For N; > |Pa| + 1, we just use any arbitrary |Pps| + 1 databases to execute the MP-PSI
determination protocol.

139

the second databases of P, and P, with adding 1 to the desired positions. More
specifically, let ngj be the query to the jth database of P; to retrieve the element

k, then P; submits the following queries:

[11]1 = [21]1 = [h1 ho hy ha)" (4.80)
L =QYy =[hi+1 hy hy ha]” (4.81)
[14]1 = [24}1 = [h1 hy hs " (4.82)
[14]2 = [24}2 = [h hy hy hy+1]" (4.83)

At the clients’ side, the clients share a global randomness ¢ ~ uniform{1, 2}
among all the databases of both clients. For ¢ = 1,2, the ith client generates and
shares a local randomness s; = [s;(1) s;(2)]7, such that s;(¢) ~ uniform{0,1,2}
among the databases that belong to the ith client. Finally, for ¢ = 1,2, the
second database of the ith client has an individual correlated randomness t; o =
[ti2(1) t;2(2)]7, such that t;9(1) ~ t12(2) ~ uniform{0, 1,2}, t1(1) + t22(1) = 1,
and t;5(2) + £22(2) = 1. Assume that t;; = t5; = 0. All randomness components
are independently generated of each other and of the data sets.

The answer string AE’:;]., fori=1,2,j=1,2, k=14, is given by,
AY = (XTQU + si(t(k) + 1 (¢(R))) (4.84)

where /(1) =1 and ¢(4) = 2.

140

Thus, the leader party receives the following answer strings from Py,

4
A[ll]l =c Z hiXqx + 51(1)> (4.85)
k=1
4
A[ll,]Q =c Z h X + X1+ s1(1) + t172(1)> (4.86)
k=1
4
Al =c > X+ 51(2)> (4.87)
k=1
4
Ay =c > W Xig A X+ s1(2) + t172(2)> (4.88)
k=1

and the following answer strings from Ps,

4
A[21]1 =c Z hiXax + 52(1)> (4.89)
k=1
4
A[zl,]Q =c Z hiXop + X1+ so(1) + t272(1)> (4.90)
k=1
4
Al =c > i Xoy+ 52(2)> (4.91)
k=1
4
A[;]Q =c Z heXog + X14 + 52(2) + t272(2)> (4.92)
k=1

The leader party constructs the subtractions Z; ; as follows,

Ziy = (X1 +tia(1) = A, — AV (4.93)
Za = c(Xia+ti2(2) = A — AV (4.94)
Zoy = c(Xu1 + t22(1)) = AL — A (4.95)
Zou = c(Xia+ta(2)) = Ay — AP (4.96)

141

These are exactly the statistics in (4.28)-(4.31]). Hence, the reliability and privacy
constraints follow exactly as in Section [£.4l The total download cost in this case is

D = 4+ 4 = 8, which is consistent with the download cost for the general case in

9. 0= [33]+133) =

4.6.2 An Example for Heterogeneous Number of Databases

In this example, we consider a general case, where there are no constraints on the
number of databases associated with each party or on the cardinality of the sets.
In this example, we have M = 4 parties with Ny = 2, N, = 3, N3 = 5, and
N, = 4 associated databases. The four parties have the following data sets and the

corresponding incidence vectors,

Party P1 : Pl = {1, 2,3,4},X1 = [Xl,l XLQ X173 X174 X175]T = [1 111 O]T (497)
Party Pp: Py ={1,2,4}, Xy =[Xo; Xoo Xo3 Xoy4 Xos]m =[11010]" (4.98)
Party Py : P3={1,3,4}, X3=[X3; X302 X33 X34 X3,5]T =[1011 O]T (4.99)

Party Py: Py ={1,4,5}, X, = [Xu1 Xao Xusz X4a Xus)? =[1001 1]" (4.100)

First, we choose party P, for the role of the leader party, as it results in the

|7)z|Ni

N -‘ Since M = 4, we choose a retrieval
1

minimum download cost D, = >, , {

field Fy, such that L = 5, as L is the smallest prime number that satisfies L > M.

Now, k = max; [%-‘ = 3. Hence, for the queries, the leader P, generates

t = 3 random vectors. From which, it submits n; = {]Lpﬂ-‘ to the first database

142

associated with the ith party, i = 1,2,3. Each random vector can be reused for
retrieving N; — 1 elements from the remaining databases by adding 1 to the query
vector in the positions of the desired symbols.

Specifically, party P; has only two databases and P, is supposed to sub-
mits 7, = (%w = 3 random vectors to database 1, denoted by h, =
[he(1) he(2) -+ he(5)]T, where £ = 1,2,3. The leader’s set is divided as P}t = {1},

= {4}, and P}® = {5} with |P{;| = N; — 1 = 1. These random vectors are

generated uniformly from F: Thus, the queries sent from P, to P; are generated as

follows,

=) m@2) mE) @) mE) (4.101)
12f[h1()+1 hi(2) hi(3) hi(4) hi(5)]" (4.102)
0= [ha(1) Ra(2) h2(3) ho(4) ha(5)]" (4.103)
U =Tha(1) ha(2) ha(3) ho(4)+1 ho(5)) (4.104)
0= [hs(1) ha(2) hs(3) hs(4) ha(5)]" (4.105)
PL=[hs(1) hs(2) hs(3) hs(4) ha(5) + 1) (4.106)

Party P, has three databases and P, only needs to send 7, = (ﬁw = 2 random
vectors to database 1 of client P». Each random vector can be reused at databases
2, 3 to retrieve 2 desired symbols. The leader’s set is divided as P;' = {1,4}, and
P22 = {5}. Without loss of generality, P, uses h; to obtain the information of

Xa1,X24 and hy is used to obtain the information of X, 5. Note that, in this case

143

no query is needed to be sent to the third database to retrieve X;5. Thus, the

queries sent from P, to P, are generated as follows,

Qo' = [(1) m(2) mE) Mm@ mE)" (4.107)
QY =) +1 m(2) mB3) h4) h(5)T (4.108)
QY =Th(1) m(2) mB3) h@)+1 hi(5)T (4.109)
o1 = [ha(1) ha(2) ha(3) ho(4) ho(5)]" (4.110)
Db =[ha(1) ha(2) ha(3) ha(4) ho(5) +1)T (4.111)

Party P; has five databases and P; needs to send 73 = (%w = 1 random
vector to database 1 and reuse this vector to retrieve all the desired symbols from

databases 2 through 4. Thus, the queries sent from P, to P5 are generated as follows,

B = (1) ma(2) M) () ha()] (4.112)
DY =) +1 h2) B m@))" (4.113)
P = (1) h(2) M) m@) +1 hG)" (4.114)
DY = Tho(1) ha(2) ha(3) ha(4) hao(5) +1]7 (4.115)

The clients share the following common randomness. A global randomness ¢ ~
uniform{1, 2, 3,4} is shared among all databases at all clients. A local randomness
s1 = [s1(1) s1(2) s1(3)] is shared among the databases of P, and similarly s; =

[s2(1) $1(2)], s3 = [s3(1)] are shared among the databases of P, and P, respectively.

144

The random variable s;(¢) ~ uniform{0,1,2,3,4}. Finally, database 2 which is
associated with Py, generates the individual randomness t1 5 = [t12(1) t12(2) t1.2(3)].
Similarly, at P», database 2 generates too = [t22(1) t22(2)], and database 3 generates
ta3. Each element of the common randomness t;; for ¢ = 1,2 and j = 2,3 is
generated uniformly and independently from Fs. The variables (t;;, ¢ = 1,2, j =

2,3) are sent to P3. The individual correlated randomness t3; at P is calculated

as,
t3’2 =2— tljg(l) — tgjg(l) A tLQ(].) + t272(1> + t3’2 =2 (4116)
t373 =2 — t1’2(2) — t2,3 < t172(2) + t273 + t373 =2 (4117)
tsa=2—112(3) —t22(2) <= 112(3) +122(2) +t34 =2 (4.118)
According to this construction, the leader receives the following answer strings

from Py,

> ha(k) X1k + 31(1)> (4.119)

Zhl(k‘)XLk +81(1) +X1,1 +t172(1)) (4.120)

Z hg(k?)Xl,k + 81(2) + X1,4 + t172(2)) (4.122)

Al = <25: ho(E) X1k + 31(2)> (4.121)

£
Il
—

145

5
Ay =c (Z ha(k) X1k + 51(3) + Xi5 + t1,2<3)> (4.124)

k=1

Similarly, P, receives the following responses from P,

5
A[Ql,’14] = Z ha (k) Xz + 52(1)> (4.125)
k=1
5
Ay = e D (k)Xo + (1) + Xog + t2,2(1)> (4.126)
k=1
5
A[Ql,gl] =c Z hi(k)Xog + s2(1) + Xoy + Z52,3> (4.127)
k=1
5
Agy = e D hak)Xoy + 82(2)) (4.128)
k=1
5
Agh = | Y ha(k) Xop + 52(2) + Xos + t2,2(2)> (4.129)
k=1

Finally, P, receives the following responses from Ps,

5
Ag17,1475} =c Z hy(k) X5, + s;;(l)) (4.130)
k=1
5
Agf;ﬂ =c Z hi(k)Xap + s3(1) + Xz1 + t3,2> (4.131)
k=1
5
Agl,éuﬂ =c Z hi(k) Xz + s3(1) + Xz + t3,3> (4.132)
k=1
5
Agl,fﬂ =¢ Z hi(k)Xsp + s3(1) + X35 + t3,4> (4.133)
k=1

The leader party P, proceeds with decoding by removing the random responses

created at database 1 of all clients P, P and P, i.e., it constructs Z; ; fori =1,2,3

146

and j =1,2,3,4,5 by subtracting the responses A4, i,

Zig = c(Xig +tio(1) = Al — AV (4.134)
Zia=c(Xia+t2(2)) = A, — AV (4.135)
Zis=c(Xi5+t12(3) = A[15]2 - A[15}1 (4.136)
Zoy = e(Xoy + tao(1)) = AYyT — AL (4.137)
Zoa = c(Xoq +ta3) = ALy — ALY (4.138)
Zas = c(Xog + 129(2)) = Ay — AP (4.139)
Zsy = c(Xg 1+ ty2) = AyY — Al (4.140)
Zsa = c(Xgq+ty3) =AY — Al (4.141)
Zss = c(Xgs +t3) = Ay Y — Al (4.142)

The MP-PSI determination at P, concludes by evaluating the following indi-

cators, I;, for j = 1,4,5 as,

3

E1 == Z Z@l = C(Xl,l + X2’1 + X3,1 + tl’g(l) + t2,2(1) + t3’2) (4143)
=1
3

E4 = Z Z’L',4 = C(X174 + X274 + X374 + t1’2(2) + t273 + t3’3> (4144)
=1
3

E5 — Z Z,L'75 - C(Xl,f) —|— X275 —|— X3’5 + t1,2(3) + t2,2(2) —|— t374) (4145)
=1

By observing that the sum of the correlated randomness in E; according to

[E116)-([@E118) is equal 2, we note that E; = 0 if and only if 330 | X;; = 3, i.e., if

X1, = Xo; = X3; = 1 simultaneously. Consequently, £y = E4 = 0 irrespective to

147

¢, while E5 # 0 and Py can reliably calculate M;—; 234 P; = {1,4}. On the other
hand, for Es, X5+ Xo5+ X35+ 114+ 124 + 134 is equal to 2 and then F5 must be
one value in the set {1,2,3,4} depending on the value of ¢. Now, we calculate the
value of the expression X; 5 + Xo5 + X35 from the perspective of the leader party
P It Eyis 1, P(Xq54+ Xos+ X5 =1) = i,Vl = {0, 1,2,3} because c is uniformly
distributed over {1,2,3,4}. The conclusion is exactly the same when Ej is equal to
2, 3 or 4. Thus, the only information that P, can obtain for the element 5 is that
client parties P; , P, and P3; cannot contain it at the same time. The privacy of
leader party is preserved because each element in the queries is uniformly distributed
over the finite field 5. Hence, no information about P, is leaked from the queries.
The total download cost in this case is D = 6 + 544 = 15, which is consistent with

the download cost for the general case in (4.9), D = [22] + [22] 4 [25] = 15.

4.7 Conclusion

In this chapter, we formulated the problem of MP-PSI from an information-theoretic
point of view. We investigated a specific mode of communication, namely, single
round communication between the leader and clients. We proposed a novel achiev-
able scheme for the MP-PSI problem. Our scheme hinges on a careful design and
sharing of randomness between client parties prior to commencing the MP-PSI op-
eration. Our scheme is not a straightforward extension to the two-party PSI scheme,
as applying the two-party PSI scheme M — 1 times leaks information beyond the

intersection NM,P;. The download cost of our scheme matches the sum of download

148

cost of pair-wise PSI despite the stringent privacy constraint in the case of MP-
PSI. We note that this work provides only an achievable scheme with no claim of
optimality. A converse proof is needed to assess the efficiency of our scheme. Fur-
thermore, several interesting directions can be pursued based on this work. First,
one can investigate the MP-PSI in more general communication settings (not neces-
sarily leader-to-clients). Second, one can study the case where the communication
between the parties is done over multiple rounds (in contrast to the single round
of communication in this work). Third, one can investigate the case of calculating

more general set functions (not necessarily the intersection).

149

CHAPTER 5

Communication Cost of Two-Database Symmetric Private
Information Retrieval: A Conditional Disclosure of Multiple

Secrets Perspective

5.1 Introduction

In this chapter, since the communication cost in the PSI problem is composed of
upload cost and download cost, we consider the total (upload plus download) com-
munication cost of two-database SPIR through its relationship to CDS. In CDS, two
parties each holding an individual input and sharing a common secret expect to dis-
close this secret to an external party in an efficient manner if and only if their inputs
satisfy a public deterministic function. As a natural extension of CDS, we introduce
conditional disclosure of multiple secrets (CDMS) where two parties share multiple
i.i.d. common secrets rather than a single common secret as in CDS. We show that
a special configuration of CDMS is equivalent to two-database SPIR. Inspired by
this equivalence, given specific upload cost, we design download cost efficient SPIR

schemes using bipartite graph representation of CDS and CDMS. Following this

150

idea, we determine the exact minimum total communication cost of two-database

SPIR for K = 3 messages when the message length is 1.

5.2 Problem Formulation

5.2.1 Symmetric Private Information Retrieval

Following the classical SPIR problem statement in [8], we consider N > 2 non-
colluding databases with each individual database storing the replicated set of K > 2
i.i.d. messages Wi.x. Moreover, L i.i.d. symbols within each message are uniformly

selected from a sufficiently large finite field [F,

H(W,) =L, Vk (5.1)

HWyg)=HW)+- -+ HWg) =KL (5.2)

A random variable F is used to denote the randomness of the retrieval strategy
selection implemented by the user. Due to the user privacy constraint, the realization
of F is only known to the user, and unknown to any of the databases. Due to
the database privacy constraint, databases need to share some amount of common
randomness R.

The message set Wi.x stored in the databases is independent of retrieval strat-

egy randomness J, common randomness R and user’s desired message index 6,

151

which is a random variable uniformly distributed over the set [K],

I(Wh: 0, F,R) =0 (5.3)

Using the desired message index, the user generates a query for each database

according to F. Hence, the queries Q,[f }, n € [N] are deterministic functions of F,

HQY,... . QVIF) =0, vk (5.4)

After receiving a query from the user, each database should respond with a

truthful answer based on the stored message set and common randomness,

[deterministic answer] H(AM|QF Wi, R) =0, Vn, Vk (5.5)

After collecting all N answers from the databases, the user should be able to

decode the desired message reliably,

reliability] H(W,|F, A¥) =0, vk 5.6
1:N

Due to the user privacy constraint, the query generated to retrieve the desired
message should be statistically indistinguishable from other queries, thus, for all

kK € K|k #k,

[user privacy] (QF A Wy, R) ~ (QF, AW W, R) (5.7)

n

152

Due to the database privacy constraint, the user should learn nothing about

W% which is the complement of Wy, i.e., Wi = {Wq,--- , Wy_1, Wiy, -+, Wk},

[database privacy] I(Wg;F, A[lk}N) =0, Vk (5.8)

An achievable SPIR scheme is a scheme that satisfies the reliability constraint
, the user privacy constraint and the database privacy constraint .
In this chapter, we focus on the overall communication cost, which is a sum of the
number of uploaded bits (named upload cost and denoted by U) and the number
of downloaded bits (named download cost and denoted by D), within the retrieval
scheme. As a consequence, the most efficient achievable scheme is the scheme with
the lowest total communication cost, i.e., the one that achieves C* = inf(U + D)

over all achievable SPIR schemes.

5.2.2 Conditional Disclosure of a Secret

Two parties Alice and Bob possess their respective inputs X, Y and share a common
secret S. Alice and Bob also share an independent randomness R to assist the secret
disclosure of S. With the knowledge of the inputs X,Y but without knowing the
common randomness R, another party Carol wishes to learn the secret S under a
specific condition by communicating with Alice and Bob simultaneously. Generally,
this condition is described as a deterministic public function. Specifically, given a
globally public function f, the secret S is disclosed to Carol if and only if f(X,Y) =1

is true. By contrast, if f(X,Y) is not equal to 1, no information about the secret S

153

should be revealed to Carol. To that end, Alice sends a signal Ax and Bob sends
another signal By to Carol.
The signals are determined by all the information contained in Alice or Bob

before being sent to Carol,

[deterministic signal] H(Ax|X,S,R)=0

H(By|Y,5,R) =0 (5.9)

If the condition is satisfied, Carol is able to decode the secret by using all the

information she possesses,

[validity] H(S|X,Y,Ax,By) =0, if f(X,Y)=1 (5.10)

Otherwise, if the condition is not satisfied, Carol cannot learn anything about the

secret based on all the information she has,

[security] I(S;X,Y,Ax,By) =0, if f(X,Y)#1 (5.11)

The information-theoretic objective of CDS is to minimize the number of bits

contained in Ay and By.

154

5.2.3 Conditional Disclosure of Multiple Secrets

Here, we introduce the concept of CDMS as an extension of CDS. Given the same
setting except sharing K i.i.d. common secrets Si,..., Sk in Alice and Bob, Carol
expects to learn partial secrets under some specific conditions (one for each secret)
by communicating with Alice and Bob simultaneously. Now, a sequence of functions
fr, k € [K] are globally public, the constraints in CDMS generalize to the following
ones.

The integrated signals are determined by all the information contained in Alice

or Bob before being sent to Carol,

[deterministic signal] H(Ax|X, S1.x,R) =0

H(Byl|Y, S1.5,R) =0 (5.12)

For all k € [K], if the condition f; is satisfied, Carol is able to decode the

secret Sk,

[Validity] H(SMX, Y, Ax, By) = 0, if fk(X, Y) =1 (513)

For all k € [K], if the condition f; is not satisfied, Carol learns nothing about the

secret S,

[security] I(Sk;X,Y,Ax,By) =0, if fi(X,Y)#1 (5.14)

155

Alice Bob Alice Bob DB1 DB2

L L N7
f: globally known fi:x: globally known customized fr.x X Y

globally known
Carol Carol User

Carol learns S iff f(X,Y) =1 Carol learns Sy iff fi(X,Y)=1 User only learns Wy given f3(X,Y) =1
CDS generalization CDMS reduction SPIR
Figure 5.1: Relationship among CDS, CDMS and SPIR.

Likewise, the information-theoretic objective of CDMS is to minimize the num-

ber of bits contained in Ay and By-.

5.3 Main Results

We design the particular CDMS configuration given below:

1. First, Carol selects a random desired index 6, which is uniformly distributed

over [K]; 6 is independent of the secrets as well as common randomness in

Alice and Bob.

2. Second, Carol selects two random vectors X and Y such that no information
about 6 is leaked in the individual vectors X or Y, ie., I(6;X) = 0 and

I1(6;Y) = 0.

3. Third, Carol sends X to Alice and Y to Bob.

4. Globally known condition functions are set in accordance with the selection of

random vectors X and Y, such that, at all times only one condition function

fo can be 1.

156

Theorem 5.1 CDMS configured as above is equivalent to SPIR with two replicated

and non-colluding databases.

Proof: Within the given configuration, Alice and Bob can be treated as database 1
and database 2, and Carol as the user; the secrets 5. can be treated as the message
set W1.k; the random variable 6 as the desired message index at the user; the inputs
X,Y as the queries Q[lg], [29]; and the signals Ay, By as the answers A[f)], A[QG]. Thus,

we have the following conversions, which complete the proof:

1. Deterministic signal becomes deterministic answer,

2. From the first two steps in the CDMS configuration, we obtain the user privacy

for each database,

]<9;Q[16]7A[10}7W1:K7R) =0 (517)

16; Q8 AV, Wi, R) = 0 (5.18)

3. Validity becomes reliability due to the unique decodable secret Sy,

HWolQ, @Y, AV, APy =0 (5.19)

157

4. Security becomes database privacy due to the remaining undecodable secrets,

I(W5; QY1 QY1 A% APy =0 (5.20)

We are ready to investigate the total communication cost of two-database
SPIR by means of the characteristics of CDS and CDMS. We use the terminologies

in [114] for the bipartite graph in CDS/CDMS.

Remark 5.1 We can construct an upload cost starting from 2log, K in two-
database SPIR while satisfying the constraints in the second step of the particular
CDMS configuration above. Intuitively, the upload cost of 2logy K comes from the
needed log, K bits to be sent to each database to represent any one of the K mes-
sages. The upload cost 21log, K can be achieved by the following setting: X and Y
are two uniformly selected symbols from a finite set S = {0,1,..., K — 1} such
that X +Y = 0 — 1 under an assumption that the sum is always calculated over
module K. In order to construct a larger upload cost, we can select a larger finite
set by utilizing additional dummy messages. As an aside, we note that a larger fi-
nite set can be denoted by using multiple symbols from a smaller finite set. This
further increases the diversity of upload cost constructions. For example, we can
use two symbols from Sz = {0,1,2} to include every option in Sg = {0,1,...,7}.
Thus, when K =8, X andY can either be two one-symbol vectors from Sg or two

two-symbol vectors from Ss.

158

Remark 5.2 As in CDS and CDMS, we can use a bipartite graph to specify two-
database SPIR constraints. As introduced in (80,81, CDS can be viewed as a data
storage system over a bipartite graph where the nodes in each side of the graph are
used to denote the input values in each party, and the connectivity of the links is
used to indicate the satisfaction of the condition after selecting two nodes (input
values) from two parties. In the extension to CDMS, we assign a distinct color ¢y
to each independent secret Sy,Vk € [K]|. Hence, in CDMS, the color of links is
used to indicate which secret should be revealed while keeping all the other secrets
completely private. Following CDMS, in two-database SPIR, the nodes are used
to denote the queries received by the databases, and the links with different colors
are used to indicate which message should be retrieved while keeping all the other

messages completely private, which implies reliability and database privacy.

Remark 5.3 In the bipartite graph, the links that are incident to any node should

include all possible colors with equal number, due to user privacy.

Example 9: In this example, we will show the use of bipartite graphs for SPIR for
N =2, K = 3 and two example upload costs of U = 2log, 3 and U = 4. We use
colors red, yellow and green to denote messages Wy, Wy and W3, respectively.

For upload cost of U = 2log, 3, we use one-symbol vectors X and Y where
X and Y are both uniformly selected from S3 s.t. X +Y =6 — 1 for message Wj.
In this case, globally known condition functions are set accordingly as: f;(X,Y) =
X +Y +2—i, fori € [3]. Then, we use Ay, A1, Ay to denote the three choices for

the queries in database 1, and By, By, By to denote the three choices for the queries

159

Az By
Figure 5.2: Bipartite graph for K = 3 messages and U = 2log, 3 upload cost.

3 Bll

Figure 5.3: Bipartite graph for K = 3 messages and U = 4 upload cost.

in database 2. The corresponding bipartite graph is shown in Fig. |5.2

For upload cost of U = 4, we use two-symbol vectors X = {X», X;} and

Y = {Y,, Y1} where X, X5, Y], Y, are all uniformly selected from Sy s.t. 2(Xsy +
Ys) + (X1 + Y1) = 6 — 1 for message Wy. The setting of globally known condition
functions is similar: f;(X,Y) = 2(Xy + Ys) + (X7 + Y1) + 2 — i, for ¢ € [3]. Then,

Ao, Ao1, A1, A11 and By, Bo1, Big, B11 are used to denote the choices for the queries

in two databases. The corresponding bipartite graph is shown in Fig. [5.3

Remark 5.4 Given an achievable scheme for two-database SPIR with K = P mes-
sages with known wupload cost U and download cost D, we can construct a new
achievable scheme for K = 2P messages with upload cost U 4+ 2 and download cost

2D. We use the following simple example to illustrate the idea of the general con-

struction.

160

Ao By

Al: :Bl

Figure 5.4: Bipartite graph for K = 2 messages and U = 2 upload cost.

Example 10: Consider two-database SPIR with K = 4 messages, where colors red,
yellow, green, blue are assigned to messages Wy, Wy, W3, Wy, respectively. Now, first
consider a two-database SPIR with K = 2 messages with a special bipartite graph
provided in Fig. [5.4] Following this bipartite graph, we generate an SPIR achievable

scheme for K =2 and L = 1, with U = 2 and D = 2 as follows:

AO = Rl, BO == W1 + R1 (521)

Ay =Wy +We + Ry, By =Wy+ Ry (5.22)

Now, we use the bipartite graph in Fig. as a building block to construct
an SPIR scheme for K = 4 messages as stated in Remark First, we replicate
this bipartite graph, thus, we need to use one extra bit to describe the query choices
in each database, see the left part of Fig. [5.5, Then, we replicate the whole left
part, change the color of links to green and blue, and then also exchange the order
of query choices in the second column, see the right part of Fig. [5.5] Combining
the left part and the right part in Fig. [5.5, we can verify that this new bipartite
graph is a valid one by checking Remark and Remark [5.3] Moreover, following
this bipartite graph for K = 4, the corresponding upload cost increases by 2 and

the corresponding download cost doubles; see the following achievable scheme with

161

Ago e » Boo Ao Bio
Aot e s Bo An >< By,
Ao e » Bio Ao Boo
A e s Bu An >< Bo:

Figure 5.5: Bipartite graph for K = 4 messages and U = 4 upload cost.

L=1:

Ago = {R1, R}, Boo = {W1 + Ry, W3 + Ry}
Aolz{W1+W2+R1,W3+W4+R3}, 301:{W2+R1,W4+R4}
Ao = {Rs, R4}, Byg = {W1 + Ry, W3 + R3}

All - {W1+W2+R2,W3+W4+R4}, B11 = {WQ+RQ,W4+R3}

5.4 Exact Upload-Download Region N =2, K =3

(5.23)
(5.24)
(5.25)

(5.26)

In this section, we give the exact achievable (U, D) cost region of two-database

SPIR for K = 3 messages with L = 1 using the results of the previous section. In

particular, for the upload cost of U = 2log, 3, we achieve a download cost of D = 3.

This outperforms the best-known result of D = 4 in [73]. We show (21log, 3, 3) corner

point to be optimum with a converse. Further, by increasing the query selection for

each database by one, we achieve a download cost of D = 2. This means that U =4

is sufficient to achieve D = 2, and having U = 6 is not necessary as in [8]. We show

162

(4,2) corner point to be optimum as well with a converse.

Theorem 5.2 In the two-database SPIR with K = 3 messages with message length
L, when the upload cost is U = 2log, 3, the optimal download cost is D = 3L and

the minimal amount of required common randomness is 2L.

Corollary 5.1 In the two-database SPIR with K = 3 messages, if the message
length is confined to be L = 1, the optimal total communication cost is 2log, 3 + 3

with minimal amount of required common randomness being 2.

Proof: We present the converse proof first. First, we select two random nodes from
the two columns. Without loss of generality, let them be A; and B, respectively.
From A;, By, we can recover one random message W, without learning anything
about the remaining messages W;. Next, we select another two nodes A;, ¢ # 1
and Bj, j # 1 such that W, can be recovered from A;, B; once again with no
knowledge about Wj. Thus, from A;, By, we can only recover another random

message Wy, ¢ # p. Then, we have,

H(A|F)+ H(B,|F)
> H(A|A;, B1, F) + H(B1|A;, Bj, F) (5.27)
= H(A1,Ai, By, F)+ H(A;, B1,Bj, F) — H(A;, By, F) — H(A;, B;, F) (5.28)
=HW,, A1, A;, B, F) + HW,, Ai, By, B;, F) — H(A;, B\, F) — H(A;, B;, F)

(5.29)

163

> H(W,, Ai, By, F) + HW,, Ay, A;, By, B;, F) — H(A;, By, F) — H(A;, B;, F)

(5.30)
— H(W,) + H(W,, Ay, A;, By, B;, F) — H(A;, B, F) (5.31)
— H(W,) + H(W;, Ay, A;, By, B;, F) — H(A;, B}, F) (5.32)
> H(W,) + H(W;, A;, B;, F) — H(A;, B;, F) (5.33)
= H(W,) + H(W;) (5.34)
= 3L (5.35)

where follows from the decodability of message W, from A, B; and from
A;, B;, follows form the fact that conditioning cannot increase entropy, i.e.,
H(A|W,, A, By, F) > H(A|W,, A;, By, B;, F), and both come from
the database privacy , follows from the fact that we can decode Wji.3
from Ay, By, A;, Bj, F, which can be readily proved by contradiction in the bipartite

graph. As a result, we reach the desired converse result regarding the download

cost,
D> H(A) + H(B)) > H(A|F) + H(B:|F) > 3L (5.36)
Next, we prove H(R) > 2L:
0=1(Ws Ay, By, F) (5.37)

= [(Wy; Ay, B1|W,, F) (5.38)

164

= H(Ay, B\\W,,F) — H(Ay, Bi[Wix, F) + H(AL, Bi[Wix, F.R) (5.39)
:H(A17B1|Wp7f)_I(A17B1;R|W1:K7~F) (540)

> H(Ay, Bi|W,,F) — H(R) (5.41)

where ([5.38]) follows from the combination of ([5.2)) and (5.3)), (5.39) follows from the

deterministic answers (5.5)), and (5.41)) follows from (/5.3)) again. Therefore, we turn

to find a lower bound for the expression H (A, B|W,,F),

H(Ay, By|W,, F)
> H(A|W,, A;, B, F) + H(B1|W,, A;, B;, F) (5.42)
= H(Ay, Ay, B, F) + H(A;, By, B;, F) — H(W,, A;, B|, F) — H(A;, B;, F)
(5.43)

= H(AlvAhBl?'F) +H<A1)BlaB]7F) _H(A“Bbf) _H(A“B]?‘F) - H(Wp)

(5.44)
> H(W,) + H(W;) — H(W,) (5.45)
—2L (5.46)

where (5.45)) exactly follows from the steps between (5.28)-([5.34)). As a consequence,
we reach the desired converse result regarding the minimal amount of required com-

mon randomness,

H(R) > 2L (5.47)

165

Next, we move to the achievability. We use the structure in Fig. and
the corresponding answers for L = 1 are as follows (we use this achievable scheme

multiple times for larger L),

Ao = (Rl, RQ), Bo = W1 + Rl (548)
Ay = (Wi + Wa + Ry, Wy + W5 + Ry), By =Wy + Ry (5.49)
Ay = (W1+W3+R1,W1+W2+R2), By = W54+ R + Ry (550)

The achievability in (5.48))-(5.50) together with converses in ([5.36)) and (5.47]) com-

plete the proof. W

Theorem 5.3 In the two-database SPIR with K = 3 messages with message length
L, when the upload cost is U = 2log, 4 = 4, the optimal download cost is D = 2L

and the minimal amount of required common randomness is L.

Corollary 5.2 In the two-database SPIR with K = 3 messages, if the message
length is confined to be L = 1, the optimal total communication cost is 4 + 2 = 6

with minimal amount of required common randomness being 1.

Proof: The converse proof comes from [8, Thm. 1]. The achievability comes from

the following answers corresponding to the structure in Fig. [5.3]

Ago = Ry, By = Wi + Ry (5.51)
Aot = Wi+ Wo + Ry, By =Wy + Ry (5.52)
AIO = W1 + W3 + Rl, BlO = W3 + R1 (553)

166

[
[
[
[
:
8 b :
[
[
[
[
:
6+ i
[
Zhou-Wang-Sun-Fu 3] :
T
\ |
4+)
(2log, 3,4) !
o
(21og, 3,3) i
[
2 L PO @
4,2) (6,2)%
our results I
Sun-Jafar [2]
0 2 4 6 8 U

Figure 5.6: Achievable (U, D) region for two-database SPIR with K =3, L = 1.

All = WQ + W3 + Rl, Bll - W1 —|— W2 + W3 —|— Rl (554)

which complete the proof. B

Combining Theorem and Theorem [5.3] we obtain the achievable (U, D)
region for two-database SPIR for K = 3 and L = 1 in Fig. Any point within
the light blue area is achievable, while all the remaining points are not achievable.

Thus, the optimal communication cost is 4 + 2 = 6.

5.5 Conclusion

In this chapter, we investigated the overall communication cost of two-database
SPIR from the perspective of information theory. This is a first and leading at-

tempt on this problem. Although the download cost of SPIR is fully understood

167

now, the upload cost or joint upload-download cost of SPIR is still open. To that
end, we utilized CDS/CDMS to provide a potential connection in this work. Follow-
ing this direction, we developed an understanding of how to construct the general
upload cost for two-database SPIR, and determined a few principles of building two-
database SPIR schemes from small K to large K. Finally, by providing a complete
upload-download cost achievable region, we determined the exact minimum total
communication cost of two-database SPIR for K = 3 messages when the message
length is 1. In the future, we aim to extend these ideas to more general parameters.
In other words, we want to find the optimal communication cost in two-database
SPIR when the total number of messages K is arbitrarily large, and devise a cor-
responding general scheme to achieve this communication cost. We also want to

consider the case with more than two databases.

168

CHAPTER 6

Digital Blind Box: Random Symmetric Private Information

Retrieval

6.1 Introduction

In this chapter, we introduce the problem of RSPIR, which a novel and interesting
extension of SPIR. Different from SPIR, the user does not have an input to the
databases, i.e., the user does not select a specific message to download. As an
alternative, this user is satisfied with any arbitrary message in the message set that
is available to the databases. Therefore, the databases need to send symbols to
the user in such a way that the user is guaranteed to download a message correctly
(random reliability), the databases do not know which message the user has received
(user privacy), and the user does not learn anything further than the one message it
has received (database privacy). This is the digital version of a blind box, also known
as gachapon, which implements the above specified setting with physical objects
for entertainment. This is also the blind version of 1-out-of-K OT, an important
cryptographic primitive in the field of cryptography. We study the information-

theoretic capacity of two-database RSPIR and determine its exact capacity for the

169

cases of K = 2, 3,4 messages. While we provide a general achievable scheme that is

applicable to any number of messages, the capacity for K > 5 remains open.

6.2 RSPIR: Problem Formulation

In this chapter, we consider N = 2 non-colluding databases each storing the same
set of K > 2 i.i.d. messages. Each message consists of L i.i.d. uniformly chosen

symbols from a sufficiently large finite field I, i.e.,

HW,) =L, ke K] (6.1)

H(Wix)=HW) + -+ HWg) = KL (6.2)

The two databases jointly share a necessary common randomness random vari-

able &, which is generated independent of the message set Wi.x. Thus,

HWi.k,S) = HWwk) + H(S) (6.3)

Before the RSPIR process starts, an answer set A with cardinality M; is
assigned to database 1 while another answer set B with cardinality M, is assigned
to database 2. Since there is no input at the user side in the RSPIR process, the
databases will never receive a query from the user. Therefore, as a simple approach,
each database individually selects a random answer under a uniform distribution
from its corresponding answer set and then transmits it to the user. The indices of

the answers for two databases are denoted by X and Y, respectively, i.e., database

170

1 will select Ax € A and database 2 will select By € B. Moreover, we use x and y
to denote the realizations of the random variables X and Y, respectively. We note
that every answer from any answer set is generated based on the message set and

the common randomness, hence, for all X € [M;] and Y € [Ms], we have,

[deterministic answer] H(Ax, By |X,Y,Wy.k,S) =0 (6.4)

After collecting two arbitrary answers from the databases, the user should
always be able to decode a random message reliably. Thus, for all X € [M;] and Y €
[Ms], we can always find an index fxy € [K] (the mapping here is not deterministic)

such that

[random reliability] H(Wpy, ,|X,Y, Ax,By) =0 (6.5)

Because of the database privacy constraint, the user is supposed to learn noth-
ing about W3, . which is the complement of the randomly retrieved message Wy, .,

e, Wiy, = {Wiee o, Wagy1, oy 41, - Wieh,

[database privacy] [I(Wg, ;X,Y, Ax, By) =0 (6.6)

Because of the user privacy constraint, i.e., the protection of this randomly re-
trieved message’s index in the user, from the perspective of each individual database,
this index must be indistinguishable for each randomly selected answer under a uni-

form distribution. In other words, even though an answer from one database is

171

deterministic, the user can still decode every potential message in the message set
with equal probability through the variation of the answer from the other database.
Thus, for the first database, given any realization x € [M;], we always have the
following probability distribution of the random variable 6,y with respect to the

random variable Y,

1
Plb.y =k) ==, Vhe[K] (6.7)
which is equivalent to
[user privacy| I(z, Ay, Wik, S:0,y) =0 (6.8)

By symmetry, for database 2, given any realization y € [M;], we also have the
following probability distribution of the random variable fx, with respect to the

random variable X,

Vk € [K] (6.9)

which is equivalent to

[user privacy] I(y, By, Wi.k,S;0x,) =0 (6.10)

As a consequence, we obtain the following theorem regarding the cardinality

of the answer sets, which can be proved by contradiction using the user privacy

172

constraint.

Theorem 6.1 The total possible number of answers in the answer set for each

database must be a multiple of K, 1i.e.,

M, =t K, My=1t,K, ti,to€ Nt (6.11)

Moreover, we also have the following theorem concerning the common ran-

domness distribution in the databases.

Theorem 6.2 As in multi-database SPIR [7,|8], in RSPIR, the databases must
share some necessary common randomness that is unknown to the user before the

retrieval process starts. Otherwise, RSPIR is not feasible.

Proof: Without any common randomness in the databases, for any X € [M;] and
Y € [M;], the random reliability constraint and the database privacy constraint

collectively lead to,

0= I(Wy,,: X,Y, Ax, By) (6.12)
= [<W§X,Y; WOX’)/?X? Y7 AXyBY) (613)
— H(W,,,) — H(Wyy, [Wey, . XY, Ay, By) (6.14)

Then, we consider the following expression

[<X7 va AX7 BY? WQ_X’Y ’WQX,Y)

173

= HWyy, [Woy,) — HWg, [Woy ., XY, Ax, By) (6.15)
= H<W§X,y) - H(Wéx,y) (6]‘6)

=0 (6.17)

where (6.16)) follows from ([6.14]). For any realization x,

0= I(Ay; Wy, , |z, W,) (6.18)
— H(Au|z, Wy,) — H(A|z, W) (6.19)
= H(A|Wy,) (6.20)

where (6.18]) follows from (6.17)), and (6.20]) follows from the deterministic answer

constraint H(A,|x, Wi.x) = 0 without common randomness. Taking into consid-
eration the fact that is true for any realization y € [Ms] as well as the user
privacy constraint (6.7), we have H(A,|W;) = -+ = H(A;|[Wk) = 0. Since mes-
sages are all mutually independent, it is easy to derive that H(A,) = 0, which forms
a contradiction. W

A valid two-database RSPIR achievable scheme is a scheme that satisfies the
user privacy constraint , , the database privacy constraint and the
random reliability constraint .

The efficiency of a scheme is measured in terms of the total number of down-
loaded bits by the user from the two databases, named as the download cost. Ac-

cording to the formulation above, the download cost consists of the answer indices

174

X,Y and the answers themself Ay, By. Compared with the answer cost, the an-
swer index cost can be neglected as it does not scale with the message length if we
reuse them to decode each symbol in the randomly retrieved message. Thus, we
use Drsprr to denote the expected number of bits contained in the answers Ay, By

over the indices X, Y. Then the retrieval rate of RSPIR is given by,

L
Rrspir = T (6.21)
RSPIR

The capacity of RSPIR, Crsprr, is the supremum of the retrieval rates Rrsprr over

all valid achievable schemes.

6.3 Main Results

Theorem 6.3 In the two-database RSPIR problem, in the case of K = 2, the capac-
ity is % with minimal amount of required common randomness being L. In the case

of K = 3,4, the capacity is % with minimal amount of required common randomness

being 2.

The converse proof of Theorem [6.3]is given in Section 6.4}, and the achievability
proof of Theorem [6.3] is presented in Section The capacity and its minimal

amount of required common randomness in the case of K > 5 is an open problem.

Remark 6.1 It is well known [§] that the capacity of multi-database SPIR is 1 — %,
where N is the number of replicated and non-colluding databases. As a corollary,

the capacity of two-database SPIR is %

5, Which does not depend on the number of

175

messages K stored in the databases. By contrast, the capacity of RSPIR does depend
on the value of K. Even though the capacity of RSPIR achieves the same limit as

SPIR in the case of K = 2, the capacity of RSPIR decreases to % when the value of

K increases to 3.

Remark 6.2 Because of the equivalence between RSPIR and the digital blind box,
m a digital blind box setting where two non-colluding databases share K messages
and some mecessary common randomness, perfect digital blind box delivery can be
achieved with a linear download cost K L. The proof is a direct consequence of the

second general achievable scheme given in Section [6.9.

Remark 6.3 In the problem formulation part of our previous work [75], we assume
that the user is able to obtain a random subset of the shared common randomness
that is unknown to any individual database before the SPIR retrieval process starts.
Although we mention the idea of fetching common randomness like side-information
in advance, we do not specify in [75] a corresponding practical implementation. Now,
it 1s clear that the achievability provided here for RSPIR can be used as a practical
approach for this problem if common randomness is treated as another independent

message system.

6.4 Converse Proof

Theorem 6.4 In the two-database RSPIR problem, the capacity is realized in the

case where My and My are both exactly K.

176

Proof: We provide a sketch of proof here. The idea of the proof is that once we
multiply the value of M; by an integer ¢t > 2, it is straightforward to see that
additional constraints will be added to each pair Ay, By for all X € [tM;] and
Y € [M,] after considering the index permutation, which will either increase or
maintain the minimal value of H(Ax) + H(By). This analysis also applies to the
increase of M,. A

In the case of K = 2, motivated by Theorem [6.4] we consider the simplest
case where M; = 2 and M, = 2. Then, we only need to investigate the following
constraints since all the other potential system of constraints have the same structure

as this one and will lead to the same conclusions,

H(Wi|Ay,By) =0, H(W;|As, Bs) =0 (6.22)

H(W3|A1, By) =0, H(W3|Ay,B;) =0 (6.23)

These constraints exactly reflect the random reliability constraint (6.5) and user
privacy constraint , involved in this problem. First, we prove a lower

bound for H(A;) + H(By),

H(A1) + H(Bl)
> H(A|Ay, By) + H(B1| Ay, Bs) (6.24)
= H(Ay, Ay, By) + H(Ay, By, By) — H(Ay, By) — H(As, Bs) (6.25)

- H(Wh Ala AQ; Bl) + H(W17 A27 B17 BQ) - H(A27 Bl) - H(A27 BQ) <626)

177

Z H(WhAQ; Bl) + H(W17A17A27 BlvBQ) - H(A27B1) - H(A27B2) (627)

= H(A4, Ay, By, Bs) — H(Ay, By) + H(WhH) (6.28)
> H(Wa, Ay, By) — H(Ay, By) + H(W) (6.29)
= H(W,) + H(Wy) (6.30)
— 2L (6.31)

where (6.28)) and (6.30)) follow from the database privacy constraint. Likewise, we
can always obtain H(Ax)+ H(By) > 2L for any other answer pair Ay, By, X,Y €

[2]. As a result, we reach a converse result for the capacity when K = 2,

L L
< =

1
= < = —
R =~ H(Ax)+ H(By) — 2L 2

% (6.32)

Next, we prove the minimal required amount of common randomness shared

in the two databases.

0= 1(Wa; Ay, By) (6.33)
= I(Wa; Ay, B1|W7) (6.34)
= H(Ay, B{\W1) — H(Ay, By|Wy, Wa) + H(Ay, By|[Wy, Wa, S) (6.35)
= H(Ay, By\Wy) — I(Ay, By; S|Wy, Wa) (6.36)
— H(Ay, By|Wy) — H(S|Wy, Wa) + H(S|Wy, Wa, Ay, By) (6.37)
> H(Ay, By|Wy) — H(S) (6.38)

178

where ((6.35)) follows from the deterministic answer constraint (6.4)) and (6.38)) follows
from the independence between message set and the common randomness ([6.3).

Therefore, we turn to find a lower bound for the expression H (A, B;|W;),

H(Ay, B;|Wy)
= H(A|Wh, By) + H(By|[Wh) (6.39)
> H(A1|Wh, Ay, By) + H(By1|W1, As, Bs) (6.40)
= H(Ay, Ay, By) + H(Ag, By, By) — H(W1, Ay, By) — H(As, Bs) (6.41)

- H(Al, AQ, Bl) + H(AQ, Bl, BQ) - H(AQ, Bl> - H(AQ, BQ) - H(W1> (642)
> H(Ws) (6.43)

=L (6.44)

where ([6.42)) follows from the database privacy constraint and (6.43|) exactly follows
from the steps between (/6.25))-(6.30). As a consequence, we reach a converse result

for the minimal amount of required common randomness,

H(S)>L (6.45)

In the case of K = 3, M; and M; both take the value 3, after converting the
random reliability constraint and user privacy constraint into pairwise constraints
as in —, we can proceed with the converse steps. As in the converse proof
in the case of K = 2 above, the concrete process is to utilize the converse proof

of [115, Theorem 2] once more after eliminating the influence of retrieval strategy

179

randomness and its generated queries. Thus, we have the same conclusions as the

one in [115, Theorem 2] in the case of K = 3,

H(S) =z 2L (6.46)

In the case of K = 4, it is easy to verify that each answer pair Ay, By, X,Y €
[4] has more constraints than the one when K = 3. Thus, a converse proof for the
capacity and the minimal amount of required common randomness in the case of

K = 4 can be inherited from the case of K = 3, i.e.,

H(S) > 2L (6.47)

A tight converse proof for the capacity and the minimal amount of required

common randomness remains to be found in the case of K > 5.

6.5 Achievability

The work in 73] provides a scheme that can be readily converted into an achievable
scheme (albeit suboptimal) for the two-database RSPIR problem. For clarity, we
restate the result from the new perspective of RSPIR here. Assuming that L = 1
for the time being, two databases share K common randomness symbols Sy, ..., Sk,

which are all uniformly selected from F,. For database 1, the answer set A is

180

composed of K elements in the following form,

Ay = (W + S, Wao+ Sy, ..., Wk + Sk) (6.48)
A2 - (W1+SQ,WQ+53,...,WK+81) (649)
Ag = Wi+ S, Wo+ Si1,... , Wik + Sk_1) (6.50)

Basically, we only rotate common randomness symbols by one place in the sequence
of answers. A homomorphic variation of A is to rotate message symbols by one

place without imposing any influence on the answer set I3 and it is shown as follows,

Al:(W1+81,W2+SQ,...,WK+SK> (651)
AQI(W2+51,W3+SQ,...,W1+SK) (652)
AK: (WK+51,W1+SQ,...,WK,1+SK) (653)

For database 2, the answer set B also including K elements is shown as follows,

Bl - Sl; (654)
By = S, (6.55)
Bi = Sk (6.56)

181

The answer set construction in these two databases is public knowledge to the
user. Afterwards, database 1 selects a random answer under a uniform distribution
from A, and then sends the values of symbols as well as the index belonging to
this answer to the user. Likewise, database 2 performs the same selection and
transmission. The reason for sending the answer indices is that the user does not
know how to use the values of symbols in the answers to decode a random message
without the help of the answer indices. After receiving two answers, the user is
always able to decode one random message reliably. Moreover, since each database
is doing the uniform selection, this random message is equally likely to be any
message in the message set. Therefore, it is impossible for each individual database
to learn the index of this randomly retrieved message at the user side. Meanwhile,
the user cannot learn any information about the remaining messages because of the
existence of unknown common randomness symbols. When each message includes
multiple symbols, we can simply perform this scheme repeatedly for each symbol
while there is no need to do the new selection nor send the answer index for each
database after first execution. Thus, the download cost of answer index can be
ignored as illustrated in the problem formulation when L is large enough. Obviously,
the download cost is D = (K + 1)L in this scheme but it is not optimal.

Here, we provide a new general scheme that achieves the download cost of
D = KL when L goes to infinity. Assuming that L = 1 temporarily, let two

databases share K — 1 common randomness symbols 57, ..., Sk_1. For database 1,

182

the answer set A4 contains K elements in the following form,

Ay = (81,5, ..., Sk_1) (6.57)
A2 = (Wl + WQ + Sl, W2 —+ W3 + SQ, ey WKfl -+ WK + SKfl) (658)
Ag = (Wl + Wg + Sl, W2 + W4 + Sg, ey WK—l + W1 + SK—l) (659)

Ag = (Wi + Wi + S, Wo + W1 + 8, ..., Wk 1 + Wi _5+ Sk 1) (6.60)

Basically, except for the first answer, we only rotate the second message symbol by
one place in the sequence of answers while keeping the first message symbol. For

database 2, the answer set B consists of K elements in the following form,

Bl — W1 + Sl (661)
BQ = WQ + SQ (662)
BK—l - WK—l + SK—l (663)

Now, note that, since this scheme achieves a download cost of D = KL, it

L

. _ L 1 . _ .
achieves a rate of R = % T +- For K = 2 and K = 3, this scheme

achieves rates and 3 meeting the converse bounds in (6.32) and (6.46)), respectively.

183

Specifically, when K = 2, we have the following answer sets,

Ay =51, By =W+ 5

A2:W1+W2+SQ, BQZW2+S2

When K = 3, we have the following answer sets,

Ay = (51, 52), By =W+ 5
Ay = (Wy + Wo + 51, Wy + W3 4+ 5,), By =Wy + 5,
As = (Wi + W5+ S, Wo + Wi +S,), By = W3+ 51 + 59

1

When K = 4, this achievable scheme achieves a rate R = &

(6.65)

(6.66)

(6.67)
(6.68)

(6.69)

i whereas the

converse in ((6.47) gives a bound of % Now, we provide a better scheme that achieves

the converse in the case of K = 4. The message length L is assumed to be 2 such

that Wy = {a1, a2}, Wo = {b1, b2}, W3 = {c1, co} and Wy = {d;,d>}. Moreover, two

databases share 4 common randomness symbols Sy, S5, S3,Ss. For database 1, the

answer set A containing 4 elements is in the following form,

Al - (31752;53)
Ay = (a1 + 1+ ¢+ S1,by + di + St + S3,¢2 + Sa)
Agz((11+d2+51+54,a2+d1+d2+52,b1+02+52+53)

A4:(b1+S4,CL1+a2+bl+b2+Sl+Sg,61+d2+81+52+53>

184

(6.70)
(6.71)
(6.72)

(6.73)

Ag BB
Ay ‘//>< By

Figure 6.1: A two-database RSPIR bipartite graph for K = 4 messages.

For database 2, the answer set B with 4 elements is as follows,

Bl = (CLl + Sl, as + SQ, 54) (674)
BQ = (bl + b2 -+ Sl -+ Sg,bl -+ 82 —+ 53,(11 “+c1 + dg —+ Sl + 54) (675)
Bg = (dl + d2 + SQ, b1 + o + S4, dl + Sl + 53) (676)

B4: (CQ+SQ+Sg,Cl+CQ+Sl,a1+a2+b2+01+d1+53+S4) (677)

Here, the download cost is D = 6 and the rate is R = % = % The remaining steps
and verification of this specific achievable scheme are the same as the last two general
ones. Specifically, regarding verification, we can use the bipartite graph in Fig. [6.1}
In this bipartite graph, by using colors red, yellow, green and blue for messages
Wi, Wy, W3 and Wy, respectively, the color of links indicates which message should
be decoded while keeping all the other messages private. Moreover, each node is

always connected to 4 links with different colors.

185

6.6 Conclusion

In this chapter, we investigated the capacity of two-party RSPIR from the perspec-
tive of information theory. This work provides an initial Shannon-theoretic study
of RSPIR. It is well known that the capacity of two-database SPIR is always one
half, which is independent of the number of messages K stored in the databases.
By contrast, the capacity of two-party RSPIR does depend on the value of K. In
addition, because of the equivalence between RSPIR and digital blind box, we can
achieve a linear download cost K L for perfect digital blind box delivery. Moreover,
according to our observation in Chapter [3, an important application of RSPIR is
to enable the user to fetch a random subset of the common randomness available
at the databases for the sake of user-side common randomness formation that is
unknown to the databases (also unknown to the user before it is received by the
user). Finally, we determined the exact capacity of two-party RSPIR for the cases
of K = 2,3,4. In particular, during the design of the achievable scheme in the case
of K =4, the message length needs to be set as 2 rather than the usual 1. In our
future work, we want to find the capacity of two-database RSPIR in the case of
an arbitrary number of messages K. Similarly, we also want to explore the general

capacity of RSPIR when there are more databases at the server side.

186

CHAPTER 7

Private Federated Submodel Learning via Private Set Union

7.1 Introduction

In this chapter, we consider the FSL problem and propose an approach where clients
are able to update the central model information-theoretically privately. Our ap-
proach is based on PSU, which is further based on MM-SPIR. The server has two
non-colluding databases which keep the model in a replicated manner. With our
scheme, the server does not get to learn anything further than the subset of sub-
models updated by the clients: the server does not get to know which client updated
which submodel(s), or anything about the local client data. In comparison to the
state-of-the-art private FSL schemes in [92}/94], our scheme does not require noisy
storage of the model at the databases; and in comparison to the recent secure ag-
gregation scheme in [101], our scheme does not require pre-distribution of client-side
common randomness, instead, our scheme creates the required client-side common
randomness via RSPIR and one-time pads. Our system is initialized with a repli-
cated storage of submodels and a sufficient amount of common randomness in two

databases at the server side. The protocol starts with a common randomness gen-

187

eration (CRG) phase where the two databases establish common randomness at
the client side using RSPIR and one-time pads (this phase is called FSL-CRG).
Next, the clients utilize the established client-side common randomness to have the
server determine privately the union of submodel indices to be updated collectively
by the clients (this phase is called FSL-PSU). Then, the two databases broadcast
the current versions of the submodels in the index set union to clients. The clients
update the submodels based on their local training data. Finally, the clients use
a variation of FSL-PSU to write the updates back to the databases privately (this
phase is called FSL-write). Since the databases at the server do not need to com-
municate, as a novel approach, we utilize randomly chosen alive clients to route the
required information between the two databases. Our proposed private FSL scheme
achieves low communication cost, and is also robust against client drop-outs, client

late-arrivals, and database drop-outs.

7.2 Problem Formulation

7.2.1 MM-SPIR

As in [72], we consider N > 1 non-colluding databases with each individual database
storing the replicated set of K > 2 i.i.d. messages Wix) = {Wh,...,Wg}. The L
i.i.d. symbols within each message are uniformly selected from a sufficiently large

finite field F,, hence,

H(W,) =L, Vk (7.1)

188

H(Wig)) = HWy) + -+ HWg) = KL (7.2)

The goal of the MM-SPIR problem is to retrieve a set of messages Wq out of
the message set Wk without leaking any information regarding the retrieved index
set Q = {iy,i9,-- ,ip} C [K] with cardinality |2] = P to any individual database
(user privacy constraint), and while not obtaining any further information beyond
the desired message set Wy, (database privacy constraint). The cardinality of the
retrieved message set P is public knowledge and known by all the databases. Due
to the database privacy constraint, databases need to share some amount of server-
side common randomness Rg that is unknown to the user. The server-side common
randomness R is independent of the message set Wk in the server.

The desired message index set () is a random variable corresponding to a
uniform selection of elements without replacement from the set [K| and the sample
space of € is the power set of [K]. We use P to denote the realization of the random
variable (2. Based on the desired message set (), the user generates a set of queries

U without knowing the message set W, k] stored in the databases, hence,
V) & & (K]

I(Wikg; Q) Q) = 0 (73)

For any desired message index set P, after receiving a query from the user,

each database responds with a truthful answer based on the stored message set and

189

the server-side common randomness,
[MM-SPIR deterministic answer] H (AP QP Wik, Rs) =0, Vn, YP (7.4)

Subsequently, the user should be able to decode the desired set of messages

reliably after collecting N answers from all the databases,

[MM-SPIR reliability] H(Wp|Q{y), AN, P) =0, VP (7.5)

Due to the user privacy constraint, the query generated to retrieve the desired
set of messages should be statistically indistinguishable from other queries. Thus,

for all realizations P and P’, such that P # P’ and |P| = |P'| = P,
[MM-SPIR user privacy] (Q, AL, Wik, Rs) ~ (QF1, AP Wik, Rs) (7.6)
which is equivalent to the following one,

n

[MM-SPIR user privacy] (€ Q) A Wik, Rs) =0, V¥n (7.7)

Due to the database privacy constraint, the user should learn nothing about

Wp which is the complement of Wp, i.e., Wp = Wig)\p,

[MM-SPIR database privacy] I(Wp; Q%, AF;]], P)=0, VP (7.8)

190

An achievable MM-SPIR scheme is a scheme that satisfies the reliability con-
straint , the user privacy constraint and the database privacy constraint
(7.8). Similar to single-database SPIR [8], single-database MM-SPIR is infeasible as
well. In order to make single-database MM-SPIR feasible, we use the multi-message
version of the extended SPIR formulation in [75], where the user is able to fetch
a random subset of the shared server-side common randomness before the retrieval

process starts, in the MM-SPIR setting.

7.2.2 PSU

In the PSU problem, two parties each holding a dataset, wish to jointly compute
the union of their sets without revealing anything else to either party. Let A denote
the global alphabet. The first party P; stores a dataset (2; across its own N; > 1
replicated and non-colluding databases, and the second party P, stores a dataset
Q)9 across its own Ny > 1 replicated and non-colluding databases. Let P; and Ps
denote the realizations of the random variables €2 and €25, respectively. All elements
in P; and P, are selected from A under an arbitrary statistical distribution, i.e.,
Py, P2 € A. We denote one of the parties as the leader/server and the other as the
client /user. Without loss of generality, let party P; be the server. Then, asin [72], P
privacy, P privacy and PSU reliability constraints jointly form a contradiction, and
as in all SPIR formulations [7,[8], the server databases need to share an amount of
common randomness Rg besides their own datasets. Then, the party P, generates

N1 queries QE‘;}] and sends them to the databases associated with the party P;.

191

After receiving the query Qm , the nith database of the party P, responds with an
answer A[,Z?].

For each database in the party P;, the answer Ag?] should be generated truth-
fully according to the received query, its own dataset and its own common random-
ness,

[PSU deterministic answer] H(AP2 Q2 0y, Rg) =0, Vny, VP, (7.9)

ny ?

When the PSU process is complete, the party P, should be able to reliably
compute the union 2, U2y based on the sent queries, the collected answers and the
knowledge of Qy without knowing [€2; U | in advance. This is captured by the

PSU reliability constraint,
[PSU reliability] H (U Qu|Q[] A}, Q2) =0, VP, (7.10)

The privacy requirements in PSU can be divided into two parts to protect
each participating party: P; privacy and P, privacy. First, the party P, wants to
protect €21 U €2y, however, since the party P, does not know 2; when generating its
queries, the queries cannot depend on €2y, and thus, P, should only protect €25 in
queries. Thus, the queries sent by P, should not leak any information about its own

dataset, i.e., any individual database associated with P; learns nothing about (2,

192

from all the information it has,

[PSU P, privacy] I1(Qy; QL A%l) Re) =0, Vny (7.11)

ny ? ny ?

Because of the known and fixed global alphabet A, it is obvious that we have
the following two constraints H(2|Qs) = 0 and H(Q|2) = 0, which lead to the

following relationship,

H(Q) = H(Q) — H(Q|) (7.12)
= I(Q;) (7.13)
= H(Q) — H(Q|) (7.14)
= H(Q) (7.15)

Thus, we obtain the following identity,

1(9; Q2 A 0, R)

ny ? ny ?

= H(() — H(Q|Q, AR, Qu, Rs) (7.16)

ny 24tng

= H(Q) — H(Q|QE2 A1 Q) Re) + H(Qu|QI2), AL2N Q) 0y Re) (7.17)

ny ? ny ? ny ? ny ?

= H(Q) — 1(Q; 2| Q1% Al 0 Ry) (7.18)

ny ? ny ?

= H(Qy) — H(Q|Q2) A% 0 Ro) + H(Q|QL, A% 0, Q) Rs) (7.19)

ny ? ny ? ny ny
= H() — H(Q|QF?, AL 01, Ry) (7.20)
= 1(€; Q52 Al 0y, Ry) (7.21)

193

As a consequence, we obtain the following equivalent expression for P, privacy,

[PSU P, privacy] 1(Q; Q2 A2 Q) Rg) =0, Vny (7.22)

ny ?

From the union result €2; U)y, the party P, always knows that the party P;
contains the elements in (2;U,)\€; and does not contain the elements in (€; U Q).
Noting that (€, U Q3)\Qs U (QTQQ) = ,, thus, P, should learn nothing about
whether P contains any element in €y (we denote this information by Fi g,) from
the generated queries, the collected answers and its own dataset,

[PSU P privacy] I(E1q,; Q%Eﬂ, A{ZQI]], D) =0, VP, (7.23)

Theorem 7.1 PSU is equivalent to MM-SPIR with L =1 and P = |A| — |{|.

Proof: We prove the equivalence between PSU and MM-SPIR similar to the proof
of equivalence between PSI and MM-SPIR in [72| after mapping the dataset in
each party to a corresponding incidence vector. Specifically, the P; privacy, P,
privacy and PSU reliability constraints in the PSU problem are consistent with the
database privacy, user privacy and reliability constraints in the MM-SPIR problem
if O, in PSU is treated as 2 in MM-SPIR. By contrast, the consistency of the three
constraints of PSI and MM-SPIR is true if €25 in PSI is treated as €2 in MM-SPIR.

Remark 7.1 From [72], we note that PSI is equivalent to MM-SPIR with L = 1
and P = |Q|. From Theorem |7.1| above, we note that PSU is equivalent to MM-

194

SPIR with L = 1 and P = |A| — [Q|[| From the de Morgan’s law, which says

AUB = AN B, we have that AU B = Zﬂ—g, thus, the set union can be obtained
by a composition of set intersection and set complement. This shows the duality
between PSU and PSI problems. We note, however, that the parties should agree on
whether they will perform PSU or PSI, as the specific protocol will depend on it. In

this chapter, we focus on designing specific PSU protocols.

Remark 7.2 In certain applications of PSU, one or both of the parties may have
only a single database. Since PSU is equivalent to MM-SPIR from Theorem|7.1], and
since single-database MM-SPIR is infeasible |§], in such cases, one of the two parties
may obtain (fetch) a random subset of the shared server-side common randomness
from the other party prior to the start of the PSU process, as in [75]. This makes

MM-SPIR feasible, and thus, PSU feasible.

Remark 7.3 As PSI was generalized to multi-party PSI (MP-PSI) in [74], PSU can
be generalized to MP-PSU. As in MP-PSI, MP-PSU will require additional common
randomness allocation among the clients. To avoid repetition, we skip the detailed
development of MP-PSU, however, in the next subsection, we present a particular
MP-PSU in detail, where one party has no input. As a critical difference, in the
reliability verification stage, we need to have the sum in [74, Eqn. (56)] equal to 0
if all the clients contain the same element in the MP-PSI problem while this sum

should be 0 if none of the clients contain this element in the MP-PSU problem;

IThese two conclusion are built upon the assumption that the party P is the user. As an
alternative, if the party P; is treated as the user, we just need to replace 2; with 5 in these two
statements.

195

see Example (15 for details. In MP-PSU, if all the parties have a single database,
we can construct an achievable scheme by using pre-fetched server-side common
randomness from the leader party as in [75]. In addition, for common randomness
allocation among the clients, we make use of the distributed property of non-colluding

databases as well as the RSPIR approach introduced in [116).

7.2.3 Private Distributed FSL

We consider a distributed FSL problem with one server that contains N = 2 non-
colluding and replicated databaseﬂ, and C clients that are selected by the server
to participate in one round of the FSL process; see Fig. [7.1 By convention, every
client establishes a direct secure and authenticated communication channel with
both databases. The full model for learning stored at the server side comprises
K submodels, each one of which consisting of L i.i.d. symbols that are uniformly
selected from a finite field [F,. Thus, each database in the server contains the full

model Mg, and we have,

H(M,) =L, Vk (7.24)

H(Myq) = H(My) 4 -+ H(Mg) = KL (7.25)

The two databases also share an amount of server-side common randomness

Rs that is unknown to the clients. Each selected client is interested in updating one

2We start this investigation with the simplest case of two databases. Our achievable scheme
works for any number of databases after minor modifications. However, how to improve the
performance by increasing the number of databases needs further study.

196

Server

: Database : : Database : : Database : : Database : : Database : : Database :

| - o o - o !

1 1 1 1 1 I

! local| |, 1 local| |, ! local| |, ! local| |, 1 local| |, ! local| |

H data| [t | data| |t o H data| |! H data| [t data| |1 o H data| |!
1 ! 1 ! 1 ! 1 ! 1 ! 1

1 . ! 1 . ! 1 . ! 1 . ! 1 . ! 1 . !

| by ! | ! | by ! | !

L= [T e ' L= ' L= [T e ' L === |

Client C;(1) Client C;(2) Client Cy(|C4]) Client Cy(1) Client C5(2) Client Co(|Cs])

L] L]

Client group C; Client group Cs

Figure 7.1: Distributed federated submodel learning (FSL) system model.

or more submodels according to its local training data. Specifically, for i € [C], the
1th client wishes to update the submodels whose index set is denoted by the random
variable T whose realization is denoted by 7. For i € [C], the random variable
Y@ = {Ylm, Y2<i>, . ,YI@} is used to denote the corresponding incidence vector of
I after mapping to the alphabet as in ,.

We formulate our FSL process following the seminal FSL work in [87]. At
the beginning, each individual database in the server needs to calculate the union
of the selected clients’ desired submodel index sets TV UT® U ... U T denoted
by I'. This phase is referred to as the FSL-PSU phase. Due to the constraint
that the two databases in the server cannot communicate with each other directly,
our solution is to use randomly selected alive clients as intermediators to route the

information received by the two databases rather than to enforce each client to

197

send the same answer to both databases. The main objective of this new approach
is to reduce the total communication cost and the needed communication time.
Thus, we separate C' clients into two groups: a group of clients whose index set
denoted by C; = {C1(1),C1(2),...,Ci(|C1])} are associated with database 1, and the
other group of clients whose index set denoted by Co = {C2(1),C2(2),...,C2(|C2|)}
are associated with database 2. A potential separation method is to rely on each
client’s communication channel bandwidth (or quality) with the two databases. For
instance, a client is classified as belonging to C; if its channel with database 1 has a
higher bandwidth (quality) than the channel with database 2. Otherwise, this client
is considered as belonging to Co. Note that C; N Cy = () and C; U Cy = [C]. Please
see Figs. and [7.2] for depictions.

The FSL-PSU phase is further divided into two steps considering the fact that
two random clients (one from each client group) are utilized to relay the informa-
tion between the databases; see Fig. [7.2] This information is produced from the
answers that are collected by the two databases individually from their associated
client groups. In the first step, there is no need for each client to download any
information from the databases since the server itself is not involved in the PSU
computation, namely the downloads ng{>’(j) are nul for all j € [2]. As a conse-

quence, the only operation in this step is to make clients send their well-designed

3In this work, we use the value in () to denote the index of client and the value in () to denote the
index of database for clarity. The superscript of the download D or the answer A in the following
text implies the information flow during the client-database communication. The first subscript of
D or A is used to show it is within the FSL-PSU phase or FSL-write phase (the letter U stands for
union and the letter W stands for write), whereas the second subscript is used to denote the step
number within this phase. In particular, “D,(J(f]i)’(]) are null” here means that the communication
between any client in C; and database j is always empty in the first step of FSL-PSU phase.

198

Databasc 1 Database 2 Database | Database 2
' ~ A
— —
<
1 (

f py W P TT—
e alsiene Avg

Client group Cy Client group Cy Client group C; Client group Cy

(a) FSL-PSU phase step 1. (b) FSL-PSU phase step 2.

Figure 7.2: Data flow in the FSL-PSU phase of our FSL system model.

answers Ag?’(j) to the associated database. In the second step, for all j € [2],

database j processes the answers received from its associated clients with the aid of

)(7)

. . 0, .
its own server-side common randomness, and then the produced D(<]’2 is merely

downloaded by a randomly chosen client whose index is §; within its associated client

2]

group C;. Finally, client 6; forwards the same processed answer Agé)’() based on

the received download to both databases; see Fig.

Similar to the conventional multi-user PIR/SPIR problem formulated in [117,
, the constraints accompanying FSL-PSU phase comprises three parts. First,
each database j should be able to reliably determine the union I' using all the
collected answers {Ag’ﬁ)’(j), Ag [22]>’(j)} within two FSL-PSU steps and its own server-

side common randomness Rg, which is captured by,
[FSL-PSU reliability] H(T|A{"D, A7 Roy =0, v; (7.26)

Second, the databases should not learn anything further about the set I'{I¢])
or Y other than the union I'. Note that if an element is not in the union I, each

database concludes that no client contains this element. Otherwise, each database

199

learns that at least one client contains this element. Let Y = {Y :keTl}, we

define a new set Yr = Y<[C]> then,

[FSL-PSU privacy] 1(Yp; A7, A8 Rg| STy > 0,vkeT) =0, V)
i€|C)

(7.27)

Third, client 6; that obtains the download D(%W) from database J should
learn nothing about the other clients’ desired submodel indices. Hence, we have the

following constraint,
[FSL-PSU inter-client privacy] (Y, DYV v @y =0, vj (7.28)

A valid FSL-PSU phase is one that satisfies the FSL-PSU reliability , the
FSL-PSU privacy and the FSL-PSU inter-client privacy . The efficiency
of an FSL-PSU phase is measured in terms of the number of bits in the involved
communication strings. Therefore, for the FSL-PSU phase itself, we wish to reduce
the total number of bits in the answers {A;] {cn.() A A<91 (2D Ag?’(p])} and
downloads {D {.(1) Dg?’@)} to the extent possible.

When the FSL-PSU phase is completed, each database will learn I', the union
of the submodel indices to be updated. Next, we proceed to the FSL-write phase
where each database will update the full learning model synchronously. The FSL-
write phase is analogous to the FSL-PSU phase, and therefore, is also divided into

two steps as the FSL-PSU phase. The difference is that in the first step, both

200

Database 1 Database 2 Database | Database 2
' '
—

(C1),(1), g/ (©2).(2) oo | A — - .
Dy // Um/ //(iy ® — D@
A 1), (€1(2)).(1) Ca(|C (/T, 1)).(2: Ca2(2)),(2; (C2(|C2 2) w2 » ‘\ 2

A 1 v Ay v i

Client group Cy Client group Cy Client group C; Client group Cy

(a) FSL-write phase step 1. (b) FSL-write phase step 2.

Figure 7.3: Data flow in the FSL-write phase of our FSL system model.

databases broadcast the same set of submodels Mr = {My: k € T'} to their associ-
ated clients before each client trains its desired submodel set My by employing its

(€5),(7)

local data. Hence, for all j € [2], the downloads Dy are always in the form of

Mr. Subsequently, clients send their well-processed answer Aé‘é{f’“) corresponding
to the submodel updates back to the associated database. In the second step, for all
J € [2], database j processes its associated clients’ answers through different server-
side common randomness and then the produced Dé?,fg’(j) is downloaded by the 0;th

client again. Finally, the 6;th client forwards the same resulting answer Aé‘{’/{;([?]) t

0
both databases after processing the newly received download; see Fig.
Likewise, the constraints accompanying FSL-write phase comprises three
parts. First, each database 5 should be able to reliably obtain the aggregation of
all the submodel updates according to all the collected answers {Aé[c/f a2 Aéﬁ{?’(” }
within two FSL-write steps, its own current full model Mg] and its own server-
side common randomness Rg. When the submodel training by means of the lo-
cal data in the ith client is complete, for all & € T'%?, this client will gener-

ate the increment A, = {A,@DA,&)Q, . ,A,@L} for each symbol in the submodel

My, = {My1, My, ..., My} Thus, for the kth submodel, let @} be the set of clients

201

whose desired submodel index set '™ contains k, its correct updated version should
be My = {Mllg b k27 T L} - {Mk 1+Z@e<1>k k 17 M, 2"‘215% I<c>2’ s Mo+
> ica, A;j)L} For each database in the server, the correct updated submodel aggre-
gation should be M| = {M,: k € I'} and thus the first constraint can be expressed

as,
[FSL-write reliability] H(ME|ASTD, AT My, Rg) =0, Vj (7.29)

Second, no database should learn any knowledge about each client’s desired
submodel index set or any further information beyond the updated submodel ag-
gregation about each client’s submodel increment. For the ith client’s submodel

increment, let A<Fi> = {A,@l kel l e[L]}, we define a new set Ap = Ap {en then

)

[FSL-write privacy](Ar; A, ATEY Mg, Rs| S AP, VkeT, WIe[L]) = 0,V

S

(7.30)

Third, the 6;th client should learn nothing about the other clients’ desired sub-

model indices or submodel increments according to its obtained download Dé‘e/fg’(j)

4In general, the first term in the following conditional mutual information should be Yr, Ar
rather than Ar. In the FSL-write phase, we note that the information transmission only involves
the submodel increment regarding My and it has nothing to do with the incidence vectors Y (€D
That means that if a database learns nothing beyond the aggregation increment from all the se-
lected clients, this database definitely learns nothing about the incidence vector Yr. Therefore, the
expression Ar takes the place of Y, Ar. This observation also applies to the FSL-write inter-client

NI (CICHINTCION

privacy constraint (| in which the expression is used in place of Y,

202

from database j. Hence, we have the following constraint,

[FSL-write inter-client privacy] I(Agc]\eﬂ; Déﬁfg’(j), ING2E Apey) =0 (7.31)

A valid FSL-write phase is a one that satisfies the FSL-write reliability ,
the FSL-write privacy and the FSL-write inter-client privacy . Given
any specific FSL problem with fixed initial parameters, the communication cost
of sending the set of submodels Mr to each client from the two databases is a
constant. Hence, the efficiency of an FSL-write phase is also measured in terms
of the total number of bits in the answers {Aélc,jf’(l), A&C,’Qf’@)? Aé@’([zb, A%g’(m)} and
downloads {Dé{%) ’(1), Dé?f% ’(2)}, and we wish to minimize it as much as possible. If we
do not consider the generation of client-side common randomness that is necessary
to perform the FSL, one complete FSL round consists of two phases: FSL-PSU phase
and FSL-write phase. Our objective is to make the total number of communication
bits exchanged in these two phases as small as possible. Further, this FSL round
can be executed in an iterative manner until a predefined termination criterion is

satisfied, e.g., the accuracy of the updated global model exceeds the preset threshold

or a preset maximal number of iterations is reached.

7.3 Main Result

Our main result is a new private FSL algorithm as described above. The following
theorem gives its performance in terms of the total communication cost in the en-

tire process including the cost of FSL-PSU, FSL-write, and the generation of the

203

necessary common randomness at the clients. The proof of the theorem is given in

Section [7.5.2] and Section [.5.3]

Theorem 7.2 The total communication cost of the proposed private FSL scheme in
one round is O(CK+C|T'|L) in g-ary bits, where C' is the number of selected clients,
K is the total number of submodels, and |U'| is the number of updated submodels in
the given round. Here, O(CK) is due to the FSL-PSU phase, while O(C|I'|L) is

due to the FSL-write phase.

Remark 7.4 The achievability of the theorem starts with an MM-SPIR with multi-
ple replicated and non-colluding databases. The storage in the databases is uncoded
and without noise. We unify PSU and secure aggregation in a common information
theoretic framework, and propose a novel private FSL scheme. We take advantage of
the non-colluding aspect of the databases to implement simple common randommness

generation/distribution across selected clients.

Remark 7.5 Our proposed FSL achieves unconditional information theoretic pri-
vacy. This is different from most prior secure aggregation works that focus on the
computational security, e.q., |87,(96,99,119,120]. It is also different from prior pri-
vate read update write (PRUW) works [92,193,|121-124|] in which only a single client
at a time updates the full model in an FSL round, although information theoretic
security is satisfied. Our proposed private FSL scheme is robust against client drop-
outs, client late-arrivals, and database drop-outs. Moreover, there is no constraint

on the number of clients that may drop-out during the FSL process.

204

Remark 7.6 The communication cost of our proposed private FSL, O(CK +
C|T'|L), outperforms the best-known communication cost in the existing literature
196-99], which is at least O(CKL). In the seminal FSL work [(87], the communi-
cation cost is O(C|T'|) for the PSU phase and O(C|I'|L) for the whole FSL process
with much weaker privacy guarantee. Although this communication cost is a little
better than our communication cost in terms of the PSU phase, the PSU [87] yields
erroneous results while our PSU yields completely accurate results. Furthermore,
the PSU problem and the subsequent secure aggregation problem are considered sep-
arately in [87]. We note that the total number of submodels K is very large when
each product is represented by an individual submodel in the e-commerce recom-
mendation system in [87]. Thus, given the scale of the full learning model and the
general average size of clients’ desired products in practice, we can further optimize
the communication cost by adjusting the size of K, e.q., combining relevant products
into the same goods category. Specifically, as we decrease K, the product of |I'| and
L will likely increase such that K and |T|L will have the same order. Thus, the com-
munication cost of our scheme is superior to existing schemes, and can be further
improved by optimizing the system model parameters. However, it is difficult to find
a fair metric to compare our communication cost with the ones in [92|94]. The main
reason for this is that the schemes in [92,94)] require that only one client updates
one submodel at a time, and also heavily rely on the sufficiently large number of
databases N. That is, the schemes in [92,|94| require at least N > 4 databases, and
cannot be compared to the scheme in this chapter where the number of databases is

N = 2. If we follow the asymptotic assumption L > K and let C take value 1, the

205

only conclusion we can draw is that, the communication cost in these two different

schemes are both a linear function of the submodel size L.

Remark 7.7 Generally, the existing private FL schemes in the computer science
literature rely on heavy cryptographic computations, while our proposed FSL scheme
relies only on simple addition and multiplication computations in the finite field I,
at both client and server sides. In addition, due to unstable inter-client commu-
nications in practice, and the tmpermissible inter-database communication in our
assumption, our FSL scheme relies only on client-database communications. In
order to alleviate the challenges arising from the lack of inter-database communica-
tions, as a novel approach in our FSL scheme, we utilize random clients to route the
required information between the databases in the server. The routed information
comes from the answers collected by each database from its associated clients, and

we further protect this information between the clients (inter-client privacy).

Remark 7.8 In practical implementations, for each client, the upload speeds are
typically much slower than download speeds during the client-database communica-
tions. Unlike the classical secure aggregation scheme in [96], the total communi-
cation time in our FSL process is further improved, since almost all of the alive
clients send only one answer to one database in each phase. In addition, while de-
termining the two client groups to be connected to the two databases, we can further
improve the total communication time based on the actual bandwidth/quality of each

client-database communication channel.

Remark 7.9 The proposed private FSL scheme can be used iteratively in multiple

206

rounds of an FSL process by refreshing server-side and client-side common random-

ness.

7.4 Examples for Blocks of Private Distributed FSL

In this section, we give examples to explain the functionalities of the modules (boxes)
in Fig. [1.2] The examples get progressively more complex: Example [11| considers a
two-party PSU setting where the client party has multiple databases and the leader
party has a single database. Example (12| considers the slightly more difficult version
of Example|l1] in that the client party also has a single database. In this case, single-
database SPIR is infeasible, and the leader party needs to fetch client-side common
randomness to use as leader-side side information as in [75]. Example [13| considers
generalized version of Exampleto a multi-party (MP) case; in particular, there are
5 parties and each party has a single database. Example [14]is an extended version
of Example |13 where the leader party has two databases. This example reflects how
the FSL-PSU phase of the proposed private FSL scheme works. Finally, Example
shows how the private write works. The FSL-PSU in Example (14| and the FSL-write

in Example [15] together constitute our proposed private FSL scheme.

Example 11: Two-party PSU; two-database client; one-database leader:
Consider a two-party PSU problem with a global alphabet A = {1,2,3,4}. The
first party P; contains element 1 and element 2, i.e., P; = {1,2}. The second party
P, contains element 1 and element 3, i.e., Py = {1,3}. For convenience, the total

number of elements in each party is public knowledge. The parties want to jointly

207

compute the union of their element sets without revealing anything else to each

other. By mapping their element sets into the corresponding incidence vectors, two

parties construct the vectors as follows,

Party P :

Party P, :

First, P, (leader party) asks for the value of X

P ={1,2} = XW=

Py =1{1,3} = X¥=

X XD X X =

XP XP X X =

[1 100"

10107

(7.32)

(7.33)

) from P, using an SPIR

approach. P; (client party) has two replicated and non-colluding databases. These

two databases share a server-side common randomness symbol S; that is uniformly

selected from the finite field IF5 and unknown to P,. As a consequence, P; generates

the answer table for two individual databases in the following form,

AP (1) =

AP(@2) =
AP) =
AP () =
AP (5) =
A (6) =
AP(7)

AP ®)

S,

xPyxiPis,
xPyxiPis,
xMyx4sy,
XU+ X5+,

X+ x5,

= XM+ x{"+8,

= x4y x4 x4

AP (1) =
AD(2) =

A7'3) = X5

A(2) (4)
A (5)
A (6)

AP ()

X5, AP ()

208

_ X2<1>+X§1>+

xS
X2<1>+51
+951

+51

— X4 x4 x

= x{M+ x4 x

+51

+51

= xP e xP x5

X458

(7.34)
(7.35)
(7.36)
(7.37)
(7.38)
(7.39)
(7.40)

(7.41)

Following the notation in Section [7.2] the superscript of A denotes the database
index of P; while the index on the right-hand side of A denotes the potential query
choice that can be chosen by P.

In order to retrieve X2<1>, P, selects a random query choice for the first database
of P; and its coupled query for the second database of P;. For instance, P, chooses
1 for the first database of P, and 2 for the second database of P;. After receiving
the query symbol 1, the first database of P; responds with the answer AS)(l) =95
Meanwhile, the second database of P, responds with the answer Ag) (2) = X2<1> +5
when the query symbol 2 is received. Next, P, asks for the value of X il> from P; in
the same way.

Since there are 8 possible queries to each database of P;, the communication
cost from P, to P; is 343 = 6 bits; and since each database of P, sends back a single
bit of answer, the communication cost from P; to P, is 1 + 1 = 2 bits. Thus, the
total communication cost for learning X2<1> and X i” is 2 (6 +2) = 16 bits through
this MM-SPIR approach. After learning the values of X2<1> and X i”, P> knows that
P, has element 2 but does not have element 4. Combining its own elements, Ps is
able to calculate the union, which is {1,2,3}. Thus, the PSU reliability constraint is
satisfied. Regarding the two privacy constraints, due to the user privacy constraint
in the SPIR problem, each individual database in P, can only learn that P, has two
elements without learning any knowledge about what these two specific elements
are. Due to the database privacy constraint in the SPIR problem, P, can only learn
that P, possesses element 2 and does not possess element 4 without any additional

knowledge about whether P, has elements 1, 3. In particular, whether P, has element

209

4 or not can be deduced by P, from the ultimate union result and its own elements.
Thus, both of P, and P, privacy constraints are guaranteed. Thus, this is a valid

two-party PSU scheme.

Example 12: Two-party PSU; one-database client; one-database leader:
Compared to Example the only modification in the setting is that party P, now
has a single database. Party P, also holds four server-side common randomness
symbols S, Sy, S3 and S, that are all uniformly selected from the finite field Fs.
In order to have a feasible single-database SPIR, approach as illustrated in [75], the
party P obtains one random server-side common randomness symbol ahead of time.

As a consequence, P; generates the following answer table for the only database,

AP (1) = (x5, XV 55, XV 455, XV 454} (7.42)
AP (2) = (X 45,5, XV 455, XSV 54, XV 45} (7.43)
AN (3) = {X 485, X+, X§V 451, XV 485} (7.44)
AW @) = (X454, X 451, X3V 495, XV + 55} (7.45)

Subsequently, P, selects a query choice that matches its pre-fetched server-side
common randomness symbol. For instance, if its pre-fetched symbol is Sy, in order
to retrieve X2<1>, P; chooses 4 and then sends this query symbol to P;. The database
belonging to P, responds with the answer Ag)(él) = {X1<1> + Su, X2<1> + 54, X?ED +

Sa, Xi” + S3}. Likewise, P, also asks for the value of Xil) from P, in the same way.

Since there are 4 possible queries to the database of P;, the communication cost

210

from P, to P; is 2 bits; and since P; sends back an answer with 4 components, the
communication cost from P; to P, is 4 bits. Thus, the total communication cost
for learning X2<1> and Xf> is 2+ (24 4) = 12 bits through this MM-SPIR approach,
without considering the communication cost generated by the pre-fetched server-
side common randomness symbol. Verification that this achievable scheme satisfies

the PSU reliability, P; privacy and P, privacy constraints follows similarly as in
Example [11]

Example 13: Five-party PSU; one-database per client; one-database
leader: As a generalization of Examples [I1] and [I2] in this example, we consider a
multi-party setting, again with the global alphabet A = {1,2,3,4}. Here, the first
party P; contains element 1, i.e., P; = {1}. The second party P contains element 1
and element 3, i.e., P, = {1,3}. The third party P3 contains element 1 and element
4, i.e., P3 = {1,4}. The fourth party P, contains element 1, element 3 and element
4, ie., Py ={1,3,4}. The fifth party Ps contains nothing, i.e., P5 = (). As before,
we assume that the total number of elements in each party is public knowledge. The

parties construct the corresponding incidence vectors X) as follows,

Party P, : Py = {1} = X0 =[x x x xMT=10007 (7.46)
Party Py: P, ={1,3} = X =[x xP x® xP)T=[1010" (747)
Party Py: Py ={1,4} = X% =[x x{ x{ x)"=100 17 (7.48)
Party Py : Py={1,3,4} = X =[x x{* x{* x*/"=101 17 (7.49)

Party Ps: Ps =0 = X =[x xP xP xPT =100 007 (7.50)

211

Using the MP-PSI achievable scheme in Chapter [4] as a reference, we select
party Ps as the leader party, and the remaining parties as client parties, as party Ps is
globally known as an empty party. Thus, there is no need for P5 to send any queries
to the remaining parties and the server-side common randomness employed in the
previous two examples is not necessary any more. In this example, all parties have
a single database. Besides their own incidence vectors, each client party holds the
same set of common randomness symbol {ugzl]> o € [4]} from the finite field F; as

well as the same global common randomness symbol ¢ that is uniformly distributed

over {1,2,3,4}. Moreover, {u&w> t o € [4]} are such that the sum } ;1 ua & s
always equal to 0 for all a € [4]. The answers from the client parties are,
Ay = (e +ui"), QG ug”), (X" +ug) (X Hug}y (751
A = {e(X)? tu®), e(X5 tug?), e +ug?), o X)}y (752)
A = {eX a7 +u?), o X vu), (X i)y (7.53)
AR = (X +ul), (X5 +ud?), e(X5 Ful?), e(X ul) (7.54)

Regarding reliability: The leader party Ps; calculates the following expressions,

Element 1: (X" +ul")+e(XZ +u) + (X +ul)+ (X +ul™)

=) XY u)y =Y X)) =ca#£0 (7.55)

i€[4] i€(4] i€[4]

®The common randomness symbol u? in this MP-PSU implementation functions exactly in the

same way as the common randomness symbols t; ; functioned in the MP-PSI in Chapter E} The

same is true for subsequent common randomness symbols wéf) in the write-back implementation.

212

Element 2 : c(X2<1>—|—u§1>)+ (X(2>+ué >)+C(X2<3>+u§3>)+c(X2<4>—|—u§4>)

=YX+) =Y X)) =c0=0 (7.56)

i€[4] i€[4] i€[4]

Element 3 : (X3 +ul") + (X +ud) +e(X +ul)+ (X5 +ul)

=) X7+ uf) =YXy =c- 240 (7.57)

i€[4] i€[4] i€[4]

Element 4 : (X" +ul")+e(X +ul) + (X +u) + (X +us?)

=YX+ uiy =YXy =c 240 (7.58)

1€[4] i€(4] i€(4]

Thus, P5 concludes that the union P; U Py U P3 U Py is {1,3,4} because the first,
third and fourth expressions are not equal to 0.

Regarding privacy: The leader party’s privacy constraint is trivially satisfied
since the leader party is empty and sent no queries to the clients. The clients’
privacies are protected by the common randomness symbols {ugq) ca € 4]} and c.

First, the values of the individual components of the incidence vector {Xé[4]>

YOS
[4]} are kept private from Ps by the added randomness symbols {uéw> ca € [4]}.
These coupled (i.e., correlated) random variables disappear when the components
coming from clients are added up as Ziew ul? s always 0 for all o € [4]. Finally, the
global common randomness symbol ¢ protects the actual value of the sum), Xé”

for all . That is, leader P5 can only learn whether these sums are zero or not and

nothing beyond that. Thus, this is a valid scheme satisfying reliability and privacy.

Example 14: Five-party PSU; one-database per client; two-database

leader: With respect to the MP-PSU configuration in Example [13], we only change

213

the number of databases in the leader party Ps, which now contains two replicated
and non-colluding databases. As these two databases do not communicate with
each other directly, a straightforward approach could be to have each client send
its answer shown in - to both databases in the leader party. This way,
each database could individually learn the union while the privacy constraints are
still satisfied. Here, we put forth an alternative approach, where two random client
parties are utilized as intermediaries to route the information between the two non-
colluding databases in the leader party such that there is no need for a client to
send the replicated answer to both databases in P5. To that end, each client party
also holds another duplicate set of common randomness symbols {u,: o € [4]} that
are all uniformly selected from F5 on the basis of the existing common randomness
symbols {ug4]> :a € [4]}. Since Ps does not have any element, there is no need
for the other parties to download any information from P;5 in the beginning, i.e.,
D&%(l) and D<ch>’(2) are both null. At this point, let the client parties P; and
P, form the first group. They send their respective answers A&)l’(l) and Ag}l’(l)

shown in - to the first database of Pj since they are associated with
database 1. This database produces a response D[<]2’>2’(1) to be downloaded by client
2 through element-wisely adding its received answers and appending leader party

common randomness symbols that are all uniformly selected from the finite field Fs,

DEY = {e(xX T+ X2 4ul a4 51, (X + X +ud) +u?) +Ss,

(X" + X +ul! +uf)+ S5, o XY+ X+l +ul)+ S0} (7.59)

214

This database then sends this response back to P,. After adding extra common
randomness to the received response, P, forwards the following answer to both

databases in P,

DED — (X 4+ X 1 ul)y + S, e(XS + Xl +ul) +ug+ s,

(X3 + X +ul +ul) +ug+ Ss, (X + X bl 0l Fug+ S0}

(7.60)

Meanwhile, the client parties P3 and P,, which form the second group, send their re-

spective answers AU 1(2 and AU1 as shown in (7.53)-(7.54) to the second database

of P5. Similarly, this database produces a response D((]:):)Q’(Q) to be downloaded by

client 3 as follows, and sends it back to Ps,

DI = {e(X)+ X +uf® 4 uf) = 51, e X+ X5 +ul +us) = S,

(X4 Xl pul) = 55, o X+ X +ul +ul) =8 (7.61)

Then, P; forwards the following further processed answer to both databases in Ps,

AL = (X4 X0 4ol S0, oK+ XL 1l 4ol) 5,
c(Xéf’>—i-X< >+u§ >+u§4>)— —S3, (Xf>+X< >—i—u4<1 >+ufl4>) ug—Sy}

(7.62)

After collecting the answers in the second communication step, each individual

database j in Ps5 finds the desired submodel union by element-wisely adding Agé’(j)

215

and AS),

Agé’(j) +A[<]i’:>27(j) _ {C(ZX ZX ZX ZX }, V5 (7.63)

i€[4] 1€[4] 1€[4] 1€[4]

Regarding reliability: The MP-PSU reliability in the leader party Ps is in-
herited from the MP-PSU reliability analysis in Example [13] Specifically, each
individual database in P5 can make the same analysis as shown in - for
each element in the alphabet to derive the union P; U Py U P3 U P,. Also, Ps can
send this union result to any client party if needed.

Regarding privacy: The privacy analysis of the client parties P, and Pj is
trivial, since neither of them has received any information from the remaining par-
ties. Regarding the client party P, due to the appended leader party common
randomness {S,,« € [4]}, this party cannot learn anything about the incidence
vector symbols in the remaining parties from its only received information DZ<J2’ >2’(1).
This analysis also applies to the client party P;. Regarding the leader party Ps,
it is obvious that the received information {Agfl’(l),Agé’(l),Agé’(l),Agé’(l)} in the
first database and the received information {Ag’ﬁ’(z), A§J4,>17(2)> A§]27>2,(2)7 AS”Q(Q)} in the
second database, individually, contain less information about the incidence vector
symbols in the client parties than the answer set Ag4]> received by Ps in Example .
Therefore, the leader party Ps can only learn the union and nothing beyond that.
Thus, this is a valid MP-PSU scheme.

Next, we consider situations that are commonly encountered in practical im-

plementations.

216

First, one or more client parties may drop-out during the MP-PSU process.
For instance, P; may lose connection to Ps, in which case, the first database of P;
will only receive the answer from P,. The download produced in the original method

now becomes,

PO = LX) a5, (X +ul) 45,

(X +ul) 485, e(X P +ul)+5, (7.64)

It is easy to observe that the common randomness symbols w™ in these two down-

loads cannot be cancelled completely as before. However, note that P, possesses the
missing common randomness symbols incurred by P; drop-out. Hence, P, can add
the required common randomness itself as long as it learns from database 1 that P,
has dropped-out. Thus, the adjusted answer in the second step A;?Q) () 5 as follows

and will be sent back to both databases in Ps,

AU<,>7 E = {e(X, +u§ >+u§ >)+u1 +51, c(X2<2>+u§1>+u§2>)+u2+52’

c(Xé2> +u§1> ~|—u§2>) +uz+Ss, c(Xf> +uff> +ufl2>) +ug+S4} (7.65)

Further, if P, loses its connection to Ps, the remaining active client party P; in the

first client party group functions as a router. Since no one in the second client group

(2)

drops-out, the download Dg’ >2 remains the same,

D = {e(x + X +uf? +uf?) =51, e + X +uf? +ul) - 55,

)

217

(X + X5 4ul +ul) = Sy, (X X +ul rul)— S0} (7.66)

The result forwarded by P; and received by the databases in P5 remains the same,

Ag’é @) = = {c(X] +X< >+u§ >+u<4))—u1—51,c(X2<3>—|—X< >—|—u§ >+u<4>)—u2—52,
C(X§3>+X§4> < >+u<4)) 537 (X4 >+Xi) < >+u<)) U4—S4}

(7.67)

We can now verify that both databases in P5 can determine the union Py U PsU Py
without the participation of P;.

Second, the answer A generated by P, may arrive at database 1 in P;
so late that database 1 may believe that P, has dropped-out. In such a case, the
privacy in our MP-PSU is still preserved. If we look at the received information
{A&é’(l), Agé’(l), A/[%)’(U, Agé’(l)} in database 1 of Ps, no information about the in-
cidence vector XV is leaked due to the existence of extra common randomness

symbols {u,: a € [4]}. Moreover, this late answer A<Ul7>1’(1)

will never be transmitted
to any other client parties by Ps in order to avoid the further leakage of X (V. The
usage of extra common randomness u, here is similar to the double-masking idea
in [96] so as to resolve this late arrival problem, but in a very simple manner.
Third, one of the two databases in P; may also drop-out during the
implementation. For instance, if database 2 drops-out, the same answers
{A&é’(l),Agﬁ’(l),Agé’(l)} can still be received by database 1 in P; from P, and

P, but {Agé’(l)} cannot be received from the other client party group as usual.

218

The corresponding remedy is that the surviving database asks for the values of
{c(ug3> + ué{4>) : a € [4]} from P, through one more communication step. In this way,
it is easy to see that the first database in P5 can derive the union P; U P associated

with the first client party group.

Example 15: Five-party PSU; one-database per client; two-database
leader; together with FSL-write: Consider a distributed FSL problem involving
a server consisting of two replicated and non-colluding databases and four selected
clients in this round of FSL process. Each individual database stores 4 indepen-
dent submodels each containing 2 i.i.d. symbols uniformly selected from a suffi-
ciently large finite field F,, ¢ > 5, i.e., My = [My 1, My], My = [Myq, Ms o], My =
[Ms 1, Mss], My = [My1, Mys] and some required server-side common randomness
symbols. According to the clients’ respective local training data, client 1 can be used
to update the submodel 1, client 2 can be used to update the submodels 1, 3, client
3 can be used to update the submodels 1,4 and client 4 can be used to update the
submodels 1,3,4, i.e., IV = {1},T'® = {1,3}, T = {1,4},T'® = {1,3,4}. Both
databases in the server can communicate with each client through a secure and au-
thenticated channel. We further assume that the channels connected to database 1
have higher bandwidth than the ones connected to database 2 for clients 1,2 and
it is the opposite for clients 3,4. Thus, the FSL-PSU phase is executed exactly as
in the MP-PSU in Example and each database in the server learns the desired
submodel union I' = {1, 3,4} when this phase is complete.

Due to the similarities between the formulations of FSL-PSU phase and the

219

FSL-write phase, we use the idea in Example [14] one more time to execute the FSL-
write phase. Database 1 sends the submodels 1, 3,4 to client 1 and client 2, while
database 2 sends the submodels 1, 3,4 to client 3 and client 4, i.e., the downloads
D&I/f and DW1) are both { My, My, M, }. After receiving the desired submodels
from the server, client 1 generates the increment {Aﬁ, A%} for submodel 1, client

2 generates the increment {Aﬁ, A% Aé %, 32} for submodels 1, 3, client 3 gener-

)

ates the increment {Aﬁ, Af%, Afi, Ag} for submodels 1, 4, client 4 generates the

increment {AI I,AY%, Aﬁ,Aé%, Af‘ ,Af } for submodels 1,3,4 after performing
their respective local training. In addition, we assume that each client has already
obtained two sets of common randomness symbols {w,iljl> : k€ [4],1 € [2]} and
{wi,: k € [4],1 € [2]} from the finite field F, as in the previous examples. For all

k €T and all [€ [2], the sum wkl is always equal to 0. Thus, the answers

sent to database 1 in the server from clients 1 and 2 are as follows,

1),(1 1 1 1 1 1 1

A = (AT) Al s, wil wis, wi, i) (7.68)
2),(1) 2) 2 2) 2 2

Aé{/?({A< +w§{,Alg%—wm,Aél—kwé{,Aw%—wé%,wii,w() (769)

After collecting the answers from clients 1,2, database 1 performs the element-wise
summation with the aid of its own server-side common randomness symbols and

transmits the following response to client 2 in its associated client group,

DY = (AN + AP) w4510, AL+ AR Fwl) i + 51,

AL Fw w4 S50, AS+wl +w + Sy,

220

1

<2>+S471, wi}%—i—wf%vL&m} (770)

S
N~
-

Afterwards, client 2 processes the received response by adding extra common ran-

domness and then forwards the following answer to both databases in the server,

AL = (A AR a0 1, 0 A 0 S
Af{ +w§f +w§72i +ws 14531, Aé %—I—wé %+IU§22> +ws 24539,

wf;,li waﬁ +wa+Sa1, wfﬁ% +wf% +wy2+Sso} (7.71)

At the same time, the answers sent to database 2 in the server from clients 3 and 4

are,

3 3 (3) (3 A3 3) A3 3
AR = (a0 +ol, Ao, ol wi, AR +wlf, Al +wil) (7.72)

—_~

2 4 4 Al 4 A4 4 Al 4 A 4
AR = (A e, Al el Afwsy, Af+wih, Al +wll), Al +wih)

When the collection and computation is finished, database 2 sends the following

response to client 3 who belongs to its associated client group,

AP AN+ w i) = Su1, AL F AN w) i) —Sie} (7.74)

221

Similarly, client 3 processes the received response by adding extra common ran-
domness again and then forwards the following answer to both databases in the
server,

Ay ™ = (AP AT i)y —wi =810 AP+ AT Fwi’) fwy’y —wip =S,

))) ’

)

A:ﬁ +w§:,? +w3£2 —w3,1— 53,1, Aé% +w§:2 +w32 —w32— 9532,

3)

AP AN +w +wil —win— iy, AP+ AL+ +wl)

oWy 9 — Wy 2—54,2}

5)

(7.75)

At this point, both databases can update the corresponding submodels after receiv-
ing the answers in the second step and removing all the involved common random-

ness symbols through element-wise summation,

M} = {M AN+ AT AP+ AN, Mo+ AN+ AR+ AT+ AN (7.76)

My = { My + AT+ A, My + AT+ AL} (7.77)
My = {M4,1—|—Afi+Afﬁ, M4,2+Af%+A§f%} (7.78)

In this example, we note that the scheme used in the FSL-write phase is a sim-
plified version of the MP-PSU scheme used in Example [14] without considering the
global common randomness symbol c. Therefore, regarding this FSL-write scheme,
we can readily verify the FSL-write reliability constraint as well as the FSL-write
privacy constraint for each individual database at the server side in reference to the

leader party Ps in Example and the FSL-write inter-client privacy constraint

222

for clients 2,3 in reference to the client parties P, P; in Example (14l Likewise,
the robustness against client drop-outs, client late arrivals and database drop-outs
possessed by this FSL-write scheme is also inherited from the one in Example [14]
Finally, as required by the FSL process itself, the FSL-PSU phase and FSL-write
phase introduced in this example can be executed repeatedly if a new set of clients
are selected to perform another round of this FSL process. New sets of common
randomness symbols and server-side common randomness symbols are needed to

ensure privacy in each round.

7.5 General FSL Achievable Scheme

In this section, we describe our general achievable scheme for a distributed FSL
model with any arbitrary initial parameters; see the model formulation in Sec-
tion [7.2.3] Our general achievable scheme has three phases: common randomness
generation phase (FSL-CRG), private determination of the union of indices of sub-
models to be updated (FSL-PSU), and private writing of the updated submodels
in the union back to the databases (FSL-write). In Section , we have given ex-
amples of FSL-PSU, and combined FSL-PSU and FSL-write. The FSL-PSU and
FSL-write phases make use of pre-established common randomness at the client
side. In Section [7.4] we have presumed that the common randomness needed for
FSL-PSU and FSL-write have already been established. In this section, we first
describe the establishment of the necessary common randomness across the clients.

Our FSL-CRG scheme exploits the distributed nature of the server databases, and

223

uses one-time pads and the RSPIR scheme introduced in |116] to generate common

randomness. Then, we describe FSL-PSU and FSL-write for the most general case.

7.5.1 Common Randomness Generation (FSL-CRG) Phase

The two databases in the server aim to establish two types of common randomness
across the clients: The first type is a global common randomness symbol ¢ that is
uniformly selected from the set F,\{0}. The second type is a set of general common
randomness symbols { Ry, Ry, ..., Rc} with a flexible set length C' + 1, where each
symbol is uniformly selected from [F, and the sum of the last C' symbols is equal to
0, i.e., Zie[c] R; = 0. As a result, Ry can be used as u;, or wy; while Rjc) can be
used as u,i[CD or w,i[fb in the next two phases. The FSL-CRG phase is independent
of the FSL-PSU and FSL-write phases in a practical implementation, and therefore,
can be potentially executed during the off-peak hours.

We start with a scheme for the second type of common randomness allocation.
First, each database individually selects a random client from its client group as
routing clients. Their indices are denoted by 6#; and 65, respectively. Second, both
databases randomly select a set of symbols with size C' from F, under a uniform
distribution, and then broadcast this set to the routing clients and the last client.
Thus, these clients obtain a new set of symbols with size C' through element-wise
summation, and then append one more symbol Rs to the existing set such that

the sum of the last C' symbols equals zero. Moreover, each database also sends its

i + 1th random symbol to client ¢ for all i € [C' — 1]. Thus, client i can obtain the

224

symbol R; through summation. Each individual database has no knowledge about
client-side common randomness because of the one-time pad encryption.

We next consider the first type of common randomness allocation, i.e., the
allocation of c. Note that ¢ needs to be uniform in F,\{0}. We could use a modified
version of the above method as follows: Each database individually selects a random
symbol from F, under a uniform distribution and then broadcasts its selected symbol
to each client. The global common randomness symbol ¢ is calculated as the sum
of the two random values that are transmitted from the two databases. However, ¢
now can take the value 0 with probability ﬁ, thus, the constraint that ¢ is uniformly
distributed over F,\{0} is not immediately satisfied. The two databases in the server
can repeat this procedure until ¢ falls into the allowed region, which would require
feedback from the clients as explained above.

In order to overcome this shortcoming, we propose a novel common random-
ness allocation method via a broadcast variation of the RSPIR scheme introduced
in [116]. We consider a RSPIR problem with N = 2, K = |¢| —1,L = 1 and
make use of the potentially suboptimalﬂ RSPIR achievable scheme provided in [116,
Section V]. The corresponding message set stored in the two databases is set as
Wy =1,W, =2,...,Wjg-1 = |¢gl = 1. We note that there is no need to protect
the privacy of the remaining messages at this point since all these messages can be
globally known to the clients. As a consequence, the required server-side common

randomness in the original RSPIR problem [116] can be discarded[]] Database 1 has

6This scheme was proved to be optimal for K = 2,3, but is a valid scheme for any K.

"The new idea proposed here seems to be closer to the definition of random private information
retrieval (RPIR) as opposed to random symmetric private information retrieval (RSPIR) studied
in |116]. RPIR and RSPIR can be further studied to design more efficient and powerful com-

225

the following set of messages and broadcasts one of them randomly to active clients,

C§1) — 0 (7.79)
Cgl) = (Wl + WQ, W2 + Wg, ey VV‘q|—2 + I/V|q|—1) (780)
cgl) = (Wi + Wy, Wo + Wy, ..., Wy o + W) (7.81)

Cf;\)—1 = (W + Wig—1, Wo + Wi, ..., W2 + VVIqI—3) (7.82)

Similarly, database 2 has the following set of messages and broadcasts one of them

randomly to active clients,

& =w (7.83)
&2 =w, (7.84)
o)y =W (7.85)
Cl(j\)ﬂ = Wig1 (7.86)

By applying the decoding procedure in the RSPIR approach in [116], all clients will
be able to obtain the same global common randomness symbol ¢ that is uniformly
distributed over the set F,\{0}. Moreover, the obtained random symbol ¢ will be

unknown to each individual database in the server due to the user privacy constraint

mon randomness construction among the clients. We leave this as an interesting future research
direction.

226

in RSPIR [116].

7.5.2 Private Set Union (FSL-PSU) Phase

After the FSL-CRG phase is completed, each selected client will obtain a global
common randomness symbol ¢ that is uniformly distributed over F,\{0}, and a set of
common randomness symbols {u,i[CD t k € [K]} in which the identity ;¢ (g u,ii> =0
is true for all £ € [K], and another set of common randomness symbols {uy: k € [K]}
that are all uniformly distributed over F,. Following our distributed FSL model in
Section C selected clients in this round of FSL process are divided into two
groups C; and Cy. The clients in C; send their answers to database 1 in the server,
while the clients in Cy send their answers to database 2 in the server. Then, the ith
client in C;, after mapping its desired submodel index set I' into a corresponding

incidence vector Y, constructs its answer as,
A = {e(V tul?), ey), (Y ugd)} (7.87)
Similarly, the ith client in Cy constructs its answer as,

= {7 +ud™), (V3 +ulhy, eV 4ul) (7.88)

227

Once the first database in the server receives all the answers from its associated

clients in Cy, it produces a corresponding response to be downloaded as,

DO = {cZ(Yk(i>+u,<j))+Sk: ke [K]} (7.89)

i€Cy

where {Sk: k € [K]|} are shared server-side common randomness symbols that are
uniformly selected from F, as well. This produced response Dg§>’(1) will then be
downloaded by a random client whose index #; belongs to C;. Afterwards, the 6;th
client processes the received response by adding extra common randomness to it,

and then, forwards the following answer to both databases in the server,

Aglz%([ﬂ) _ {CZ(Yk<i>+u;<€i>)+Uk+Sk: ke [K]} (7.90)

1€Cy

Likewise, the second database produces a response to be downloaded as follows,

after receiving all the answers in the first step from the client group C,,

D) _ {cZ(%<i>+u§j>)—Sk: L [K]} (7.01)

i€Ca

This produced response will then be downloaded by a random client in Cy whose
index is denoted by 6. Afterwards, like the #;th client, this client also forwards the

following further processed answer to both databases in the server,

A%)’(DD _ {CZ(Yk<i>+u,<j>)—uk_Sk: ke [K]} (7.92)

1€Co

228

After collecting these two answer sets in the second communication round, each
individual database 7 in the server is ready to derive the desired submodel union I

by performing the following element-wise summation,

A<91) +A {cZ(Y<>+u§>)+u1+Sl+cZ Dl —uy =Sy,

1€Cy 1€Ca

> (VT ul) tust Sate > (Ve ul!) —uy— s,

1€Cy 1€Ca

CZ(Y<>+u<z>)—|—uK+SK+cZ(Y<Z>+u<z>) K—SK}

i€Cy 1€Co
(7.93)
{ZY Vv } (7.94)
i€[C] i€[C] i€[C]

FSL-PSU reliability: Each individual database j in the server makes use of the
K elements in Ag NS A ¥ to decide whether an arbitrary element in the set
[K] is in the ultimate submodel index union, and thereby, to determine T". Let us
use an arbitrary index k as an example to analyze the statement above. On the one
hand, if any client’s desired submodel index set includes &, the sum Zie[C] Y,ji> must
be a value that is not zero and the expression ¢ ;¢ Y,y> must be in F,\{0}. On
the other hand, if none of these clients’ desired submodel index set includes k, the
sum Zie[c] Y,fi> and its associated expression cZie[C] Yk@> are both equal to zero.
Therefore, each database utilizes the value of its calculated expression ¢, (g Y,y>
(whether it is zero or not) to judge whether the index k is in the union I' or not.

Following the same analysis for each k € [K], both databases can ultimately obtain

229

the correct submodel union I'. Thus, the FSL-PSU reliability is satisfied.

FSL-PSU privacy: We analyze the FSL-PSU privacy based on the availability
of the answer sets {Ag?’(l),A(U(ﬁ)’(Q)}. For all 7 € [C] and all k € T, the common
randomness u,ii> is used to protect the privacy of Yk<i> such that each database knows
nothing about the value of kai> because of the one-time pad encryption. Further, for
all k € I', the common randomness c is used to protect the privacy of) . e Yk<i> such
that each database knows nothing about the value of Zie[c] kai> beyond that this
sum is zero or not because of the finite cyclic group under multiplication in F,\{0}.
Hence, the FSL-PSU privacy is preserved when the answer sets {AI<]C §>’(1), Ag?’@)}
are received by each database. The concrete proof follows from the proof of client’s
privacy in [74, Subsection V.B]. In reality, the received answer set in database 1 is
{A<UC711>’(1),A<U9712>’(1),Ag?’(l)}, which is equivalent to A<ch>’(1) and {c) ;i Y,y> k€
[K]} because of the unknown extra common randomness {uy: k € [K]}. Meanwhile,
the received answer in database 2 is {A%%(?)’ A§212>’(2), A,ﬁ';)’@)}, which is equivalent
to A<UC’21>’(2) and {c ;¢ Yk<i> : k € [K]} for the same reason. That means that
each database receives less information with respect to the incidence vectors Y (€D

than the answer set {A§i>’(1),A§§>’(2)}. Thus, the FSL-PSU privacy constraint is

satisfied.

FSL-PSU inter-client privacy: Only the clients 6; and 6, receive information
from outside. Due to the existence of the unknown server-side common randomness

in the downloads D<U(i 12>’(1) and D<U(i §>’(2), neither the 6;th client nor the fyth client can

230

learn any knowledge about the incidence vector within the other clients. Therefore,

the FSL-PSU inter-client privacy constraint is satisfied as well.

FSL-PSU communication cost: Without considering the communication cost
generated in the FSL-CRG phase, the communication cost in this phase is (C'+6) K
in g-ary bits. Moreover, following the common randomness generation approach
provided in Section [7.5.1] the extra communication cost is about 8CK for the re-
quired client-side common randomness. Further, for the global common randomness
symbol ¢, the required communication cost is approximately 2(|¢|—1)C in g-ary bits,
which is negligible since the value of K is generally very large. Therefore, the total

communication cost in this phase is (9C + 6) K in g-ary bits.

FSL-PSU client drop-out robustness: In the first step of FSL-PSU phase, for
all i € [C], client ¢ sends its generated answer to its associated database in the
server. Without loss of generality, we assume that a set of clients C; p belonging to
the first client group C; and another set of clients Co p belonging to the second client
group Co drop-out in this step. Hence, the response to be downloaded produced by

database 1 is as follows,

DY = {c S O +u)+ S k€ [K]} (7.95)
iECl\CLD
After receiving the response Dggﬂ’(l) as well as the index set of out-of-operation

clients C; p, client ; can adjust the answer by additionally appending the sum of

missing common randomness symbols ¢ u,@ for all k& € [K]. Hence, the

’L'ECLD

231

answer generated by client ¢; in the second step is as follows,

A _ { S VoS Sk e [K]} (7.96)

i€C1\C17D 1€Cy

Likewise, the response to be downloaded produced by database 2 is as follows,

{CZ Du 4 Sy k€ [K]} (7.97)

i€Ca \C2 D

The answer generated by client 65 in the second step is as follows,

A e vl -n-sake) @y

iGCQ\CQ,'D 1€Ca

After collecting the answers AU2) and AU922) , by adding them up element-wisely,
each individual database j in the server will obtain the union result as T'¢)\¢, , U
[c,\c, » containing all the active selected clients following the steps in the FSL-PSU
reliability constraints. Another non-trivial point is that the randomly selected clients
0, and 0, may also drop-out during the implementation of FSL-PSU phase step 2.
In a practical application, a potential solution is that each database individually
randomly selects a small set of clients to route the information in parallel like the
clients #; and #,. Further, we may use the observed client drop-out rate to determine

the cardinality of this small relaying set.

FSL-PSU client late-arrival robustness: Without loss of generality, we assume

that an answer generated by an arbitrary client with index ¢ € C; in the first

232

step arrives at database j late. Even though database j receives the information
Ag?i(j) separately, it is still not able to extract any information about the incidence
vector Y® from the received answers in the two steps of FSL-PSU phase because
of the unknown extra common randomness {u: k € [K]}. This conclusion can be
extended to a set of arbitrary clients who arrive at the same database late. Moreover,
it is easy to guarantee that this late answer will never be transmitted to any other

client in order to avoid information leakage.

FSL-PSU database drop-out robustness: If database 1 drops-out and cannot
function normally, database 2 can still receive the answers Ag?’(?) and Ag?,(z) as
normal but cannot receive any answer from the relaying client in C;. In order to
derive the union T'c, through decoding the set {c}_. ., Y,y) . k € [K]} from its
existing information, database 2 needs to communicate with client 6 one more time

for the sake of the values of {¢ > u,ii> . k € [K]}. Likewise, if database 2 cannot

1€Cy
function normally, this time, database 1 can still derive the union I'¢, following the
same way. Further, if we encounter client drop-out or client late-arrival in addition

to the occurrence of database drop-out, the last two robustness analyses can be

utilized accordingly to make this scheme function well.

7.5.3 Private Write (FSL-write) Phase

When the FSL-PSU phase is complete, the server learns the desired submodel union
I' from all the selected clients in this FSL round. Then, each database in the

server individually sends the set of submodels M to its associated clients. From

233

the FSL-CRG phase preceding the FSL-PSU phase, each selected client has also
obtained two sets of common randomness symbols {wkl D.kerlle (L]} and
{wrs: k € L'l € [L]} from F,. Likewise, we always have >, w,il =0forallk el
and [€ [L]. Therefore, the ith client in C; will generate the increments for each
desired submodel whose index belongs to I'? according to its local training data

and then construct a well-processed answer accordingly. Specifically, for all k € T,

the answer symbols are generated in the following form,

A@f (k) = {Ak 1+wk1, A,izz+wk2, . A,(;L—Fw,w} (7.99)

In addition, for all k& € ['\I'?, the answer symbols are generated as follows without

any updates concerning the current submodel,

i), (1 i i i
AR (k) = {wiy wih, . wd (7.100)

Thus, the ultimate answer generated by this client in the first step is A (1) =
{Ag}ﬁ’l(l)(k): k € I'}. The ith client in Cy will generate an ultimate answer Aéa’l(z) =

{Aéi&,’fZ)(k): k € T'} in the same way, where

AP () = {0+l AL +wl), A+l) ke (7.101)
),(2) 7 7
AP (k) = {w)), wh, . wih}, ke D\DW (7.102)

234

Subsequently, each client sends its answer to its associated database in the server.
These two databases also share another set of server-side common randomness sym-
bols {Sy;: k € [K]|,l € [L]} from F,. Let C’,El) be the index set of clients in the
first client group C; whose desired submodel index set includes the index k, i.e.,
C’,gl) = {i € G|k € T@}. Similarly, C,?) and Cy are defined as {i € Cy|k € T'?} and
{i € [C]|k € T}, respectively. After collecting all the answers Aéglf O from €,
database 1 calculates the following aggregation increment for the [th symbol of the

kth submodel where k£ belongs to the union set I,
3 <A,<€Z,>l—|—w,ii;>+ STowl =S A0 Y w) (7.103)
iecV ieci\c iecV i€t

As in the last FSL-PSU phase, after adding server-side common randomness, the
corresponding response is produced as follows and will be downloaded by the client

01)

DM — { ZASHZ wy)+ Sk k€T, e [L]} (7.104)

iecV i€Cy

Once this response is received by client 6, this client only adds extra common

randomness and then forwards the following answer to both databases,

A%%’([QD = { ZA,%—%Z w,ifi—kwk,z—FSk,li kel,le [L]} (7.105)

iec) ieCy

235

Meanwhile, after collecting all the answers A&C/Qf @) from C,, database 2 produces the

following response and this response will be downloaded by the client 65,

Diy® = { STANEY wi—SurkeT,le [L]} (7.106)

iect? i€Cs

The answer that is forwarded by client 65 to both databases is as follows,

Ay = { STAYY wi—wi— S kel L€ [L]} (7.107)

At this point, each individual database in the server is ready to aggregate
the updates as desired from all the selected clients in this round of FSL. For the [th
symbol of the kth submodel in Mr, the ultimate aggregation increment is calculated

as follows,

S+ v sut X o+ X uli-u-si

icc® i€Cy icc® i€Cs
= Y AU+ > W) (7.108)
iecl(gl)ucl(f) i€C1UC2
=>"AY (7.109)
1€C

The updated Ith symbol of the kth submodel My, stored in the server after per-

forming this round of FSL-write should finally be

My, =M+ > A (7.110)

1€Cl

236

It is clear that this scheme satisfies the FSL-write reliability constraint. It
is important to note that the scheme in FSL-write phase is essentially a repetitive
application of a simplified version of the scheme in FSL-PSU phase without involving
the global common randomness symbol ¢. Thus, the FSL-write scheme satisfies the
FSL-write privacy constraint as well as FSL-write inter-client privacy constraints,
and also is robust against client drop-out, client late-arrival and database drop-out

events.

FSL-write communication cost: If we also do not consider the communication
cost generated in the accompanying common randomness generation, the communi-
cation cost is (2C'+6)|I'|L in g-ary bits in which C|I'|L is for the clients to download
the submodels from the server. The communication cost of obtaining the required
client-side common randomness sets is 8C|I'|L in g-ary bits. Therefore, the total

communication cost in this phase is (10C' + 6)|T'|L in g-ary bits.

The complete procedure involving FSL-PSU phase and FSL-write phase in this
round of FSL process can be executed repeatedly to update the full learning model
iteratively until a pre-specified termination criterion is met. All the characteristics

introduced above are preserved in all FSL rounds.

7.6 Conclusion

In this chapter, we proposed a new private distributed FSL achievable scheme with a

communication cost that is order-wise similar to the communication cost of existing

237

schemes which provide much weaker privacy guarantees. Compared to the existing
schemes with similar privacy guarantees, our proposed scheme does not require noisy
storage of the submodels in the databases. Our proposed scheme is resilient against
client drop-outs, client late-arrivals, and database drop-outs. The main ideas of this
scheme are based on PSU and its variation for private write, together with random
PIR and one-time pads for needed common randomness generation at the client
side.

Our scheme starts with replicated storage of the submodels in two non-
colluding databases at the server together with some amount of server-side common
randomness. Our scheme privately generates needed common randomness at the
client side, privately determines the union of the indices of the submodels to be up-
dated, and privately writes the updated submodels back to the databases. Neither
the indices of the submodels updated within the union, nor their updated values are
leaked to the databases.

In this work, we considered the simplest version of this new formulation. The
issues that need to be studied further include: 1) The case when the server has
more than two databases. 2) Privacy of stored data against databases. 3) Colluding
databases. 4) Byzantine databases that send erroneous information. 5) Collusion
among clients. 6) Byzantine clients that send erroneous updates to poison the
learning process. 7) Schemes to reduce the communication and storage cost, and
potential communication-storage trade-off. 8) MDS coded storage and/or MDS
coded user-side common randomness. 9) Optimum partitioning of the clients among

databases, especially, with colluding databases under a known colluding structure.

238

CHAPTER 8

Fully Robust Federated Submodel Learning in Distributed

Storage System

8.1 Introduction

In this chapter, we consider the FSL problem in a distributed storage system. At
this point, the server comprises multiple independent databases and the full model
is stored across these databases. An eavesdropper passively observes all the stor-
age and listens to all the communicated data, of its controlled databases, to gain
knowledge about the remote client data and the submodel information. In addition,
a subset of databases may fail, negatively affecting the FSL process, as FSL pro-
cess may take a non-negligible amount of time for large models. To resolve these
two issues together (i.e., security and database repair), we propose a novel coding
mechanism coined RSRC, to store the full model in a distributed manner. Using our
new RSRC method, the eavesdropper is permitted to learn a controllable amount of
submodel information for the sake of reducing the communication and storage costs.
Further, during the database repair process, in the construction of the replacement

database, the submodels to be updated are stored in the form of their latest ver-

239

sion from updating clients, while the remaining submodels are obtained from the
previous version in other databases through routing clients. Our new RSRC-based
distributed FSL approach is constructed on top of our earlier two-database PSU-
based FSL scheme in Chapter . A complete one-round FSL process consists of: 1)
an FSL-PSU phase where the union of the submodel indices to be updated by the
selected clients in the current round is determined, 2) an FSL-write phase where the
updated submodels are written back to the databases, and 3) additional auxiliary
phases where sufficient amounts of necessary common randomness are generated
at both server and client sides. Our proposed distributed FSL scheme is also ro-
bust against database drop-outs, client drop-outs, client late-arrivals, as well as any
manipulations of database information by an active adversary who corrupts the

communicated data.

8.2 Problem Formulation

In this work, we consider a distributed FSL problem with one server that comprises
N independent databases and C' clients that are selected by the server to partici-
pate in one-round of the FSL process; see Fig. [8.1L By convention, each client at
the user side establishes a direct secure and authenticated communication channel
with each database at the server sideE| In addition, the mutual communication

among databases in the server is not required in this work. The full learning mode]ﬂ

LOur distributed FSL scheme relies only on the client-database communication for the sake of
simplicity and stability.

2For any arbitrary positive integer Z, we use the notation [Z] = {1,2,...,Z} in this work for
simplicity.

240

Mgy = {My, M, ..., Mg} encompasses K submodels, with each one consisting of L
i.i.d. symbols that are uniformly selected from a finite field I, and is stored across

the databases. Thus, we have

H(M) =L, Vk (8.1)

H(Mig)) = H(My) + H(My) + - -+ + H(My) = KL (8.2)

For each j € [N], database j takes as inputs the full model Mk and the
server-side common randomness Rg, and stores the coded submodel information
G;(Mk),Rs) by using its own encoder G;. Some additional server-side common
randomness Rg in plain form is also stored across the databases to assist the ex-
ecution of the FSL process. For each i € [C], client ¢ has its own data D;, which
is used to train some submodels. Some necessary client-side common randomness
R will be distributed to the clients before the FSL process starts. Following the
client partition idea in [125], the large amount of C' clients are separated into N
groups according to their best communication channel bandwidth (or quality) with
one specific database, i.e., if client ¢ has the optimum communication with database
7 compared with the other databases, we assume that client 7 belongs to the client
group C;. As a consequence, we have C;, NCj, = 0 for any ji, j2 € [N],j1 # j2 and
UjenC; = [C]. Each client intends to update one or more submodels according
to its local training data. Specifically, for i € [C], client ¢ wishes to update a set
of submodels with its index set denoted by the random variable I'® (we use v

to denote the corresponding realization of I'"). Moreover, for i € [C], we use the

241

Server

| Database 1 Database 2 Database N E
1

| !
! !
Y] Gi(Mixg, Rs) Gy(Mig), Rs) Gn(Mig), Rs) | | !
! A <X A K X A :
! Rs Rs Rg .
| ‘
| |

| Database : I Database : ! Database : 1 Database : | Database : : Database :

! !

l ! l | ! l l l
! local : ! local : ! local : ! local : ! local : ! local :
: data| |1 : data| |1 : data| |1 : data| |1 o 0 o ! data| |1 .o : data| |1
| ! | | ! | ! | ! | !
1 1 I 1 1 1
oA 5 AR e) el) L it il
I 1 I 1 | I | 1 | 1 | 1
,,, 1 LT ==== e |
Client C;(1) Client Cy(|C4]) Client Cy(1) Client Co(|Cal) Client Cy(1) Client CN(\CN‘)

L) L) L
Client group C Client group Co Client group Cy

Figure 8.1: Federated submodel learning (FSL) problem in distributed storage sys-
tem.

random variable Y = {Ylm, YQ@, e ,YI?)} to denote the corresponding incidence
vector of I'? after being mapped to the alphabet as in .

Once a full round of the FSL process is complete, the submodels whose indices
belong to the union I' = ' UT'® U ... UT{® are updated by the selected clients
collaboratively while the remaining submodels remain the same. For i € [C], k € T
and [€ [L], the update Afﬁl is used to denote the corresponding increment generated
in client ¢ for the submodel symbol M. If k ¢ ' the update A,?)l is simply set
as 0. Thus, for k& € I', the overall increment applied on the submodel symbol My is
>ic(c] A,@l The full increment sum vector over all submodels and over all symbols

)

is defined as Ar = {3;c A,ﬁé,k‘ € Il € [L]}. Thus, the updated full learning

242

model My, for any [€ [L] is follows,

12 e Aiil?z: ifkel

M., otherwise

Likewise, within the refreshed server-side common randomness R’y and 7%’5, the part
coupled with the submodels in My = { M }rer should be updated. Thus, the storage
of each database j should be updated according to the up-to-date full model M[’K]
and refreshed server-side common randomness R, A’S, while preserving its initial
coding form.

Let M denote all the information that can be attained by database j including

transmission information and storage information. Then, the FSL reliability in one-

round of the FSL process is given by

[reliability] H(G;(M{y, Rs), Rs|M;) =0, Vj € [N] (8.4)

As introduced in [85], the privacy constraint in FL typically requires that the
aggregator learns nothing about clients’ individual inputs except for their sum. In
FSL, since the full model is divided into multiple submodels, the privacy constraint
needs to be tuned, namely, the aggregator learns nothing about clients’ local data
except for their desired submodel union and submodel increment sum. Let J C [N]
be an index set, then M7 = { M, },c7 is used to denote all the information involved

in a set of databases whose indices belong to J. Within this framework, we enforce

243

that any set of databases with cardinality at most J cannot infer any additional
information about clients’ local data Dic; = {D;,Ds, ..., Dc} beyond the union I’

and the full increment sum vector Ar, which is expressed by

[privacy] I(Mg;DiylT, Ar) =0, VT C[N], |J| < J (8.5)

Following the multi-user PIR/SPIR problem formulated in [117,118], it is also
required that each participating client should not gain any knowledge about the
other clients’ local data. Let W, denote all the information that can be attained
by client ¢ including transmission information and storage information, and let D;
denote the set {Dy,...,D;_1,Dis1, ..., Dc}. Then, we have the following inter-client

privacy constraint,

[inter-client privacy] I(W;;D;) =0, Vie [C] (8.6)

Two different types of security threats to the FSL model are investigated in
this chapter. On the one hand, a passive eavesdropper can take control of any
arbitrary F databases at the server side. Let £ be the set of indices corresponding
to these E databases where the cardinality of £ is . The eavesdropper can learn
all the transmission information and storage information denoted by Mg. The
eavesdropper is honest but curious in the sense that the goal of the eavesdropper
is to obtain some additional information about the full learning model and clients’

local data, but does not corrupt any transmissions. For simplicity, we assume that

244

FE is smaller than or equal to J in this work, the privacy constraint implies that
the eavesdropper cannot learn any knowledge about the clients’ local data further
than I' and Ar. Hence, the information leakage to the eavesdropper can be measured
only in the amount of up-to-date full learning model M [’K]. Not like the conventional
configuration in which the eavesdropper should learn nothing about M[’K] [53,55],
we use the idea in [17,/67] for reference and introduce a new parameter ¢, which is
defined as the maximal fraction of latest full model information that can be learned
by the eavesdropper. Thus, d can be any rational number between 0 and 1E| In the

presence of a passive eavesdropper, we have the following security constraint,
) 1
[eavesdropper security] EI<M[/K];M5) <o, VEC|N], |E]=EFE (8.7)

On the other hand, an active adversary can get command of any arbitrary
A databases at the server side to overwrite their transmissions to the clients. The
adversary is Byzantine in the sense that the goal of the adversary is to intervene the
normal running of the FSL process by generating arbitrarily erroneous information,
without following the agreed upon protocol. The eavesdropper/adversary has an
unlimited computational power and full knowledge of the FSL system. Neither
the server nor the clients have any knowledge about the identities of the databases
tapped in by the eavesdropper/adversary.

A basic one-round FSL achievable scheme under distributed coded storage is

a one that satisfies the reliability constraint (8.4)), the privacy constraint (8.5)), the

3If § is equal to 1, no eavesdropper security constraint is imposed in the problem formulation.

245

inter-client privacy constraint and the eavesdropper security constraint .
A fully robust one-round FSL achievable scheme in distributed coded storage should
satisfy these four basic constraints, especially the reliability constraint at all
times, even in the presence of active adversaries, database failures, database drop-
outs, client drop-outs and client late-arrivals. Moreover, we also need to guarantee
that this one-round distributed FSL scheme can be executed iteratively with no
errors until a predefined termination criterion is satisfied. As discussed in the intro-
duction, the performance of a fully robust FSL scheme is evaluated by two metrics:
communication cost and storage cost, which are both measured in the number of
g-ary bits. Our goal is to develop a fully robust FSL scheme for a given set of FSL
system parameters such that the total communication cost and the total storage are

as small as possible.

8.3 Main Result

The main contribution of this chapter is a novel fully robust distributed FSL pro-
tocol. The performance of our protocol is evaluated in terms of the total communi-
cation cost and the total storage cost in each FSL round. The communication cost
includes the cost incurred within the client-side and server-side common randomness

generation. The main result of this chapter is presented in the following theorem,

which is proved in Section

Theorem 8.1 The total communication cost and the total storage cost of the pro-

posed distributed FSL achievable scheme in one round are O(CK + CI|T'|L)) and

246

O(K L), respectively, where C' is the total number of participating clients, K is the
total number of submodels, and |T| is the number of updated submodels in the given

round.

Remark 8.1 Our new distributed FSL protocol is constructed as a generalization
of our previous two-database FSL scheme via PSU [125]. Different than [125], here
we have many databases at the server side. As in [125], we rely only on simple oper-
ations in a finite field at both client and server sides. Here, we achieve information-
theoretic privacy for the clients as in [125], and additionally information-theoretic
security against eavesdroppers. Unlike [125], here, the submodel information and
server-side common randomness are stored across the databases in a coded form
through our new RSRC technique. With RSRC, we achieve robustness against pas-
sive eavesdroppers, active adversaries and database failures, in addition to the ex-
isting resilience in [125] against database drop-outs, client drop-outs and client late-

arrivals.

Remark 8.2 The communication cost in our new FSL protocol is order-wise the
same as the one in [125]. Hence, all the conclusions in [125, Remark 6] are ap-
plicable here. In particular, once a database fails, the order-wise communication
cost incurred for the repair process is O(K L), which is not negligible compared with
the communication cost in the normal FSL process. Note that when the RSRC
mechanism is utilized, although the order-wise cost makes no difference, the commu-
nication cost of obtaining the desired submodel information at the beginning of the

FSL-write phase, the communication cost of repairing the submodel information in

247

the replacement database under a database failure, and the storage cost, can be de-
creased simultaneously, while permitting the eavesdropper to learn more information

about the full learning model.

Remark 8.3 The storage cost in our new FSL protocol is O(K L), which is order-
wise the same as storing the plain full learning model in the server. If we calculate
the storage cost of the scheme in [125], it is also O(K L) including the server-side
common randomness. Compared with previous FL or FSL approaches in [87, 96/,
our storage cost O(K L) does not include the term C?, which is incurred by the secret

sharing scheme across the clients.

Remark 8.4 We analyze the required number of databases here. Note that each
client needs to contact D working databases out of N databases in total to recover the
desired submodels Mr, in the presence of an eavesdropper who controls E databases,
we must have N > D > E in general. In order to preform the FSL process reliably,
the total number of databases that drop-out or fail must be smaller than or equal
to N—D. Furthermore, in the presence of an adversary who controls A databases,
we must have N > max(2A+D, (J+1)(2A+1)) according to the analysis of active

adversary robustness in Section |8.6.0,

8.4 RSRC Technique

In a distributed storage system, a set of messages are stored accross multiple
databases either in a plain form or in a coded form. The secure regenerating code is
developed such that in the presence of a passive eavesdropper or an active adversary,

248

a client can recover the message (reconstruction process) and a replacement database
can be built to replace the failed database (repair process) by communicating with
some working databases in an efficient way [107]. To evaluate the performance of a
secure regenerating code, three main metrics are considered: reconstruction commu-
nication cost that counts the total number of symbols transferred from the working
databases to the client in the reconstruction process, repair communication cost
that counts the total number of symbols transferred from the working databases
to the replacement database in the repair process, storage cost that counts the to-
tal number of symbols needed for the customized storage across all the databases.
Following our FSL system model in Section 8.2, we assume that each client is per-
mitted to contact D working databases to download submodel recovery information
(reconstruction process) and database repair information (repair process) if neces-
sary. Note that the coded storage in database j is G;(M[x], Rg) where Mg and Rg
denote all the message symbols and randomness symbols, respectively. The follow-
ing three constraints must be guaranteed while applying a secure regenerating code
to our F'SL system. First, a client can recover Mg by communicating with any D
working databases. This is referred to as the reconstruction constraint. Second, for
all j € [N], a client can derive G;(M|k}, Rs) by communicating with any D remain-
ing databases if database j fails, and then forward this database repair information
to the replacement databaseﬁ This is referred to as the repair constraint. Third,

at most a fraction 0 of Mg] can be learned by any arbitrary E databases. This is

4In a practical implementation, if this constraint is always satisfied, multiple clients can work
together with each one routing part of G;(Mx),Rs) to the replacement database. Finally, the
replacement database can still receive G (Mg, Rs).

249

referred to as the information leakage constraint.

In this chapter, we propose a novel secure regenerating coding mechanism
called RSRC, which is devised specifically for our FSL system. This secure re-
generating coding scheme is inspired by the ramp secret sharing idea in [109,|126].
Compared with previous secure regenerating code introduced in [107], there are a
number of innovative points in our coding scheme. First, the information leak-
age fraction J is not limited to the choice of 0. Second, in addition to the repair
communication cost, reconstruction communication cost and storage cost are also
considered for optimization. Third, in our coding scheme, we find that all of re-
pair communication cost, reconstruction communication cost, and storage cost are
certain simple functions of the parameter . In our ultimate construction of our gen-
eral FSL achievable scheme, we use our RSRC technique as an elementary building

block.

8.4.1 Construction and Performance of General RSRC

Following the product-matrix code [127], we first define the encoding matrix V.
Encoding matrix ¥ is basically an N x D Vandermonde matrix in the following

form where all the elements {11, 19,13, ...y} included in this matrix are selected

250

from a sufficiently large finite field IF, and are all distinct,

1 Uy w% 1D*1
1 s ¢§ 2D—1
V=11 opy o2 ..o P! (8.8)
1 ¢y 1/,]2\] JI\;—I
L 4 NxD

Next, we define a message matrix €2 which is simply a D x D symmetric matrix. The
D(D + 1)/2 distinct symbols in 2 consist of two parts: message symbols Mgk and
randomness symbols Rg. Assume that the number of message symbols is B, then
the number of randomness symbols is D(D+1)/2— B. The code matrix ¢ is obtained
from the product of encoding matrix ¥ and message matrix €2, i.e., (= ¥(). For any
J € [N], the jth row of containing D symbols denoted by C]T is stored in database
J. As the size of Mg is generally large, we apply this coding method multiple times
in a duplicate way. The coded storage G;(Mk], Rs) is formed by concatenating all
the generated C]-T.

We use (' to denote the reconstruction communication cost, Cy to denote the
repair communication cost and S to denote the storage cost in each database as
the storage cost is uniform over all the available databases. Moreover, if we use £,
to measure the extent of the message information leakage in any A databases and

M, to denote all the available information included in these A databases, we have

I(Mrs M)
H(Mk)

ly = . After normalizing C', C5, S by the total number of message symbols

251

B, we derive the following theorem regarding the performance of our general RSRC

scheme.

Theorem 8.2 Given the values of N and D that satisfy N > D > 2, for any
arbitrary integer X that satifies 0 < A < D and any arbitrary rational number €y that
satisfies 0 < ¢y < 1, an RSRC scheme with the following normalized performance

can always be realized,

.
D+4A+1 ; 2
o, | -0), 6 <5557
5 > (8.9)
1, otherwise
\
(
2D . 2AD—A\(A—1)
C, (D—)\)(D—/\-i—l)(l =0, < D(D+1)
- > (8.10)
DLH, otherwise
\
(
2D? : 22AD-X(A—1)
s _ Jomoam—0) = T55a
5 > (8.11)
DQ—fl, otherwise
\

Remark 8.5 When () = 0, the first inequality in Theorem[8.9 reduces to the result

m [1 0 7/.

Remark 8.6 According to the results in Theorem when 0 < 0y, < ﬁ/’\\ﬂ,
the achieved normalized performance metrics of our RSRC scheme are all linear
functions of the parameter €. That means that, by allowing larger message in-

formation leakage, we can further reduce all of the costs simultaneously. When

#S\H </, < %g(_p—/\%;l)’ the normalized Cy and normalized S can be further de-

252

creased if €y is further increased, whereas the normalized Cy reaches its minimum
1. When % < U\ <1, only the fraction % of message information

1s leaked, which is smaller than the given upper bound (.

Proof: We first determine the starting message matrix . As shown in Fig. [8.2] we
fill the upper left corner of size (D—\) x (D—\) with message symbols, whereas
the remaining zone with randomness symbols. Thus, the total number of message
(DN (DAH) D(D+1)

5) and the total number of randomness symbols is =—==— —

symbols B is 3

w :)\D—w. We denote the current message matrix by €2;. Following
[107, Thm. 11], as a reduced version, any A databases gain no information about the
message, i.e., I (Mg); M) = 0 and £, = 0. From another perspective of information-
theoretic security analysis, by just applying linear computation, AD coded symbols
included in these databases can be transformed into AD equivalent symbols where
)\D—w symbols are associated with one distinct randomness symbol and @
symbols are redundant] Afterwards, for the lower left corner with size A x (D—M),
the existing randomness symbol is substituted one-by-one by new message symbols.
Once a randomness symbol vanishes, a new symbol only involving message symbol
appears. This is also the basic idea in the construction of ramp secret sharing on
the basis of classical secret sharing [109]. As a consequence, when the the lower
left corner is filled with message symbolsﬂ the total number of message symbols B

(D-\) (DA

now becomes 5) and the total number of randomness symbols is w We

5This result can also be proved by simply using linear algebraic calculations where the conversion
matrix is invertible. The number of redundant symbols comes from the symmetric property of the
message matrix.

6The upper right corner with size (D —\) x X is also filled with message symbols since the
message matrix is always symmetric.

253

&
W

D
Figure 8.2: Structure of the D x D message matrix).

denote this message matrix by €2,. The green zone in Fig. can be considered
as a ramp zone in which the message information leakage increases gradually. At

this point, AD coded symbols included in these databases are equivalent to A(D—\)

A(A+1)
2

symbols only consisting of message symbols, symbols associated with one
distinct randomness symbol and @ redundant symbols. The message information

leakage ¢, in this scheme is ol 2MDA)

DO Furthermore, if the whole message matrix

is filled with message symbols without any randomness symbols, the total number

of message symbols B is thus w. We denote this message matrix by 3. Out of

AD coded symbols,)‘(’\2_1) symbols are redundant. The message information leakage

2AD-A(A—1)

¢y in this scheme is DD

Regarding the message recovery in the reconstruction process, for the scheme
with € or €2, or any message matrix in between, if all the coded symbols from
these D connected databases are put together to form a D x D matrix, we can only
concentrate on the D x (D—M\) left submatrix as all the message symbols have already
been included. Thus, as the encoding matrix ¥ is a Vandermonde matrix, the client

can download the full D x (D —\) left submatrix except for the redundant upper

254

right isosceles triangle (or lower right isosceles triangle) with side length D—\—1

to recover the message. Hence, the reconstruction communication cost Cf is always

(D)) (DtAH)

5 . For the scheme with {23, the client is supposed to download the full

D x D matrix except for the redundant upper right isosceles triangle (or lower right
isosceles triangle) with side length D —1. Hence, the corresponding C; is D(%’H).
Regarding the database repair, for message matrix €2 in any form, the client only
needs to download 1 symbol from each database according to |107, Thms. 6, 11].
Hence, the repair communication cost Cs is always D.

For completeness, we also state the basic idea of the repair process. For all
j € [N], let \IIJT denote the jth row of the encoding matrix W. Then, the storage
in database j is C]T = \IJ;‘FQ Without loss of generality, let database f fail. The
corresponding storage in database f is (}F = \I/},FQ, which is the exact form required in
the replacement database. Note that a client can contact any D working databases
whose index set is denoted by J. Then, for each 7 € J, database j only needs to
pass one symbol CJT\IJ 7 to the client. After collecting D symbols from the working
databases, the client forwards the database f repair information C?\IJ = \I@Q\IJ s to
the replacement database. Since the D x D submatrix \11?7 of W is always invertible,
the replacement database can rebuild QW , and then the required \IJ?Q, because the
message matrix €2 is symmetric. Note that the imported information to repair the
failed database is equivalent to the original information stored in that database in
terms of the message. As a consequence, even though a database repair operation is
performed, the security analysis of information leakage constraint is not influenced.

Regarding the storage cost, for any D x D message matrix €2, each database always

255

needs to store D? symbols, i.e., S = D%
Now, we employ the time-sharing idea to obtain the normalized performance

result given in Theorem [8.2] For any rational number ¢, that satisfies 0 < £, <

2)

DTy We can utilize the scheme with €2; and the scheme with 25 in a time-sharing

manner to achieve it. Let ¢; take the quotient form g—; where p; and p, are both
positive integers. We now use the first scheme ¢; times and the second scheme ¢
times such that the overall message leakage fraction ¢, is still f}—;. Hence, we must

have

01 + AM(D — N)ge _ O0g1 + AMD — N)gs _h (8.12)
B (D—/\)(QD—M-l) g+ %ZPHH) cqy D2

If ¢, takes the value 2\(D—\)po—(D—\)(D+M1)p1, g2 is equal to (D—X)(D—M+1)p;.
As a consequence, we can just use the first scheme 2\(D—\)pa—(D—\)(D+A+1)p;
times and the second scheme (D—\)(D—A+1)p; times. The total number of message

symbols B is

B =MD - \g - % = AD = ND = A+ 1)py (8.13)

The total reconstruction communication cost C is

(D-N\)(D+A+1)

Clz 2

¢+ @2) = M(D=A)?*(D+A+1)(p2 — p1) (8.14)

256

After normalizing it by B, we have

Ci D+X+1
B D aritH (519

The total repair communication cost Cj is
Co=D: (q1+q) =2DND—=X\)(p2 — p1) (8.16)

After normalizing it by B, we have

Cy 2D

B (D—)\)(D—)\Jrl)(

1—4y) (8.17)

The storage cost S is always D multiple of Cy, which implies

S 2D?
B-D-nD_arn1 W (8.18)

<0 < 2AD—A(A—1)

. . 2)\
For any rational number ¢, that satisfies S wE) < Thorny o We can

apply time-sharing idea once more by combining the scheme with €2, and the scheme

with €23 now. Hence, we must have

AMD = Nag+(AD =20 ND = Nai +(AD — 25)g, p, (8.19)
B (Df/\)(é)+/\+1) o+ D(D2+1) D

If ¢; takes the value (2AD— A2+ \)py— D(D+1)p;, ¢o is now equal to (D—\)(D+

A+1)p1—2A(D—X)pa. As a consequence, we can just use the first scheme (2AD —

257

A2+ N\)pa—D(D+1)p; times and the second scheme (D—\)(D+A+1)p;—2X(D—\)p,

times. The total number of message symbols B is

(D—)\)(129+)\+1) . D(D2+ D, AAHDD=ND A+

B =
2

(8.20)

The total reconstruction communication cost (' is

o (D—)\)(12)+/\+1) o D(D2+ 1) o AA+1)(D —2>\)(D—>\+1)

b2

(8.21)

After normalizing it by B, we have
2 (8.22)
The total repair communication cost Cj is

Co=D: (g1 +q) =AXA+1)D(ps — p1) (8.23)
After normalizing it by B, we have

Cy 2D

B (D—A)(D—AH)(

1—10)) (8.24)

258

The storage cost S is still D multiples of Cy, which implies

S 2D?
B D-nD-azn W (8:25)

2AD—A(A—1)

b1 < Un <1, we can use the

For any rational number ¢, that satisfies

scheme with €25 all the time. Hence, we must have

, D(D+1)

R

5 = Do = 1 (8.26)
2

Cs D 2
2

S D? 2D

B~ DOty D+ 1 (8.28)

concluding the proof. W

8.4.2 Examples to Illustrate the Basic Idea of RSRC

Consider the special case of N =4, D = 3, all the symbols are operated in the finite

field Fy3, and the encoding matrix ¥ is

U= (8.29)

L 44x3

259

The message matrix) thus contains 9 symbols and 6 of them are distinct. If A =
D = 3, the study on /3 is trivial. Due to the reconstruction constraint that a client
can always recover the message M) by connecting to any 3 working databases, these
3 databases must include all the information about M|k}, namely, H(Mx|M3) =0

and /3 = 1. Without loss of generality, we now assume that database 4 fails.

Example 16: We first consider the situation where A = 1. If the message matrix €2
takes the following form where My, My, M3 are i.i.d. and uniformly selected message
symbols from Fi3, Ry, Ry, R3 are i.i.d. and uniformly selected randomness symbols

from Fy3,

M, M; R,
Q= My, M; R, (8.30)
R, Ry Rs

The message length B is 3 and the coded storage across the databases is as follows,

DB1: M +My+R:, My+Ms+Ry, Ri+Ro+Rs (8.31)
DB 2: M;+2My+3R;, My+2Ms+3Rs, Ri+2R>—+3R; (8.32)
DB 3: M;+3My+9R;, My+3Ms+9Ry, Ri+3Ry+9R; (8.33)
DB 4: M +4My+3R;, My+4Ms+3Rs, Ri+4R,+3R; (8.34)

For any one database, as the value of the randomness symbol Rj3 is unknown, the

database cannot learn any knowledge about the randomness symbols R, Ry from the

260

third coded symbol. Furthermore, as none of Ry, Ry are known, the database cannot
learn any knowledge about the message symbols M7, My, M3 from the first two coded
symbols. Therefore, each individual database learns nothing about the message set
Mg, ie., I(Mig; My) = 0 and ¢; = 0. Following the performance analysis of
RSRC in the last subsection, a client can download {M;+ Ms+ Ry, My+ Ms+ Ry},
{M+2M3+3Ry, Mo+2M3+3Rs}, M14+3Mo+9R; from database 1, 2, 3, respectively,
to recover the message, and download M;+My+Ri+4(Ma+Ms+Ry)+3(Ri+Ro+R3),
My+2My+3R; +4(My+2M3+3Rs) +3(R1+ 2R +3R3), My +3My+9Ry +4(My+
3M3+9Ry)+3(R1+3Ry+9R3) from database 1, 2, 3, respectively, to repair the failed

database because of the following equality,

M+ My+ Ry +4(My+ Ms+ Ry)+3(R1+ Ro+ R3)

My +2M5+4 3R, +4(My+2M3+3R2)+3(R1+2R2+3R3)

My +3My+9R, +4(My+3M5+9Rs)+3(R1+3Re+9R3)

11 1| |My My, R |1 1 1 1| | My+4My+3R,

=11 2 3| |My My Ry| |4| = |1 2 3| |My+4M;+3R,| (8.35)

1 3 9| |Ri Ry Rs| |3 1 3 9| | Ri+4R,+3R;

This scheme achieves C} = 5, Cy = 3, S = 9, which implies % = g, % =1, % =3.

[t

If one more message symbol is added to the message matrix €2 in place of the

261

existing randomness symbol, the new) becomes

M, M, M;s
Q=M M, R (8.36)
Ms; Ry Ry

The message length B is 4 and the coded storage across the databases is follows,

DB1: M +My+M;, My+M+R,, Ms+ERi+Ry (8.37)
DB 2: M +2My+3M;s, My+2M;+3Ry, Ms+2R,+3R, (8.38)
DB 3: M +3My+9Ms, My+3My+9Ry, Ms+3R;+9R, (8.39)
DB 4: M +4My+3M;, My+AMy+3Ry, M;+4R;+3R, (8.40)

For any one database, due to the existence of the randomness symbols Ry, Ry, the
only information concerning the message that can be learned by the database is the
first coded symbol, which contains the ambiguity of iH (Mik). Therefore, we have

(= i for each individual database. This scheme achieves the same performance,

ie, Cy =5, Cy, =3, S =9, which implies & = 2 £ = -

NS

, 5 = 2. Therefore,
by allowing the leak of partial information about the messages to the database, the
normalized values of C7, Cy and S can be reduced. This partial information leakage
idea can be considered as setting up a ramp zone where information leakage is not

strictly prohibited.

If another message symbol is added to the current message matrix €2 in place

262

of one of the two remaining randomness symbols, the new {2 becomes

My My M
Q= M, My M; (8.41)

Ms M; Ry

The message length B is 5 and the coded storage across the databases is as follows,

DB1: M +My+Ms, My+My+Ms, Mz+Ms+R; (8.42)
DB 2: M +2My+3Ms, My+2M,+3M;, Ms+2M;+3R, (8.43)
DB 3: M +3My+9Ms, My+3My+9Ms, Ms+3M5+9R, (8.44)
DB 4: M +4Ms+3Ms, Mo+4Ms+3Ms, Ms+4AMs+3R, (8.45)

Because of the existence of the randomness symbol R;, each database can learn
some information concerning the message from the first two coded symbols, which
contains the ambiguity of %H (Mik). Therefore, we have ¢; = % for each individual

database. The performance of this scheme is still exactly the same as before, i.e.,

Cy =5,0y, =3, 5 =9, which implies % =1, % = %, =

1o

9
5
For any rational number ¢, that satisfies 0 < ¢; < %, we can utilize the scheme

with Q in (8.30)) ¢; times and the scheme with Q in (8.41]) ¢» times in a time-sharing

manner to achieve /1, which can also be expressed in the form of ﬁ—;. Hence, we must

263

have

01 +2¢2 ;1

— 8.46
31 +5q¢2 P ()

If ¢; takes the value 2py — 5p1, @2 is now equal to 3p;. As a consequence, we can
just use the first scheme 2p, — 5p; times and the second scheme 3p; times. After
simple calculation, the overall message length B is 6p,, the overall reconstruction
communication cost C; is 10(py — p1), the overall repair communication cost Cy is
6(p2 — p1), and the overall storage cost S is 18(py — p1). By normalizing these values

by B, for 0 < /; < %, we obtain

pP2—Dp1 D Co p2—m S P2 — P1
: 21—), 1—0, 2 —3. —3(1—¢
p 3(1) P LG . (1—41)

(8.47)

Note that by using these two schemes jointly to achieve ¢; = %, it has exactly the

same normalized performance as the one obtained by using the scheme with €2 in

(8.36)) directly.

If all the symbols in the message matrix €2 are message symbols without any

randomness symbols, €2 is in the following form,

Q=M M, M (8.48)

264

Now, the message length B becomes the maximal possible value 6 and the coded

storage across the databases is as follows,

DB1: M +My+Ms;, My+Mi+Ms, Ms+Ms+ Mg (8.49)
DB 2: M+2Ms+3Ms, My+2My+3Ms5, Ms+2Ms5+3Ms (8.50)
DB 3: M +3My+9Ms, My+3Mu+9Ms, Ms+3Ms+9Mg (8.51)
DB 4: M 4+4My+3Ms, My+4My+3Ms, Ms+4Ms+3Mg (8.52)

Each individual database learns three coded symbols with each one only containing
message symbols. Therefore, we have ¢ = % = % for each database. For the
message recovery, a client can download { M+Mo+Msz, Mo+My+Ms, Ms+Ms+Mg},
{M1+2Mo+3 M3, Mo+2M+3Ms}, M1+3Mo+9M; from database 1, 2, 3, respectively.
The corresponding performance of this scheme now becomes, C, = 6, Cy = 3,5 =9,
which implies % =1, % = %, % = g

For any rational number ¢; that satisfies % </t < %, we can utilize the time-
sharing idea again by combining the scheme with €2 in and the scheme with
Q in . At this point, the first scheme is used ¢; times and the second scheme

is used ¢» times such that the overall ¢; is equivalent to %, and we must have

20 +3¢ _p1

— 8.53
5¢1 +6q2 P2 ()

If ¢; takes the value 3ps — 6p1, g2 equals bp; —2ps. As a result, we can just apply the

first scheme 3p, — 6p; times and the second scheme 5p; — 2p, times. After simple

265

calculation, B is 3ps, Cy is 3pa, Co is 3(pe — p1) and S is 9(p2 — p1). By normalizing

these values by B, for % </t < %, we obtain

Ci _ 3p

) =1,

B _3p2

@:pz—plzl_gl §:3_pz—p1
B b2 " B b2

=3(1—0) (8.54)

By combining the results in (8.47)), (8.54]) and the performance of the scheme using

Qin (8.48) for £ < ¢, <1, we can get the full normalized performance in the case

2

of N =4, D =3, A =1, which matches the result in Theorem [8.2]

Example 17: We then consider the situation where A = 2. The starting message

matrix now takes the following form,

M, R; Ry
Q=1|R, Ry R, (8.55)
Ry Ry R;s

The message length B is 1 and the coded storage across the databases is as follows,

DB 1:

DB 2:

DB 3:

DB 4:

Mi+Ri+ Ry, Ri+R3+Ry, Royt+R4+Rs (8.56)
M;+2R1+3Ry, Ri+2R3+3Ry, Ry+2R4+3R;5 (8.57)
M;+3R1+9Ry, Ri+3R5+9R,, Ro+3R,+9Rs (8.58)
M;+4R,+3Ry, Ri+4R5+3R,, Ro+4R,+3Rs (8.59)

For any two databases, according to the last two coded symbols from these two

databases, neither of the randommness symbols R; and R are decodable. Thus,

266

for the first coded symbols from these two database, the message symbol M; is
completely unknown to two databases. Therefore, we have I(Mg); Ms) = 0 and
{5 = 0. To recover the message, a client can simply download the first coded symbol

from each database. The corresponding C is 3 while Cy, = 3 and S = 9 are not

Q

> =3, 2 =9

B

[t

changed, that means % =3,
As in Example [16] we import message symbols into the message matrix 2

gradually to replace the randomness symbols, and the new 2 first becomes

My My, Ry
Q= |M, R, Rs (8.60)
R, Rs; R

The message length B is 2 and the coded storage across the databases is follows,

DB1: M +M;+Ry, My+Ry+Rs, Ri+Rs+R, (8.61)
DB 2: M;+2My+3Ry, My+2Ry+3R3, R1+2R3+3R, (8.62)
DB 3: M;+3My+9R:, Ms+3Ry+9Rs, Ri+3R;+9R, (8.63)
DB4: M +4Ms+3Ry, My+4Ry+3R3, Ri+4R3+3R, (8.64)

For any two databases, one useful value that only involves a linear combination
of message symbols M; and M, can be attained, whereas the other information is
useless in terms of the message. We use database 1 and database 2 as an example

here, by subtracting the coded symbol in database 2 from the triple coded symbol

267

in database 1 and the double coded symbol in database 1 element-wisely, the six
coded symbols from these two databases are equal to 2M;+ My, My— Ry, 2Ms+ R,
Ms— Rs3, Ry — R4 and redundant 2R;+ R3. Therefore, we have ¢, = % for any two

databases. Regarding the performance of this scheme, all metrics remain the same,

ie., C; =3, Cy=3,5 =9, which implies % = %, % = %, % = g.
When we move forward, the new {2 next becomes
My, M, Ms
Q3 = My Ry Ry (865)
M; Ry Rj

The message length B is 3 and the coded storage across the databases is follows,

DB 1: M +M+M;, My+Ri+Ry, My+Ro+Ry (8.66)
DB 2: M,+2My+3Ms, My+2R;+3Ry, M3+2Ry+3R; (8.67)
DB 3: M +3My+9Ms, My+3R;+9Rs, Ms+3Ry+9R; (8.68)
DB4: M +4My+3Ms, My+4R,+3Rs, Ms+4Ry+3R; (8.69)

Note that this construction is different from the one in (8.30]), although the message
length is the same. By downloading the first coded symbol from each database, the
reconstruction communication cost C; in this scheme is now 3 rather than 5. For
any two databases, two useful values only involving a linear combination of message

symbols can be attained, whereas the other information is still useless in terms of

268

the message. If we look at database 1 and database 2, the six coded symbols from
these two databases are equivalent to 2M;+Msy, M1—Ms, 2Ms+ Ry, Ms—Rs, M3—R3
and redundant 2M3+ Ry. Therefore, we have (5 = % for any two databases. The

performance of this scheme is maintained, i.e., C; = 3, Cy = 3, S = 9, which implies

w|Q
Q

=1,%=1,5=3

il

Following the time-sharing idea in Example [I6] by unifying the scheme with
Q in (8.55) and the scheme with Q in (8.65]), we obtain the following normalized

performance for 0 < ¢, < 2,

Cy Cs

& =3(1-b), S =301-0) =9(1 —£2) (8.70)

@ ©n

When /¢, takes the value %, this is exactly the performance of the scheme that uses (2
in (8.60)). If we keep importing message symbols and using the time-sharing idea, we
can obtain the remaining normalized performance in this situation when % </l < %,

namely,

Ch Cy

= = 3(1 —4y), =9(1 — {y) (8.71)

@ @

The normalized reconstruction communication cost % reaches the limit 1 yet the
other two values remain the same. By putting the results in , and the
performance of the scheme using €2 in for % < /1 < 1 together, we can derive
the full performance for N = 4, D = 3, A = 2, which also matches the result in

Theorem [8.2]

269

8.5 Distributed FSL Motivating Example

In this section, we consider a simple FSL setting as a toy example and provide
a secure and robust achievable scheme in the presence of a passive eavesdropper
and a database failure. The full learning model is divided into K = 4 submodels,
My = {My, My, M3, M4} with each submodel consisting of L = 2 symbols from the
finite field Fi3 is stored in a coded form across N = 4 individual databases in the
server. Any arbitrary J = 2 databases can collude with each other to learn the
remote client data. In addition, C' = 4 random clients are selected by the server to
update the submodels in this round of the FSL process. Each client should be able
to obtain the required submodel information by communicating with any arbitrary

D = 3 working databases. The desired submodel index set for each client is

Client 1€C: TP ={1} =YD =" v, v y/"1"=[1 00 0]" (8.72)
Client 2€ C: T?® ={1,3} =Y? =" ;¥ v} v/"1"=[1 01 0]" (8.73)
Client 3€ Cy: T® ={1,4} =Y® = v v/ v/*1" =11 00 1" (8.74)

Client 4 € C3: TW = {1,3,4} = Y@ = v V¥ v vy/"1" =11 01 1]7 (8.75)

Example 18: A passive eavesdropper can tap in on any arbitrary E = 2 databases
to learn the storage data as well as all the communication data that comes in and
goes out. Assuming that the submodel leakage parameter § is 0.5, the submodel
information is then coded through the RSRC scheme with encoding matrix ¥ in
and message matrix) in for better FSL performance. Thus, the stor-

270

age across the databases including coded submodel information and extra uncoded
server-side common randomness is initialized as in Table[8.1} At this point, database
4 has a failure and cannot provide any reliable responses. In this example, the gen-
eration of client-side common randomness and server-side common randomness are

skipped, but it will be introduced in detail in the general FSL achievable scheme.

Database Storage

Mii+Mio+Ry 1, Mis+Rio+Ri3, Rig+Ris+Ria 51,]?1,17-}?1,2

DB 1 My +Mso+ Ry, Mas+Roo+Ry3, Roi+Ros+Roy 1?2,]?2,17-}?2,2
Ms 1 +Mso+ Rz, Mso+R3o+Rs3, R3i1+R33+Rs4]?3,]?3,17 }?3,2

My +Myo+ Ry, Myo+Rao+Rys, Ryi+Rys+Rya Ry, Ryq, Rao

M, 1+2M;2+3Ry 1, Mio+2R12+3R13, Ri1+2R13+3R14 @1,]?1,1,{31,2

DB 2 My 1+2Ms55+3Ry 1, Mop+2Ry94+3Rs3, Ro1+2R23+3Rs4 @2,]?2,1,{32,2
M3 1+2M35+3R31, M3a+2R32+3R33, R31+2R33+3R34 | R3, R31, R3

My +2Myo+3Ra1, Myo+2Ry9+3Ra3, Ri1+2Ry3+3Ra4 1:34, R4,1, 1%4,2

My +3Myo+9R1 1, Mip+3R12+9R1 3, Ri1+3R13+9R14 1?1,]?1,171?1,2

DB 3 Ms1+3M39+9Ry 1, Mao+3R22+9R03, Ro1+3Ry3+9Rs 4 1?2,]?2,171?2,2
M3$1+3M3’2+9R3’1, M3’2+3R3$2+9R3$3, R3,1+3R3,3+9R3,4 Rs, R371, R3,2

My +3Myo+9Rs1, Myo+3Rio+9Rss, Rai+3Rus+9Rsy | Ry, Rux, Ras

My +4My o +3R1 1, Mip+4R2+3R1 3, Ri1+4R13+3R14 1?1,}?1,1,1?1,2

DB 4 My +4M32+3Ry 1, Mas+4R2+3Ry3, Ry +4Ry3+3R4 1?2,}?2,1,1?2,2
M3 1+4M;39+3R31, Mso+4R39+3R33, R31+4R33+3R34 | Rs, R31, R
My1+4Myo+3Ry1, Myo+4Ryo+3Ry3, Ry1+4Rs3+3R44 Ry, }?4,17 R4,2

Table 8.1: Storage across the databases in the server when D =3, J = F = 2 and
=0.5.

FSL-PSU phase: In the first step of FSL-PSU phase, according to the client
partition, the client answers are generated as follow where the symbols ¢ and {w,ii> :

i € [4], k € [4]} are both client-side common randomness that satisfies ;. w,ii> =0

"As in our previous work [125], the value in () is used to denote the index of client and the value
in () is used to denote the index of database. In addition, the first subscript of the download D or
the answer A is used to show it is within the FSL-PSU phase or FSL-write phase as the letter U
stands for union and the letter W stands for write, whereas the second subscript is used to denote
the step number within this phase.

271

for all k£ € [4] and is unknown to any 2 databases at the server side,

1),(1 1 1 1 1 1 1 1 1

AP = L puwl™y, (VD 4w, eV i), (v +w)y (8.76)
2),(1 2 2 2 2 2 2 2 2

A = LV +), (VP 4w, eV 1wl (v v w))y (8.77)
3),(2 3 3 3 3 3 3 3 3

ADD = 1V 4wy, (v 1w, eV 1), (v)}y (8.78)

4),(3 4 4 4 4 4 4
AP = e 1 wl), eV 4 wd), eV w0l eV vwi™) (8.79)

In the second step of FSL-PSU phase, after collecting the answers from its associated
clients 1 and 2, database 1 does the element-wise summation with the aid of its own
extra uncoded server-side common randomness {Ry, : k € [4]} that is unknown to
each individual client. This information is subsequently downloaded by a randomly

selected client from the client group Ci, say client 2,

= {C(<>—|—w§ >+w1)+R17 (+Y —|—w2>+w2)+R2;

(Vi 1Y twl w0l + Ry, (V" + Y v’ +w®) + R} (8.80)

After further processing the received information Dg >2’(1) through additional client-

side common randomness {w,(j). j €3],k € [4]} that satisfies > el]wk =0 for all
k € [4] and is unknown to any 2 databases, client 2 forwards the following answer

to all the functioning databases, i.e., database 1,2, 3,

AP =L 1Y+l)+ B+ oV + Y+l +wl) + Ryl

272

(Vi + Y vl)+ Ry +w§ (Vi + Y+l +wl) + Ryrwi

(8.81)

Likewise, after downloading the following information Dgé’(z) and Dgg’(g) from
database 2 and database 3, respectively, client 3 and client 4 forward the follow-

ing generated answers Agé’(m) and A<U47>2’([3D to all the functioning databases as well,

= (VP 4wl + Ry, (VP +0lP) + R,
(VS 1wl + Ry, eV +w) + Ry} (8.82)
D5 = {e(V +wi™)+ Ry eV Hwy) + R,
(Vi 4wl + Ry, c (VY + 0l + Ry (8.83)
VED — £V + 0l + Ry + 0l (VP + i)+ Ry +wl?,
(V¥ w4+ By + w0l c(V + 0+ Ry+wP} (8.84)
50 = L 4w+ Byl (Y 4wy + Ry,

(Vo +wi) + Ry +wl | e(V{ +wi) + Ryt w(V} (8.85)

For all j € [3], each an alive database j is able to find the desired submodel

union through element-wise summation after collecting the available answers Ag >2’(j),
AS’ and AU2 from the routing clients 2, 3,4. For all k € [4], database j can get
the result ¢(ey Y)—i—BRk since) ey wk =0and >, wkj) 0, which implies

the value of ¢(3_;c(y Yk@) since Ry, is a known constant. It is straightforward to see

that submodel % is in the union if 0(226[4]) £ 0, otherwise, k is not in the union.

273

Therefore, the union result I' = {1,3,4} is obtained by each alive database. Due
to the limited information uploaded by the selected clients, it is easy to verify that
the server can only learn this union and nothing beyond the union, even though all

these databases can collude with each other.

FSL-write phase: First, by downloading information from 3 functioning
databases, each selected client needs to recover all the submodels in the submodel

union M = {M;, My, M4} to be updated in this FSL round. For all i € [3], we have

Di@,’l(l) = {Ml,l +M1’2+R171, M3,1+M372+R3,1, M4,1+M4,2+R4,1} (886)
Dl</f/>,’1(2) = {My1+2M2+3R 1, M31+2M39+3R31, My1+2My2+3Rs1} (8.87)

D = { My +4My 5 +3R, 1, My +4M; 2 +3Rs, My +3My2+9Ry 1} (8.88)

Meanwhile, without loss of generality, client 4 is utilized to route the required infor-
mation of submodel M; to the replacement database as a substitution for the failed

database 4. Thus,

Déé?i(l):{D%i(l),M2,1 + Mo+ Ro1+4(Mop+Roo+Ro3)+3(Req+Ros+Rou)}

(8.89)

DO =D Mo +2Ma o +3Ro 1 +4(Mop+2Ry 5 +3Ro3) +3(Ro +2Ry 3 +3Ro.4)}

(8.90)

DSHO={DE® Mo +3Ma+9Ro 1 +4(Moo+3R 2 +9Ro 3) +3(Ra +3Rs 39 Ro 1)}

(8.91)

274

Due to the reconstruction constraint of the RSRC scheme, each client can reliably
decode the desired submodels Mt as well as the server-side common randomness

symbols Ry 1, R3 1, R41. When the local training is done, the answers sent by the

clients in the first step of FSL-write phase are as follows where the symbols {wfﬁ

)

i € [4],k € I',1 € [2]} are client-side common randomness that satisfy ;. w,g =0

for all k € I', 1 € [2] and is unknown to any 2 databases,

1 1 1 1 1 1 1
AO = (Al vl A+l wi wi, wi, wih) (8.92)
1 2 2 2 2 2 2 2 2
A = (A8), A +w), AR +wi, A +wi, wil w) (8.93)
3),(2 3 3 3 3 3 3
AP = (AP), A+, wl) W), AP+, AP 1w} (8.94)

4),(3 4 4 4 4 4 4
AL = (AT ol AT rus, A ey A gy, Al twil, Al +wi’)

(8.95)

Following the similar execution in the previous FSL-PSU phase, client 2 downloads
the following information from database 1 in the second step of FSL-write phase
where the symbols {Ry,; : k € I, € [2]} are extra uncoded server-side common

randomness that is unknown to each individual client,

DI</I/2 = {A1 1+A§21—|—w11>+w1 1+R1 1,A§12+A1 2—|—w12>—|—w "‘Rl 2>A3i+w§1>

+w3 1+R3 1, Ag ;—l—w(l)—l—w +R3 2, U}4 >—|—w4 1+R4 1, w42>+w42+R4 2}

(8.96)

Afterwards, client 2 transmits the different coded answers to the different working

databases after appending its own randomness {w,(gll)o k€ I'lp € [4]} that is

275

randomly selected only by client 2 under a uniform distribution from Fi3, and thus,

completely unknown to all the databases in the server,

A = (M + AN+ AR+l ol Ry + M+ AN+ AP 0l
+U}1 +R12+w§1),
Mo+ A+ AL+l +wih+ Ry o +wl) +wly, wil) +wl) +wl),

My + AP) w4 Ry Mo+ AD il + w4 Ry ol

M372+Ai<f%+ §2> w§?2>+1%3,2+w(1)+w§§, (1)+ ;(),)—F éi,

Myg i+l + Ry + Mig+ ol 4w+ Rug+wld),

Mzt w+wd+ Ry +wl)+wl, wil) +wl)+w)} (8.97)

A = {My+ AN+ AR w4+ Ry 2(My o+ A+ AR +wl)

+UJ£2% +1f{1,2> +3w£711),

M1 2+A1 2—|—A1 2+w§ %‘i‘wl 2+R1 2—|—2U}§ 2)—|—3U)§1§, w§12+2w8?2+3w§2’

My i+ AZ +wih +wi) + Ry +2(My o+ AD iy +wy + Ry o) +3ws,

My o+ AZ 4w +w + Ry o+ 20§+ 3w, wil) + 2w + 3w,

Mg+ w+w + Rat+2(Myo+wiy +wiy+ Ra) +3wl,
Mys+wih+ws+ Ryot 20+ 3w, wl) +2wi) 4+ 30 (8.98)

A = {My A AN+ AR w4 Ry +3(Myp+ A+ AR +w)

)

+w1 2+R1 2>+9w§1)

Mo+ AN+ AL +wl w4+ R o +3wl) +9wl, w) +3wl) + 9wl

M1+ A8 +wil] +wif)+ Ry +3(My 2+ A +wi+wi+ Ry o) +9uws),

276

Mo+ AS +wl +wi)+ Ry o+ 3w§) + 9w, wi +3w§) +9ws),

Mg+ w+w + Raa+3(Mya+wiy +wiy+ Ras) +9wl,

Mys+wh+wis+ Ruo+3wly +9uwiy, wi) +3uwi)+ 9wl (8.99)
AR = (M + AR+ AR +wll] + ol + R +4(My o+ AL+ A 4w

w4 Ri2)+3uwlY,

Mo+ AL+ AP + i) +w+ Ry +4wi) + 3wl wit +4wi) + 3w,

M1+ AL Fwl))+ Ryt +4(My o+ AL+l +1wi s+ Ry o) +3w5,

Ma o+ ALY+ ws) +wi+ Ry o+4w) + 3w, w4+ 4w +3uws'),

Mg+ wl)+w + Raa+4(Mys+wiy +wiy+ Ras) +3wl,

Mys+wh+wis+ Ruo 4wy +3uwiy, wi) +4wi) + 3wl (8.100)

Likewise, the following information is downloaded by client 3,

D‘</[3/>2 {A 1+w1 1+R11,A %+w12+R12,w31+R31,

Exactly like client 2, client 3 transmits the coded answers to the corresponding

databases as follows where {w,gl)o: kel ly € [4]} is its own randomness,

A = (AP w0l + Ry + AP+ wl)+ Ry g rwl,

AL w4 Ry s rwih +wi, wi +w 4w,

wé?{ —|—R371 —|—w§?§ +R3,2 +w§?1) s

277

w§?2>+R3,2+ (2)+ :(32327 éf—}—wég—f—w:ﬁ,

A<3> +R41+A +w42+R42+w£1),
Af% —l—wg +J§’4,2+wf2) —i—wf%, wfl) —i—wg —i—wfi} (8.102)

A = (AP w0+ Ry +2(A7) +wl)+ Ry o) + 3w,

A+ wiy+ Rig+2ui) 43wy, wi) +2ui 43wy,

Wi + Ry 1 +2(wiy + Ry o) + 3wl

w3 2—|—R3 2+2w§ 2)—1—3w§ ;, w(2)—|—2w§ —|—3w§ 4),

A<3> <3i + R4,1 + 2(Af§ —i—wg + R4,2) +3w4(1’21),

AL Fwd+ Ryo 2wy +3w), wi) +2w) + 3w} (8.103)
Aé?/?é(g) = {Ag?i+w§?{+é1,1 +3(Af§—|—w§‘2+}?1,2)+9w§?1),

AL)+ Ryo 3wy +9w), wi) +3wi + 9w,

Wi+ Ry +3(ws g+ Ry)+ 9w,

Wi+ Ry o+ 3w+ 9wy, wi +3uwi) +9u,

A<3> <?2+R4,1 +3(Af§+w<3) +R4 2)+9w5121),

AL Fwd+ Ryo 3wy 9wy, wi) +3w) + 9w} (8.104)
A = (AP w0l + Ry + 4 AT w0l + Ry 2) + 3w,

AL)+ Ry o+ 4wy +3w), wi) + 4w+ 3w,

Wi+ Ry 1 +A(w) + Ry) +3ws,

Wi+ Ry o+ 4wy + 3w, w) + 4w+ 3w,

Afi —i—wf{ +R4’1 +4(Af% —i—w(?’) +R4 2) +3w§121),

278

AZ + w4 Ry + 40+ 3w, w®+ 4w + 30} (8.105)

At the same time, the following information is downloaded by client 4,

DI</V2(3) = {A +w1 1+R1 17A %+w12—|—R12,A >+w31+R31,

AL +wih+ Ry o, A +wil) + Ray, Al +wi+ R} (8.106)

As client 4 is also employed to route the information of submodel 2 to the replace-

ment database, it transmits the coded answers to the corresponding databases in

the following way where {wkl kel ly € [4]} is its own randomness and A&l/?é([l) is

particularly different,

A = (AN il R Al i+ Rigtuy,
A+l + Rip+)+, 0l + 0l +0f?)
A+ w4 Ry 1+ A+ wih+ Ryl
AghHwsh+ Ryatwih w3, wi +ud+ug),

Afﬁ —l—wﬁ + R4,1 + Afﬁ% +wz<;2 + R4,2 +wf1) ;

A+ Res+wi)+wl), wi +wi +w)} (8.107)
AP = (AN Fwit + Ry +2(AY)+ Ry o) +3w?),
A+l + Ryo+208) 30, w?) +20() + 3w

Aéﬁ +w:<;2 +R3,1 +2(A§g —i—wég +ﬁg3’1) + 3w§i?7

Al Rt 20303,) 20)

279

Afﬁ +w§fg +R4,1 +2(A5§% -I—wf% +R4,2) +3wf1)7

AL +wlh+ Rip+2wi) + 3w, wl + 20 + 3w (8.108)
A = {AY ol + Ry +3(AY ol + Ry o) +9u?,

AL +wlh+ Rip+3wi) +9wl), wil +3wi) +9w’)

A+ will + Ra 1 +3(AS 4wl + Ry) + 9w,

Ag}% +w§f‘§ + Rs,z +3w() +9w§33) , wégl) + 3w§?§ +9w§2,

Afﬁ +w§fg + R4,1 +3(A5§% -I—wig + R4,2) +9wf1),

A+ wi+ Rip+3w) +9wd), w + 3w+ 9w} (8.109)
A = {AY i+ R+ 4(A ol + Ry o) +3u,

A§ %—i—wl ! +Ry 2 +4w§3) +3w§3§, wﬁ) +4wf§ +3w§:2

A+ will + R+ 4(AS +wl+ Ry) + 3w,

AL+ w0+ Ry o+ 4w + 3w, w) + 4w + 3w,

Afﬁ -I—wfi + R4,1 +4(A5§% -I—wig + R4,2) +3wf1),

A<4> <f1% +R4’2+4w(3) +3wfl3§, wé(l 1) +4wi ::)'. + 3wy, 2,

My 1+Ms o+ Ry 1 +4(Mao+Roo+Ro3)+3(Rey+ Ras+ Raa),

My1+2M394+3Ro1+4(Mao+2Ry2+3R23)+3(Ro1+2R3+3R2.4),

My 14+3M394+9Ro 1 +4(Mao+3R22+9R23)+3(Ra1+3Ra3+9R24) }

(8.110)

As it is easy to check that the privacy constraint (8.5) and the inter-client

privacy constraint are both inherited directly from our previous FSL-PSU

280

scheme in |125], our emphasis here will be on the analysis of the reliability constraint
, the eavesdropper security constraint and the database failure robustness.

Regarding the reliability constraint: After collecting the answers from the
routing clients 2, 3,4 in the second step of the FSL-write phase, each database just
does the element-wise summation. Without loss of generality, let us focus on the
first coded submodel symbol M, ; 4+2M; 2+ 3R, ; in database 2, then we have the

following calculation where }, wﬁ =D icl) w§>2 0,

M+ AN+ AT 0l +wl) + Ry +2(My o+ ALY+ AP+l w0l + Ry)+ 3wl
+Aﬁ+wﬁ+§1,1+2(Af’%+w@+}?1,2)+3wf1)
+ A i+ By +2(Af S+ wih + Ryg) +3up] (8.111)

= Mg+ AV +2(M o+ AP +3(wi) +w +wi))+3R1, +6R1, (8.112)
i€[4] i€[4]

= M{,l+2M{,2+3R/1,1+3R171+6R172 (8.113)

As 3}?1,1%—6}?1,2 is a known constant to database 2 and wfl)%—wﬂjtwﬁ) can be

treated as R}, this database is able to decode the value of My, +2Mj,+3R |,
which will be stored as a new coded submodel symbol for the next round of the FSL
process. For the other needed symbols across the databases, the same calculation
can be performed. In addition, in order to make the storage consistent across the
databases and achieve perfect privacy in the next round, all the extra uncoded
server-side common randomness also needs to be refreshed. When this round of the

FSL process is complete, the updated storage in the server is shown in Table [8.2]

281

Database Storage

M+ M+ Ry, Mipt Rogt Ry Ryt Rigt Ry | B By g

DB 1 Moi+Msp+Ron, Mos+Roo+Ro3, Ro1+Ros+Rou R/QaR/217R/22
Mz +Mgo+ Ry, Ma,+Ryo+ Ry 3 Ry +Ryg+ 15, Ry, Ry, Ry

M, +Mi,+Ry,, Miy,+Ry,+Rys Ry, +R)s+R), Ry, Ry, R,

M, +20, 3Ry, M, 2Ry 43R, 5, Ry, +2R,,+3,, | By, oy, B

DB 2 M 14+2M39+3Rs1, Mao+2Rs9+3R23, Ro1+2Ry3+3Rs4 R/27R1217R/22
M +2M3 5 +3Ry,, M3,+2Rs,+3Ry 5, Ry +2R5,+3R;, R@,,RghRgQ

My +2Mj o +3Ry,, My, +2R) ,+3R) 5, Ry, +2R)3+3R), R4, Rﬁl 15 R4 9

My, +3M, 5 +0R, . Mi,+ 3R, +0R, 5. Ry +3R,519R,, | Ry, By, By

DB 3 M 1+3M39+9Rs 1, Mao+3Re2+9Ra3, Ro1+3Ra3+9Rs 4 R’Q,R’M,R’22
My +3M;3 o +9Rs |, Myo+3Rs,+9Rs 5, Ry +3R33+9R; Rg,Rgl,R’w

M}, +3M) ,+9R) , Mj,+3R),+9IR) 5, R} ,+3R};+9IR), R4, R4 s R4 9
Mi\+AM, 43Ry, M}y AR, 3R, 5, Roy +4R, 5 +3R, s | Ry, Ry, g

DB 4 MQJ +4M2’2+3R2’1, M2’2+4R2$2+3R2$3, R2,1+4R2,3+3R2,4 R/Q, R/2 1 R/Q 9
M3 +4My o +3Ry,, Myy+4Rs,+3Ry 5, Ry +4R53+3R; 3, 1,R32

My +4M o +3R)y, My, +4R) 5 +3R) 5, R, +4R)3+3R), Rip Rﬁl 13 R4 2

Table 8.2: Updated storage across the databases in the server after one FSL training
round when D =3, J=FE =2 and § = 0.5.

Regarding the eavesdropper security constraint: Because the FSL-PSU phase
has nothing to do with the updated full learning model M[’4], we only need to con-
sider the FSL-write phase. In terms of M, ', for all j € [4], it is easy to prove that all
the storage data and communication data that can be obtained by each database j
is equivalent to the middle box in database j in Table , ie., Gj(M€17374}, RY) and
G;(My2y,Rs) after cancelling the carefully-designed client-side common random-
ness. Therefore, the guarantee of eavesdropper security is directly inherited from
the information leakage constraint of the RSRC scheme.

Regarding the database failure robustness: From the last 3 symbols in Ag}g@),
the replacement database can correctly decode the original storage for submodel

2 in failed database 4 due to the repair constraint of the RSRC scheme. For the

updated submodels 1, 3, 4, the desired storage can also be attained from the routing

282

clients due to the satisfaction of the reliability constraint. The current replacement

database is reflected in the database 4 part in Table [8.2]

8.6 General Distributed FSL Achievable Scheme

Following the distributed FSL problem formulated in Section [8.2] we provide our
fully robust FSL achievable scheme for the general case in this section. Based
on our previous work [125], the complete one-round FSL training is composed of
four phases: client-side common randomness generation (FSL-CRG) phase that
aims to distribute necessary client-side common randomness across all the selected
clients, FSL-PSU phase that aims to privately determine the union of the submodel
indices to be updated, FSL-write phase that aims to securely write the updated
submodels in the union back to the databases, and server-side common randomness
refresh (FSL-CRR) phase that aims to refresh the necessary server-side common
randomness in preparation for the next round of the FSL process. In a practical
implementation, the auxiliary FSL-CRG and FSL-CRR phases can be executed
during the off-peak times because they are independent of the FSL-PSU and FSL-

write phases.

8.6.1 FSL-CRG Phase

All the databases in the server aim to collectively establish the desired client-side
common randomness across the clients such that every client-side common random-

ness symbol is completely unknown to any set of J colluding databases. The first

283

type of client-side common randomness is a set of symbols {wy,ws,...,we} with
a flexible set length £. Within this set, each symbol is randomly and uniformly
selected from [, and the sum of these symbols is exactly 0, i.e., Ziem w; = 0. The
second type of client-side common randomness is a random symbol ¢ that is uniform
over the set I, \{0}.

For the first type, every J+1 databases can collaborate with each other to
allocate the same set of client-side common randomness {wy,ws, ..., w,} across a
small set of clients. To that end, each database in a database set of size J+1 first
individually selects £—1 random symbols from F, under a uniform distribution,
and then simply broadcasts them to N distinct routing clients with indices 0y =
{61,0,,...,0N} randomly chosen from N distinct client groups. After collecting all
the random symbols from J+1 databases, these routing clients can just perform
the element-wise summation over these J+1 random symbol sets of size £L—1 to
obtain a new set of size £L—1. Subsequently, one more symbol is appended to
the existing new set such that the set sum equals zero. At this point, this newly
formed set can be used as {wy,wy, ..., we} because the one-time pad encryption
guarantees the privacy of this client-side common randomness set against any J
colluding databases.

If the value of £ is N, the symbols in this set can be used as w,(cj) or w,(gzh for
the next two phases. However, if the value of £ is C, for all i € [C'—1]\f}n), each
database in this database set also needs to send its ¢th random symbol to client
i. For client C, if C' does not belong to 6y, these J+1 databases send all the

generated random symbols to client C' like routing clients. Thus, client C' is able

284

to calculate we. Now, the symbols in this set are ready to be used as w;j) or w,ilé
for the next two phases. As the required number of client-side common randomness
sets is very large, the communication time in this phase can be further optimized
by wisely constituting some database subset of size J+1 from a set of N databases
according to the actual situation. For example, if client ¢ has a high-bandwidth
communication channel with a particular database and the bandwidth utilization
ratio of this database with all the clients is currently low, client i may select this
database to participate in the client-side common randomness distribution.

For the second type, we can also select a set of J+1 databases to participate.
Each database first selects a random symbol from FF,\{0} under a uniform distribu-
tion, and then simply broadcasts it to each selected client. Once the client receives
all the random symbols from J+1 databases, it just calculates the product of these
J+1 symbols within F,. This new product can be used as ¢ because the finite cyclic
group F,\{0} under multiplication ensures the privacy of this client-side common

randomness symbol against any J colluding databases. This symbol ¢ can be used

in the next FSL-PSU phase.

8.6.2 FSL-PSU Phase

The FSL-PSU phase in this work is similar to the private set union (FSL-PSU)
phase in [125, Sect. 5.2] where nothing needs to be downloaded from the server to
the clients at the beginning of FSL-PSU phase. After receiving required client-side

common randomness in the last phase, each client uploads the index information of

285

its desired submodels to the server in a private way. For any client ¢ that belongs
to the client group C;, this client generates the following answer and sends it to

database j in the first step of FSL-PSU phase,
= {c(V 4w ke [K]}, Vie|C] (8.114)

In the second step of FSL-PSU phase, for all j € [IV], once database j completes the
collection of all the answers from its associated clients in C;, it produces a response
via element-wise summation as follows where 6; is the index of the randomly selected

routing client in C; and Ry, is shared server-side common randomness,

D) = {CZ(Y<>+wk)+ Ryt k€ [K]}, Vj € [N] (8.115)

i€C;

Then, this response is merely downloaded by its associated client ¢;. After further
processing this response, each client 0; forwards the following answer to all the

databases in the server,

)

A = {cZ(Y<>+w,i>)+wk YRy ke [K]}, vj € [N] (8.116)

ieC;y

Each database j receives the same N answer sets. By summing these N answer
sets up element-wise, each database derives the value of the expression ¢ Zie[c] Yk<i>

for all k € [K] because server-side common randomness is known to the database

286

and client-side common randomness is eliminated,

S oag = 5 (S ru) el + Ry (8.117)

Jo€[N] Jo€[N] i€Cjy
—CZ ZY +CZ Zwk—l—Zw —|—ZRk (8.118)
Jo€[N]i€Cj, Jo€[N]1€C), Jo€[N] Jo€[N]
=c> Ve Y wl+ Y wi+ Y Ry (8.119)
1€[C] 1€[C] Jo€[N] Jo€[N]
=Y VI4NR, (8.120)
1€[C)

For any arbitrary submodel index k, if at least one client wishes to update the
submodel k, the value of the expression CZie[C] Y,fi> cannot be zero. Otherwise,
this value is equal to zero. Therefore, each individual database is able to determine
the desired submodel union I' without any error by analyzing each submodel index

one-by-one.

8.6.3 FSL-Write Phase

In the presence of an eavesdropper who can control any arbitrary £ databases and
get at most the fraction ¢ of the up-to-date full learning model M[’ K)» We can always
find a RSRC-based FSL approach to satisfy the eavesdropper security constraint
. Here, the variables A\ and ¢, in Section take the values F and 4, re-
spectively. By permitting the dummy message symbols to fill the message matrix

Qif0 <6< we can use the ;-based RSRC scheme and the 2;-based

2E
D+E+17

RSRC scheme in a time-sharing manner to store the coded submodel information

287

across the databases. If #gﬂ <5< %ngl), we can use the (2s-based RSRC

scheme and the (23-based RSRC scheme in a time-sharing manner. Otherwise, if
%Eg)_l) <6 <1, we can just use the (23-based RSRC scheme.
Given the concrete form of N x D encoding matrix ¥ in (8.8)), the concrete

form of D x D message matrix {2 for the submodel k is as follows without loss of

generality,

Xf,l X{C,Q Xf,:a e XfD
Xg,l X§,2 X§,3 T X§,D

Q= X:)’f,1 X?]fz X?ﬁg . X?’f,D (8.121)
XL’%,l Xfm XL’%,:; T XBD

For the first B message symbols in the submodel k, its corresponding storage in

database j consisting of D symbols is in the following form,

G = { oI g da € [D]}7 Vj € [N], Vk € [K] (8.122)

d1€[D]

where the symbol X C’fl,dQ in €2 can be a message symbol in submodel k£ or a random-
ness symbol depending on the realization of message matrix €2.

When the FSL-PSU phase is finished, each database learns the desired sub-
model union I' privately. In this subsection, we focus on the update of the first B
symbols in each submodel whose index belongs to I'. According to the statements in

Section [8.4.1] all the remaining symbols can be fully updated through the repetition

288

and time-sharing ideas. In the first step of the FSL-write phase, each client needs to
download €'y coded symbols from D working databases in order to recover the first
B message symbols in each submodel in Mr. For client 7, let N; denote the index

set of D databases it communicates with, then,

DY) = {7, kel aelCl}, Vie[l] (8.123)
where Zj,, is picked from the set . Afterwards, this client generates the incre-

ments for its desired submodels whose index belongs to I'® when its local training is
complete. Therefore, for any client 7 in the client group C;, the answer transmitted

from client 7 to database j is in the following form,
AP =AY +wl ke, Le[B]}, Vie|C] (8.124)

Like the second step of the FSL-PSU phase, each database j now generates an
answer to be downloaded by the randomly selected routing client 6; from the client

group C; as follows,

Dy = {Z(A,@—i—w,@)—i—ﬁmi kel le [B]}, Vj € [N] (8.125)

ieC;

Finally, each routing client ¢; needs to transfer different answers in different coded
forms to all the available databases. Specifically, if X 517 4, 18 a submodel symbol, say
My, then X7, is equal to My 4+ ,c0 (A ,<€>l+w,<;;)+]%kl if j =1 and is equal to
> ice, (A,@%—wsz)—i—fikl if j =2,..., N. Otherwise, if Xj , is a randomness symbol,

289

then th 4, 18 a random value selected only by client ; under a uniform distribution

from IF,. Therefore, we have

—{ S Ay k€T, dy € [D]}, Vj € [N], Vjo € [N] (8.126)

d1€ D]

Moreover, for some ds, if all the symbols in the set {X} , : dy € [D]} are submodel

symbols, a client-side common randomness needs to be appended, i.e.,

_{ S g LY g twl) kel dye [D]}, Vj € [N], Vjo € [N]

d1€ D]

(8.127)

8.6.4 FSL-CRR Phase

In this phase, all the selected clients aim to jointly refresh the uncoded server-
side common randomness R.g coupled with the submodels that are updated in this
round of the FSL process. In other words, the server-side common randomness
symbols {Ry, : k € [K]} and {Ry;: k € I',1 € [L]} need to be refreshed. As each
server-side common randomness symbol should be unknown to any individual client,
every pair of clients can collaborate with each other to complete this task. More
specifically, both clients select a random symbol from I, and then forward it to each
available database. By simply adding these two received random symbols together,
the databases can now share a new server-side common randomness symbol that

can be used as refreshed R} or }A%;l for the next round of the FSL process. Like the

290

FSL-CRG phase, the required number of refreshed server-side common randomness
symbols is also large. Hence, in a practical implementation, the communication time

in this phase can also be optimized through partitioning the clients in a smart way.

8.6.5 Basic Characteristics Verification

In this section, we verify the basic characteristics of a complete round of the FSL

process including the four phases mentioned above.

Reliability: According to the FSL-write phase in Section , for all j € [N],
database j selects a random client ¢; from its associated client group to forward
the information in the second step of the FSL-write phase. Thus, each database j
receives the N answer sets {Ag),fg’(j), Agfg’(j), o ,A%V;’(j)} from these N randomly

selected routing clients. By summing these N answer sets up in an element-wise

manner, for all k£ € I' and all dy € [D], we have

Z A<v€vf3>’(j) _ Z Z Yhxk = Z gt Z X5 4 (8.128)

Jo€[N] Jo€[N] d1€[D] d1€[D] Jo€[N]

because the sum Z €V w,izl is equal to 0. If ij d, 18 a submodel symbol, say My,

dl ! Z d1,d2 dl ! Mk‘l+ Z Z kl+wkl)+Rkl>> (8129)

Jo€[N] Jo€[N] i€Cj,
- %jl_l(Mk,l"" Z Aiii}ﬂ‘ Z wliz;;“—NRk,l) (8.130)
i€[C] i€[C]
= Y (Mg + Y AL +NRyy) (8.131)
1€[C)

291

= PN (M] +NRy) (8.132)

At this point, each database j is able to derive the value of @Z)?l_l]\ﬂC ; since the
server-side common randomness Ry is known. Otherwise, if X 51 4, 18 a randomness

symbol,

PN X, =W (8.133)

Jo€[N]

where W is a random value that is completely unknown to the databases. For all
dy € [D], by adding the available w;h_lM ., and ¢jl—1w over dy € [D], the expected
storage in database j for the first B symbols in the submodel k is attained, which
can be easily extended to all the submodel information in M through repetition
and time sharing. However, for all k € [K]\I', as these submodels are not updated
at all, the corresponding storage in database j is not changed. That means the
required storage Gj(M/y), R§) is now achieved in all databases. Meanwhile, the
additional plain server-side common randomness 7@’5 can be directly attained as we
expect through the approach in Section Thus, the reliability constraint is

satisfied.

Privacy: For any set of databases with index set J that meets |J| < J, the

answer sets {A§{>’(j), Aggm’(j), A&C/{f’(j), Aé@[’gw’(j) . j € J} are received. With respect
to the clients’ local data D¢y, it is easy to verify that these answer sets contain less

information than the answer sets {Agzj)’(j), Ag{f’(j) : 7 € [N]}. Now, we can use the

292

answer sets {Agj}’(j), A&C,ff’(j) : j € [N]} as a base to analyze the privacy constraint.
Note that each client-side common randomness symbol is completely unknown to
this set of databases as it is generated by J+1 clients collectively. In the answer sets
{Agfﬁ’(j ije [N]}, for all k € [K], the client-side common randomness symbol w,@
can be used to protect the privacy of Yk<i>, and the client-side common randomness
symbol ¢ can be used to protect the privacy of >, Yk<i>. As a result, these |J|
databases can only learn the union I' and nothing beyond thatﬁ The concrete proof
can be checked in the client’s privacy proof in |74, Subsect. V.B]. Then, we turn to
the answer sets {Aélc,ff’(j) : 7 € [N]}. As areduced version, for all k € [K] and [€ [L],
the client-side common randomness symbol w,izi can be used to protect the privacy
of A,@l As a result, these || databases can only learn the the full increment sum
Ar and nothing beyond that. Thus, any set of databases with cardinality less than

or equal to J cannot gain any additional information about Djc) beyond I' and Ar.

Thus, the privacy constraint is satisfied.

Inter-Client Privacy: Only one client from each client group is able to receive
the information concerning the other clients’ local data. For each client group Cj,
the routing client ¢; downloads Dgg)’(j) and Déﬁfg’(j) from database j. Due to the
existence of the unknown server-side common randomness f?k and Rk,l in the down-
loads, client 6; cannot learn any knowledge about the other clients’ local data. Thus,

the inter-client privacy constraint is satisfied.

8The fact that both of 2ie(c] Yly> and (o A,?)l are always 0 for k£ € [K]\I" is implied by
the union I'.

293

Security Against the Eavesdropper: To verify the security against the eaves-
dropper, we need to observe the storage information and the transmission informa-
tion Mg in any arbitrary F databases whose index set is £. Before an FSL training
round begins, the storage information in each database j is the coded submodel in-
formation G;(Mix), Rs) and additional server-side common randomness 7%5, while
the latter has nothing to do with the updated full learning model M[’K]. During
this FSL training round, the transmission information that can be known by each
database 7 is {Agj)’(j), Aﬁ?”’(”,Aéﬁ{f’(”, Aiﬁg])’(j)}. The first two answers only in-
volve the information concerning clients’ incidence vectors. The third answer is
useless because of the coupled client-side common randomness symbol for each sub-
model increment symbol. Following the analysis of reliability constraint, the last
answer is equivalent to G; (M., R's) due to the existence of carefully-designed client-
side common randomness. Hence, for the submodels in M, we have the following

relationship by using our specific RSRC-based approach in Section [8.6.3]

1

For the submodels in Mg\ r, the identity M'[’K]\F = Migr is true. Likewise, from

the coded submodel information Gj(M[K]\p, Rs), we have

1

Gz M Me) <6, VEC [N, €] = E (8.135)

294

Because M, [’ K] and M, [’ K\ are always independent, we are able to derive the following

outcome, which is sufficient to guarantee the eavesdropper security,

I(M[’K}; Me) = I(M; J\/lg)—I—I(M['K]\F; Me) <|T|L-0+(K—T|)L-6§=KL-§

(8.136)

Thus, the security constraint against an eavesdropper is satisfied.

8.6.6 Full Robustness Verification

In this subsection, we analyze the robustness of our proposed achievable scheme in
the face of all kinds of non-ideal situations. If multiple such incidents happen simul-
taneously, we can simply incorporate the idea for each incident into the adjusted

scheme one-by-one.

Client Drop-Outs Robustness: In this case, our expectation is that the training
process proceeds normally only relying on the data from the active clients. Without
loss of generality, for each client group C;, we assume that a subset of clients with
indices C~j drop-out. In the FSL-PSU phase, for all j € [N], the response D;ff;’(j) to

be downloaded by client 6; becomes

Dg§>’(j) _ {C Z (Yk<i>+wl<f>)+Rk: ke [K]}’ Vi e [N] (8.137)
’iECj\éj

With the knowledge of the index set C~j corresponding to the out-of-operation clients,

each routing client 6, can adjust the answer by additionally appending the value of

295

sz‘ec} wlii> corresponding to the missing client-side common randomness symbols
for all k£ € [K]. Thus, the answer to be forwarded to all the available databases

becomes

AGPEY =3¢ N v 4 ey wl v wd + Rk € [K]}, Vi€ [N] (8.138)
i€C;\C; i€C;y
In this way, each database is still able to decode the union UJG[N]I‘ ¢\C) for all the
active clients from the element-wise summation results {c Zieu-ew €\é) Yk@ k€
(K]}
In the FSL-write phase, for all j € [IV], the response Dé{‘;{g’(j) t0 be downloaded

becomes
DY =3 S (A +wi)+ R kel Le [B]}, Vj € [N] (8.139)
ieCj\éj

Using the reliability constraint analysis in the last subsection as reference, if X 51, dy 18
a submodel symbol, say M}, after eliminating the server-side common randomness,

for each database j, we have

N\/

(8.140)

;y-/\

VTN X =T (Mg Y Y (A

Jo€[N] Jo€[N] ieC;o \Cj,

= (Mgt Y AN+ Y wy) (8.141)

7:EUJ'()E[N(]O\CJO) ZGUmE (]o\é)

Otherwise, if X* dy.d, 18 & randomness symbol, wdl Y Xé‘“l 4, 18 not changed.

JoE[N

Hence, for all £ € T" and all dy € [D], each routing client 6; first selects an empty

296

value 3, i.e., B = 0. Then, for each d; in the set [D], as long as X§17d2 is some
submodel symbol My ;, we add the value of ¢d1 ! Zzeuj i w,ilz to the current
B. After finishing the loop over d;, each working database j asks for the value of
along with A%%’(jo) from client 6;. Although we only consider the first B symbols
of each submodel here, this idea can be extended to all the updates in Mr through

repetition and time-sharing. In this way, each submodel in the union I' can be

updated as desired through the training data from the active clients Uje[N]Cj\éj.

Client Late-Arrivals Robustness: If the answers generated by some clients in
the first step of the FSL-PSU or FSL-write phases arrive at the server late, which is
different from the wrong judgement made by the databases that these clients have
dropped-out, the privacy constraint is still satisfied, i.e., these late answers
do not disclose any extra information about the local data possessed by these late-
arriving clients. The fact that the reliability constraint is satisfied is inherited from
the one in client drop-outs robustness. For each client group C;, we assume that
a subset of clients with indices C; cause the answer late-arrivals. In the FSL-PSU
(VD)

phase, for all j € [INV], due to the wrong judgement, the broadcasting answer AUQ

takes the following form according to the analysis in client drop-outs robustness,

)

4D _ { 0l +u? +Rkkem}, vielN] (3.142)

iECj\ j

It is easy to see that no information about the incidence vectors Y can be ex-

tracted by database j from the late answers Ag]ﬁ and the answers AU2 10

297

the form of because of the extra client-side common randomness w,(gj). In
the FSL-write phase, the privacy constraint can be guaranteed in the same way
because of the randomness selected by the routing clients or the extra client-side
common randomness wl(j()b. This conclusion is still true for any set of databases

with size smaller than or equal to J as the randomness truly used here is completely

unknown to any set of J colluding databases.

Database Drop-Outs Robustness: Under this situation, we rely on the re-
maining working databases to complete the training task normally. For instance,
say database f drops-out and cannot provide any helpful response to the clients
in this FSL round. In the FSL-PSU phase, each working database j € [N]\f can
still receive the answers A§{>’(j) and A<U9’ SN > ’(j), but cannot receive any answer from
the routing client 6 in the client group Cs. Thus, our adjusted aim is to derive
the desired submodel union I'\['®s) instead. For all k& € [K], in order to obtain
the needed CZz‘e[C]\cf Y,ji> from Ag[QN]\f >’(j), each working database j can ask for the
value of cheC (w >)+wk from the routing client #; through one more communi-
cation step. After eliminating the known server-side common randomness]%k, we
have the following identity for all £ € [K] as all the client-side common randomness

can be cancelled,

Z (CZ(Y<>+w,<€>)+w G) —|—CZ Ntwd = ¢ Z v (8.143)

Jo€[NI\f i€Cjy i€Cy i€[CI\Cy

298

In the FSL-write phase, likewise, each working database j € [N]\f can obtain the
(7)

answers AW1 and AWUQV MO without any answer from the routing client 0 for
the client group C;. Following the analysis of the reliability constraint in the last

subsection, if X} , is a submodel symbol, say My, we have the following result in

each database j when the known server-side common randomness is eliminated,

RN X =T (Mg Y D (A (8.144)

JoEINI\S Jo€[N]\ f i€Cjy
=P (Mg + Y AL+ D wl) (8.145)
i€[C\Cy i€[C\Cy

Otherwise, if X} , is a randomness symbol, and we still have

Pt xg L, =i (8.146)

Jo€[N\f

Hence, for all £ € T" and all dy € [D], each routing client 6; first selects an empty
value f = 0. Then, for each d; in the set [D], provided X 517(12 is some submodel
symbol My, the value of w;il*l > iec; w,g is added to the current 5. When the loop
is finished, each working database j asks for the value of 5 along with Ai,?,{g’(j %) from
client 6;. Again, this idea works for all the submodel updates in the union I'\I' €r)
via repetition and time-sharing. That means even if database f drops-out, the FSL
process can proceed normally without collecting the updates from the clients in the
client group Cy. This remedy for single database drop-out can be extended to the

case of multiple database drop-outs by replacing index f with an index set.

299

Database Failure Robustness: Once one of the available databases at the server
side fails permanently rather than drops-out temporarily, our solution is to construct
a replacement database such that the FSL protocol configured in the beginning is not
affected by the database failure at all. If database f fails, for the submodels in Mr,
we can rely on N —1 routing clients with indices 0|y} s to transmit the submodel
update information that is an encoding function Gy of the latest submodels My,
and their coupled refreshed server-side common randomness R’ to the replacement
database. The concrete realization is inherited from the above-mentioned remedy for
single database drop-out. Meanwhile, for the other submodels in Mg\, the clients
can be used to forward the database f repair information that is an encoding function
G of the previous submodels M|g)\r and their coupled previous server-side common
randomness R g to the replacement database according to the database repair part in
the proof of Theorem [8.2] Since the size of this repair information is generally large,
a large number of clients can work in parallel, i.e., each client forwards a small part
of the overall repair information to reduce the communication time. In addition,
to make the plain server-side common randomness R in the replacement database
consistent with the other databases, all the plain server-side common randomness
R is refreshed through the approach in FSL-CRR phase whether it is coupled with
submodels in My or in Mg)\r. If multiple databases fail, the failed databases can

be repaired one-by-one for each FSL round.

Active Adversary Robustness: If there is an active adversary taking control

of any arbitrary A databases, the responses received by the clients from these A

300

corrupted databases will not be reliable any more. The core idea of our solution
is to force the clients to download more responses than usual and then extract
required information from different databases. In the original FSL-PSU phase, for
all j € [N], each routing client 6; needs to download D(%W) from database J.
Now, each client ¢ in the client group C; sends the answer in the form of (8.114) to
2A+1 working databases in an efficient manner. Afterwards, these 2A+1 working
databases individually transmit the response in the form of back to client 0;.

Hence, client 0; is able to decode the correct D%Mj)

according to the error correcting
property of [2A+1,1,2A+1] repetition code. In the original FSL-write phase, for all
i € [C], each database i needs to download Déa’l(M) from D databases in order to
recover the desired submodels Mp. If the maximal number of symbols downloaded
from a database is 77, then D+2A working databases individually transmit n symbols
with the same positions to client i. Hence, client 7 is able to decode M without any
error according to the error correcting property of [2A+D, D, 2A+1] Reed-Solomon

)

code. Then, for all j € [N], each routing client ¢; needs to download Déf/f U from

database j. By utilizing [2A+1,1,2A+ 1] repetition code again, the process is the
same as the above-mentioned one for downloading Dl%%(j),

For the remaining auxiliary phases, in the FSL-CRR phase, there is no need
for the clients to download any information from the databases. Therefore, the ex-
istence of active adversary has no influence on this phase. However, in the original
FSL-CRG phase, every J+1 databases are collaborating with each other to dis-
tribute client-side common randomness symbols. As a malicious database can send

the same symbol with different values to different clients in the broadcasting process,

301

the procedure in the current FSL-CRG phase will be a bit more complicated. Now,
each database will not broadcast its randomly selected symbol any more. Instead,
the server-side partial common randomness is broadcast to the clients. To be more
concrete, for the first type of client-side common randomness, by adjusting the FSL-
CRR phase such that every pair of clients are forwarding the data to exactly 2441
databases, a server-side partial common randomness symbol Rg; can be owned by
these 2A+1 databases. Afterwards, these 2A+1 databases broadcast this symbol
to N routing clients. Thus, each routing client can decode the desired Rg; reliably
through [24+1,1,2A+1] repetition code. Likewise, another 2A+1 databases are
employed to broadcast another server-side partial common randomness symbol R g o
to all the routing clients. Following this way, each routing client can obtain the same
set of server-side partial common randomness symbols {Rg1, Rs2,- .., Rs 1} from
(J+1)(2A+1) different databases. By adding these (J+1) symbols up, N rout-
ing clients can share a randomness symbol that is unknown to any J colluding
databases. Therefore, the FSL-CRG phase can proceed as we desire even in the
presence of an active adversary. By repeating this step £—1 times, the required set
{wy,ws, ..., we 1} can be shared among these N routing databases. By incorporat-
ing this idea into the original FSL-CRG phase, the necessary client-side common
randomness can also be obtained by the other clients. The process of distributing
the client-side common randomness symbol ¢ is very similar where all the selected

clients are equally treated.

302

8.6.7 Performance Evaluation

We consider the performance of our proposed achievable scheme in this section. As
we formulated in Section [8.2] the evaluation consists of communication cost and

storage cost.

Communication Cost: First, we consider the basic scheme without any adjust-
ment for additional robustness. In the FSL-CRG phase, for each client-side common

randomness symbol in the form of w,(cj) or w,&{?iw the communication cost is (J+1)N.

) or w,@, the

For each client-side common randomness symbol in the form of w,(f
communication cost is at most (J+1)(N +2). The communication cost for the
client-side common randomness symbol ¢ is (J+1)C, which can be neglected as
it is distributed only once. Therefore, the total communication cost in this phase
is at most (J+1)N(N—1)(K+DI|T|L)+(J+1)(N+2)(C—1)(K+|[|L), which is
approximately O(C(K+|I'|L)) since the values of D, J, N are small compared with
the values of K, L. In the FSL-PSU phase, the communication cost is (C+N+N?)K,
which is approximately O(CK). In the FSL-write phase, the communication cost

for the recovery of the desired submodels Mp across all the clients is C' - %|F|L

where % comes from in Theorem . For the remaining transmission, the
communication cost is at most (C+N)|T'|L+N2D|T'|L. Therefore, the total commu-
nication cost in this phase is approximately O(C|I'|L)). In the FSL-CRR phase, for

each server-side common randomness symbol whether it is in the form of Ry, or Ry,

the communication cost is always 2/N. Therefore, the total communication cost in

303

this phase is 2N (K +|I'|L), which is approximately O(K +|I'|L). By summing the
communication cost results from all four phases, the overall communication cost in
our one-round distributed FSL achievable scheme is approximately O(C(K+|'|L)).

When the situations of client drop-outs, client late-arrivals or database drop-
outs happen, it is easy to show that the overall communication cost will not be
influenced significantly. Further, in the presence of an active adversary, as the value
of A is also small, the order of the overall communication cost will not change. It
will still be O(C(K +|I'|L)). However, once the situation of database failure hap-
pens, for each failed database, the additional communication cost of transmitting
the database repair information concerning Mg)\r to the replacement database is
222(K —|I'|)L, where the coefficient 2 comes from the fact that clients are used to
route the information between databases and % comes from in Theorem .
In addition, the additional communication cost of refreshing server-side common
randomness symbols {Ry;: k € [K|\I',l € [L]} is 2N (K —|T'|)L. Therefore, as the

value of |I'| is generally much smaller than the value of K, the additional commu-

nication cost for the sake of database failure robustness is approximately O(KL).

Storage Cost: In order to ensure the security against eavesdropper in the
presence of a passive eavesdropper, without considering the server-side common
randomness, the storage cost in each database is %K L where % comes from (8.11))
in Theorem [.2] In addition, the storage cost in each database for the plain server-

side common randomness is K L+ L. Therefore, the overall communication cost is

N(SK L+ K L+ L) which is approximately O(KL).

304

8.7 Conclusion

In this chapter, we proposed a new RSRC-based distributed FSL scheme that ex-
tends our previous two-database FSL scheme in Chapter [7] This new scheme has
higher resilience than our previous scheme, while having the same order-wise com-
munication cost and storage cost. More specifically, this new scheme is now fully
robust against passive eavesdroppers, active adversaries, database failures, database
drop-outs, client drop-outs and client late-arrivals.

In this work, we mainly considered the privacy and security from the perspec-
tive of the databases. In reality, it is also possible that the clients collude with each
other or with the server [101,|128]. Furthermore, the clients can also be malicious
and return arbitrarily erroneous answers to the server. These are interesting re-
search directions. MDS coding or Lagrange coding in [129] across the clients can be
utilized for this purpose.

Regarding our RSRC technique that aims to reduce the reconstruction com-
munication cost, repair communication cost, and storage cost simultaneously by
allowing information leakage, we did not investigate a converse proof in this chap-
ter. It is quite likely that there exists a better coding scheme that outperforms our
RSRC scheme in terms of part or all of the evaluation metrics. Another non-trivial
point is how to group the databases and clients to improve the communication effi-
ciency in the two auxiliary phases, i.e., FSL-CRG phase and FSL-CRR phase, in a
practical implementation. These are basically optimization problems and would be

interesting to explore in an actual distributed FSL configuration.

305

CHAPTER 9

Conclusions

In this dissertation, we utilized the information-theoretic techniques to explore se-
cure computation and secure learning problems with SPIR serving as a starting
point. We developed both new efficient and robust achievable schemes for these
problems, and also converse bounds for them.

In Chapter [2, we investigated the two-party PSI problem over a finite set,
which is the universal alphabet. We showed that the problem can be recast as
an MM-SPIR problem with a fixed message size 1. This is under the assump-
tion that the data sets and their corresponding incidence vectors can be stored in
replicated and non-colluding databases. Furthermore, the elements in each data
set are generated in an i.i.d. fashion under some probability distribution from the
universal alphabet. To that end, we explored the information-theoretic capacity of
MM-SPIR as a stand-alone problem. We showed that joint multi-message retrieval
does not outperform the successive application of SM-SPIR. For the converse proof,
we extended the proof techniques of SM-SPIR to the setting of multi-messages. To

unify the query structures of MM-PIR and MM-SPIR, we proposed a new capacity-

306

achieving scheme as an alternative to the successive usage of the SM-SPIR scheme.
Based on these results, we derived the optimal download cost for two-party PSI.

In Chapter [3, we considered an extended version of the SPIR problem, where
the user randomly fetches a portion of the available shared common randomness
at the databases. This fetched database common randomness can be viewed as a
form of side information at the user. We showed that this side information can
be utilized as auxiliary randomness data to increase the SPIR rate to the level of
PIR rate. The non-trivial use of this new user-side common randomness makes
single-database SPIR feasible. Finally, we determined the exact capacity region
of the download cost, database-side common randommness and user-side common
randomness. According to these results, we obtained the minimum download cost
for two-party PSI with this type of auxiliary randomness data, especially in the
setting where each party has one database to store the information.

In Chapter 4] we formulated the MP-PSI problem by investigating a spe-
cific mode of communication where only a single communication round between the
leader party and client parties is needed. Under this assumption, we proposed a
novel achievable scheme for MP-PSI. Our scheme hinges on a careful design and
sharing of randomness among the client parties prior to starting the MP-PSI pro-
cess. This is not a straightforward extension to the two-party PSI scheme. By means
of this type of auxiliary randomness data that is distributed across the client parties,
the download cost of our scheme matches the sum of download cost of pair-wise PSI
despite the stringent privacy constraint in MP-PSI. We note that this work provides
only an achievable scheme with no claim of optimality.

307

In Chapter [5 we investigated the overall communication cost of two-database
SPIR. As a first work of its kind, by utilizing CDS/CDMS as intermediates, we now
understand how to construct the general upload cost for two-database SPIR, and
develop a few principles of building two-database SPIR schemes. For a simple two-
database SPIR example, we determined its exact optimal overall communication cost
by providing a complete upload-download cost achievable region. All the conclusions
obtained in this chapter can be applied to PSI as the PSI problem itself involves
upload cost and download cost.

In Chapter [0, we investigated the capacity of two-party RSPIR. Even though
the capacity of two-database SPIR is independent of the number of messages stored
in the databases, the capacity of two-party RSPIR does depend on this value. In ad-
dition, a linear download cost for perfect digital blind box delivery can be achieved
due to the equivalence between RSPIR and the digital blind box. An important
application of RSPIR is the practical implementation of user-side common random-
ness introduced in Chapter[3] Another potential application arises in Chapter[7], We
determined the exact capacity of two-party RSPIR for small number of messages.

In Chapter [7], we proposed a brand-new efficient and robust two-database FSL
achievable scheme. The communication cost of our proposed scheme is order-wise
similar to the communication cost of existing schemes with much weaker privacy
guarantees. Compared to the existing schemes with similar privacy guarantees, our
proposed scheme does not require noisy storage of the submodels in the databases.
Our scheme is resilient against client drop-outs, client late-arrivals, and database

drop-outs. The main ideas of this scheme are based on PSU and its variation

308

for private write, together with RSPIR and one-time pads for required common
randomness generation at the client side. Neither the indices of the submodels
updated within the union, nor their updated values are leaked to the databases.

In Chapter [§ we proposed a new RSRC-based distributed FSL achievable
scheme that extends our two-database FSL achievable scheme in Chapter [7] This
new scheme has higher resilience than our previous scheme, while having the same
order-wise communication cost and storage cost. More specifically, this new scheme
is now fully robust against passive eavesdroppers, active adversaries, database fail-
ures, database drop-outs, client drop-outs and client late-arrivals. In this work, we
mainly considered the privacy and security from the perspective of the databases.
Regarding our RSRC technique that aims to reduce the reconstruction communi-
cation cost, repair communication cost and storage cost simultaneously by allowing
information leakage, we did not investigate a converse proof. Another non-trivial
point is how to group the databases and clients to improve the communication ef-
ficiency during the two auxiliary phases in a practical implementation. These are
basically optimization problems.

The contents of Chapter 2 are published in [72,|130], Chapter 3 in [75,[131],
Chapter 4 in [74,132], Chapter 5 in [115], Chapter 6 in [116], Chapter 7 in [125],

Chapter 8 in [133].

309

[1]

[7]

[10]

Bibliography

M. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and set
intersection. In Proc. Int. Conf. Theory Appl. Cryptograph. Techn., pages
1-19. Springer, 2004.

E. De Cristofaro and G. Tsudik. Practical private set intersection protocols
with linear complexity. In Proc. Int. Conf. Financ. Cryptogr. Data Security,
pages 143-159. Springer, 2010.

H. Chen, K. Laine, and P. Rindal. Fast private set intersection from homomor-
phic encryption. In Proc. ACM SIGSAC Conf. Comput. Commun. Security,
pages 1243-1255. ACM, 2017.

D. Dachman-Soled, T. Malkin, M. Raykova, and M. Yung. Efficient robust
private set intersection. In Proc. Int. Conf. Appl. Cryptogr. Netw. Security,
pages 125-142. Springer, 2009.

B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan. Private information
retrieval. Journal of the ACM, 45(6):965-981, November 1998.

H. Sun and S. A. Jafar. The capacity of private information retrieval. I[FFFE
Trans. on Info. Theory, 63(7):4075-4088, July 2017.

Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin. Protecting data privacy
in private information retrieval schemes. Journal of Computer and System
Sciences, 60(3):592-629, June 2000.

H. Sun and S. A. Jafar. The capacity of symmetric private information re-
trieval. IEEE Trans. on Info. Theory, 65(1):322-329, January 2019.

H. Sun and S. A. Jafar. The capacity of robust private information retrieval
with colluding databases. IEEE Trans. on Info. Theory, 64(4):2361-2370,
April 2018.

R. Tajeddine, O. W. Gnilke, D. Karpuk, R. Freij-Hollanti, C. Hollanti, and
S. El Rouayheb. Private information retrieval schemes for coded data with
arbitrary collusion patterns. In IEEE ISIT, June 2017.

310

[11]

[12]

[13]

[14]

[15]

[16]

[20]

[21]

[22]

[23]

R. Tajeddine and S. El Rouayheb. Robust private information retrieval on
coded data. In IEEFE ISIT, June 2017.

R. Bitar and S. El Rouayheb. Staircase-PIR: Universally robust private infor-
mation retrieval. In IEEE ITW, pages 1-5, November 2018.

Q. Wang and M. Skoglund. Symmetric private information retrieval from MDS
coded distributed storage with non-colluding and colluding servers. I[EEE
Trans. on Info. Theory, 65(8):5160-5175, August 2019.

Q. Wang and M. Skoglund. Linear symmetric private information retrieval for
MDS coded distributed storage with colluding servers. In IEEE ITW, pages
71-75, November 2017.

Q. Wang, H. Sun, and M. Skoglund. Symmetric private information retrieval
with mismatched coded messages and randomness. In IEEFE ISIT, pages 365—
369, July 2019.

Q. Wang and M. Skoglund. Secure symmetric private information retrieval
from colluding databases with adversaries. In Allerton Conference, October
2017.

T. Guo, R. Zhou, and C. Tian. On the information leakage in private in-
formation retrieval systems. [EFEE Trans. on Info. Forensics and Security,
15:2999-3012, 2020.

K. Banawan and S. Ulukus. The capacity of private information retrieval from
coded databases. IEEE Trans. on Info. Theory, 64(3):1945-1956, March 2018.

R. Freij-Hollanti, O. Gnilke, C. Hollanti, and D. Karpuk. Private informa-
tion retrieval from coded databases with colluding servers. SIAM Journal on
Applied Algebra and Geometry, 1(1):647-664, 2017.

Y. Zhang and G. Ge. A general private information retrieval scheme for MDS
coded databases with colluding servers. Designs, Codes and Cryptography,
87(11):2611-2623, 2019.

S. Kumar, H.-Y. Lin, E. Rosnes, and A. Graell i Amat. Achieving maximum

distance separable private information retrieval capacity with linear codes.
IEEFE Trans. on Info. Theory, 65(7):4243-4273, July 2019.

H. Sun and S. A. Jafar. Private information retrieval from MDS coded data
with colluding servers: Settling a conjecture by Freij-Hollanti et al. IEEE
Trans. on Info. Theory, 64(2):1000-1022, 2018.

K. Banawan and S. Ulukus. Multi-message private information retrieval:
Capacity results and near-optimal schemes. IEEE Trans. on Info. Theory,
64(10):6842-6862, October 2018.

311

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[35]

[36]

Y. Zhang and G. Ge. Multi-file private information retrieval from MDS coded
databases with colluding servers. Available at arXiv:1705.03186.

K. Banawan and S. Ulukus. The capacity of private information retrieval from
Byzantine and colluding databases. IEEE Trans. on Info. Theory, 65(2):1206—
1219, February 2019.

R. Tajeddine, O. W. Gnilke, D. Karpuk, R. Freij-Hollanti, and C. Hollanti. Pri-
vate information retrieval from coded storage systems with colluding, Byzan-
tine, and unresponsive servers. IEEE Trans. on Info. Theory, 65(6):3898-3906,
2019.

R. Tandon. The capacity of cache aided private information retrieval. In
Allerton Conference, pages 1078-1082, October 2017.

M. Kim, H. Yang, and J. Lee. Cache-aided private information retrieval. In
Asilomar Conference, October 2017.

Y.-P. Wei, K. Banawan, and S. Ulukus. Fundamental limits of cache-aided
private information retrieval with unknown and uncoded prefetching. IEEFE
Trans. on Info. Theory, 65(5):3215-3232, May 2019.

Y.-P. Wei, K. Banawan, and S. Ulukus. Cache-aided private information re-
trieval with partially known uncoded prefetching: Fundamental limits. IEEFE
JSAC, 36(6):1126-1139, June 2018.

S. Kumar, A. Graell i Amat, E. Rosnes, and L. Senigagliesi. Private informa-
tion retrieval from a cellular network with caching at the edge. IEFEE Trans.
on Commun., 67(7):4900-4912, July 2019.

S. Kadhe, B. Garcia, A. Heidarzadeh, S. El Rouayheb, and A. Sprintson.
Private information retrieval with side information. IEEE Trans. on Info.
Theory, 66(4):2032-2043, April 2020.

Z. Chen, Z. Wang, and S. A. Jafar. The capacity of T-private informa-
tion retrieval with private side information. IEEE Trans. on Info. Theory,
66(8):4761-4773, August 2020.

Y .-P. Wei, K. Banawan, and S. Ulukus. The capacity of private information
retrieval with partially known private side information. IEEE Trans. on Info.
Theory, 65(12):8222-8231, December 2019.

S. P. Shariatpanahi, M. J. Siavoshani, and M. A. Maddah-Ali. Multi-message
private information retrieval with private side information. In IEEE ITW,
pages 1-5, November 2018.

A. Heidarzadeh, B. Garcia, S. Kadhe, S. E. Rouayheb, and A. Sprintson. On
the capacity of single-server multi-message private information retrieval with
side information. In Allerton Conference, pages 180-187, October 2018.

312

[37]

[38]

[39]

[40]

[41]

[42]

[45]

[46]

[47]

[48]

[49]

[50]

S. Li and M. Gastpar. Single-server multi-message private information retrieval
with side information. In Allerton Conference, pages 173-179, October 2018.

S. Li and M. Gastpar. Converse for multi-server single-message PIR with side
information. In CISS, pages 1-6, 2020.

Y.-P. Wei and S. Ulukus. The capacity of private information retrieval with
private side information under storage constraints. I[IEEE Trans. on Info.
Theory, 66(4):2023-2031, April 2020.

H. Sun and S. A. Jafar. The capacity of private computation. IEEFE Trans.
on Info. Theory, 65(6):3880-3897, June 2019.

M. Mirmohseni and M. A. Maddah-Ali. Private function retrieval. In IWCIT,
pages 1-6, April 2018.

7. Chen, Z. Wang, and S. A. Jafar. The asymptotic capacity of private search.
IEEE Trans. on Info. Theory, 66(8):4709-4721, August 2020.

R. Tandon, M. Abdul-Wahid, F. Almoualem, and D. Kumar. PIR from storage
constrained databases - coded caching meets PIR. In IEEFE ICC, pages 1-7,
2018.

M. A. Attia, D. Kumar, and R. Tandon. The capacity of private information
retrieval from uncoded storage constrained databases. IEFE Trans. on Info.
Theory, 66(11):6617-6634, November 2020.

K. Banawan, B. Arasli, and S. Ulukus. Improved storage for efficient private
information retrieval. In IEEE ITW, pages 1-5, August 2019.

C. Tian. On the storage cost of private information retrieval. IEEE Trans. on
Info. Theory, 66(12):7539-7549, December 2020.

Y.-P. Wei, B. Arasli, K. Banawan, and S. Ulukus. The capacity of private
information retrieval from decentralized uncoded caching databases. Informa-
tion, 10, December 2019.

K. Banawan, B. Arasli, Y.-P. Wei, and S. Ulukus. The capacity of private
information retrieval from heterogeneous uncoded caching databases. IFEFE
Trans. on Info. Theory, 66(6):3407-3416, June 2020.

N. Raviv, I. Tamo, and E. Yaakobi. Private information retrieval in graph-
based replication systems. [IEEE Trans. on Info. Theory, 66(6):3590-3602,
June 2020.

K. Banawan and S. Ulukus. Private information retrieval from non-replicated
databases. In IEEFE ISIT, pages 1272-1276, July 2019.

313

[51]

[52]

[53]

[55]

[56]

[58]

[59]

[60]

[61]

[62]

[63]

K. Banawan and S. Ulukus. Private information retrieval through wiretap
channel IT: Privacy meets security. IEEE Trans. on Info. Theory, 66(7):4129—
4149, July 2020.

Q. Wang and M. Skoglund. On PIR and symmetric PIR from colluding
databases with adversaries and eavesdroppers. IEEE Trans. on Info. The-
ory, 65(5):3183-3197, May 2019.

Q. Wang, H. Sun, and M. Skoglund. The capacity of private information
retrieval with eavesdroppers. IEEE Trans. on Info. Theory, 65(5):3198-3214,
May 2019.

H. Yang, W. Shin, and J. Lee. Private information retrieval for secure
distributed storage systems. IEEE Trans. on Info. Forensics and Security,
13(12):2953-2964, December 2018.

7. Jia, H. Sun, and S. A. Jafar. Cross subspace alignment and the asymptotic
capacity of X-secure T-private information retrieval. IFEE Trans. on Info.
Theory, 65(9):5783-5798, September 2019.

H. Sun and S. A. Jafar. Optimal download cost of private information re-
trieval for arbitrary message length. [FEE Trans. Inf. Forensics Security,
12(12):2920-2932, 2017.

R. Zhou, C. Tian, H. Sun, and T. Liu. Capacity-achieving private information
retrieval codes from MDS-coded databases with minimum message size. I[EEE
Trans. on Info. Theory, 66(8):4904-4916, August 2020.

H. Sun and S. A. Jafar. Multiround private information retrieval: Capacity
and storage overhead. IEEE Trans. on Info. Theory, 64(8):5743-5754, 2018.

K. Banawan and S. Ulukus. Asymmetry hurts: Private information re-
trieval under asymmetric traffic constraints. IEEE Trans. on Info. Theory,
65(11):7628-7645, November 2019.

K. Banawan and S. Ulukus. Noisy private information retrieval: On separabil-
ity of channel coding and information retrieval. IEEE Trans. on Info. Theory,
65(12):8232-8249, December 2019.

R. G. L. D’Oliveira and S. El Rouayheb. One-shot PIR: Refinement and
lifting. IEEE Trans. on Info. Theory, 66(4):2443-2455, April 2020.

R. Tajeddine, A. Wachter-Zeh, and C. Hollanti. Private information retrieval
over random linear networks. IEFE Trans. Inf. Forensics Security, 15:790-799,
2020.

S. Vithana, K. Banawan, and S. Ulukus. Semantic private information re-
trieval. IEEE Trans. on Info. Theory, 68(4):2635-2652, April 2022.

314

[64]

[73]

[74]

[75]

M. O. Rabin. How to exchange secrets with oblivious transfer. In TACR
Eprint archive, 2005. Originally published as: Technical Report TR-81, Aiken
Computation Lab, Harvard University, 1981.

S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing
contracts. Communications of the ACM, 28(6):637-647, June 1985.

C. Tian, H. Sun, and J. Chen. Capacity-achieving private information re-
trieval codes with optimal message size and upload cost. IEEE Trans. on
Info. Theory, 65(11):7613-7627, November 2019.

[. Samy, M. Attia, R. Tandon, and L. Lazos. Asymmetric leaky private in-
formation retrieval. IEEE Trans. on Info. Theory, 67(8):5352-5369, August
2021.

L. Kissner and D. Song. Privacy-preserving set operations. In Advances in
Cryptology — CRYPTO 2005, pages 241-257, 2005.

R. Li and C. Wu. An unconditionally secure protocol for multi-party set
intersection. In Applied Cryptography and Network Security, pages 226236,
Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

C. Hazay and M. Venkitasubramaniam. Scalable multi-party private set-
intersection. In Public-Key Cryptography — PKC 2017, pages 175-203.
Springer Berlin Heidelberg, 2017.

V. Kolesnikov, N. Matania, B. Pinkas, M. Rosulek, and N. Trieu. Practical
multi-party private set intersection from symmetric-key techniques. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Commu-
nications Security, pages 1257-1272. Association for Computing Machinery,
2017.

Z. Wang, K. Banawan, and S. Ulukus. Private set intersection: A multi-
message symmetric private information retrieval perspective. IEEE Trans. on
Info. Theory, 68(3):2001-2019, March 2022.

Y. Zhou, Q. Wang, H. Sun, and S. Fu. The minimum upload cost of symmetric
private information retrieval. In IEEFE ISIT, pages 1030-1034, June 2020.

7. Wang, K. Banawan, and S. Ulukus. Multi-party private set intersection:
An information-theoretic approach. IEEE Jour. on Selected Areas in Info.
Theory, 2(1):366-379, March 2021.

7. Wang and S. Ulukus. Symmetric private information retrieval at the private
information retrieval rate. IEEE Jour. on Selected Areas in Info. Theory,
3(2):350-361, June 2022.

315

[76]

[80]

[87]

J. Cheng, N. Liu, W. Kang, and Y. Li. The capacity of symmetric private
information retrieval under arbitrary collusion and eavesdropping patterns.
IEEFE Trans. on Info. Forensics and Security, 17:3037-3050, August 2022.

H.-M. Sun and S.-P. Shieh. Secret sharing in graph-based prohibited struc-
tures. In IEEE Infocom, April 1997.

A. Sahai and B. Waters. Fuzzy identity-based encryption. In Advances in
Cryptology - EUROCRYPT, May 2005.

B. Applebaum, B. Arkis, P. Raykov, and P. N. Vasudevan. Conditional dis-
closure of secrets: Amplification, closure, amortization, lower-bounds, and
separations. In Advances in Cryptology — CRYPTO, 2017.

Z. Li and H. Sun. Conditional disclosure of secrets: A noise and signal align-
ment approach. IEEFE Trans. on Commun., 2022. Early Access.

Z. Li and H. Sun. On the linear capacity of conditional disclosure of secrets.
Available at arXiv:2106.04483.

https://en.wikipedia.org/wiki/Gashapon#cite note-2.

M. Fujihara and A. Shibuya. How is the Gacha system reported on in Japan?
In Digital Games Research Association (DiGRA) International Conference:
Play Fverywhere, June 2020.

K. Charnsil, K. Choochuen, et al. 3D-gARt—A new Gachapon 3D-printed
toy played with augmented reality and story narration. In IEEFE Global Conf.
on Life Sciences and Technologies (LifeTech), March 2022.

B. McMahan and D. Ramage. Federated learning: Collaborative
machine learning without centralized training data. Available at
https://ai.googleblog.com/2017/04 /federated-learning-collaborative.html.

Q. Yang, Y. Liu, T. Chen, and Y. Tong. Federated machine learning: Concept
and applications. ACM Transactions on Intelligent Systems and Technology,
10(2):1-19, March 2019.

C. Niu, F. Wu, S. Tang, L. Hua, R. Jia, C. Lv, Z. Wu, and G. Chen. Billion-
scale federated learning on mobile clients: A submodel design with tunable
privacy. In Proceedings of the 26th Annual International Conference on Mobile
Computing and Networking, pages 1-14, 2020.

O. Goldreich and R. Ostrovsky. Software protection and simulation on obliv-
ious RAMs. Journal of the ACM, 43(3):431-473, May 1996.

S. Lu and R. Ostrovsky. Distributed oblivious RAM for secure two-party
computation. In Theory of Cryptography Conference, page 377-396, March
2013.

316

[90]

[91]

[92]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

E. Stefanov, M. Van Dijk, et al. Path ORAM: An extremely simple oblivious
RAM protocol. Journal of the ACM, 65(4):1-26, April 2018.

7. Jia and S. A. Jafar. X-secure T-private information retrieval from MDS
coded storage with Byzantine and unresponsive servers. IEEE Tran. on Info.
Theory, 66(12):7427-7438, December 2020.

Z. Jia and S. A. Jafar. X-secure T-private federated submodel learning with
elastic dropout resilience. IEEE Trans. on Info. Theory, 68(8):5418-5439,
August 2022.

S. Vithana and S. Ulukus. Efficient private federated submodel learning. In
IEEE ICC, pages 3394-3399, May 2022.

S. Vithana and S. Ulukus. Private read update write (PRUW) in federated
submodel learning (FSL): Communication efficient schemes with and without
sparsification. Available at arXiv:2209.04421.

S. Vithana and S. Ulukus. Private read-update-write with controllable infor-
mation leakage for storage-efficient federated learning with top r sparsification.
Available at arXiv:2303.04123.

K. Bonawitz, V. Ivanov, et al. Practical secure aggregation for privacy preserv-
ing machine learning. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, page 1175-1191, 2017.

J. Bell, K. A. Bonawitz, A. Gascén, T. Lepoint, and M. Raykova. Secure single-
server aggregation with (poly)logarithmic overhead. In Cryptology ePrint
Archive, 2020.

J. So, B. Guler, and A. S. Avestimehr. Turbo-aggregate: Breaking the
quadratic aggregation barrier in secure federated learning. In Cryptology
ePrint Archive, 2020.

S. Kadhe and K. Ramchandran N. Rajaraman abd O. O. Koyluoglu. Fast-
secagg: Scalable secure aggregation for privacy-preserving federated learning.
Available at arXiv:2009.11248.

K. Frikken. Privacy-preserving set union. In Applied Cryptography and Net-
work Security, pages 237-252, 2007.

Y. Zhao and H. Sun. Information theoretic secure aggregation with user
dropouts. IEEE Trans. on Info. Theory, 68(11):7471-7484, November 2022.

K. Wan, H. Sun, M. Ji, and G. Caire. Information theoretic secure aggregation
with uncoded groupwise keys. Available at arXiv:2204.11364.

Y. Zhao and H. Sun. Secure summation: Capacity region, groupwise key, and
feasibility. Available at arXiv:2205.08458.

317

[104]

[105]

[106]

107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

J. So, C. He, et al. Lightsecagg: a lightweight and versatile design for secure
aggregation in federated learning. In Proceedings of Machine Learning and
Systems, pages 694-720, 2022.

S. Vithana, Z. Wang, and S. Ulukus. Private information retrieval and its
applications: An introduction, open problems, future directions. Available at
arXiv:2304.14397.

K. V. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and K. Ramchan-
dran. A solution to the network challenges of data recovery in erasure-coded
distributed storage systems: A study on the facebook warehouse cluster. In
Proceedings of the 5th USENIX Conference on Hot Topics in Storage and File
Systems, June 2013.

K. V. Rashmi, N. B. Shah, K. Ramchandran, and P. V. Kumar. Information-
theoretically secure erasure codes for distributed storage. IEEE Trans. on
Info. Theory, 64(3):1621-1646, March 2018.

E. D. Karnin, J. W. Greene, and M. E. Hellman. On secret sharing systems.
IEEE Trans. on Info. Theory, 29(1):35-41, January 1983.

H. Yamamoto. Secret sharing system using (k, 1, n) threshold scheme. Elec-
tronics and Communications in Japan, Part 1, 69(9):46-54, 1986.

B. Chor, N. Gilboa, and M. Naor. Private information retrieval by keywords.
IACR Cryptology ePrint Archive, 1998:3, 1997.

S. Kadhe, A. Heidarzadeh, A. Sprintson, and O. O. Koyluoglu. Single-server
private information retrieval schemes are equivalent to locally recoverable cod-
ing schemes. I[EEE Jour. on Selected Areas in Info. Theory, 2(1):391-402,
2021.

M. J. Siavoshani, S. P. Shariatpanahi, and M. A. Maddah-Ali. Private infor-
mation retrieval for a multi-message scenario with private side information.

IEEFE Trans. on Commun., 69(5):3235-3244, May 2021.

M. Naor and B. Pinkas. Oblivious transfer and polynomial evaluation. In
Thirty-First Annual ACM Symposium on Theory of Computing, page 245-254.
ACM, 1999.

B. Albert-Lészlé. Network Science. Cambridge university press, 2016.

Z. Wang and S. Ulukus. Communication cost of two-database symmetric
private information retrieval: A conditional disclosure of multiple secrets per-
spective. In IFEE ISIT, pages 402-407, June 2022.

7. Wang and S. Ulukus. Digital blind box: Random symmetric private infor-
mation retrieval. In IEEE ITW, pages 95-100, November 2022.

318

[117)

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

Y. Lu, Z. Jia, and S. A. Jafar. Double blind T-private information retrieval.
IEEE Jour. on Selected Areas in Info. Theory, 2(1):428-440, March 2021.

J. Zhu, Q. Yan, and X. Tang. Multi-user blind symmetric private information
retrieval from coded servers. IEEE Jour. on Selected Areas in Commun.,
40(3):815-831, March 2022.

C. Naim, R. G. L. D’Oliveira, and S. El Rouayheb. Private multi-group ag-
gregation. IEEE Jour. on Selected Areas in Commun., 40(3):800-814, March
2022.

H. Corrigan-Gibbs and D. Boneh. Prio: Private, robust, and scalable compu-
tation of aggregate statistics. In Proceedings of the 14th USENIX Conference
on Networked Systems Design and Implementation, page 259282, 2017.

M. Kim and J. Lee. Information-theoretic privacy in federated submodel learn-
ing. Available at arXiv:2008.07656.

S. Vithana and S. Ulukus. Private read update write (PRUW) with storage
constrained databases. In IEEFE ISIT, pages 2391-2396, June 2022.

S. Vithana and S. Ulukus. Private federated submodel learning with sparsifi-
cation. In IEEFE ITW, pages 410-415, November 2022.

S. Vithana and S. Ulukus. Rate distortion tradeoff in private read update
write in federated submodel learning. In Allerton Conference, October 2022.

Z. Wang and S. Ulukus. Private federated submodel learning via private set
union. IEEE Trans. on Info. Theory. Submitted January 2023. Also available
at arXiv:2301.07686.

M. Yoshida, T. Fujiwara, and M. P. C. Fossorier. Optimal uniform secret
sharing. IEEE Trans. on Info. Theory, 65(1):436-443, January 2019.

K. V. Rashmi, N. B. Shah, and P. V. Kumar. Optimal exact-regenerating
codes for distributed storage at the MSR and MBR points via a product-
matrix construction. IEEE Trans. on Info. Theory, 57(8):5227-5239, August
2011.

Z. Li, Y. Zhao, and H. Sun. Weakly secure summation with colluding users.
Available at arXiv:2304.09771.

Q. Yu, S. Li, N. Raviv, S. M. M. Kalan, M. Soltanolkotabi, and S. A. Aves-
timehr. Lagrange coded computing: Optimal design for resiliency, security,
and privacy. In International Conference on Artificial Intelligence and Statis-
tics, pages 12151225, 2019.

Z. Wang, K. Banawan, and S. Ulukus. Private set intersection using multi-
message symmetric private information retrieval. In IEEE ISIT, pages 1035—
1040, June 2020.

319

[131] Z. Wang and S. Ulukus. Symmetric private information retrieval with user-side
common randomness. In IFEFE ISIT, pages 2119-2124, July 2021.

[132] Z. Wang, K. Banawan, and S. Ulukus. An information-theoretic scheme for
multi-party private set intersection. In IFEE ISIT, pages 1112-1117, July
2021.

[133] Z. Wang and S. Ulukus. Fully robust federated submodel learning in a dis-
tributed storage system. IEEE Trans. on Info. Theory. Submitted June 2023.
Also available at arXiv:2306.05402.

320

	List of Figures
	List of Tables
	Introduction
	Private Set Intersection: A Multi-Message Symmetric Private Information Retrieval Perspective
	Introduction
	PSI: Problem Formulation
	From PSI to MM-SPIR
	Main Result
	MM-SPIR as a Stand-Alone Problem
	MM-SPIR: Formal Problem Description
	MM-SPIR: Main Results
	MM-SPIR: Converse Proof
	MM-SPIR: Achievability Proof

	MM-LSPIR: Arbitrary Message Lengths
	MM-LSPIR: Converse Proof
	MM-LSPIR: Achievability Proof
	Mapping MM-LSPIR Back to PSI

	Conclusion
	Data Generation Model
	Upload Cost Reduction
	Communication Model
	Single Database Assumption

	Symmetric Private Information Retrieval at the Private Information Retrieval Rate
	Introduction
	Problem Formulation
	Main Result
	Motivating Examples
	Converse Proof
	Achievability Proof
	Conclusion

	Multi-Party Private Set Intersection: An Information-Theoretic Approach
	Introduction
	Problem Formulation
	Main Result
	Motivating Example: 3 Parties with 3 Databases Each (with
	Achievability Proof
	General Achievability Scheme
	Download Cost, Reliability, Leader's Privacy, Clients' Privacy

	Further Examples
	An Example for
	An Example for Heterogeneous Number of Databases

	Conclusion

	Communication Cost of Two-Database Symmetric Private Information Retrieval: A Conditional Disclosure of Multiple Secrets Perspective
	Introduction
	Problem Formulation
	Symmetric Private Information Retrieval
	Conditional Disclosure of a Secret
	Conditional Disclosure of Multiple Secrets

	Main Results
	Exact Upload-Download Region
	Conclusion

	Digital Blind Box: Random Symmetric Private Information Retrieval
	Introduction
	RSPIR: Problem Formulation
	Main Results
	Converse Proof
	Achievability
	Conclusion

	Private Federated Submodel Learning via Private Set Union
	Introduction
	Problem Formulation
	MM-SPIR
	PSU
	Private Distributed FSL

	Main Result
	Examples for Blocks of Private Distributed FSL
	General FSL Achievable Scheme
	Common Randomness Generation (FSL-CRG) Phase
	Private Set Union (FSL-PSU) Phase
	Private Write (FSL-write) Phase

	Conclusion

	Fully Robust Federated Submodel Learning in Distributed Storage System
	Introduction
	Problem Formulation
	Main Result
	RSRC Technique
	Construction and Performance of General RSRC
	Examples to Illustrate the Basic Idea of RSRC

	Distributed FSL Motivating Example
	General Distributed FSL Achievable Scheme
	FSL-CRG Phase
	FSL-PSU Phase
	FSL-Write Phase
	FSL-CRR Phase
	Basic Characteristics Verification
	Full Robustness Verification
	Performance Evaluation

	Conclusion

	Conclusions
	Bibliography

