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Data privacy has gained significant interest in information theory with the

emergence of a wide range of data-driven technologies in the recent past. Data

privacy is compromised primarily when the data origins (private users) download or

upload information. This dissertation focuses on how information-theoretic privacy

of the users’ data can be guaranteed when downloading and uploading information,

along the lines of private information retrieval (PIR) and private read-update-write

(PRUW), which have applications in privacy-preserved distributed learning.

First, we consider the problem of semantic PIR, in which multiple non-colluding

databases store a number of files, out of which a user desires to download one with-

out revealing its index to any of the databases. Semantic PIR deviates from classical

PIR by allowing the files to have arbitrary semantics such as different file sizes and

arbitrary popularity profiles. As the main result of this work, we characterize the

capacity of semantic PIR, with achievable schemes and a converse proof. We provide

capacity results for semantic PIR with replicated databases, MDS coded databases

and colluded databases.



As PIR deals with private reading, we consider private writing in the second

work, which is an immediate conceptual extension of PIR. In the problem of private

read-update-write (PRUW), a user downloads, updates and writes back a specific

section of a storage system while guaranteeing information-theoretic privacy of the

index of the section updated and the values of the updates. PRUW has applica-

tions in distributed learning such as privacy-preserved federated learning (FL) with

sparsification and private federated submodel learning (FSL). In FSL, a machine

learning model is divided into multiple submodels based on different types of data

used for training, and a given user only downloads and updates the submodel rele-

vant to the user’s local data. To guarantee the privacy of the users participating in

the FSL process, both the updating submodel index and the values of the updates

must be kept private from the server that stores the model. This is achieved by

PRUW, where the required submodel is downloaded in the reading phase without

revealing the submodel index to the databases (similar to PIR), and the updates

are sent back to the databases in the writing phase without revealing the values of

the updates or the submodel index. We provide a basic PRUW scheme to perform

private FSL that achieves the lowest known total communication cost of private FSL

thus far. In this work, we introduce the concept of combining multiple parameter

updates into a single bit in terms of a Lagrange polynomial in such a way that it

can be privately decomposed into the respective individual updates and added to

the relevant positions at the server.

Third, we consider the problem of private FSL with top r sparsification, in

which the user-server communications are significantly reduced by only sharing the



most significant r fractions of parameters and updates in the reading and writing

phases. However, this introduces additional privacy requirements as the positions

of the sparse updates/parameters leak information about the users’ private data

in addition to their values and the submodel index. To this end, we provide a

PRUW scheme that performs top r sparsification in FSL while guaranteeing the

information-theoretic privacy of the updating submodel index, values of the sparse

updates and the positions of the sparse updates/parameters using a permutation

technique.

Fourth, we study random sparsification in FSL, in which the user only down-

loads and uploads a specific fraction of randomly selected parameters and updates to

reduce the communications. The problem is formulated in terms of a rate-distortion

characterization, where we derive the minimum achievable communication cost for

a given amount of allowed distortion. We show that a linear rate-distortion relation

is achievable while guaranteeing the information-theoretic privacy of the updating

submodel index, the values of the sparse updates and the positions of the sparse

updates/parameters.

Fifth, we extend the ideas of PRUW to FL with top r sparsification. While the

same permutation technique introduced in FSL with top r sparsification is applicable

to this setting, it incurs a significantly large storage cost for FL. To alleviate this, we

modify the permutation technique in such a way that the storage cost is reduced at

the expense of a certain amount of information leakage, using a model segmentation

mechanism. In general, we provide the trade-off between the communication cost,

storage cost and information leakage in private FL with top r sparsification, along



with achievable schemes with different properties.

In all of the above PRUW settings, we require multiple non-colluding databases

to store the central model to guarantee information-theoretic privacy of the users’

local data. In the sixth work, we consider the practical scenario of private FSL,

where the databases storing the central model are allowed to have arbitrary storage

constraints. As the main result of this work, we develop a PRUW scheme and a stor-

age mechanism for FSL that efficiently utilize the available space in each database

to store the submodel parameters in such a way that the total communication cost

is minimized while guaranteeing information-theoretic privacy of the updating sub-

model index and the values of the updates. The proposed storage mechanism is

a hybrid of MDS coded storage and divided storage, which focuses on finding the

optimum MDS codes and fractions of submodels stored in each database for any

given set of homogeneous or heterogeneous storage constraints.

Seventh, we go beyond privacy and consider deception in information retrieval.

We introduce the problem of deceptive information retrieval (DIR) which is a con-

ceptual extension of PIR. In DIR, the user downloads a required file out of multiple

files stored in a system of databases and reveals information about a different file as

what was required, to the databases. In other words, the user deceives the databases

by making their prediction on the user-required file index incorrect with high prob-

ability. We propose a scheme to perform DIR that achieves a given required level

of deception, with the goal of minimizing the download cost. The proposed scheme

incurs higher download costs compared to PIR for positive levels of deception, and

achieves the PIR capacity when the level of deception specified is zero.
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CHAPTER 1

Introduction

Data privacy has gained significant interest among the researchers in computer sci-

ence and information theory over the years due to the increasing dependency on

private and sensitive data in a wide range of emerging technologies. For example,

artificial intelligence (AI) and machine learning (ML), which are powered by users’

private data, have become the driving force in many of the essential applications in

the modern world. As much as the AI-based applications such as navigation and

fraud detection systems have become indispensable to the users, it is the responsi-

bility of the technology to ensure the privacy of the data origins using which the

learning processes are powered-up, due to ethical and legal reasons, as well as to im-

prove the sustainability and reliability of the services. While data privacy has been

an active area of research in computer science for quite a long time with compu-

tational privacy guarantees, it has gained significant recent interest in information

theory with perfect privacy guarantees that ensure zero information leakage. Typ-

ically, the information of a private user is leaked when the user downloads (reads),

or uploads (writes) information from/to another party. This dissertation discusses

1



specific cases of information retrieval and transmission, and provides methods to

perform them while guaranteeing information-theoretic privacy of the users’ private

data, along with the corresponding fundamental performance limits.

In Chapter 2, we focus on guaranteeing information-theoretic privacy of a user

who only reads, i.e., downloads, information from a data storage system. In par-

ticular, we study the problem of private information retrieval (PIR), introduced in

the seminal paper [1], in which a user retrieves a message (file), out of several mes-

sages stored in multiple replicated and non-colluding databases, without revealing

any information about the identity of the desired message. Recently, this prob-

lem has attracted significant attention in information theory where the fundamental

limits of the problem based on absolute guarantees (in contrast to computational

guarantees as in [2]) have been investigated. In [3], the notion of PIR capacity is

introduced as the maximum ratio of the desired message size to the total download

size. Since then, many variants of the classical PIR problem have been studied.

References [4–8] study the setting with colluding databases, [9–11] investigate the

problem with coded databases and [12–15] consider the setting with databases that

are both coded and colluded. PIR with storage constrained databases and Byzan-

tine databases are studied in [16–24] and [25–27], respectively. Multi-message PIR,

where a user requires to download multiple message more efficiently, compared to

the naive method of downloading one message at a time is studied in [28, 29]. An-

other interesting variant is symmetric PIR, where the privacy of databases is also

taken into account on top of user’s privacy. Here, the users gain no information

about other messages, except for the one that is required. This is studied in [30–34].
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Methods of reducing the download cost of PIR with the aid of side information,

caches, and privacy leakage is studied in [35–42], [43–47] and [48–50], respectively.

In all these works, two assumptions are made: All messages have the same

size1, L, and all messages are requested uniformly by the users. These assumptions

are highly idealistic from a practical point of view. For instance, consider a stream-

ing example where the storage database has a catalog of different movies and TV

shows. These media files cannot be assumed to have the same level of popularity

or the same size. Consequently, each message stored in the databases exhibits dif-

ferent semantics, in the sense that each message has a different size and a different

prior probability of retrieval. With this backdrop, we introduce the problem of se-

mantic PIR, in which we investigate how a PIR scheme should be implemented over

databases holding messages with different semantics. The retrieval rate is defined to

be the ratio of the expected message size to the expected download cost. Due to the

privacy constraint, the download cost needs to be the same for all messages; thus,

the expected download cost is equal to the download cost for each individual mes-

sage. Hence, the retrieval rate achieved by a given scheme is equal to the weighted

average of all individual message retrieval rates. We investigate the semantic PIR

capacity as a function of the system parameters: number of databases N , number of

messages K, message priors pi, and message lengths Li. We ask how semantic PIR

capacity compares to classical PIR capacity, and whether there is a PIR capacity

1With the exception of [30], which characterizes the capacity of the symmetric PIR (SPIR)
problem for heterogeneous file sizes (without considering prior probabilities of retrieval) to be
Rk = Lk

maxi Li

(
1− 1

N

)
, where Rk is the rate of retrieving message k. The achievable scheme

follows by dividing the files into partitions of length N −1 and repeating the original SPIR scheme
in each partition. This scheme zero-pads shorter messages so that their lengths are equal to that
of the longest message.
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gain from exploiting the message semantics.

As the main result of this work, we characterize the exact semantic PIR ca-

pacity for arbitrary parameters. To that end, we present two achievable schemes;

the first scheme is deterministic, in the sense that the query structure is fixed, and

the second scheme is stochastic, in the sense that the user picks a query structure

randomly from a list of possible structures. For the deterministic scheme, we present

a systematic method to determine the subpacketization level for each message. Note

that this is crucial in our semantic problem due to the heterogeneous message sizes,

unlike the majority of the literature that utilizes uniform subpacketization within

their schemes [51]. This scheme uses non-uniform subpacketization where the block

size considered in each download differs from one message to another. The query

structure of the deterministic scheme resembles the query structure of [3], in that,

our scheme uses the same k-sums idea of [3]. The second achievable scheme is

composed of several query options that the user may use with equal probability to

retrieve any message. In this scheme, the messages are divided into several blocks

depending on the number of databases. The message is retrieved using a single set

of queries, which is chosen uniformly randomly from the query options to ensure

privacy. This is similar to the scheme presented in [49] with an extension to more

than two databases (see also [52]). We provide a matching converse that takes into

account the heterogeneity of message sizes, resulting in settling the semantic PIR

capacity. Additionally, we provide two extensions of the semantic PIR problem,

namely, semantic PIR from MDS-coded databases, where each database stores in-

dividual bits of a (N,K) MDS code, and semantic PIR from colluding databases,
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where T out of the N databases are allowed to collude. For both extensions, we

derive the exact PIR capacities by providing corresponding optimal schemes and

converse results.

The capacity of semantic PIR given by C =
(

L1

E[L] +
1
N

L2

E[L] + · · ·+ 1
NK−1

LK

E[L]

)−1

is a function of the message sizes, the a priori probability distribution, the number

of databases and the number of messages. The expression implies that for certain

message sizes and priors, the classical PIR capacity may be exceeded by exploiting

the semantics of the messages even if the zero-padding needed in classical PIR

to equalize the message sizes is ignored. Concretely, our results imply: 1) When

message lengths are the same, semantic PIR capacity is equal to the classical PIR

capacity no matter what the message priors are, i.e., priors cannot be exploited to

increase the PIR capacity if the message lengths are the same. 2) For certain cases,

such as when the prior probability distribution favors longer files (i.e., longer files

are more popular), the semantic PIR capacity exceeds the classical PIR capacity

which depends only on the number of databases and the number of messages.2 3)

For all priors and lengths, semantic PIR achieves larger rates compared to what

classical PIR would achieve by simply zero-padding the messages to bring them to

the same length, as it assumes.

In Chapters 3-7 we present different variants of the basic the problem of pri-

vate read-update-write (PRUW), in which we investigate how information-theoretic

privacy can be guaranteed when a user reads (downloads) and writes (uploads)

2By classical PIR capacity, we mean the classical PIR capacity expression, which may not be
attainable for heterogeneous file sizes in practice.
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information to a data storage system. Note that private writing is an immediate

conceptual extension of private reading present in PIR, which has a number of appli-

cations in privacy-preserving distributed learning. To motivate PRUW we address

two issues present in distributed learning, namely, the information leakage of partic-

ipating users and the significantly large communication cost. In distributed learning

techniques such as federated learning (FL) [53–56], millions of users collectively train

a ML model stored at a central server by downloading the model, updating it with

their local data and sending the updates back to the server. Even though the user’s

local data is not directly shared with the server, it has been shown that the updates

sent to the server leak information about the user’s local data in FL [57–63]. Dif-

ferent methods have been developed to minimize this information leakage such as

classical cryptographic protocols as in secure aggregation [64], differential privacy

(DP) [65] via noise addition, data sampling and data shuffling, e.g., [66–78]. How-

ever, these methods do not guarantee perfect privacy of each individual user’s local

data. In Chapters 3-7, we introduce new techniques via PRUW, that can be used to

guarantee information-theoretic privacy of the users participating in the FL process.

Apart from the privacy concerns, distributed learning techniques such as FL

incur significantly large communication costs since many users communicate param-

eters and updates with the server in multiple rounds. Moreover, FL requires all users

to download and update the entire model even when the users do not have all types

of data required to update the entire model. Gradient sparsification [79–86] , gradi-

ent quantization [87–90] and federated submodel learning (FSL) [91–95] are among

the solutions proposed in the literature to mitigate these inefficiencies. In gradient
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sparsification, the users only communicate a selected set of gradients (most signif-

icant/randomly chosen) as opposed to sending all gradient updates corresponding

to all parameters in the model to the central server. In gradient quantization, the

values of the gradients are quantized and represented using a fewer number of bits.

In FSL, the machine learning model is divided into multiple submodels based on

different types of data used to train it, and each user only downloads and updates

the submodel that can be updated by the user’s own local data. This saves the

communication cost and makes the distributed learning process more efficient.

Although FSL and gradient sparsification are efficient in terms of the commu-

nication cost, they leak more information on the user’s local data to the servers. In

FSL, the index of the updating submodel clearly depends on the types of data that

the users have. Therefore, in FSL both the updating submodel index as well as the

values of the updates need to be kept private from the server in order to guaran-

tee the privacy of each user’s local data. In FL with gradient sparsification, when

the sparse gradients are chosen based on their significance, the indices/positions of

these selected gradients leak information about the user’s private data, in addition

to the information leaked by the values of the gradients. Hence, we need to hide

both the values and the indices of the sparse gradient updates from the server in FL

with sparsification to ensure user-privacy. All of the above privacy requirements can

be fulfilled with the concepts introduced in PRUW. Formally, PRUW refers to the

general process of privately reading a required segment of a data storage system and

writing back to the same/different segment privately, without revealing the segment

indices or the values written, to the storage system. Private FSL and private FL
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with sparsification are both applications of PRUW.

In Chapter 3, we investigate the problem of private FSL along the lines of

PRUW. Private FSL consists of two phases in terms of the communications. 1)

Reading phase in which the user downloads the required submodel from the storage

system without revealing its index. 2) Writing phase in which the user uploads

the updates back to the same submodel without revealing the submodel index or

the values of updates. Note that the reading phase is similar to PIR. Existing

works on private FSL [91–96] provide schemes with different notions of privacy.

References [91, 93] consider locally differential privacy, in which a predetermined

amount of information of the user is leaked to the databases. Reference [78] presents

a group-wise aggregation scheme (related to the writing phase in FSL) based on local

differential privacy. The schemes in [92] and [95] consider information-theoretic

privacy of the submodel index and the values of updates. However, they are less

efficient in terms of the communication cost, compared to the schemes presented

in [94] and Chapters 3-7 that are based on cross subspace alignment (CSA) [97]

for different variants of FSL that consider information-theoretic privacy. Reference

[94] presents a private FSL scheme for the general case with arbitrary number of

colluding databases with the presence of dropouts. An efficient private FSL scheme

that is over-designed with extra noise terms to reduce the communication cost is

presented in Chapter 3, along with its extensions to storage constrained databases in

Chapter 7 and further means of reducing the communication cost with sparsification

in Chapters 4 and 5.

The system model we consider for private FSL consists of N non-colluding
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databases storing M independent submodels that contain elements from a finite

field Fq. We consider information-theoretic privacy of the values of updates and

the index of the submodel updated by the user, and define the reading and writing

costs to be the normalized total downloads and uploads, respectively. The privacy

constraints are guaranteed by adding random noise to quantities that need to be

kept private. This is a direct application of Shannon’s one time pad theorem which

states that when X is a random variable with an arbitrary distribution and Y is

a uniformly distributed random variable (random noise), both within a finite field,

X+Y is uniformly distributed and is independent of X. In Chapter 3, we improved

the scheme in [95] by reducing the writing cost from ≈ N
2

to 2
1− 2

N

for the case

with N non-colluding databases. The improved scheme is able to perform FSL by

only downloading and uploading approximately twice as many bits as the size of

a submodel when N is large, while guaranteeing information-theoretic privacy of

the updating submodel index and the values of the updates. This is achieved by

introducing the concept over-designing the storage with extra noise terms to aid

the process of combining multiple parameter updates into a single bit (by users

in the writing phase) in the form of a modified Lagrange polynomial, such that it

can be privately decomposed into the respective individual updates and added to

the relevant positions at the databases. The basic PRUW scheme introduced in

Chapter 3 is one of the main building blocks of the schemes presented for different

variants of PRUW described in Chapters 4-6.

In Chapters 4-5, we investigate further means of reducing the communication

cost in private FSL. In basic private FSL described in Chapter 3, it is assumed that
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each individual user downloads and updates all parameters of the required submodel.

However, the communication cost can be reduced further by only downloading and

updating a selected set of parameters within the submodel. This is in fact gradient

sparsification in FSL, i.e., the combination of the two main applications of PRUW.

In Chapters 4 and 5, we consider two types of sparsification in FSL, namely, top

r and random sparsification. In top r sparsification, only a given fraction of the

most significant parameters/updates are downloaded and uploaded in the reading

and writing phases. In random sparsification, a random set of parameters is read in

the reading phase, and the same/different random set of parameters is updated in

the writing phase. A given amount of distortion is introduced in both sparsification

methods, which in general has little or no impact on the accuracy of the model.

In fact, sparsification is a widely used technique in most learning tasks to reduce

the communication cost, which even performs better than the non-sparse models in

certain cases [80,86,98].

In private FSL with top r sparsification, each user only uploads the most sig-

nificant r fraction of updates of the updating submodel in the writing phase, and

downloads only a r′ fraction of parameters in the reading phase3. This ensures that

the most significant gradient variations in the training process are communicated

while incurring significantly reduced communication costs compared to non-sparse

training. In general, top r sparsification requires users and the server to commu-

nicate the updates/parameters as well as their positions in order to update the

3The r′ fraction of parameters can be the union of the sparse sets of parameters updated by all
users in the previous iteration, or they can be chosen in a specific way as in [80].
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model correctly. Note that even if the values of the sparse updates/parameters are

privacy-protected as in non-sparse private FSL described in Chapter 3, specifying

the positions leak information of the user’s local data. For example, in the writ-

ing phase, the databases learn that the updates corresponding to the non-specified

positions are less significant compared to the ones that are specified. Therefore, in

private FSL with top r sparsification, three components need to be kept private,

1) updating submodel index, 2) values of sparse updates 3) positions of sparse up-

dates. In Chapter 4, we provide a scheme that performs private FSL with top r

sparsification while guaranteeing information-theoretic privacy of the three compo-

nents stated above. Privacy of components 1 and 2 are satisfied by random noise

addition, i.e., one time padding, and for the third component, we introduce an up-

date/parameter shuffling mechanism, in which the true positions are permuted and

transmitted in a specific way such that the permutations can be reversed at the re-

ceiving end, while guaranteeing information-theoretic privacy of the true positions.

The proposed scheme significantly reduces the reading and writing costs of private

FSL from 2
1− 2

N

(without sparsification) to ≈ 2r
1− 4

N

, where r is the sparsification rate,

which is in general around ≈ 10−2 to ≈ 10−3.

Essentially, private FSL with top r sparsification discussed in Chapter 4 is an

extension of basic private FSL presented in Chapter 3, with the additional challenge

of guaranteeing the information-theoretic privacy of the positions of the selected sets

of updates/parameters resulting from top r sparsification. The main contributions of

this work are as follows; 1) introduction of the concept and the system model for top

r sparsification in PRUW in relation to private FSL, 2) scheme that performs private
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FSL with top r sparsification while guaranteeing information-theoretic privacy of

the updating submodel index, values of the sparse updates, and the positions of the

sparse updaes, 3) introduction of a permutation/shuffling mechanism to privately

convey information about the indices of a set of selected elements of a vector in a

distributed setting.

In Chapter 5, we investigate random sparsification in private FSL. Here, the

user only downloads and uploads a randomly selected set of parameters and up-

dates of the required submodel, without revealing the submodel index, the values

of the sparse updates and the indices of the sparse parameters/updates. The un-

read (unwritten) parameters (updates) result in a certain amount of distortion in

the reading (writing) phase. Therefore, we formulate this problem in terms of a

rate-distortion characterization in PRUW, where the goal is to minimize the total

communication cost for a given amount of allowed distortion. The distortion is de-

fined as the Hamming distance between the actual and downloaded/uploaded data.

We consider N non-colluding databases storing M independent submodels, with

given reading and writing distortion budgets denoted by D̃r and D̃w, respectively.

In the proposed scheme, based on the allowed distortions in the two phases, we find

the optimum subpacket4 sizes, and download and upload only a single bit per sub-

packet, per database in the reading and writing phases, respectively. These single

bits are combinations of randomly chosen subsets of parameters/updates within the

respecitve subpakcet, and are structured in a specific way such that they can be

4A subpacket is a block of bits of all submodels stored in databases, on which the proposed
scheme is defined. The scheme is repeatedly applied on all such subpackets in the entire storage.
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privately decomposed into the sparse individual parameters/updates at the receiv-

ing end. The queries and storage in the proposed scheme are designed such that

they are compatible with the sparse update decomposition process. Moreover, the

storage structure in databases is carefully designed to accommodate the possible

differences between the subpacket sizes in the reading and writing phases. We show

that a linear rate-distortion trade-off in private FSL is achievable, i.e., a reading

(writing) cost of ≈ 2
1− 2

N

(1 − D̃) is achievable where D̃ is the allowed amount of

distortion in the reading (writing) phase.

Next, we extend the ideas of PRUW in FSL with top r sparsification to FL in

Chapter 6. As explained before, top r sparsification is a widely used sparsification

technique in FL, where only the most significant r fraction of parameters/updates

are shared between the users and the central server to reduce the communications in

the FL process. However, the values as well as the positions (indices) of the sparse

updates leak information about the user’s local data. The positions of the sparse

updates leak information about the most and least significant sets of parameters

for a given user, which can be used to infer information about the user’s private

data. Thus, in order to guarantee the privacy of users participating in the sparse

FL process, two components need to be kept private, namely, 1) values of sparse

updates, 2) indices of sparse updates. In this chapter, we develop schemes to perform

the user-database communications in FL with top r sparsification while guaranteeing

information-theoretic privacy of the values and the indices of the sparse updates.

The system model consists of multiple non-colluding databases storing the

FL model, and a single user that communicates with the databases in the training
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process. The proposed schemes are based on a permutation technique, in which a

coordinator initializes a random permutation of sets of parameters, and sends it to

the users. The coordinator then places noise added permutation reversing matrices

at each database in such a way that the databases learn nothing about the underlying

permutation. All communications between the user and the databases take place

in terms of the permuted indices, which guarantees the privacy of the indices of

the sparse updates. However, the parameters in each database get updated in the

correct order, with the aid of the noise added permutation reversing matrices. The

main drawback of this method is the considerably large storage cost incurred by the

large permutation reversing matrices. To that end, we propose schemes that reduce

the storage cost by decreasing the size of the noise added permutation reversing

matrices, at the expense of a given amount of information leakage. This is achieved

by dividing the ML model into multiple segments and carrying out permutations

within each segment. The number of segments is chosen based on the allowed

amount of information leakage and the storage capacity of the databases.

We present four schemes to perform user-database communications in pri-

vate FL with top r sparsification with different properties such as lower commu-

nication costs, lower storage costs or lower amounts of information leakage. The

four schemes differ from each other based on the storage structure (MDS coded or

uncoded) and the permutation mechanism (only within-segment permutations or

within and inter-segment permutations) used. MDS coded storage decreases the

storage cost while increasing the communication cost, and the two-stage permu-

tations (within and inter-segment permutations) decrease the information leakage
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significantly compared to single-stage permutations (only within-segment permuta-

tions), while slightly increasing the communication cost. Based on the specifications

and limitations of the given FL task, one can choose the most suitable scheme. In

general, we present the trade-off between the communication cost, storage complex-

ity and information leakage in private FL with sparsification.

In Chapeter 7, we consider the problem of PRUW with storage constrained

databases, focusing on the application of private FSL. This problem is motivated by

the fact that it requires multiple non-colluding databases to store the submodels to

guarantee information-theoretic privacy of the user-required submodel index and the

values of the updates in FSL. In practice, these non-colluding databases may have

arbitrary storage constraints, which requires a flexible PRUW scheme that efficiently

utilizes the available storage space in all databases to achieve the minimum possible

communication cost in FSL. The main goal of this work is to determine storage

mechanisms and compatible PRUW schemes that are applicable to any given set of

arbitrary storage constraints.

This work is closely related to the work presented in [9,17–20,24,42] in the PIR

literature on storage constrained databases. In this work, we extend these ideas to

PRUW with the goal of minimizing the total communication cost while guaranteeing

the additional privacy and security requirements present in PRUW. Divided storage

and coded storage are the two main approaches to storing data in databases with

storage constraints. In divided storage, the data is divided into multiple segments,

and each segment is only replicated in a subset of databases. In coded storage, multi-

ple data points are combined into a single symbol using specific encoding structures,
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and stored at all databases. The concept of combining coded storage and divided

storage to meet homogeneous storage constraints in PIR was introduced in [20].

It is shown that this combination results in better PIR rates compared to what is

achieved by coded storage and divided storage individually. In this work, we explore

such ideas for both homogeneous and heterogeneous storage in PRUW in the con-

text of a private FSL problem. We propose a hybrid storage mechanism for private

FSL that uses both divided and coded storage to store the submodel parameters,

followed by a compatible PRUW scheme that achieves the minimum total commu-

nication cost within the algorithm for any given set of storage constraints, while

guaranteeing the information-theoretic privacy of the user-required submodel index

and the values of the updates.

We consider both heterogeneous and homogeneous storage constraints. The

former corresponds to the case where different databases have different storage con-

straints, while the latter corresponds to the case with the same storage constraint

across all databases. We provide two different schemes for the two settings, as they

are rooted differently to increase the communication/storage efficiency of each case

separately. Both schemes are composed of two main steps, namely, the storage mech-

anism, which assigns the content stored in each database, and the PRUW scheme,

which performs the read-write process on the stored data. The PRUW scheme is

based on the scheme presented in Chapter 3, with the parameters optimized to

achieve the minimum total communication cost, when the submodel parameters are

(K,R) MDS coded. In the heterogeneous case, the basic idea of the storage mecha-

nism is to find the optimum (K,R) MDS codes and the corresponding fractions of
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submodels stored using them. The general scheme that we propose in this work is

applicable to any given set of storage constraints, and is based on a PRUW scheme

that achieves lower and higher communication costs when the data is (K,R) MDS

coded with odd and even values of R −K, respectively. To this end, we show that

the use of (K,R) MDS codes with even R −K can be avoided, and the total com-

munication cost can be reduced if the given storage constraints satisfy a certain set

of conditions. The class of homogeneous storage constraints satisfies this set of con-

ditions. Hence, we discuss the case of homogeneous storage constraints separately

in detail and propose a different storage mechanism that is more efficient compared

to the general scheme designed for heterogeneous storage constraints.

In Chapter 8, we go beyond privacy, and consider deception in information

retrieval. We introduce the problem of deceptive information retrieval (DIR) in this

chapter, which is a conceptual extension of PIR. In PIR, the databases’ prediction of

the user-required file based on the received queries is uniformly distributed across all

files. Hence, the probability of error of the database’s predictions in a PIR setting

with K files is 1 − 1
K
. In weakly private information retrieval [48, 99], a certain

amount of information on the user-required file index is revealed to the databases to

reduce the download cost. In such cases, as the databases have more information on

the file index that the user requests, the error probability of the database’s prediction

is less than 1 − 1
K
. In this work, we study the case where the error probability of

databases’ prediction is larger than 1− 1
K
.

Note that with no information received by the user at all, the databases can

make a random guess on the user-required file index, and reach an error probability
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Figure 1.1: Download costs and prediction error probabilities for different types of
information retrieval.

of 1 − 1
K
. Therefore, to result in a prediction error that is larger than 1 − 1

K
, the

user has to deceive the databases by sending fake information on the required file

index. The goal of this work is to generate a scheme that allows a user to download

a required file k, while forcing the databases’ prediction on the user-required file

index to be ℓ, where k ̸= ℓ, for as many cases as possible. This is coined as deceptive

information retrieval (DIR). DIR is achieved by sending dummy queries to databases

to manipulate the probabilities of sending each query for each file requirement, which

results in incorrect predictions at the databases. However, sending dummy queries

increases the download cost compared to PIR. Fig. 1.1 shows the behavior of the

prediction error probability and the corresponding download costs for different types

of information retrieval.5

5The regions marked as “weakly PIR” and “DIR” in Fig. 1.1 show the points that are concep-
tually valid for the two cases and does not imply that every point in those regions are achievable.
The achievable points corresponding to “weakly PIR” and “DIR” lie within the marked regions.
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The concept of deception has been studied as a tool for cyber defense [100–104],

where the servers deceive attackers, adversaries and eavesdroppers to eliminate any

harmful activities. In all such cases, the deceiver (servers in this case), gains nothing

from the deceived, i.e., attackers, adversaries and eavesdroppers. In contrast, the

main challenge in DIR is that what needs to be deceived is the same source of

information that the user retrieves the required data from. This limits the freedom

that a DIR scheme could employ to deceive the databases. To this end, we formulate

the problem of DIR based on the key concepts used in PIR, while also incorporating

a time dimension to aid deception.

The problem of DIR introduced in this chapter considers a system of non-

colluding databases storing K independent files that are time-sensitive, i.e., files

that keep updating from time to time. We assume that the databases only store the

latest version of the files. A given user wants to download arbitrary files at arbitrary

time instances. The correctness condition ensures that the user receives the required

file, right at the time of the requirement, while the condition for deception requires

the databases’ prediction on the user-required file to be incorrect with a probability

that is greater than 1− 1
K
, specified by the predetermined level of deception required

in the system.

The scheme that we propose for DIR deceives the databases by sending dummy

queries to the databases for each file requirement, at distinct time instances. From

the user’s perspective, each query is designed to play two roles as real and dummy

queries, with two different probability distributions. This allows the user to manip-

ulate the overall probability of sending each query for each message requirement,
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which is known by the databases. The databases make predictions based on the

received queries and the globally known probability distribution of the queries used

for each file requirement. These predictions are incorrect with probability > 1− 1
K

as the probability distributions based on which the real queries are sent are different

from the globally known overall distribution. This is the basic idea used in the pro-

posed scheme which allows a user to deceive the databases while also downloading

the required file. The download cost of the proposed DIR scheme increases with the

required level of deception d, and achieves the PIR capacity when d = 0.

The conclusions of this dissertation are provided in Chapter 9.
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CHAPTER 2

Semantic Private Information Retrieval

2.1 Introduction

In this chapter, we consider the problem of semantic PIR. In semantic PIR, a user

retrieves a message out of K independent messages stored in N replicated and

non-colluding databases without revealing the identity of the desired message to

any individual database. The messages come with different semantics, i.e., the

messages are allowed to have non-uniform a priori probabilities denoted by pi >

0, i ∈ {1, . . . , K}, which are a proxy for their respective popularity of retrieval,

and arbitrary message sizes Li, i ∈ {1, . . . , K}. This is a generalization of the

classical PIR problem, where messages are assumed to have equal message sizes.

We derive the semantic PIR capacity for general K, N , pi and Li, along with two

achievable schemes and a converse proof. We also derive necessary and sufficient

conditions for the semantic PIR capacity to exceed the classical PIR capacity with

equal priors and sizes. Our results show that the semantic PIR outperforms classical

PIR when longer messages are more popular. However, when messages are equal-

length, the non-uniform priors cannot be exploited to improve the retrieval rate
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over the classical PIR capacity. We provide two extensions of the semantic PIR

problem, namely, semantic PIR from MDS-coded databases and semantic PIR from

colluding databases. For both extensions, we derive exact PIR capacities in addition

to providing the corresponding optimal schemes.

2.2 Problem Formulation

We consider a setting, where N non-colluding databases store K independent mes-

sages (files), W1, . . . ,WK , in a replicated fashion. The messages exhibit different

semantics, i.e., the messages have different sizes and different a priori probabilities

of retrieval. The a priori probability of Wi is denoted by1 pi, such that pi > 0

for i = 1, . . . , K. The a priori probability distribution is globally known at the

databases and the user. We assume that all message symbols are picked from a

finite field2 Fs. The message size of the ith message is denoted by Li. Without loss

of generality, we assume that the messages are ordered with respect to their sizes3,

such that L1 ≥ L2 ≥ · · · ≥ LK . We assume that the messages stored in databases

are mutually independent (which in turn implies pairwise independence). Hence,

assuming that the message sizes are expressed in s-ary symbols,

H(Wi) = Li, i = 1, . . . , K (2.1)

1We assume that pi > 0 for all i ∈ [K] without loss of generality, as pj = 0 for some j implies
that this message, Wj , is either non-existent or never requested by the user. Hence, the setting
can be reduced to a semantic PIR problem with K − 1 messages, each with pi > 0.

2In this work, it suffices to work with the binary field, hence, symbols can be interpreted as
bits.

3This is for ease of expression of the capacity formula in (2.9). The largest length should have
the largest coefficient in the expression in (2.9) in order to have the largest achievable rate and the
tightest converse.
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H(W1, . . . ,WK) =
K∑
i=1

H(Wi) =
K∑
i=1

Li (2.2)

In semantic PIR, a user needs to retrieve a message Wi without revealing the

index i to any individual database. To that end, the user sends a query to each

database. The query sent to the nth database to retrieve Wi is denoted by Q
[i]
n

for n = 1, . . . , N . Prior to retrieval, the user does not have any information about

the message contents. Hence, queries sent to the databases to retrieve messages are

independent of the messages, i.e., the mutual information between messages and

queries is zero,

I(W1, . . . ,WK ;Q
[i]
1 , . . . , Q

[i]
N) = 0, i = 1, . . . , K (2.3)

Once the databases receive the queries, they generate answer strings to send

back to the user. Specifically, the nth database prepares an answer string A
[i]
n which

is a deterministic function of the stored messagesW1, . . . ,WK and the received query

Q
[i]
n . Therefore,

H(A[i]
n |Q[i]

n ,W1, . . . ,WK) = 0, i = 1, . . . , K, n = 1, . . . , N (2.4)

For a feasible PIR scheme, two conditions need to be satisfied, namely, the

correctness and the privacy constraints. These are formally described as follows.

Correctness: The user should be able to perfectly retrieve the desired mes-

sage as soon as the answer strings to the queries are received from the respective
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databases. Therefore,

H(Wi|A[i]
1 , . . . , A

[i]
N , Q

[i]
1 , . . . , Q

[i]
N) = 0, i = 1, . . . , K (2.5)

Privacy: To protect the privacy of the desired message index i, the queries

should not leak any information about i. Formally, for the nth database, the a

posteriori probability of the message index i given a query Q
[i]
n should be equal

to the a priori probability of the message index i. That is, the random variable

representing the desired message index, θ, should be independent of the received set

of queries. Therefore,

P (θ = i|Q[i]
n ) = P (θ = i), i = 1, . . . , K, n = 1, . . . , N (2.6)

The privacy constraint (2.6) along with the independence of messages and queries

(2.3) implies,

(Q[i]
n , A

[i]
n ,W1, . . . ,WK) ∼ (Q[j]

n , A[j]
n ,W1, . . . ,WK),

n = 1, . . . , N, i, j = 1, . . . , K, i ̸= j (2.7)

An achievable semantic PIR scheme π is a scheme that satisfies the correctness

constraint (2.5) and the privacy constraint (2.6) (or equivalently (2.7)). Due to the

heterogeneity of message sizes and a priori probabilities, in this work, we define the

performance metric, the expected retrieval rate R(π) for any scheme π ∈ Π, where
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Π is the set of all PIR schemes satisfying the correctness and privacy constraints

given in (2.5) and (2.6), as the ratio of the expected retrieved message size to the

expected download size, i.e.,

R(π) =
E[L]
E[D]

, π ∈ Π (2.8)

where E[L] is the expected number of useful bits downloaded and E[D] is the ex-

pected number of total bits downloaded. The expectation E[·] in E[L] is with respect

to the a priori probability distribution. Note that E[L] is fixed for any scheme as

it is completely determined by the set of message lengths and prior probabilities

which are given in the semantic PIR setting. The expectation E[·] in E[D] is with

respect to the distribution of the queries. Note that E[D] does not depend on the

prior distribution as for any desired message, the download cost must remain the

same to preserve privacy. Therefore, E[D] of a given scheme is completely deter-

mined by the structure of the scheme. The semantic PIR capacity is defined as the

supremum of the expected retrieval rates over all achievable PIR schemes in Π, i.e.,

C = supπ∈Π R(π). Moreover, the optimal semantic PIR scheme π∗ ∈ Π is an achiev-

able scheme that minimizes the expected download cost, i.e., π∗ = argminπ∈Π E[D].

2.3 Main Results and Discussions

In this section, we present the main results of this work. Our first result is a complete

characterization of the semantic PIR capacity. The semantic PIR capacity depends

on the message sizes and prior probability distribution.
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Theorem 2.1 The semantic PIR capacity with N databases, K messages, mes-

sage sizes Li (arranged in decreasing order as L1 ≥ L2 ≥ · · · ≥ LK), and prior

probabilities pi, is

C =

(
L1

E[L]
+

1

N

L2

E[L]
+ · · ·+ 1

NK−1

LK

E[L]

)−1

(2.9)

=

(
L1∑K

i=1 piLi

+
1

N

L2∑K
i=1 piLi

+ · · ·+ 1

NK−1

LK∑K
i=1 piLi

)−1

(2.10)

where E[L] =
∑K

i=1 piLi.

The achievability proof of Theorem 2.1 is presented in Section 2.4 and the

converse proof is presented in Section 2.5. Next, we have a few corollaries and

remarks.

The following corollary gives a necessary and sufficient condition for the cases

at which the semantic capacity exceeds the classical PIR capacity.

Corollary 2.1 (A Necessary and Sufficient Condition for Capacity Gain)

The semantic PIR capacity is strictly larger than the classical PIR capacity (with

uniform priors and message sizes) if and only if,

K∑
i=1

1

N i−1
(Li − E[L]) < 0 (2.11)

which is further equivalent to,

K∑
i=1

K∑
j=1

pj
N i−1

(Li − Lj) < 0 (2.12)
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Proof: The proof follows from comparing the semantic PIR capacity expression in

(2.9) and the classical PIR capacity, CPIR, in [3],

CPIR =

(
1 +

1

N
+ · · ·+ 1

NK−1

)−1

(2.13)

Hence, C > CPIR implies

L1

E[L]
+

1

N

L2

E[L]
+ · · ·+ 1

NK−1

LK

E[L]
< 1 +

1

N
+ · · ·+ 1

NK−1
(2.14)

Ordering the terms leads to,

K∑
i=1

1

N i−1
(Li − E[L]) < 0 (2.15)

Noting Li =
∑K

j=1 pjLi, since pj sum to 1, and E[L] =
∑K

j=1 pjLj by definition of

expectation,

K∑
i=1

K∑
j=1

pj
N i−1

(Li − Lj) < 0 (2.16)

■

Remark 2.1 The condition in (2.11) is a statement about the sum weighted (by

1
N i−1 ) deviation of message size from its expected value. Note that the expected

value of the message size E[L] is a function of the message sizes Li and the prior

distribution pi for i = 1, . . . , K.
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Remark 2.2 The intuition behind the condition in Corollary 2.1 is as follows. The

set of message lengths and prior probabilities need to result in a large enough expected

message length, which further implies that the longer messages need to be more

popular, in order for the semantic PIR rate to outperform the classical PIR rate.

Remark 2.3 More explicit conditions can be derived for specific cases. For exam-

ple, consider the case K = 2, N = 2, and assume that L1 > L2 (strictly larger).

Then, (2.11) simplifies to,

(L1 − (p1L1 + p2L2)) +
1

2
(L2 − (p1L1 + p2L2)) <0 (2.17)

p2(L1 − L2) +
1

2
p1(L2 − L1) <0 (2.18)

p2 −
1

2
p1 <0 (2.19)

p1 >
2

3
(2.20)

where (2.19) follows from L1 > L2. This means that for N = 2 and K = 2, the

capacity of semantic PIR is greater than the capacity of classical PIR when the a

priori probability of the longer message is greater than 2
3
irrespective of the values

of L1 and L2.

As a further explicit example, if the more likely message is 4 times more likely

and 4 times longer than the less likely message, i.e., if p1 = 4p2 and L1 = 4L2, then

the semantic PIR capacity is C = 34
45

while the classical PIR capacity is CPIR = 2
3
=

30
45
. That is, for this case, CPIR = 2

3
< C = 34

45
.

Remark 2.4 We further expand on Remark 2.3 above by noting the following fact.
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The classical PIR capacity is a formula, as given in (2.13), that depends only on

the number of databases N and the number of messages K, and is not necessarily

achievable by the classical PIR scheme for any given message priors and lengths.

To see this, we note that the classical PIR scheme requires equal message sizes. In

the example in Remark 2.3 where p1 = 4p2 and L1 = 4L2, if we zero-pad the shorter

message to make the message lengths the same, we achieve Rach = p1
L1

D
+ p2

L2

D
= 17

30

by noting D = 3
2
L1 as the length of the longer message is the common message

length now, and the classical PIR capacity for this case is 2
3
. Thus, we observe

Rach = 17
30

< CPIR = 2
3
< C = 34

45
for this case.

As a follow up to Remark 2.4, we note that the achievable scheme proposed

in this work always outperforms zero-padding shorter messages and applying the

classical PIR scheme for so-constructed equal-length messages. This is proved in

the following corollary.

Corollary 2.2 Semantic PIR capacity outperforms classical PIR rate with zero-

padding.

Proof: We first calculate the general achievable rate for the classical PIR scheme

with zero-padding, Rach. Noting L1 ≥ L2 ≥ · · · ≥ LK , we zero-pad messages

2, . . . , K until the message sizes are all equal to L1. Next, we apply the classical

PIR scheme with the common message size L1. Then, the download cost (and the

expected download cost) becomes,

E[D] = D =
L1

CPIR

(2.21)
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Now, using CPIR in (2.13) in equation (2.21) above, we obtain,

Rach =
E[L]
E[D]

(2.22)

=

(
L1

E[L]
+

1

N

L1

E[L]
+ · · ·+ 1

NK−1

L1

E[L]

)−1

(2.23)

Note repeated L1 in the expression in (2.23). Comparing Rach in (2.23) with the

semantic PIR capacity in (2.9), we deduce that Rach ≤ C as L1 ≥ L2 ≥ · · · ≥ LK .

■

Remark 2.5 If all messages have equal lengths, irrespective of the prior probabili-

ties, the capacity of semantic PIR becomes equal to that of classical PIR. Note, in

this case, Li = E[L] and the capacity expression in (2.9) reduces to the classical

PIR capacity expression in (2.13). Thus, in order to exploit variability in priors to

achieve a PIR capacity higher than the classical PIR capacity, we need variability in

message lengths.4

Remark 2.6 Similar to classical PIR, the semantic PIR capacity increases with

the number of databases, N . As the number of databases approaches infinity, the

capacity approaches E[L]
L1

. The reason why this asymptotic capacity is less than 1 is

that the download cost must remain constant at L1 (as the longest message achieves

a rate of 1) irrespective of the desired message. The semantic PIR capacity decreases

as the number of messages, K, increases. As K approaches infinity, the semantic

4It is worth noting that classical PIR schemes need to be designed to satisfy the privacy con-
straint irrespective of the prior distribution. Nevertheless, the performance of the classical PIR
schemes does not depend on the prior distribution as they consider uniform message sizes. This
is in contrast to the semantic PIR problem, where the heterogeneity of the message sizes can be
exploited to enhance the retrieval rate based on the properties of the prior distribution.
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PIR capacity is lower bounded by

C >
E[L]
L1

(
1− 1

N

)
(2.24)

2.4 Achievability Proof

In this section, we present two PIR schemes that achieve the semantic PIR capacity

given in Theorem 2.1. For each scheme, we first formally present the scheme, then

we verify its correctness and privacy, calculate its achievable rate, and give explicit

examples for illustration.

2.4.1 Achievable Semantic PIR Scheme 1

The scheme is based on the iterative structure of the achievable scheme in [3]. In

this scheme, the user downloads k-sums from the messages for k = 1, . . . , K. The

novel component in our scheme is the calculation of the number of stages needed to

be downloaded from each message based on the message sizes.

This achievable scheme is parameterized by (K,N, {Li}Ki=1). Based on these

parameters, the user prepares queries to retrieve the desired message privately. The

basic structure of our achievable scheme is as follows.

1. Message indexing: Order the messages in the descending order of mes-

sage sizes. That is, index 1 is assigned to the longest message and index

K is assigned to the shortest message (L1 ≥ L2 ≥ · · · ≥ LK). Calculate
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retrieval parameters5 υ1, υ2, . . . , υK corresponding to each message such that

υ1 ≥ υ2 ≥ · · · ≥ υK . The retrieval parameters denote the number of stages

that needs to be downloaded from each message. The explicit expressions for

these parameters are as follows:



υ1

υ2

υ3

...

υK


=

1

α



1
N

−N−1
N2 −N−1

N3 . . . −N−1
NK

0 1
N2 −N−1

N3 . . . −N−1
NK

0 0 1
N3 . . . −N−1

NK

...
...

...
...

...

0 0 0 . . . 1
NK





L1

L2

L3

...

LK


(2.25)

where α can be chosen as the gcd of the vector elements resulting from the

matrix multiplication in the right side of (2.25). This choice will become clear

in Section 2.4.1.1.

For the rest of this section, assume that the user wishes to download Wj.

2. Index preparation: The user permutes the indices of all messages inde-

pendently, uniformly, and privately from the databases. I.e., if the num-

ber of elements in a subpacket of Wi is ℓi, let Wi be denoted by, Wi =

(Wi(1), . . . ,Wi(ℓi)) for i ∈ {1, . . . , K}. For each message Wi, the user uni-

formly and randomly chooses a permutation of the ℓi indices out of the ℓi!

options, indicated by (γi(1), γi(2), . . . , γi(ℓi)), which is independent of all other

5This set of parameters determines the nonuniform subpacketization of a given semantic PIR
setting with arbitrary message lengths. It also controls the numbers of stages in the next steps
of the scheme (numbers of ℓ-sums, ℓ ∈ {1, . . . ,K}) such that the scheme is private and capacity
achieving.
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message permutations. Then, the permutation of the elements of Wi is given

by, Γ(Wi(1), . . . ,Wi(ℓi)) = (Wi(γi(1)), . . . ,Wi(γi(ℓi))). This process simply

shuffles the elements of message vectors uniformly and randomly irrespective

of the message requirement. All queries generated by the user in the scheme

are based on these permuted indices.

3. Singletons: Download υk different bits from messageWk from the nth database,

where n = 1, . . . , N and k = 1, . . . , K. Table 2.1 shows the singletons down-

loaded from the required message Wj and any other message Wi, i ̸= j. Note

that the permuted elements of Wj and Wi are denoted by a’s and b’s respec-

tively.

Message Database 1 Database 2 . . . Database N
Wj a1, . . . , aυj aυj+1, . . . , a2υj . . . a(N−1)υj+1, . . . , aNυj

Wi,i ̸= j b1, . . . , bυi bυi+1, . . . , b2υi . . . b(N−1)υi+1, . . . , bNυi

Table 2.1: Singleton queries.

4. Sums of two elements (2-sums): There are two types of blocks in this

step. The first block is the sums involving bits of the desired message, Wj,

and the other block is the sums that do not have any bits from Wj. In the first

block, download (N−1)min{υi, υj} bit-wise sums of Wi and Wj each from the

N databases for all i ̸= j. Each sum comprises an already downloaded Wi bit

from another database and a new bit ofWj. I.e., if υj > υi user sends queries of

the form (aNυj+1+bυi+1), . . . ,(aNυj+υi+b2υi), . . . , (aNυj+(N−2)υi+1+b(N−1)υi+1),

. . . , (aNυj+(N−1)υi + bNυi) to database 1. Note that each min{υi, υj} = υi side

information bit downloaded from each of the databases 2 to N in the previous
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step have been utilized exactly once in the 2-sums of database 1. Queries of

the same form are sent to all databases, which contain new bits of Wj and all

the already downloaded bits of Wi, i ̸= j from the rest of the databases. Each

side information bit from the previous step is utilized only once in a given

database.

If min{υi, υj} = υj user can randomly pick any υj side information bits out of

the υi bits from each database and follow the same steps as above, ensuring

that any given side information bit from a different database in the previous

step is utilized only once in a given database.

For the second block, for all possible message pairs (Wi1 ,Wi2) for i1 ̸= i2 ̸= j,

download (N − 1)min{υi1 , υi2} number of bit-wise sums of Wi1 and Wi2 each

from the N databases. Each sum comprises of fresh bits from Wi1 and Wi2 .

5. Repeat step 4 for all k-sums where k = 3, 4, . . . , K. For each k-sum, down-

load k bit-wise sum from k messages. If one of these messages is the desired

message, the remaining (k−1)-sum is derived from the previous (k−1)th round

from a different database. Otherwise, download (N − 1)k−1min{υi1 , . . . , υik}

sums from new bits of the undesired messages.

2.4.1.1 Rate of Semantic PIR Scheme 1

In this PIR scheme, the total number of downloaded bits remains constant for all

message requirements of the user in order to guarantee privacy. Therefore, E[D] in

(2.8) can be calculated by counting the total number of bits in the set of queries sent
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to the databases by the user to download any message. Within the set of queries,

there are
∑K

i=1 Nυi number of singletons and
∑K

i=t N(N − 1)t−1υi
(
i−1
t−1

)
number of

sums of t elements. Therefore,

E[D] =
K∑
i=1

Nυi +
K∑
t=2

K∑
i=t

N(N − 1)t−1υi

(
i− 1

t− 1

)
(2.26)

= N

[
K∑
i=1

υi +
K∑
i=2

i∑
t=2

(N − 1)t−1υi

(
i− 1

t− 1

)]
(2.27)

= N

[
K∑
i=1

υi +
K∑
i=2

υi

(
i−1∑
t=0

(N − 1)t
(
i− 1

t

)
− 1

)]
(2.28)

= N

[
K∑
i=1

υi +
K∑
i=2

υi
(
N i−1 − 1

)]
(2.29)

=
K∑
i=1

υiN
i (2.30)

In order to calculate E[L], assume that the desired message is Wj. There are

Nυj number of singletons of Wj in the set of queries sent to the databases to retrieve

Wj. The scheme can recover N(N − 1)t−1υj
(
j−1
t−1

)
+ N(N − 1)t−1

∑K
i=j+1 υi

(
i−2
t−2

)
number of Wj bits using the tth block of the scheme (sum of t elements) when t ≤ j,

where the first term in the sum corresponds to t-sums with the shortest message

being Wj and the second term corresponds to t-sums with the shortest message

being some other message (̸= Wj). When t > j this scheme is able to retrieve∑K
i=t N(N −1)t−1υi

(
i−2
t−2

)
number of Wj bits as there should be at least t− j number

of messages in the sum that are shorter than Lj. Therefore, the total number of
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useful bits of Wj retrieved, Uj, is given by,

Uj =Nυj +

j∑
t=2

(
N(N − 1)t−1υj

(
j − 1

t− 1

)
+

K∑
i=j+1

N(N − 1)t−1υi

(
i− 2

t− 2

))

+
K∑

t=j+1

K∑
i=t

N(N − 1)t−1υi

(
i− 2

t− 2

)
(2.31)

=Nυj

(
1 +

j∑
t=2

(N − 1)t−1

(
j − 1

t− 1

))
+

j∑
t=2

K∑
i=j+1

N(N − 1)t−1υi

(
i− 2

t− 2

)

+
K∑

t=j+1

K∑
i=t

N(N − 1)t−1υi

(
i− 2

t− 2

)
(2.32)

=Nυj

(
1 + (N − 1)

(
j − 1

1

)
+ (N − 1)2

(
j − 1

2

)
+ · · ·+ (N − 1)j−1

(
j − 1

j − 1

))
+Nυj+1

(
j∑

t=2

(N − 1)t−1

(
j − 1

t− 2

))
+Nυj+2

(
j∑

t=2

(N − 1)t−1

(
j

t− 2

))
+ . . .

+NυK

(
j∑

t=2

(N − 1)t−1

(
K − 2

t− 2

))
+Nυj+1(N − 1)j

(
j − 1

j − 1

)

+Nυj+2

(
(N−1)j

(
j

j−1

)
+(N−1)j+1

(
j

j

))
+. . .+NυK

(
(N−1)j

(
K−2

j−1

)
+(N − 1)j+1

(
K − 2

j

)
+ · · ·+ (N − 1)K−1

(
K − 2

K − 2

))
(2.33)

=Nυj(N − 1 + 1)j−1 +Nυj+1

(
(N − 1)

(
j − 1

0

)
+ (N − 1)2

(
j − 1

1

)
+ · · ·+ (N − 1)j

(
j − 1

j − 1

))
+Nυj+2

(
(N − 1)

(
j

0

)
+ (N − 1)2

(
j

1

)
+ . . .

+(N − 1)j+1

(
j

j

))
+ · · ·+Nυk

(
(N − 1)

(
K − 2

0

)
+ (N − 1)2

(
K − 2

1

)
+ · · ·+ (N − 1)K−1

(
K − 2

K − 2

))
(2.34)

=N jυj +N(N − 1)(N − 1 + 1)j−1υj+1 +N(N − 1)(N − 1 + 1)jυj+2 + . . .

+N(N − 1)(N − 1 + 1)K−2υK (2.35)

=N jυj + (N − 1)
K∑

i=j+1

N i−1υi (2.36)
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Thus, the scheme retrieves N jυj+(N−1)
∑K

i=j+1 N
i−1υi number of useful bits

of the required message at a time. Hence, we define subpacketization for message

Wj as Uj, where

Uj = N jυj + (N − 1)
K∑

i=j+1

N i−1υi, j = 1, . . . , K (2.37)

We then need the message sizes to be a common multiple of their own subpacketi-

zations,

Lj = αUj, j = 1, . . . , K (2.38)

We note that α should be the same for all j in (2.38) to guarantee privacy.

The requirements in (2.37) and (2.38) can be written succinctly as a matrix

equation,



L1

L2

...

LK


=α



N N(N − 1) . . . NK−1(N − 1)

0 N2 . . . NK−1(N − 1)

...
...

...
...

0 0 . . . NK





υ1

υ2

...

υK


(2.39)

Since L1, . . . , LK are parameters (inputs) to the scheme, the internal parameters
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υ1, . . . , υK can be calculated by inverting the matrix as,



υ1

υ2

υ3

...

υK


=

1

α



1
N

−N−1
N2 −N−1

N3 . . . −N−1
NK

0 1
N2 −N−1

N3 . . . −N−1
NK

0 0 1
N3 . . . −N−1

NK

...
...

...
...

...

0 0 0 . . . 1
NK





L1

L2

L3

...

LK


(2.40)

Here, α should be chosen to be the greatest common divisor (gcd) of the elements of

the vector resulting from multiplying the matrix and the vector on the right side of

(2.40). This allows the shortest subpacketization levels for all messages for increased

flexibility.

The total number of bits downloaded calculated in (2.30) and the number of

useful bits downloaded calculated in (2.36) are both within one subpacketization

level. This subpacketization level downloads are repeated α times to download the

entire file; see also (2.38). Thus, we calculate the achievable rate of this scheme as,

R =
E[L]
E[D]

(2.41)

=

∑K
i=1 piUi∑K
i=1 N

iυi
(2.42)

=
1
α

∑K
i=1 piLi∑K

i=1
1
α
N i(N−iLi −

∑K
j=i+1(N − 1)N−jLj)

(2.43)

=
E[L]∑K

i=1 Li − (N − 1)
∑K

i=1

∑K
j=i+1N

−jLjN i
(2.44)

=
E[L]∑K

i=1 Li − (N − 1)
(∑K

j=2 N
−j+1Lj +

∑K
j=3N

−j+2Lj + · · ·+N−1LK

) (2.45)
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=
E[L]

L1 + L2 (1− (N − 1)N−1) + · · ·+ LK (1− (N − 1)(N−(K−1) + · · ·+N−1))

(2.46)

=
E[L]

L1 +
L2

N
+ L3

N2 + · · ·+ LK

NK−1

(2.47)

=

(
L1

E[L]
+

1

N

L2

E[L]
+ · · ·+ 1

NK−1

LK

E[L]

)−1

(2.48)

where (2.43) follows by applying (2.38) in the numerator and writing υi in terms of

Lj using (2.40) in the denominator. This concludes the derivation of the achievable

rate.

Remark 2.7 We assume that message Li has a length which is a multiple of N i

to aid smooth computation of υ1, . . . , υK. This is automatically satisfied by the

assumption of all message lengths being multiples of NK in [3].

2.4.1.2 Proof of Privacy

Since L1 ≥ L2 ≥ · · · ≥ LK we have υ1 ≥ υ2 ≥ · · · ≥ υK . A given database receives

a set of queries for υ1, υ2, . . . , υK numbers of bits of W1,W2, . . . ,WK , respectively,

as singletons and (N − 1)t−1min{υi1 , . . . , υit} bit-wise t-sums of Wi1 , . . . ,Wit , for

t = 2, . . . , K. According to the query generation procedure, no bit of any mes-

sage is requested from a given database more than once as a singleton or as an

element of a sum. Any given database receives the exact same set of queries in

type, irrespective of the desired message of the user. Therefore, two sets of queries

corresponding to two different message requirements received by a given database
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can only differ from the permutations used in each message in the index prepa-

ration step. Let (w1,w2, . . . ,wK) be a sample realization of permutations used

in the query generation process when the message requirement θ is Wk, where

wi = Γi(Wi(1),Wi(2), . . . ,Wi(ℓi)) for i ∈ {1, . . . , K} with permutation functions

Γi that independently and randomly permute the ℓi elements of Wi, where ℓi is the

subpacketization of Wi. Therefore, the probability of sending the set of queries q for

a given message requirement θ = k is equal to the probability of choosing the corre-

sponding sample realization of permutations of the message bits when downloading

Wk. This probability is calculated by,

P (Qn = q|θ = k) =P (permutation = (w1,w2, . . . ,wK)|θ = k) (2.49)

=
K∏
i=1

P (permutation of Wi = wi|θ = k) (2.50)

=
K∏
i=1

(
1

ℓi

)(
1

ℓi − 1

)
. . .

(
1

ℓi − ℓi + 1

)
(2.51)

for n ∈ {1, . . . , N}, where Qn is the random variable representing the set of queries

sent to database n. This yields,

P (Qn = q|θ = i) = P (Qn = q|θ = j), i, j ∈ {1, . . . , K}, n ∈ {1, . . . , N} (2.52)

as P (Qn = q|θ = k) is independent of k by the above calculation. The a posteriori

probability of the user needing Wi given a realization of the set of queries received
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by any given database is given by,

P (θ = i|Q = q) =
P (Q = q|θ = i)P (θ = i)∑K
j=1 P (Q = q|θ = j)P (θ = j)

(2.53)

Using (2.52),

P (θ = i|Q = q) =
P (Q = q|θ = i)P (θ = i)∑K
j=1 P (Q = q|θ = i)P (θ = j)

(2.54)

= P (θ = i) (2.55)

which ensures that this scheme is private, since it implies that θ and Q are indepen-

dent.

2.4.2 Examples of Semantic PIR Scheme 1

2.4.2.1 Example 1: N = 2, K = 2, L1 = 1024 bits, L2 = 256 bits

First, the message indices are independently and uniformly permuted. The first and

the second messages after permutations are denoted by bits ai and bi, respectively.

• Message indexing and calculation of υi: Messages are indexed such that the

first message is the longer one, and the second message is the shorter one.

Below, we will give query tables for downloading W1 and W2. We calculate υ1
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and υ2 as,

υ1
υ2

 =
1

α

1
2

−1
4

0 1
4


L1

L2

 (2.56)

where α =gcd{L1

2
− L2

4
, L2

4
}. By direct substitution, we get,

υ1
υ2

 =
1

α

448
64

 (2.57)

Hence, α =gcd{448, 64} = 64. Therefore, υ1 = 7 and υ2 = 1. The sub-

packetization levels of W1 and W2 are U1 = 1024
64

= 16 and U2 = 256
64

= 4,

respectively.

• Singletons: Download υ1 = 7 bits of W1 and υ2 = 1 bit of W2 each from the

two databases.

• Sums of twos: Download (N − 1)υ2 = 1 sum of W1 and W2 bits each from the

two databases. Note that if W1 is the desired message, the singletons of W2

are used as a side information with new W1 bits in the sum and vice versa.

Tables 2.2 and 2.3 show the queries sent to the databases to retrieve W1 and

W2, respectively.

Database 1 Database 2
a1, . . . , a7 a8, . . . , a14

b1 b2
a15 + b2 a16 + b1

Table 2.2: The query table for the retrieval of W1.
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Database 1 Database 2
a1, . . . , a7 a8, . . . , a14

b1 b2
a8 + b3 a1 + b4

Table 2.3: The query table for the retrieval of W2.

The rate achieved by this scheme when downloading W1 is R1 =
16
18

= 8
9
, and

the rate achieved by this scheme when downloading W2 is R2 =
4
18

= 2
9
. Therefore,

the average rate R achieved by the scheme is,

R =
E[L]
E[D]

=
p1L1 + p2L2

p1D + p2D
= p1

L1

D
+ p2

L2

D
= p1R1 + p2R2 =

8

9
p1 +

2

9
p2 (2.58)

This matches the capacity expression in Theorem 2.1 as,

C =

(
L1

E[L]
+

1

N

L2

E[L]

)−1

(2.59)

=(1024p1 + 256p2)

(
1024 +

256

2

)−1

(2.60)

=
8

9
p1 +

2

9
p2 (2.61)

The classic PIR capacity for this case with equal priors is,

C =

(
1 +

1

N

)−1

=

(
1 +

1

2

)−1

=
2

3
(2.62)

The semantic PIR capacity in (2.61) exceeds the classical PIR capacity in (2.62)

when

8

9
p1 +

2

9
p2 >

2

3
(2.63)
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which is when p1 > 2
3
. Consequently, when p1 > 2

3
, there is a strict gain from

exploiting message semantics for PIR, in this case.

Remark 2.8 Although it is apparent in this example that the rate of semantic PIR

is lower than the capacity of classical PIR for p1 <
2
3
, as discussed in Remark 2.3 and

Remark 2.4, there is a subtle aspect that should be addressed for a fair comparison.

To see this, let us take the case of uniform a priori distribution, i.e., p1 = p2 = 1
2
,

i.e., a case where p1 < 2
3
. In this case, the semantic PIR capacity using (2.61)

is 5
9
. In order to properly use the classical PIR scheme in [3], messages need to

be of equal size. One way to do this is to zero-pad the shorter message to be of

length 1024 bits as well. In this case, the actual retrieval rate is not 2
3
as the actual

message size of W2 is much less. Specifically, the total download for this scheme is

D = L
R
= 1024

2/3
= 1536. The actual retrieval rate for the classical PIR problem is,

Rach =
1/2× 1024 + 1/2× 256

1536
=

5

12
<

5

9
<

6

9
(2.64)

Thus, the actual achievable rate Rach is 5
12
, which is less than the semantic PIR

capacity 5
9
, which is less than the classical PIR capacity 6

9
. Thus, even though the

semantic PIR capacity is less than the classical PIR capacity, the semantic PIR

capacity (which is achievable) is larger than the classical PIR rate with zero-padding

as proved in Corollary 2.2.
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2.4.2.2 Example 2: N = 4, K = 3, L1 = 8192 bits, L2 = 2048 bits,

L3 = 512 bits

First, the message indices are independently and uniformly permuted. The first,

second, and third messages after permutations are denoted by bits ai, bi and ci,

respectively.

• Message indexing and calculation of υi: Messages are indexed such that the

first message is the longest one, and the third message is the shortest one.

Below, we will give the query table for downloading W2, i.e., the medium-

length message. The bits of W2 are represented by bi. We calculate υ1, υ2 and

υ3 as,


υ1

υ2

υ3

 =
1

α


1
4

− 3
16

− 3
64

0 1
16

− 3
64

0 0 1
64




L1

L2

L3

 (2.65)

where α =gcd{L1

4
− 3L2

16
− 3L3

64
, L2

16
− 3L3

64
, L3

64
}. By direct substitution, we get,


υ1

υ2

υ3

 =
1

α


1640

104

8

 (2.66)

Hence, α =gcd{1640, 104, 8} = 8. Therefore, υ1 = 205, υ2 = 13 and υ3 = 1.

The subpacketization levels of W1, W2 and W3 are U1 = 8192
8

= 1024, U2 =
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2048
8

= 256 and U3 =
512
8

= 64, respectively.

• Singletons: Download υ1 = 205 bits of W1, υ2 = 13 bits of W2 and υ3 = 1 bits

of W3 each from the four databases.

• Sums of twos: Download (N−1)υ2 = 39 sums ofW1 andW2 and (N−1)υ3 = 3

sums of W2 and W3 bits each from the four databases. Use the downloaded

singletons from W1, W3 as side information with new W2 bits. Download

(N −1)υ3 = 3 bit-wise sums of W1 and W3 each from the four databases using

fresh bits of both messages.

• Sums of threes: Download (N − 1)2υ3 = 9 bit-wise sums involving all three

messages from each database utilizing the downloaded sums of W1 and W3

from the other databases in the previous step as side information.

Table 2.4 shows the queries sent to the databases to retrieve W2.

The rate achieved by this scheme when downloading W2 is R2 = 256
1092

= 64
273

,

and the rates achieved when downloading W1 and W3 are R1 = 1024
1092

= 256
273

and

R3 = 64
1092

= 16
273

, respectively. Therefore, the average rate R achieved by this

scheme is,

R =
E[L]
E[D]

=
p1L1 + p2L2 + p3L3

p1D + p2D + p3D
(2.67)

=p1
L1

D
+ p2

L2

D
+ p3

L3

D
= p1R1 + p2R2 + p3R3 (2.68)

=
256

273
p1 +

64

273
p2 +

16

273
p3 (2.69)
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Database 1 Database 2 Database 3 Database 4
a1, . . . , a205 a206, . . . , a410 a411, . . . , a615 a616, . . . , a820
b1, . . . , b13 b14, . . . , b26 b27, . . . , b39 b40, . . . , b52

c1 c2 c3 c4

a206 + b53 a411 + b92 a616 + b131 a1 + b170
...

...
...

...
a218 + b65 a423 + b104 a628 + b143 a13 + b182
a411 + b66 a616 + b105 a1 + b144 a206 + b183

...
...

...
...

a423 + b78 a628 + b117 a13 + b156 a218 + b195
a616 + b79 a1 + b118 a206 + b157 a411 + b196

...
...

...
...

a628 + b91 a13 + b130 a218 + b169 a423 + b208
b209 + c2 b212 + c3 b215 + c4 b218 + c1
b210 + c3 b213 + c4 b216 + c1 b219 + c2
b211 + c4 b214 + c1 b217 + c2 b220 + c3
a821 + c5 a824 + c8 a827 + c11 a830 + c14
a822 + c6 a825 + c9 a828 + c12 a831 + c15
a823 + c7 a826 + c10 a829 + c13 a832 + c16

a824 + b221 + c8 a827 + b230 + c11 a830 + b239 + c14 a821 + b248 + c5
a825 + b222 + c9 a828 + b231 + c12 a831 + b240 + c15 a822 + b249 + c6
a826 + b223 + c10 a829 + b232 + c13 a832 + b241 + c16 a823 + b250 + c7
a827 + b224 + c11 a830 + b233 + c14 a821 + b242 + c5 a824 + b251 + c8
a828 + b225 + c12 a831 + b234 + c15 a822 + b243 + c6 a825 + b252 + c9
a829 + b226 + c13 a832 + b235 + c16 a823 + b244 + c7 a826 + b253 + c10
a830 + b227 + c14 a821 + b236 + c5 a824 + b245 + c8 a827 + b254 + c11
a831 + b228 + c15 a822 + b237 + c6 a825 + b246 + c9 a828 + b255 + c12
a832 + b229 + c16 a823 + b238 + c7 a826 + b247 + c10 a829 + b256 + c13

Table 2.4: The query table for the retrieval of W2.

This matches the capacity expression in Theorem 2.1 as,

C =

(
L1

E[L]
+

1

N

L2

E[L]
+

1

N2

L3

E[L]

)−1

(2.70)

= (8192p1 + 2048p2 + 512p3)

(
8192 +

2048

4
+

512

42

)−1

(2.71)

=
256

273
p1 +

64

273
p2 +

16

273
p3 (2.72)
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The classical PIR capacity for this case with equal priors is,

C =

(
1 +

1

N
+

1

N2

)−1

=

(
1 +

1

4
+

1

42

)−1

=
16

21
(2.73)

The semantic PIR capacity in (2.72) exceeds the classical PIR capacity in (2.73)

when

256

273
p1 +

64

273
p2 +

16

273
p3 >

16

21
(2.74)

which is equivalent to

p1 +
1

5
p2 >

4

5
(2.75)

2.4.3 Alternative Description of Semantic PIR Scheme 1

In this section, we present an alternative description to the semantic PIR scheme

presented in Section 2.4.1. The two descriptions are identical in terms of the queries

generated considering the retrieval of the entire required message (all subpackets).

However, the two descriptions differ in subpacketization and the scheme used within

a subpacket.

Consider the general semantic PIR setting with K messages with arbitrary

message lengths L1 ≥ L2 ≥ . . . ≥ LK and arbitrary probabilities of retrieval pi, i ∈

{1, . . . , K}. The alternative description requires the messages to be partitioned in

to K segments, such that the first segment contains the first LK bits of all messages,
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the second segment contains the next LK−1−LK bits of messages W1, . . . ,WK−1 and

the ℓth segment for ℓ ∈ {3, . . . , K} contains LK−ℓ+1−LK−ℓ+2 bits ofW1, . . . ,WK−ℓ+1

that follow the bits in the (ℓ− 1)st segment.

Apply the classical PIR scheme in [3] to the 1) first segment with K messages

with a subpacketization of NK , 2) second segment with K − 1 messages with a

subpacketization of NK−1 and 3) ℓth segment with K − ℓ + 1 messages with a

subpacketization of NK−ℓ+1, for ℓ ∈ {3, . . . , K}. The above three steps need to be

followed irrespective of the message requirement for privacy. Note that the schemes

used in each segment are private [3], and the fact that the K schemes corresponding

to the K segments are always used, even though the required message may not be

within a given segment, guarantees privacy. The achievable rate of this scheme is

calculated as follows. The fixed download cost is given by,

D =
L

R
(2.76)

=
LK(

1 + 1
N
+ · · ·+ 1

NK−1

)−1 +
LK−1 − LK(

1 + 1
N
+ · · ·+ 1

NK−2

)−1 + . . .+
L2 − L3(
1 + 1

N

)−1

+
L1 − L2

1
(2.77)

=LK
1

NK−1
+ LK−1

1

NK−2
+ . . .+ L2

1

N
+ L1 (2.78)

Therefore, the achievable rate is,

R =
E[L]
D

(2.79)

=
E[L]

LK
1

NK−1 + LK−1
1

NK−2 + . . .+ L2
1
N
+ L1

(2.80)

49



W1

W2

WK

fixed nonuniform
subpacketization

apply

scheme
on each

same

W1

W2

WK

classical PIR
with K files

classical PIR
with two files

classical PIR
with one file

irregular uniform subpacketization

subpacket

semantic PIR scheme 1:

alternative description:

Figure 2.1: Comparison of the two descriptions of semantic PIR scheme 1.

which is the capacity of semantic PIR in (2.9). Note that the description in Sec-

tion 2.4.1 provides a systematic way of calculating the nonuniform subpacketization

based on the given set of message lengths. The scheme is then described on a single

subpacket, which is repeatedly applied throughout the retrieval process in the same

way. On the other hand, the alternative description has different uniform subpacke-

tizations for different segments. Therefore, the scheme needs to be specified for each

segement separately. This is illustrated in Fig. 2.1.

2.4.4 Achievable PIR Scheme 2

The scheme is stochastic in the sense that the user has a list of different possible

query structures and the user picks one of these structures randomly. This is unlike
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the previous scheme where the structure is deterministic and the randomness comes

from the random permutations of indices.

This scheme is developed for arbitrary number of databases and arbitrary mes-

sage lengths that are multiples of N − 1; the deterministic scheme in Sections 2.4.1

and 2.4.2 assumed message lengths that are multiples of NK . The scheme can be

viewed as an extension of the achievable scheme in [49] to work with arbitrary num-

ber of databases and heterogeneous message sizes. Our scheme shares similarities

with [52]. However, our scheme differs in that it introduces database symmetry to

the scheme. The basic structure of the achievable scheme is as follows.

1. Message indexing: Index all messages such that L1 ≥ L2 ≥ · · · ≥ LK .

Divide all messages into N − 1 blocks. Let Wm
i be the mth block of Wi.

For the rest of this section, assume that the user requires to download Wj.

2. Single blocks: Use N − 1 out of the N databases to download each block of

Wj and download nothing from the remaining database. Consider all N cyclic

shifts of the blocks around the databases to obtain N options for different

queries that can be used to download Wj. These N queries require the user

to download Lj bits in total, resulting in no side information.

3. Sums of two blocks/single blocks: Choose one database to download W 1
i

where i ̸= j and download Wm
j +W 1

i for m = 1, . . . , N −1 from the remaining

N − 1 databases. Create N query options in total by considering all N cyclic

shifts of the blocks, around the databases. Repeat the procedure for W ℓ
i where
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ℓ = 2, . . . , N − 1. There are a total of N(N − 1)
(
K−1
1

)
query options of this

type.

4. Sums of three blocks/sums of two blocks: Choose one database to

download W 1
i1
+ W 1

i2
where i1, i2 ̸= j and download Wm

j + W 1
i1
+ W 1

i2
for

m = 1, . . . , N − 1 from the remaining N − 1 databases. Create N query

options in total by considering all N cyclic shifts of the blocks around the

databases. Repeat the procedure for W ℓ1
i1
+W ℓ2

i2
where ℓ1, ℓ2 ∈ {2, . . . , N − 1}.

There are N(N − 1)2
(
K−1
2

)
query options of this type.

5. Repeat step 4 up to sums of K blocks/sums of K − 1 blocks.

The above steps describe all the NK query options, out of which the user

selects one with equal probability to retrieve the required message. Note that due

to the cyclic shifts of all queries, this scheme has database symmetry, and the exact

same set of queries constitutes the possible set of queries received by any given

database, irrespective of the desired message of the user.

Once the user chooses a query to be sent to the N databases, out of the

NK options, each database might have to compute sums of messages with different

lengths. All messages except the longest in the sum are zero-padded to the left to

have equal-length blocks. Then, bit-wise sums are calculated.

Once the answers are received from the databases, the user might need to

subtract messages of different lengths to recover the required message. In this case,

according to the design of the scheme, the subtrahend will always be shorter than

or equal to the length of the minuend. Hence, the subtraction operation in this
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context will not be any different than the usual operation.

Remark 2.9 Each query is chosen with probability 1
NK as there are

∑K
t=0(N −

1)t
(
K
t

)
= NK number of query options in total. Each element of the sum corresponds

to the number of t-sums within the set of all possible queries that can be sent to a

given database.

2.4.4.1 Rate of Semantic PIR Scheme 2

In this PIR scheme, each query option is utilized by the user with a probability of

1
NK to download any desired message. When analyzing all possible queries that can

be sent to all databases, we note that they have the same entries (in a shuffled way)

irrespective of the desired message. Since all query entries are equally probable to

be sent to the databases, we calculate E[D] by,

E[D] =
K∑
i=1

pi
1

NK

(
K∑
t=1

K−t+1∑
j=1

Lj(N − 1)t−1

(
K − j

t− 1

))
N (2.81)

=
1

NK−1

K∑
j=1

K−j+1∑
t=1

Lj(N − 1)t−1

(
K − j

t− 1

)
(2.82)

=
1

NK−1

K∑
j=1

Lj

K−j∑
t=0

(N − 1)t
(
K − j

t

)
(2.83)

=
1

NK−1

K∑
j=1

LjN
K−j (2.84)

= L1 +
L2

N
+

L3

N2
+ · · ·+ LK

NK−1
(2.85)

where the second and third sums in (2.81) correspond to different t-sums and all

possible longest messages within the t-sum, respectively. The pi terms are ignored
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in (2.82) as the expected number of downloads per query set does not depend on

the desired message.

For a given desired message, the number of downloaded useful bits is the

length of the desired message (ignoring zero-padding, as it is ignored by the user

upon receiving the answer strings). This remains constant regardless of the query

set utilized by the user. Hence,

E[L] =
K∑
i=1

piLi (2.86)

Thus, combining (2.85) and (2.86), the achievable rate of this scheme becomes,

R =
E[L]
E[D]

(2.87)

=
E[L]

L1 +
L2

N
+ L3

N2 · · ·+ LK

NK−1

(2.88)

=

(
L1

E[L]
+

1

N

L2

E[L]
+ · · ·+ 1

NK−1

LK

E[L]

)−1

(2.89)

This concludes the derivation of the achievable rate.

2.4.4.2 Proof of Privacy

The scheme is constructed in such a way that any given database always receives

a query out of the set of queries given by, {ϕ, {W ℓ
i , i ∈ {1, . . . , K}, ℓ ∈ {1, . . . , N −

1}}, {W ℓ1
i1

+ . . . + W ℓt
it
, for i1, . . . , it ∈ {1, . . . , K}, ℓ1, . . . , ℓt ∈ {1, . . . , N − 1}, t ∈

{2, . . . , K}}} with equal probability 1
NK irrespective of the message requirement.

Therefore, from a given database’s perspective, the a posteriori probability of the
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user needing message j, upon receiving a query q from a user can be calculated by,

P (θ = i|Q = q) =
P (Q = q|θ = i)P (θ = i)∑K
j=1 P (Q = q|θ = j)P (θ = j)

(2.90)

=
1

NKP (θ = i)∑K
j=1

1
NKP (θ = j)

(2.91)

= P (θ = i) (2.92)

which ensures that this scheme is private, since it implies that θ and Q are indepen-

dent.

2.4.5 Example of Semantic PIR Scheme 2

2.4.5.1 Example 3: N = 3, K = 3, L1 = 400 bits, L2 = 300 bits and

L3 = 100 bits

Table 2.5 shows the query options that the user may use with probability 1
27
, to

download W1. Whenever a set of queries for the three databases is chosen with

probability 1
27
, the required message is retrieved by subtracting the smaller sum

from the larger sums, guaranteeing correctness.

The queries in the first block have zero side information, and retrieve the

N − 1 = 2 parts of W1 using N − 1 different databases. The second block uses W 1
2

as side information, and retrieve the two parts of W1 (in terms of a sum of itself

and side information) using the other two databases. The same procedure is carried

out in blocks 3, 4 and 5, with W 1
2 replaced by W 2

2 , W
1
3 and W 2

3 . Last four blocks
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of Table 2.5 use W i
2 + W j

3 for j ∈ 1, 2 as side information and use sums of three

elements (W k
1 +W i

2 +W j
3 for k = 1, 2) to retrieve the two parts of W1.

Probability Database 1 Database 2 Database 3
1
27

W 1
1 W 2

1 ϕ
1
27

W 2
1 ϕ W 1

1
1
27

ϕ W 1
1 W 2

1
1
27

W 1
1 +W 1

2 W 2
1 +W 1

2 W 1
2

1
27

W 2
1 +W 1

2 W 1
2 W 1

1 +W 1
2

1
27

W 1
2 W 1

1 +W 1
2 W 2

1 +W 1
2

1
27

W 1
1 +W 2

2 W 2
1 +W 2

2 W 2
2

1
27

W 2
1 +W 2

2 W 2
2 W 1

1 +W 2
2

1
27

W 2
2 W 1

1 +W 2
2 W 2

1 +W 2
2

1
27

W 1
1 +W 1

3 W 2
1 +W 1

3 W 1
3

1
27

W 2
1 +W 1

3 W 1
3 W 1

1 +W 1
3

1
27

W 1
3 W 1

1 +W 1
3 W 2

1 +W 1
3

1
27

W 1
1 +W 2

3 W 2
1 +W 2

3 W 2
3

1
27

W 2
1 +W 2

3 W 2
3 W 1

1 +W 2
3

1
27

W 2
3 W 1

1 +W 2
3 W 2

1 +W 2
3

1
27

W 1
1 +W 1

2 +W 1
3 W 2

1 +W 1
2 +W 1

3 W 1
2 +W 1

3
1
27

W 2
1 +W 1

2 +W 1
3 W 1

2 +W 1
3 W 1

1 +W 1
2 +W 1

3
1
27

W 1
2 +W 1

3 W 1
1 +W 1

2 +W 1
3 W 2

1 +W 1
2 +W 1

3
1
27

W 1
1 +W 2

2 +W 1
3 W 2

1 +W 2
2 +W 1

3 W 2
2 +W 1

3
1
27

W 2
1 +W 2

2 +W 1
3 W 2

2 +W 1
3 W 1

1 +W 2
2 +W 1

3
1
27

W 2
2 +W 1

3 W 1
1 +W 2

2 +W 1
3 W 2

1 +W 2
2 +W 1

3
1
27

W 1
1 +W 1

2 +W 2
3 W 2

1 +W 1
2 +W 2

3 W 1
2 +W 2

3
1
27

W 2
1 +W 1

2 +W 2
3 W 1

2 +W 2
3 W 1

1 +W 1
2 +W 2

3
1
27

W 1
2 +W 2

3 W 1
1 +W 1

2 +W 2
3 W 2

1 +W 1
2 +W 2

3
1
27

W 1
1 +W 2

2 +W 2
3 W 2

1 +W 2
2 +W 2

3 W 2
2 +W 2

3
1
27

W 2
1 +W 2

2 +W 2
3 W 2

2 +W 2
3 W 1

1 +W 2
2 +W 2

3
1
27

W 2
2 +W 2

3 W 1
1 +W 2

2 +W 2
3 W 2

1 +W 2
2 +W 2

3

Table 2.5: The query table for the retrieval of W1.

The rate achieved by this scheme when retrieving W1 is,

R1 =
L1

1
27

(
3L1 + 18(L1

2
× 2 + L2

2
) + 6(L1

2
× 2 + L3

2
)
) (2.93)

=
L1

1
27
(27L1 + 9L2 + 3L3)

(2.94)
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=
400

1
27
(27× 400 + 9× 300 + 3× 100)

=
36

46
(2.95)

The rate achieved by this scheme when retrieving W2 is,

R2 =
L2

1
27

(
3L2 + 18× 3× L1

2
+ 6× (L2 +

L3

2
)
) (2.96)

=
L2

1
27
(27L1 + 9L2 + 3L3)

(2.97)

=
300

1
27
(27× 400 + 9× 300 + 3× 100)

=
27

46
(2.98)

The rate achieved by this scheme when retrieving W3 is,

R3 =
L3

1
27

(
3L3 + 18× 3× L1

2
+ 6× 3× L2

2

) (2.99)

=
L3

1
27
(27L1 + 9L2 + 3L3)

(2.100)

=
100

1
27
(27× 400 + 9× 300 + 3× 100)

=
9

46
(2.101)

The overall message retrieval rate for this example is,

R =
E[L]
E[D]

= p1
L1

D
+ p2

L2

D
+ p3

L3

D
(2.102)

=p1R1 + p2R2 + p3R3 =
36

46
p1 +

27

46
p2 +

9

46
p3 (2.103)

This matches the semantic PIR capacity expression in Theorem 2.1,

C =

(
L1

E[L]
+

1

N

L2

E[L]
+

1

N2

L3

E[L]

)−1

(2.104)
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=(400p1 + 300p2 + 100p3)

(
400 +

300

3
+

100

9

)−1

(2.105)

=
36

46
p1 +

27

46
p2 +

9

46
p3 (2.106)

The classical PIR capacity for this case with equal priors is,

C =

(
1 +

1

N
+

1

N2

)−1

=

(
1 +

1

3
+

1

9

)−1

=
9

13
(2.107)

The semantic PIR capacity in (2.106) exceeds the classical PIR capacity in (2.107)

when

36

46
p1 +

27

46
p2 +

9

46
p3 >

9

13
(2.108)

which is equivalent to

p1 +
2

3
p2 >

11

13
(2.109)

Remark 2.10 We note again that the rate calculation presented here for the se-

mantic PIR capacity takes into consideration the zero-padding needed to be added

to the shorter message block in order to perform bit-wise message addition for any

query realization. The classical PIR capacity expression in (2.107) assumes that all

messages are of equal size and hence the extra zero-padding is not reflected in that

expression. Hence, the actual rate of classical PIR scheme is indeed less than the

reported PIR capacity if the messages are of unequal size.

58



Remark 2.11 The second scheme presented above is an extension to more than two

databases of the path-based scheme presented in [49]. It is also similar to the scheme

provided in [52], except for the fact that the above scheme has database symmetry

as opposed to the scheme presented in [52].

2.5 Converse Proof

In this section, we present the converse proof for Theorem 2.1. This proof is a

slight modification of the converse proof presented in [3]. The central intuition of

our proof is the fact that the expected length of the answer string generated by a

given database should remain the same, irrespective of the identity of the desired

message as a consequence of the privacy constraint. The major difference of our

proof compared to [3] is the handling of the non-equal message sizes.

We begin the proof of Theorem 2.1 by the definition of message retrieval rate,

R =
E[L]
E[D]

(2.110)

We choose some permutation {i1, . . . , iK} as an arbitrary order of the messages.

The denominator of (2.110) can be expanded as follows,

E[D] =
K∑
i=1

pi(H(A
[i]
1 ) + · · ·+H(A

[i]
N)) (2.111)

= H(A
[i1]
1 ) + · · ·+H(A

[i1]
N ) (2.112)
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Following the same steps in the converse proof of [3] E[D] can be lower bounded as,

E[D] ≥ Li1 +H(A[i2]
n |Q[i2]

n ,Wi1) n = 1, . . . , N (2.113)

By summing all N inequalities corresponding to (2.113) and repeating the previous

steps for Wi2 (with conditioning on Wi1) leads to,

NE[D] ≥ NLi1 + Li2+H(A[i3]
n |Q[i3]

n ,Wi1 ,Wi2) (2.114)

for n = 1, . . . , N . By summing the corresponding inequalities and continuing with

the same procedure for Wi3 , . . . ,WiK yields,

NK−1E[D] ≥ NK−1Li1 +NK−2Li2 + · · ·+NLiK−1

+ I(WiK ;A
[iK ]
1 , . . . , A

[iK ]
N |Q[iK ]

1 , . . . , Q
[iK ]
N ,Wi1 , . . . ,WiK−1

) (2.115)

and therefore, we have,

E[D] ≥ Li1 +
1

N
Li2 + · · ·+ 1

NK−2
LiK−1

+
1

NK−1
LiK (2.116)

which further gives,

R ≤
(

Li1

E[L]
+

1

N

Li2

E[L]
+ · · ·+ 1

NK−1

LiK

E[L]

)−1

(2.117)

The upper bound in (2.117) holds for any permutation {i1, . . . , iK}, hence, the
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tightest upper bound can be obtained by minimizing over all permutations6. Con-

sequently,

R ≤ min
{i1,...,iK}

(
Li1

E[L]
+

1

N

Li2

E[L]
+ · · ·+ 1

NK−1

LiK

E[L]

)−1

(2.118)

Since the messages are ordered such that L1 ≥ L2 ≥ · · · ≥ LK , the minimum upper

bound is attained at {i1, . . . , iK} = {1, . . . , K} as it gives the largest number to the

largest coefficient in the lower bound on the download cost. Thus,

R ≤
(

L1

E[L]
+

1

N

L2

E[L]
+ · · ·+ 1

NK−1

LK

E[L]

)−1

(2.119)

completing the converse proof.

2.6 Extensions of Semantic PIR

2.6.1 Semantic PIR from MDS-coded Databases

In this section, we present a complete characterization of the capacity of seman-

tic PIR from MDS-coded databases, along with an optimal scheme. The optimal

scheme is an extension of the scheme presented in [9]. We consider an (N,M) MDS

coded distributed storage system containing K independent messages. The mes-

sages are allowed to have different semantics (lengths and prior probabilities). Each

message Wi is represented as a matrix in FLi×M
q , where the elements of the matrix

are uniformly and randomly chosen from Fq. The generator matrix of the (N,M)

6Note that the order does not matter in the case of equal message lengths in [3].
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code is H = [h1, . . . , hN ], where hi ∈ FM
q , i ∈ [N ]. The MDS property implies that

any combination of up to M columns of H is linearly independent.

Let the jth row of Wi be denoted by W
[i]
j . Each database n, n ∈ [N ] stores

W
[i]
j hn for j ∈ [Li], i ∈ [K]. The objective is to download a required message

without revealing its index to any of the databases. In order to retrieve Wi, user

sends query Q
[i]
n to database n, n ∈ [N ] and receives the answer A

[i]
n which is a

deterministic function of the contents of the database and Q
[i]
n . The correctness

and privacy conditions are the same as (2.5) and (2.6) respectively, and the rate is

calculated by,

R =
ME[L]
E[D]

(2.120)

Theorem 2.2 gives the exact PIR capacity for the semantic PIR problem.

Theorem 2.2 The capacity of semantic PIR with (N,M) MDS-coded databases

with N databases, K messages, message sizes MLi (arranged as L1 ≥ L2 ≥ . . . ≥

LK) and prior probabilities pi is given by,

C =

(
L1

E[L]
+

(
M

N

)
L2

E[L]
+ · · ·+

(
M

N

)K−1
LK

E[L]

)−1

(2.121)

where E[L] =
∑K

i=1 piLi.

The achievable scheme is an extension to the first scheme presented in Sec-

tion 2.4.1. The steps of the achievable scheme are as follows. Assume that the user

requires to download Wj.
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1. Message indexing: Assign indices to messages in the descending order mes-

sage sizes, i.e., L1 ≥ L2 ≥ . . . ≥ LK . Permute the rows of all messages

randomly and independently, privately from the databases.

2. Single blocks: Using (2.129), download υj different coded bits of Wj from

each database. Download υi coded bits of Wi, i ̸= j from each database such

that the coded bits of M different databases correspond to the same row of Wi.

This is required to decode the rows of Wi that are used as side information.

Therefore, Nυi coded bits ofWi, i ̸= j are downloaded in this step, that belong

to Nυi
M

different rows of Wi.

3. Sums of two elements: There are two types of blocks in this step. The first

block is the sums involving bits of the desired message, Wj , and the other

block is the sums that do not have any bits from Wj. In the first block, make

use of the side information (singles corresponding to Wi, i ̸= j) downloaded

in the previous step. Consider a 2-sum corresponding to coded bits of Wj,

Wi, i ̸= j. Download
(
N
M

− 1
)
min{υi, υj} 2-sums of the form (W

[j]
rn +W

[i]
sn)hn

from database n, n ∈ [N ] where W
[j]
rn are new rows of Wj and W

[i]
sn are already

decoded rows of Wi in the previous step. Note that the set of M databases

that were used to decode W
[i]
sn in the previous step does not include database

n. The second block of 2-sums contains coded bits corresponding to Wi1 and

Wi2 , where i1 ̸= i2 ̸= j. Download
(
N
M

− 1
)
min{υi1 , υi2} 2-sums of the form

(W
[i1]
tn + W

[i2]
vn )hn from database n, n ∈ [N ] where W

[i1]
tn and W

[i2]
vn are new

rows of Wi1 and Wi2 . Note that coded bits corresponding to the same pair of
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rows (tn, vn) needs to be downloaded from M different databases in order to

correctly decode the side information W
[i1]
tn + W

[i2]
vn . Thus, the second block

contains N
(
N
M

− 1
)
min{υi1 , υi2} coded 2-sums corresponding to Wi1 and Wi2

belonging to
N( N

M
−1)min{υi1 ,υi2}

M
different rows.

4. Sums of ℓ elements: There are two types of blocks similar to sums of two.

The first block contains queries of the form (W
[j]
r + W

[i1]
r1 + . . . + W

[iℓ−1]
rℓ−1 )hn,

i1 ̸=, . . . , ̸= iℓ−1 ̸= j, where W
[j]
r is a new row of Wj and W

[i1]
r1 + . . . +W

[iℓ−1]
rℓ−1

is an already decoded (ℓ− 1)-sum from the previous step. For a given (ℓ− 1)-

tuple (i1, . . . , iℓ−1), download
(
N
M

− 1
)ℓ−1

υmin{j,i1,...,iℓ−1} such ℓ-sums from each

database. The second block contains queries of the form (W
[i1]
t1 +. . .+W

[iℓ]
tℓ

)hn,

i1 ̸= . . . ̸= iℓ ̸= j, where W
[i1]
t1 , . . . ,W

[iℓ]
tℓ

are new rows of Wi1 , . . . ,Wiℓ . Down-

load
(
N
M

− 1
)ℓ−1

υmin{i1,...,iℓ} such ℓ-sums from each database such that the

coded bits corresponding to a given ℓ-tuple of rows (r1, . . . , rℓ) is downloaded

from M different databases. A total of N
(
N
M

− 1
)ℓ−1

υmin{i1,...,iℓ} coded bits

of this form will be downloaded corresponding to
( N
M

−1)
ℓ−1

υmin{i1,...,iℓ}
M

different

ℓ-tuples of rows of Wi1 , . . . ,Wiℓ .

5. Repeat the process up to sums of K elements.

6. Query repetition: To decode each row of Wj, repeat the above process M

times, while shifting the queries that contain rows of Wj to its neighboring

database and by choosing new sets of rows of Wi, i ∈ {1, . . . , K}, i ̸= j in

each repetition. The M different linear combinations of each row of Wj allow

us to correctly decode Wj.
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The achievable rate of the above scheme is calculated as follows. First, note that the

download cost remains the same irrespective of the message requirement in order

to guarantee privacy. Therefore, the E[D] term in (2.120) is calculated by summing

the number of downloads in each step of the scheme. Within one round of queries,

there are
∑K

i=1Nυi singletons and N
(
N
M

− 1
)ℓ−1∑K

i=ℓ

(
i−1
ℓ−1

)
υi sums of ℓ-elements.

Therefore,

E[D]

M
=

K∑
i=1

Nυi+
K∑
ℓ=2

K∑
i=ℓ

N

(
N

M
− 1

)ℓ−1

υi

(
i− 1

ℓ− 1

)
(2.122)

= N

[
K∑
i=1

υi+
K∑
ℓ=2

υℓ

ℓ∑
i=2

(
N

M
−1

)i−1(
ℓ− 1

i− 1

)]
(2.123)

= M

[
N

M
υ1+

K∑
ℓ=2

υℓ

(
N

M

)ℓ
]
=M

K∑
ℓ=1

(
N

M

)ℓ

υℓ (2.124)

For the E[L] term in (2.120), we sum the number of useful bits downloaded in

each step of the scheme. Based on the scheme described above, Nυj rows of Wj are

retrieved as singletons, N
(
N
M

− 1
)ℓ−1 (j−1

ℓ−1

)
υj rows ofWj are retrieved as ℓ-sums with

Wj being the shortest message and N
(
N
M

− 1
)ℓ−1 (i−2

ℓ−2

)
υi rows of Wj are retrieved

as ℓ-sums with Wi, i ̸= j being the shortest message in the sum. Denoting Uj as

the total number of useful bits downloaded, the number of rows of Wj retrieved is

calculated by,

Uj

M
=Nυj +

j∑
ℓ=2

N

(
N

M
− 1

)ℓ−1(
j − 1

ℓ− 1

)
υj

+

j∑
ℓ=2

K∑
i=j+1

N

(
N

M
− 1

)ℓ−1(
i− 2

ℓ− 2

)
υi
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+
K∑

ℓ=j+1

K∑
i=ℓ

N

(
N

M
− 1

)ℓ−1(
i− 2

ℓ− 2

)
υi (2.125)

=Nυj

j−1∑
ℓ=0

γℓ

(
j − 1

ℓ

)
+Nυj+1γ

j−1∑
ℓ=0

γℓ

(
j − 1

ℓ

)

+Nυj+2γ

j∑
ℓ=0

γℓ

(
j

ℓ

)
+· · ·+NυKγ

K−2∑
ℓ=0

γℓ

(
K − 2

ℓ

)
(2.126)

=M

[(
N j

M j

)
υj + γ

K∑
i=j+1

(
N

M

)i−1

υi

]
(2.127)

where γ = N
M
−1. Thus, the subpacketization ofWj is defined as

Uj

M
, which represents

the number of rows of Wj, that can be retrieved by a single use of the scheme. Since

the total number of rows of Wj, j ∈ {1, . . . , K} have to be a common multiple of

their own subpacketizations,

Lj = α
Uj

M
, j ∈ {1, . . . , K} (2.128)

for some α ∈ N. Solving (2.127) and (2.128) for υ1, . . . , υK gives,



υ1

υ2

...

υK


=

1

Mα



M
N

−
(
M
N

)2
γ . . . −

(
M
N

)K
γ

0
(
M
N

)2
. . . −

(
M
N

)K
γ

...
...

...
...

0 0 . . .
(
M
N

)K





L1

L2

...

LK


(2.129)

In order for the values of υi, i ∈ {1, . . . , K} to be integers, this scheme requires

each Li to be a multiple of N i. Here, α is the greatest common divisor (gcd) of

the elements of the vector resulting from multiplying the matrix and the vector on
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the right side of (2.129). This allows the shortest subpacketization levels for all

messages.

The total and useful numbers of bits downloaded (in (2.124) and (2.127),

respectively) are both within one subpacketization level. These downloads are re-

peated α times to download the entire message. Thus, the achievable rate is given

by,

R =
ME[L]
E[D]

=
M
∑K

i=1 piLi

αM2
∑K

i=1
N i

M iυi
(2.130)

=
E[L]

αM 1
Mα

∑K
i=1

N i

M i

[(
M i

N i

)
Li−

(
N
M
−1
)∑K

t=i+1

(
Mt

Nt

)
Lt

] (2.131)

=
E[L]∑K

i=1

[
Li −

(
N
M

− 1
)∑K

t=i+1

(
Mt−i

Nt−i

)
Lt

] (2.132)

=
E[L]

L1 + L2

(
M
N

)
+
∑K

i=3 Li

[
1−

(
1− M i−1

N i−1

)] (2.133)

=

(
L1

E[L]
+

(
M

N

)
L2

E[L]
+· · ·+

(
M

N

)K−1
LK

E[L]

)−1

(2.134)

A given database always receives queries of the same type (i.e.,
(
N
M

− 1
)ℓ−1

υmin{i1,...,iℓ},

∀{i1, . . . , iℓ} ⊂ [K], ℓ-sums for ℓ ∈ {1, . . . , K}) irrespective of the message require-

ment. According to the query generation procedure, no bit of any message is re-

quested from a given database more than once as a singleton or as an element of

a sum. Therefore, a proof similar to what is presented in Section 2.4.1.2 is used to

show that this scheme is private.

The above scheme can be alternatively described using the same ideas pre-

sented in Section 2.4.3. The alternative description is as follows. Database n,
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n ∈ {1, . . . , N} contains coded bits corresponding to each row of Wi, i ∈ {1, . . . , K}

given by W
[i]
r hn, r ∈ {1, . . . , Li}. Therefore, each database stores Li coded bits of

Wi, where L1 ≥ L2 ≥ . . . ≥ LK . Considering the first LK coded bits of all messages,

the classical MDS-coded PIR scheme in [9] is applied as the first step of the scheme.

Then, apply the classical coded PIR scheme using the next LK−1−LK coded bits of

messages W1 to WK−1. In general, in the ℓth step, the classical coded PIR scheme

needs to be applied on the LK−ℓ+1 − LK−ℓ+2 coded bits of W1 to WK−ℓ+1. The

complete scheme should be used irrespective of the message requirement.

The alternative description differs from the main description in subpacketi-

zation, and in the scheme used within a subpacket as explained in Section 2.4.3.

However, the two descriptions are equivalent when considering the entire retrieval

process (all subpackets). The rate achieved by the alternative scheme is given by,

R =E[L]/

(
LK

(
1 +

M

N
+ . . .+

MK−1

NK−1

)

+ (LK−1 − LK)

(
1 +

M

N
+ . . .+

MK−2

NK−2

)
+ . . .+ L1 − L2

)
(2.135)

which is the same as (2.134). A converse proof similar to what is presented in Section

2.5 with the ideas of [9] is used to prove an upper bound on the retrieval rate of

semantic PIR from MDS-coded databases, which is the same as (2.134). This proves

the capacity expression in (2.121).
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2.6.2 Semantic PIR from Colluding Databases

In this section, we present a complete characterization of the capacity of semantic

PIR from colluding databases, along with an optimal scheme. This is an exten-

sion of the results presented in [4]. We consider K independent messages (Wi,

i ∈ {1, . . . , K}) with arbitrary lengths Li and prior probabilities pi, stored in N

replicated databases. Out of the N databases, any subset up to T databases are al-

lowed to collude. The objective here is to download a user-required message without

revealing its index to any T -colluding databases.

Theorem 2.3 The capacity of semantic PIR from colluding databases, with K mes-

sages, message lengths Li (arranged as L1 ≥ L2 ≥ . . . ≥ LK), prior probabilities pi

and N databases out of which any T are colluding, is given by,

C =

(
L1

E[L]
+

L2

E[L]

(
T

N

)
+ . . .+

LK

E[L]

(
T

N

)K−1
)−1

(2.136)

where E[L] =
∑K

i=1 piLi.

The optimal scheme is an extension of the scheme presented in Section 2.4.1.

The scheme is as follows. Assume that the required message is Wj. Once the

messages are indexed based on the decreasing order of lengths, the user needs to

generate a set of linear combinations of the message indices given by,

xj = SjWj (2.137)
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where Sj is a random full rank matrix drawn uniformly and independently from all

such matrices in Fℓj×ℓj
q where ℓi is the subpacketization of Wj. For each Wm, m ̸= j,

let mt denote the number of t-sums in the scheme involving Wm but not Wj. Let

mt,j be the number of t-sums in the scheme involving both Wm and Wj.
7 Then, the

linear combinations of Wi, i ∈ [K], i ̸= j are generated by,

first (m1 +m2,j) bits of xi

= MDS(m1+m2,j)×m1Si[(1 : m1), :]Wi (2.138)

next (m2 +m3,j) bits of xi

= MDS(m2+m3,j)×m2Si[(m1 + 1 : m1 +m2), :]Wi (2.139)

...

last (mK−1 +mK,j) bits of xi

= MDS(mK−1+mK,j)×mK−1
Si[(ℓi −mK−1 + 1 : ℓi), :]Wi (2.140)

where Si, i ∈ {1, . . . , K} are random full rank matrices of Fℓi×ℓi
q and MDSa×b are

globally known generator matrices of (a, b) MDS-codes. The first step of the scheme

is to calculate υi, i ∈ {1, . . . , K} using (2.129) with M replaced by T . Then,

download υi, i ∈ {1, . . . , K} bits of each xi from each database. Next, from each

database, download
(
N
T
− 1
)
υmin{i1,...,it} t-sums, t ∈ {2, . . . , K} involving new bits

of xi1 , . . . , xit , ∀{i1, . . . , it} ⊂ {1, . . . , K}. This completes the scheme.

For a given t-sum of the form xi1(·)+ . . .+xit(·) with i1 ≥ i2 ≥ . . . ≥ it, which

7The values of mt and mt,j for t ∈ {1, . . . ,K} are immediate from the steps of scheme which
are described later. These values do not depend on the linear combinations.
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does include any bit of Wj, let the generator matrix corresponding to each element

xik in the sum be denoted by Gik . Then, each Gik must satisfy, Gik =


Gik+1

. . .

X

,
k ∈ {1, . . . , t} where X denotes the set of extra rows in the larger generator matrix.

This is required for interference alignment. The proof of privacy in [4] applies to

this scheme as well. The fact that the required message is coded differently, in a

non redundant manner, ensures the correctness of the scheme as explained in [4].

The optimal scheme above can be alternatively described as follows. In each

database, segment the set of messages into K partitions, such that the first segment

contains the first LK bits of all K messages, the second segment contains the next

set of LK1 − LK bits of messages W1 to WK−1 and so on. Then, apply the classical

colluded PIR scheme in [4] to the 1) the first segment with K messages, 2) the

second segment with K − 1 messages, 3) the third segment with K − 2 messages,

and so on. Make sure that the complete scheme is used irrespective of the desired

message for privacy. The achievable rate of the scheme is equal to the capacity in

(2.136). The converse is proved using similar ideas provided in the converse proofs

of Section 2.5 and [4].

2.7 Conclusions

In this chapter, we introduced the problem of semantic PIR. In this problem, the

stored messages are allowed to have non-uniform popularities, which is captured

via an a priori probability distribution pi, i ∈ [K], and heterogeneous sizes Li, i ∈
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[K]. We derived the exact semantic PIR capacity as a function of {Li}Ki=1 and the

expected message size E[L]. The result implies that the semantic PIR capacity

is equal to the classical PIR capacity if all messages have equal sizes Li = L for

all i ∈ [K]. We derived a necessary and sufficient condition for the semantic PIR

capacity to exceed the classical PIR capacity. In particular, we showed that if the

longer messages are retrieved more often, there is a strict retrieval rate gain from

exploiting the message semantics.8 Furthermore, we proved that for all message

sizes and priors, the semantic PIR capacity exceeds the achievable rate of classical

PIR with zero-padding, which zero-pads all messages to equalize their sizes.

To that end, we proposed two achievable schemes for achieving the semantic

PIR capacity. The first one has a deterministic query structure. We have proposed

a systematic way of calculating the needed subpacketization levels for the messages.

We also provided an alternative description to this scheme which implements the

classical PIR scheme in a segmented manner. The similarities and differences be-

tween the two descriptions were also discussed. The second scheme has a stochastic

query structure, where the user picks one query structure at random from an en-

semble of structures. The first scheme has the advantage of having a fixed download

cost for all messages for all query structures unlike the stochastic scheme, which has

the same expected download cost. Nevertheless, the first scheme suffers from expo-

nential subpacketization levels in contrast to the linear counterpart in the stochastic

scheme. We derived a matching converse that extends the converse scheme of [3] to

8This does not necessarily mean that p1 ≥ p2 ≥ . . . ≥ pK . It essentially means that the E[L]
should be large enough such that (2.11) is satisfied.
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take into account the heterogeneous message sizes and prior probabilities. Finally,

the extensions of semantic PIR to coded databases and colluding databases were

analyzed separately, where the complete characterizations of the capacities of the

two cases were presented along with the corresponding optimal schemes.
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CHAPTER 3

Private Read-Update-Write (PRUW)

3.1 Introduction

In this chapter, we investigate the problem of PRUW. In PRUW, a user reads a

specific section of a data storage system, updates it, and writes back the updates to

the same/different section in the storage system without revealing the section indices

or the values of the updates. PRUW has two main applications, namely private FSL

and private FL with sparsification. In this chapter, we study PRUW in relation

to private FSL. In FSL, a machine learning model is divided into M submodels

and stored in N non-colluding databases, from which a given user privately reads,

updates and writes back an arbitrary submodel. We consider information-theoretic

privacy of the updated submodel index as well as the values of the updates. We

provide an efficient PRUW scheme which achieves a lower total communication cost

compared to the state-of-the-art. The formulation of basic PRUW presented in this

chapter is the building block of the other variants considered in subsequent chapters.
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3.2 Problem Formulation

We consider N non-colluding databases storingM independent submodels. Initially,

each submodel consists of random symbols picked from a finite field Fq, such that,

H(W
[0]
k ) = L, k ∈ {1, . . . ,M}, (3.1)

H(W
[0]
1 , . . . ,W

[0]
M ) =

M∑
k=1

H(W
[0]
k ) = LM, (3.2)

where W
[0]
k is the initial version of the kth submodel and L is the length of a

submodel. At any given time instance, a single user reads, updates and writes a

single submodel of interest, while keeping the submodel index and the value of the

update private. The submodels are generated in such a way that any given user

is equally probable to update any given submodel at a given time instance. The

process of updating consists of two phases, namely, the reading phase where the user

downloads the required submodel and the writing phase where the user uploads the

incremental update back to the databases.

In the reading phase, the user sends queries to the databases to download the

required submodel. These queries are deterministic functions of the user-required

submodel index and random noise generated by the user, i.e.,

H(Q
[t]
1 , . . . , Q

[t]
N |θ

[t], Z) = 0, (3.3)

where Q
[t]
n , n ∈ {1, . . . , N} are the queries sent by the user to the databases at time
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t, θ[t] is the user-required submodel index at time t, and Z represents the random

noise used to determine the queries.

The user (at time t) has no prior information on the submodels contained in

the databases. Therefore, the queries sent by the user at time t to the databases in

the reading phase are independent of the existing submodels,

I(Q
[t]
1 , . . . , Q

[t]
N ;W

[t−1]
1 , . . . ,W

[t−1]
M ) = 0, t ∈ Z+, (3.4)

where W
[t−1]
k , k ∈ {1, . . . ,M} are the existing versions of the submodels (before

updating) at time t. After receiving the queries, each database generates an answer

and sends it back to the user. This answer is a function of its existing storage and

the query received,

H(A[t]
n |Q[t]

n , S
[t−1]
n ) = 0, n ∈ {1, . . . , N}, (3.5)

where A
[t]
n is the answer sent by database n at time t and S

[t−1]
n is the existing storage

(before updating) of database n at time t.

In the writing phase, the user sends information on the updates of the sub-

model to each database. Any PRUW scheme contains a specific mechanism that

privately places these updates at correct positions in each database, since the sub-

model index and the value of the update are kept private from the databases. The

information sent by the user to the databases in the writing phase at time t is

a function of the generated updates, updating submodel index, and random noise
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(a) Reading phase.
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(b) Writing phase.

Figure 3.1: A user reads a submodel, updates it, and writes it back to the databases.

generated by the user at time t, i.e.,

H(U
[t]
1 , . . . , U

[t]
N |∆[t]

θ , θ
[t], Z̄) = 0, (3.6)

where U
[t]
n is the information on the updates sent by the user to database n at time

t, ∆
[t]
θ is the update generated by the user for submodel θ[t] and Z̄ is random noise

generated by the user. Each database calculates an incremental update based on

all information received by the user at time t, and adds it to the existing storage to

obtain the updated storage.

Any information that is communicated in both phases takes place only between

a single user and the system of databases. Users that update the model at different

time instances do not communicate with each other. The problem is designed to

study the PRUW procedure involving a single user at a given time instance. The

same process is independently carried out at each time instance with different users.

The system model is illustrated in Figure 3.1.

Next, we formally define the privacy, security and correctness conditions under
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which a PRUW setting operates.

Privacy of the submodel index: No information on the indices of the submodels

updated by any given user up to time t is allowed to leak to any of the databases

with the availability of all storages, queries and updates up to time t. That is, for

each database n, n ∈ {1, . . . , N},

I(θ[1:t];Q[1:t]
n , U [1;t]

n , S[0:t]
n ) = 0, t ∈ N, (3.7)

where θ[1:t] = (θ[1], . . . , θ[t]) are the indices of the submodels updated by the user at

time instances 1 to t. Similarly, Q
[1:t]
n , S

[0:t]
n and U

[1:t]
n represent the queries, storages

and information on updates communicated between the user and database n at

corresponding time instances indicated in square brackets.1 2

Privacy of the values of updates: No information on the values of the updates

up to time t, i.e., ∆
[1:t]
θ is allowed to leak to any of the databases with all data up

to time t. That is, for each database n, n ∈ {1, . . . , N},

I(∆
[1:t]
θ ;Q[1:t]

n , U [1:t]
n , S[0:t]

n ) = 0, t ∈ N. (3.8)

Security of the stored data: No information on the parameters of submodels

up to time t is allowed to leak to any of the databases with all data up to time t.

1The notation [1 : t] represents all integers from 1 to t.
2Note that users start downloading/uploading information starting from time t = 1, while the

storage is defined starting from time t = 0, from which the user downloads at time t = 1.
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That is, for each database n, n ∈ {1, . . . , N},

I(W
[0:t]
1:M ;S[0:t]

n , Q[1:t]
n , U [1:t]

n ) = 0, t ∈ Z+
0 . (3.9)

Correctness in the reading phase: In the reading phase, the user must be able

to correctly decode the required submodel using the queries sent and the answers

received from all databases. That is,

H(W
[t−1]
θ |Q[t]

1:N , A
[t]
1:N , θ

[t]) = 0, t ∈ N, (3.10)

where W
[t−1]
θ is the submodel (before updating) required by the user at time t.

Correctness in the writing phase: At time t, all submodels stored in each

database must be correctly updated as,

W [t]
m =


W

[t−1]
m +∆

[t]
m, if m = θ[t],

W
[t−1]
m , if m ̸= θ[t].

(3.11)

A PRUW scheme for FSL is a scheme that satisfies the above privacy, security

and correctness requirements. The reading and writing costs are defined as CR = D
L

and CW = U
L
, respectively, where D is the total number of bits downloaded from all

databases when retrieving the required submodel, U is the total number of bits sent

to all databases in the writing phase and L is the size of each submodel. The total

cost is defined as CT = CR + CW .
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3.3 Main Result

Theorem 3.1 Following reading and writing costs are achievable in a PRUW sys-

tem in FSL with N ≥ 4 non-colluding databases containing M submodels.

CR =


2

1− 2
N

, if N is even

2
1− 3

N

, if N is odd

(3.12)

CW =


2

1− 2
N

, if N is even

2− 2
N

1− 3
N

, if N is odd

. (3.13)

Remark 3.1 The reading and writing costs decrease with increasing number of

databases. When N is large, PRUW in FSL can be carried out by download-

ing/uploading approximately twice as many bits as the size of a submodel.

Remark 3.2 The reading and writing costs are independent of the number of sub-

models M . However, the cost of uploading the queries in the reading phase to

download the required submodel is M
(
⌊N

2
⌋ − 1

)
N , which depends on the number

of submodels. This is ignored in this work as it is negligible compared to the reading

and writing costs when normalized by the size of a submodel since N,M << L in

general.

Remark 3.3 The proposed scheme that achieves the reading and writing costs in

(3.12)-(3.13) is based on allocating ⌊N
2
⌋ − 1 dimensions of the N dimensional space

for data and the rest for noise, to guarantee privacy in a communication efficient
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manner. Therefore, when N is odd, one dimension is wasted, resulting in slightly

increased reading and writing costs.

Remark 3.4 When N is odd, reading and writing costs of CR =
2− 2

N

1− 3
N

and CW =

2
1− 3

N

(i.e., (3.12) and (3.13) switched) can also be achieved by considering less num-

ber of noise terms in storage and downloading from only N − 1 databases in the

reading phase.

3.4 Basic PRUW Scheme

This scheme can be applied to any PRUW system with N ≥ 4 non-colluding

databases. In this scheme, the privacy-security requirement is satisfied by adding

random noise terms within the field Fq to the queries, updates and storage. This

is because the noise added queries, updates and storage are uniformly distributed

and independent of their original versions. This is known as Shannon’s one time

pad and also as crypto lemma [105–107]. Furthermore, if k ∈ Fq is a constant and

Z ∈ Fq is random noise, kZ is also random noise (uniformly distributed in Fq) if k

and q are coprime.

Based on the crypto lemma, any given random variable A that takes values

in Fq with an arbitrary distribution is independent of the uniformly distributed

random variable A + Z1, where Z1 is random noise. Applying the crypto lemma

again on A+Z1 with another random noise symbol Z2 results in (A+Z1)+Z2 being

uniformly distributed. Moreover, since (A+ Z1) + Z2 = A+ (Z1 + Z2) and Z1 + Z2

is uniformly distributed (again from crypto lemma), A+ Z1 + Z2 is independent of
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A. Therefore, by induction, for any r ∈ N, A+
∑r

i=1 Zi is uniformly distributed and

independent of A, where Zis are random noise symbols.

With the above argument, the privacy and security requirements are satis-

fied by adding T1 ≥ 1, T2 ≥ 1 and T3 ≥ 1 random noise terms to the submodel

parameters in storage, queries and updates, respectively. The scheme provides the

optimum values of T1, T2 and T3 that minimize the total cost. In other words, this

scheme is over-designed with extra noise terms to make the PRUW process more

cost efficient.

We now present the basic scheme with arbitrary values of T1, T2, T3 satisfying

all Ti ≥ 1. The optimum values of T1, T2, T3 that minimize the total cost, i.e.,

T ∗
1 , T

∗
2 , T

∗
3 , are derived later in this section. Let ℓ be the subpacketization of the

scheme, i.e., the scheme is defined on a set of ℓ bits of each submodel, which is

called a subpacket, and is applied repeatedly in the same way on all subpackets

in the model. We choose ℓ = N − T1 − T2. An additional constraint given by

N+T3−1
2

≤ T1 ≤ N − T2 − 1 must be satisfied by T1, T2, T3 for a given N .3

3.4.1 General Scheme

In this section, we present the scheme for the user at time t to privately read from,

and write back to the required submodel. For simplicity of notation, we ignore

the superscript t in all submodel parameters, user-required submodel index, and

updates.

Storage and initialization: The storage of a single subpacket of all sub-

3These conditions will be clarified later in this section.
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models in database n is given by,

Sn =





W1,1 + (f1 − αn)
∑T1−1

i=0 αi
nZ

[1]
1,i

W2,1 + (f1 − αn)
∑T1−1

i=0 αi
nZ

[1]
2,i

...

WM,1 + (f1 − αn)
∑T1−1

i=0 αi
nZ

[1]
M,i


...

W1,ℓ + (fℓ − αn)
∑T1−1

i=0 αi
nZ

[ℓ]
1,i

W2,ℓ + (fℓ − αn)
∑T1−1

i=0 αi
nZ

[ℓ]
2,i

...

WM,ℓ + (fℓ − αn)
∑T1−1

i=0 αi
nZ

[ℓ]
M,i





, (3.14)

for each n ∈ {1, . . . , N}, where Wi,j is the jth bit of submodel i, Z
[k]
i,j is the (j+1)st

noise term for the kth bit of Wi, and {fi}ℓi=1, {αn}Nn=1 are globally known distinct

constants chosen from Fq, such that each αn and fi − αn for all i ∈ {1, . . . , ℓ} and

n ∈ {1, . . . , N} are coprime with q. Reading and writing to ℓ bits of the required

submodel is explained in the rest of this section. The same procedure is followed L
ℓ

times for the entire PRUW process, where L is the total length of each submodel.

Reading phase: Assume that the user requires to update Wθ. Then, the

user sends the following query to database n, n ∈ {1, . . . , N} in order to read the
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existing version of Wθ,

Qn =


1

f1−αn
eM(θ) +

∑T2−1
i=0 αi

nZ̃1,i

...

1
fℓ−αn

eM(θ) +
∑T2−1

i=0 αi
nZ̃ℓ,i

 , (3.15)

where eM(θ) is the all zeros vector of size M × 1 with a 1 at the θth position and

Z̃i,js are random noise vectors of size M × 1. Database n, n ∈ {1, . . . , N} then

generates the answer given by,

An =ST
nQn (3.16)

=
1

f1 − αn

Wθ,1 +
1

f2 − αn

Wθ,2 + . . .+
1

fℓ − αn

Wθ,ℓ

+ ϕ0 + αnϕ1 + . . .+ αT1+T2−1
n ϕT1+T2−1 (3.17)

where ϕis are combinations of noise terms that do not depend on n. The answers

received from the N databases in matrix form is as follows.



A1

A2

...

AN


=



1
f1−α1

. . . 1
fℓ−α1

1 α1 . . . αη
1

1
f1−α2

. . . 1
fℓ−α2

1 α2 . . . αη
2

...
...

...
...

...
...

...

1
f1−αN

. . . 1
fℓ−αN

1 αN . . . αη
N





Wθ,1

...

Wθ,ℓ

ϕ0

ϕ1

...

ϕη



(3.18)

84



where η = T1 + T2 − 1. Since the matrix is invertible, the ℓ bits of Wθ can be

retrieved using (3.18). The reading cost is given by,

CR =
N

ℓ
=

N

N − T1 − T2

. (3.19)

Writing phase: In the writing phase, the user sends a single bit to each

database (per subpacket), which is a combination of the updates of the ℓ bits of

Wθ and T3 random noise bits. The combined update bit is a polynomial of αn,

which allows the databases to privately decompose it into the ℓ individual update

bits, with the help of the queries received in the reading phase. Finally, these

incremental updates are added to the existing storage to obtain the updated storage.

As explained later in this section, the above stated decomposition performed at

the databases introduces a few extra terms, which are added to the T1 random

noise terms in storage. From the crypto lemma, the updated T1 noise terms are

also independent and uniformly distributed (i.e., random noise). The reason behind

over-designing the system to have extra noise terms in storage is to have a number of

noise terms that matches the number of extra terms introduced by the decomposition

performed at the databases in the writing phase. The combined single update bit

that the user sends to database n is given by,

Un =
ℓ∑

i=1

∆̃θ,i

ℓ∏
j=1,j ̸=i

(fj − αn) +
ℓ∏

j=1

(fj − αn)

T3−1∑
m=0

αm
n Zm, (3.20)

for each n ∈ {1, . . . , N}, where Zms are random noise bits, ∆̃θ,i =
∆θ,i∏ℓ

j=1,j ̸=i(fj−fi)
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with ∆θ,i being the update for the ith bit of Wθ. Once database n receives Un, it

calculates the incremental update that needs to be added to the existing storage in

order to obtain the new and updated storage. This calculation requires the following

two definitions and two lemmas.

Definition 3.1 (Scaling matrix)

Dn =



(f1 − αn)IM 0 . . . 0

0 (f2 − αn)IM . . . 0

...
...

...
...

0 0 . . . (fℓ − αn)IM


, (3.21)

for each n ∈ {1, . . . , N}, where IM is the identity matrix of size M ×M .

Definition 3.2 (Null shaper)

Ωn =



(∏
r∈F (αr−αn)∏
r∈F (αr−f1)

)
IM

. . . (∏
r∈F (αr−αn)∏
r∈F (αr−fℓ)

)
IM

 , (3.22)

for each n ∈ {1, . . . , N}, where F is any subset of databases satisfying |F| = 2T1 −

N − T3 + 1.

Lemma 3.1 The combined update Un in (3.20) can be decomposed to distinguish
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the kth update from the rest, for each k ∈ {1, . . . , ℓ} as follows,

Un

fk − αn

=
1

fk − αn

∆θ,k + Pαn(ℓ+ T3 − 2), (3.23)

where Pαn(ℓ+ T3 − 2) is a plynomial in αn of degree ℓ+ T3 − 2. The coefficients of

αi
ns in Pαn(ℓ+ T3 − 2) are fixed for all n.

Lemma 3.2 The term 1
fk−αn

for k ∈ {1, . . . , ℓ} remains distinguishable after mul-

tiplying by the corresponding term in the null shaper for each n /∈ F , i.e.,

(∏
r∈F(αr − αn)∏
r∈F(αr − fk)

)
1

fk − αn

=
1

fk − αn

+ Pαn(|F| − 1), (3.24)

where Pαn(|F| − 1) is a polynomial in αn of degree |F| − 1.

The proofs of Lemma 3.1 and Lemma 3.2 are given in Appendix 3.6.4 With these

definitions and lemmas, the incremental update is calculated by,5

Ūn = Dn × Ωn × Un ×Qn (3.25)

4The intuition behind Lemmas 3.1 and 3.2 is as follows: In Lemma 3.1, the term Un is a single
bit that contains information about ℓ parameter updates. At the databases, this combined single
bit update must be decomposed into the ℓ separate updates, and placed at relevant positions.
To achieve this without leaking any information to the databases, the updates are combined in a
specific way, i.e., the first part of Un is a Lagrange polynomial. Lemma 3.1 presents a result on
Lagrange polynomial division, which shows how each update can be separated from the rest by
dividing the combined update by a specific factor. Lemma 3.2 is useful in placing the zeros of the
incremental update polynomial at certain αn’s (αns such that n ∈ F) so that the writing cost can
be saved by not writing to the databases that correspond to those αn’s.

5The set F must satisfy |F| ≥ 0, and in cases where |F| = 0, (3.25) is modified as Ūn =
Dn × Un ×Qn.
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= Dn × Ωn ×



Un

f1−αn
eM(θ) + Un

∑T2−1
i=0 αi

nZ̃1,i

Un

f2−αn
eM(θ) + Un

∑T2−1
i=0 αi

nZ̃2,i

...

Un

fℓ−αn
eM(θ) + Un

∑T2−1
i=0 αi

nZ̃ℓ,i


. (3.26)

Using Lemma 3.1,

Ūn =Dn × Ωn ×


1

f1−αn
∆θ,1eM(θ) + eM(θ)

∑ℓ+T3−2
i=0 αi

nξ
[1]
i

...

1
fℓ−αn

∆θ,ℓeM(θ) + eM(θ)
∑ℓ+T3−2

i=0 αi
nξ

[ℓ]
i



+Dn × Ωn ×




∑ℓ+T2+T3−2

i=0 αi
nξ̃

[1]
1,i

...∑ℓ+T2+T3−2
i=0 αi

nξ̃
[1]
M,i


...

∑ℓ+T2+T3−2
i=0 αi

nξ̃
[ℓ]
1,i

...∑ℓ+T2+T3−2
i=0 αi

nξ̃
[ℓ]
M,i





(3.27)

=Dn ×



(∏
r∈F (αr−αn)∏
r∈F (αr−f1)

)
1

f1−αn
∆θ,1eM(θ)(∏

r∈F (αr−αn)∏
r∈F (αr−f2)

)
1

f2−αn
∆θ,2eM(θ)

...(∏
r∈F (αr−αn)∏
r∈F (αr−fℓ)

)
1

fℓ−αn
∆θ,ℓeM(θ)


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+Dn ×




∑ℓ+T2+T3−2+|F|

i=0 αi
nη̃

[1]
1,i

...∑ℓ+T2+T3−2+|F|
i=0 αi

nη̃
[1]
M,i


...

∑ℓ+T2+T3−2+|F|
i=0 αi

nη̃
[ℓ]
1,i

...∑ℓ+T2+T3−2+|F|
i=0 αi

nη̃
[ℓ]
M,i





. (3.28)

From Lemma 3.2,

Ūn =



∆θ,1eM(θ)

∆θ,2eM(θ)

...

∆θ,ℓeM(θ)


+




(f1 − αn)

∑T1−1
i=0 αi

nη̂
[1]
1,i

...

(f1 − αn)
∑T1−1

i=0 αi
nη̂

[1]
M,i


...

(fℓ − αn)
∑T1−1

i=0 αi
nη̂

[ℓ]
1,i

...

(fℓ − αn)
∑T1−1

i=0 αi
nη̂

[ℓ]
M,i





, (3.29)

where (3.27) and (3.28) are due to the fact that Un and the diagonal elements of Ωn

are polynomials in αn of degrees ℓ + T3 − 1 and |F|, respectively. The polynomial

coefficients ξ
[j]
i , ξ̃

[j]
i , η̃

[j]
i and η̂

[j]
i are combined noise terms that do not depend on n.

(3.29) is immediate from |F| = 2T1−N −T3+1 and ℓ = N −T1−T2. Note that for

databases n ∈ F , Ωn = 0, which makes the incremental update of those databases

equal to zero. This means that the user could save the writing cost by not sending
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the update bit Un in the writing phase to those databases in F . For each database

n ∈ {1, . . . , N}\F , the incremental update in (3.29) is in the same format as the

storage in (3.14). Therefore, the updated storage is given by,

S[t]
n = S[t−1]

n + Ūn, n ∈ {1, . . . , N}\F , (3.30)

while S
[t]
n = S

[t−1]
n for n ∈ F , where S

[t−1]
n and S

[t]
n are the storages of database n

before and after the update, respectively.6 The writing cost of this scheme is given

by,

CW =
N − |F|

ℓ
=

2N − 2T1 + T3 − 1

N − T1 − T2

. (3.31)

3.4.2 Total Communication Cost and Optimal Values of T1, T2, T3

From (3.19) and (3.31), the total communication cost is,

CT = CR + CW =
3N − 2T1 + T3 − 1

N − T1 − T2

. (3.32)

The general scheme described in Section 3.4.1 and the total cost in (3.32) are pre-

sented for arbitrary T1, T2, T3 satisfying Ti ≥ 1 for i = 1, 2, 3, and N+T3−1
2

≤ T1 ≤

N − T2 − 1, where the last condition is derived from |F| ≥ 0 and ℓ ≥ 1. In this

subsection, we present the optimum values of T1, T2, T3 that minimize the total cost

6Note that Wθ is still updated in databases n ∈ F even though the noise added storage has not
changed. This is because the zeros of the incremental update polynomials occur at those αns that
correspond to n ∈ F .
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for a given number of databases N . It is clear that the total cost in (3.32) increases

with T2 and T3. Therefore, the optimum values of T2 and T3 such that the privacy

constraints are satisfied are T ∗
2 = T ∗

3 = 1. Then, the resulting total cost is,

CT =
3N − 2T1

N − T1 − 1
, (3.33)

which is increasing in T1, since
dCT

dT1
= N+2

(N−T1−1)2
> 0. Thus, the optimum value of

T1 satisfying the constraint of N+T3−1
2

≤ T1 ≤ N − T2 − 1 with T ∗
2 = T ∗

3 = 1 is

T ∗
1 =

⌈
N
2

⌉
. The corresponding optimum subpacketization is ℓ∗ = ⌊N

2
⌋ − 1 and the

optimum reading and writing costs are given in (3.12) and (3.13), respectively.7

3.4.3 Example

Consider an example setting where N = 6 non-colluding databases store M = 3

submodels, and a user who wants to download and update submodel 2 at time t,

i.e., θ[t] = 2. The subpacketization (number of parameters considered in a single

subpacket) for this example is ℓ = ⌊N
2
⌋ − 1 = 2, and the numbers of noise terms

added to the storage, queries and updates are given by T1 = ⌈N
2
⌉ = 3, T2 = 1

and T3 = 1. The storage of a single subpacket of all submodels in database n,

7In this work, we consider the minimization of the total cost (reading+writing cost). The region
of achievable reading and writing costs, i.e., the trade-off between reading and writing costs can
also be studied by assigning different subpacketizations to the reading and writing phases. It can
be shown that the total cost is minimized when the reading and writing subpacketizations are the
same, which is the case presented in this work.
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n ∈ {1, . . . , N} is given by (see (3.14)),

Sn =




W1,1 + (f1 − αn)(Z

[1]
1,0 + αnZ

[1]
1,1 + α2

nZ
[1]
1,2)

W2,1 + (f1 − αn)(Z
[1]
2,0 + αnZ

[1]
2,1 + α2

nZ
[1]
2,2)

W3,1 + (f1 − αn)(Z
[1]
3,0 + αnZ

[1]
3,1 + α2

nZ
[1]
3,2)



W1,2 + (f2 − αn)(Z

[2]
1,0 + αnZ

[2]
1,1 + α2

nZ
[2]
1,2)

W2,2 + (f2 − αn)(Z
[2]
2,0 + αnZ

[2]
2,1 + α2

nZ
[2]
2,2)

W3,2 + (f2 − αn)(Z
[2]
3,0 + αnZ

[2]
3,1 + α2

nZ
[2]
3,2)





(3.34)

Reading Phase: The user sends the following query to database n, n ∈ {1, . . . , N},

to download submodel 2 (see (3.15))

Qn =



1
f1−αn


0

1

0

+


Z̃1,1

Z̃1,2

Z̃1,3



1
f2−αn


0

1

0

+


Z̃2,1

Z̃2,2

Z̃2,3





, (3.35)

Database n, n ∈ {1, . . . , N} sends the answer corresponding to the received query

as,

An=ST
nQn=

W2,1

f1−αn

+
W2,2

f2−αn

+ϕ0+αnϕ1+α2
nϕ2+α3

nϕ3, (3.36)
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where ϕi are the terms that result from combining all coefficients of αi
n in the dot

product. Note that ϕi are the same across all answers from all databases. The user

obtains the required two bits W2,1 and W2,2, using the answers from the N databases

as,


A1

...

A6

 =


1

f1−α1

1
f2−α1

1 α1 α2
1 α3

1

...
...

...
...

...
...

1
f1−α6

1
f2−α6

1 α6 α2
6 α3

6





W2,1

W2,2

ϕ0

ϕ1

ϕ2

ϕ3



, (3.37)

since the matrix is invertible. The resulting reading cost is CR = 6
2
= 3.

Writing Phase: In the writing phase, the user combines the two updates of

the two parameters in the subpacket into a single symbol (see (3.20)) as follows and

sends is to database n, n ∈ {1, . . . , N},

Un = ∆2,1
f2 − αn

f2 − f1
+∆2,2

f1 − αn

f1 − f2
+ (f1 − αn)(f2 − αn)Z, (3.38)

where Z is a random noise symbol. Database n, n ∈ {1, . . . , N} then calculates the

incremental update as (see (3.25)),8

Ūn = Dn × Un ×Qn (3.39)

8Note that the null shaper Ωn is not used in this example as |F| = 2T1 −N − T3 + 1 = 0.
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= Dn ×



Un

f1−αn


0

1

0

+ Un


Z̃1,1

Z̃1,2

Z̃1,3



Un

f2−αn


0

1

0

+ Un


Z̃2,1

Z̃2,2

Z̃2,3





(3.40)

= Dn ×




0

∆2,1

f1−αn

0

+


∑2

i=0 α
i
nη

[1]
1,i∑2

i=0 α
i
nη

[1]
2,i∑2

i=0 α
i
nη

[1]
3,i


0

∆2,2

f2−αn

0

+


∑2

i=0 α
i
nη

[2]
1,i∑2

i=0 α
i
nη

[2]
2,i∑2

i=0 α
i
nη

[2]
3,i





(3.41)

=




0

∆2,1

0

+ (f1 − αn)


∑2

i=0 α
i
nη

[1]
1,i∑2

i=0 α
i
nη

[1]
2,i∑2

i=0 α
i
nη

[1]
3,i


0

∆2,2

0

+ (f2 − αn)


∑2

i=0 α
i
nη

[2]
1,i∑2

i=0 α
i
nη

[2]
2,i∑2

i=0 α
i
nη

[2]
3,i





(3.42)

where (3.41) is obtained by applying Lemma 3.1. Since the incremental update

in (3.42) is in the same form as the storage in (3.34), the storage is updated as

S
[t]
n = S

[t−1]
n + Ūn, and the resulting writing cost is CW = 6

2
= 3.
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3.4.4 Proof of Privacy and Security

The following facts are required for the proofs of privacy and security. In the pro-

posed scheme, the submodel index θ is indicated by eM(θ). However, the queries

sent to each of the databases are independent from eM(θ) due to the random noise

terms added to it, from Shannon’s one time pad theorem. Similarly, the submodel

values Wi,j are independent from the storage Sn of each database and the values of

updates ∆i,j are independent from the uploads in the writing phase Un, due to the

random noise terms added.

Privacy of the submodel index: For any m̄ ∈ {1, . . . ,M}t, ūn ∈ Ft
q, r̄n ∈ FMℓt

q

and s̄n ∈ FMℓ(t+1)
q ,

P (θ[1:t] = m̄|Q[1:t]
n = r̄n, U

[1:t]
n = ūn, S

[0:t]
n = s̄n)

=
P (Q

[1:t]
n = r̄n, U

[1:t]
n = ūn, S

[0:t]
n = s̄n|θ[1:t]=m̄)P (θ[1:t]=m̄)

P (Q
[1:t]
n = r̄n, U

[1:t]
n = ūn, S

[0:t]
n = s̄n)

. (3.43)

Based on the proposed scheme, note that each S
[t′]
n , t′ ∈ {1, . . . , t} term is given by

S
[t′]
n = S

[t′−1]
n + Ū

[t′]
n , which makes the two sets S

[0:t]
n and {S[0]

n , Ū
[1:t]
n } statistically

equivalent. Moreover, since each Ū
[t′]
n , t′ ∈ {1, . . . , t} is a deterministic function of

U
[t′]
n and Q

[t′]
n , the two sets {S[0:t]

n , Q
[1:t]
n , U

[1:t]
n } and {S[0]

n , Q
[1:t]
n , U

[1:t]
n } are statistically

equivalent as well. Since all realizations of the terms in the set {S[0]
n , Q

[1:t]
n , U

[1:t]
n }

are random noise terms based on the construction of the proposed scheme, they are
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independent of the updating submodel indices θ[1:t]. Therefore,

P (θ[1:t] = m̄|Q[1:t]
n = r̄n, U

[1:t]
n = ūn, S

[0:t]
n = s̄n)

=
P (Q

[1:t]
n = r̄n, U

[1:t]
n = ūn, S

[0:t]
n = s̄n)P (θ[1:t] = m̄)

P (Q
[1:t]
n = r̄n, U

[1:t]
n = ūn, S

[0:t]
n = s̄n)

(3.44)

= P (θ[1:t] = m̄), (3.45)

which results in the privacy condition in (3.7).

Privacy of the values of updates: For any q̃ ∈ Fℓt
q , ūn ∈ Ft

q, r̄n ∈ FMℓt
q and

s̄n ∈ FMℓ(t+1)
q ,

P (∆
[1:t]
θ = q̃|Q[1:t]

n = r̄n, S
[0:t]
n = s̄n, U

[1:t]
n = ūn)

=
P (Q

[1:t]
n = r̄n, S

[0:t]
n = s̄n, U

[1:t]
n = ūn|∆[1:t]

θ = q̃)P (∆
[1:t]
θ = q̃)

P (Q
[1:t]
n = r̄n, S

[0:t]
n = s̄n, U

[1:t]
n = ūn)

. (3.46)

As before, all Un, Qn and Sn values are random noise terms and are independent of

∆
[1:t]
θ from Shannon’s one time pad theorem. Therefore,

P (∆
[1:t]
θ = q̃|Q[1:t]

n = r̄n, S
[0:t]
n = s̄n, U

[1:t]
n = ūn)

=
P (Q

[1:t]
n = r̄n, S

[0:t]
n = s̄n, U

[1:t]
n = ūn)P (∆

[1:t]
θ = q̃)

P (Q
[1:t]
n = r̄n, S

[0:t]
n = s̄n, U

[1:t]
n = ūn)

(3.47)

= P (∆
[1:t]
θ = q̃), (3.48)

which proves the condition in (3.8).

Security of the stored submodels: For any w̄, s̄n ∈ FMℓ(t+1)
q , ūn ∈ Ft

q and
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r̄n ∈ FMℓt
q ,

P (W
[0:t]
[1:M ] = w̄|Q[1:t]

n = r̄n, S
[0:t]
n = s̄n, U

[1:t]
n = ūn)

=
P (Q

[1:t]
n = r̄n, S

[0:t]
n = s̄n, U

[1:t]
n = ūn|W [0:t]

[1:M ]= w̄)P (W
[0:t]
[1:M ]= w̄)

P (Q
[1:t]
n = r̄n, S

[0:t]
n = s̄n, U

[1:t]
n = ūn)

. (3.49)

Based on the same reasoning as before, and since the databases are non-colluding,

all Un, Qn and Sn values are independent of W
[0:t]
1:M from Shannon’s one time pad

theorem. Therefore,

P (W
[0:t]
1:M = w̄|Q[1:t]

n = r̄n, S
[0:t]
n = s̄n, U

[1:t]
n = ūn)

=
P (Q

[1:t]
n = r̄n, S

[0:t]
n = s̄n, U

[1:t]
n = ūn)P (W

[0:t]
1:M = w̄)

P (Q
[1:t]
n = r̄n, S

[0:t]
n = s̄n, U

[1:t]
n = ūn)

(3.50)

= P (W
[0:t]
1:M = w̄), (3.51)

which proves the condition in (3.9).

3.5 Conclusions

In this chapter, we considered the problem of PRUW in relation to FSL, where a

user reads, updates and writes back to a submodel of interest, without revealing

its index or the values of the updates to the databases storing the submodels. We

provided a basic PRUW scheme that performs private FSL by only downloading

and uploading twice as many bits as the size of a submodel, while guaranteeing

the information-theoretic privacy of the updating submodel index and the values
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of the updates. One of the main future directions of PRUW in relation to FSL is

to obtain the fundamental limits on the performance metrics. Since the reading

phase of private FSL with non-colluding databases is identical to the problem of

X-secure T -private information retrieval with X = T = 1, there exists a lower

bound on the download cost [97]. However, in this work, we show that the total

communication cost (reading+writing) can be reduced by incurring a higher reading

cost to allow for lower writing costs. Within the scope of cross subspace alignment,

we showed that the minimum total communication cost is achieved when the reading

and writing costs are symmetric, and when the data and noise subspaces within

the N dimensional space occupy approximately N
2

dimensions each. Therefore,

combining the properties of the reading and writing phases is the main challenge in

deriving the converse results. Apart from the converse results, multi-user PRUW,

weakly private read-update-write and the presence of adversaries and eavesdroppers

in PRUW are among the other immediate future directions.

3.6 Appendix

3.6.1 Proof of Lemma 3.1

Proof: We begin the proof by considering the left term in (3.23) of Lemma 3.1.

Note that,

Un

fk − αn

=

∑ℓ
i=1 ∆̃θ,i

∏ℓ
j=1,j ̸=i(fj−αn)+

∏ℓ
j=1(fj−αn)

∑T3−1
i=0 αi

nZi

fk − αn

(3.52)
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=
∆̃θ,k

∏ℓ
j=1,j ̸=k(fj−αn)

fk − αn

+

∑ℓ
i=1,i ̸=k ∆̃θ,i

∏ℓ
j=1,j ̸=i(fj−αn)

fk − αn

+

∏ℓ
j=1(fj − αn)(Z0 + αnZ1 + . . .+ αT3−1

n ZT3−1)

fk − αn

. (3.53)

Now consider,

∏ℓ
j=1,j ̸=k(fj − αn)

fk − αn

=
(f1 − fk + fk − αn)

fk − αn

ℓ∏
j=2,j ̸=k

(fj − αn) (3.54)

=
ℓ∏

j=2,j ̸=k

(fj − αn) + (f1 − fk)

∏ℓ
j=2,j ̸=k(fj − αn)

fk − αn

(3.55)

=
ℓ∏

j=2,j ̸=k

(fj−αn)+(f1−fk)
(f2−fk+fk−αn)

fk − αn

ℓ∏
j=3,j ̸=k

(fj−αn) (3.56)

=
ℓ∏

j=2,j ̸=k

(fj−αn) + (f1−fk)
ℓ∏

j=3,j ̸=k

(fj−αn) + (f1−fk)(f2−fk)

∏ℓ
j=3,j ̸=k(fj−αn)

fk − αn

(3.57)

...

=
ℓ∏

j=2,j ̸=k

(fj − αn) + (f1 − fk)
ℓ∏

j=3,j ̸=k

(fj − αn) + . . .+
k−2∏
i=1

(fi − fk)
ℓ∏

j=k,j ̸=k

(fj − αn)

+
k−1∏
i=1

(fi − fk)

∏ℓ
j=k,j ̸=k(fj − αn)

fk − αn

(3.58)

=
ℓ∏

j=2,j ̸=k

(fj − αn) + (f1 − fk)
ℓ∏

j=3,j ̸=k

(fj − αn) + . . .+
k−2∏
i=1

(fi − fk)
ℓ∏

j=k+1

(fj − αn)

+
k−1∏
i=1

(fi − fk)
ℓ∏

j=k+2

(fj − αn) +
k+1∏

i=1,i ̸=k

(fi − fk)

∏ℓ
j=k+2(fj − αn)

fk − αn

(3.59)

...

=
ℓ∏

j=2,j ̸=k

(fj − αn) + (f1 − fk)
ℓ∏

j=3,j ̸=k

(fj − αn) + . . .+
k−1∏
i=1

(fi − fk)
ℓ∏

j=k+2

(fj − αn)
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+
k+1∏

i=1,i ̸=k

(fi − fk)
ℓ∏

j=k+3

(fj − αn) + . . .

+
ℓ−2∏

i=1,i ̸=k

(fi − fk)
(fℓ−1 − fk + fk − αn)(fℓ − αn)

fk − αn

(3.60)

=
ℓ∏

j=2,j ̸=k

(fj − αn) + (f1 − fk)
ℓ∏

j=3,j ̸=k

(fj − αn) + . . .+
k−1∏
i=1

(fi − fk)
ℓ∏

j=k+2

(fj − αn)

+
k+1∏

i=1,i ̸=k

(fi − fk)
ℓ∏

j=k+3

(fj − αn) + . . .+ (fℓ − αn)
ℓ−2∏

i=1,i ̸=k

(fi − fk)

+
ℓ−1∏

i=1,i ̸=k

(fi − fk)
(fℓ − fk + fk − αn)

fk − αn

(3.61)

=
ℓ∏

j=2,j ̸=k

(fj − αn) + (f1 − fk)
ℓ∏

j=3,j ̸=k

(fj − αn) + . . .+
k−1∏
i=1

(fi − fk)
ℓ∏

j=k+2

(fj − αn)

+
k+1∏

i=1,i ̸=k

(fi − fk)
ℓ∏

j=k+3

(fj − αn) + . . .

+ (fℓ − αn)
ℓ−2∏

i=1,i ̸=k

(fi − fk) +
ℓ−1∏

i=1,i ̸=k

(fi − fk) +

∏ℓ
i=1,i ̸=k(fi − fk)

fk − αn

(3.62)

= Pαn(ℓ− 2) +

∏ℓ
i=1,i ̸=k(fi − fk)

fk − αn

, (3.63)

where Pαn(ℓ− 2) is a polynomial in αn of degree ℓ− 2. Therefore, from (3.53),

Un

fk − αn

= ∆̃θ,k

(
Pαn(ℓ− 2) +

∏ℓ
i=1,i ̸=k(fi − fk)

fk − αn

)
+ Pαn(ℓ+ T3 − 2), (3.64)

since the second and third terms of (3.53) result in a polynomial in αn of degree

ℓ+ T3 − 2. Therefore,

Un

fk − αn

=
1

fk − αn

∆θ,k + Pαn(ℓ+ T3 − 2). (3.65)
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■

3.6.2 Proof of Lemma 3.2

Proof: We begin the proof by considering the left term in (3.24) of Lemma 3.2.

Note that,

(∏
r∈F(αr − αn)∏
r∈F(αr − fk)

)
1

fk − αn

=
1

fk − αn

(∏
r∈F(αr − fk + fk − αn)∏

r∈F(αr − fk)

)
(3.66)

=
1

fk − αn

∏
r∈F

(
1 +

fk − αn

αr − fk

)
(3.67)

=
1

fk − αn

+ Pαn(|F| − 1), (3.68)

which completes the proof. ■
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CHAPTER 4

Private Federated Submodel Learning (FSL) with Top r Spar-

sification

4.1 Introduction

In this chapter we consider the problem of PRUW in FSL with top r sparsifica-

tion. In FSL with top r sparsification, the users download and upload only selected

fractions of parameters and updates in the reading and writing phases, respectively,

to reduce the communication cost. However, revealing the positions of these se-

lected parameters and updates compromises the privacy of the user, in addition to

the updating submodel index and the values of the updates. In this chapter, we

present how information-theoretic privacy of the users local data can be guaranteed

using PRUW in FSL with top r sparsification. We propose a novel scheme which

privately reads from and writes to arbitrary parameters of any given submodel,

without revealing the submodel index, values of the updates, or the positions of

the sparse updates/parameters, to databases. The proposed scheme achieves sig-

nificantly lower reading and writing costs compared to what is achieved without

sparsification.
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4.2 Problem Formulation

We consider N non-colluding databases storing M independent submodels, each

having P subpackets. At a given time instance t, a given user reads, updates and

writes one of the M submodels, while not revealing any information about the

updated submodel index or the values of updates to any of the databases. The

submodels, queries and updates consist of symbols from a large enough finite field

Fq.

In the PRUW process in FSL, users keep reading from and writing to required

submodels in an iterative manner. With top r sparsification, each user only writes

to a selected r fraction of subpackets of the updating submodel, that contains the

most significant r fraction of updates.1 2 This significantly reduces the writing

cost. Therefore, a given user who reads the same submodel at time t + 1 only

has to download the union of each r fraction of subpackets updated by all users at

time t. Let the cardinality of this union be Pr′, where 0 ≤ r′ ≤ 1. This reflects

sparsification in the downlink with a rate of r′. For cases where Pr′ is significantly

large, i.e., with large number of users with non-overlapping sparse updates at time

t, there are downlink sparsification protocols such as [80] that limit the value of

Pr′ in order to reduce the communication cost. Precisely, in this work, we assume

1In the update stage (model training) users typically work in continuous fields (real numbers)
and make the least significant 1 − r of the updates equal to zero (i.e., not update) based on the
concept of top r sparsification in learning. All updates are converted to symbols in Fq and sent
to the databases. We assume that the zeros in the continuous field are converted to zeros in the
finite field.

2We assume that all parameters in the most significant r fraction of subpackets have non-zero
updates.
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that each user only updates Pr subpackets that correspond to the most significant

r fraction of updates in the writing phase, and only downloads Pr′ subpackets sent

by the databases in the reading phase, of the required submodel. The values of r

and r′ are fixed and determined before the FSL process starts.

The reduction in the communication cost of the PRUW process with sparsifi-

cation results from communicating only a selected set of updates (parameters) and

their positions to the databases (users) in the writing (reading) phase. However, this

leaks information about the most and least significant updates of the user. There-

fore, to perform top r sparsification in private FSL to reduce the communication

cost, the basic PRUW scheme needs to be modified in order to satisfy information-

theoretic privacy of the updating submodel index and the values/positions of the

sparse updates. Similar to the problem setting of basic PRUW in Section 3.2, the

user sends queries to databases to download the required submodel in the reading

phase, which are deterministic functions of the required submodel index and ran-

dom noise generated. In this case the user will only download a selected set of Pr′

subpackets, determined by the downlink sparsification protocol at the databases.

In the writing phase, the user sends information on the values and positions of the

Pr sparse updates, which are deterministic functions of the generated updates and

random noise.

The system model is shown in Figure 4.1, which is the same as the model of

basic PRUW, with the explicit indication of a coordinator. The coordinator exists in

the basic PRUW also, where it is used to initialize the storage with identical random

noise terms in all databases in the basic PRUW. In PRUW with sparsification, it is
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submodel 1

submodel 2

submodel M

submodel 1
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submodel M
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submodel 2

submodel M
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R1 R2 RN

assign noise and permutation

reversing matrices

write

read

random

permutation

P̃

(θ,∆θ)

submodel index values of updates

Figure 4.1: PRUW with top r sparsification: system model.

also utilized in guaranteeing the privacy of the indices of sparse updates.

The three components in PRUW with sparsification that need to be kept

private are: 1) index of the submodel updated by each user, 2) values of the sparse

updates, and 3) indices (positions) of the sparse updates. The formal descriptions of

the privacy and security constraints are given below. The constraints are presented

from the perspective of a single user at time t, even though multiple independent

users update the model simultaneously.

Privacy of the submodel index: At any given time t, no information on the

index of the submodel being updated, θ[t], is allowed to leak to any of the databases

with all the information received by the user, i.e., for each database n, n ∈ {1, . . . , N},

I(θ[t];Q[t]
n , Y

[t]
n , S[t]

n ) = 0, t ∈ N, (4.1)
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where Q
[t]
n and Y

[t]
n are the queries and all the uploads (information on the sparse

updates and their positions) sent by the user to database n in the reading and

writing phases, and S
[t]
n is the content of database n, at time t.3

Privacy of the values of updates: At any given time t, no information on the

values of updates is allowed to leak to any of the databases with all the information

received by the user, i.e., for each database n, n ∈ {1, . . . , N},

I(∆
[t]
θ ;Q

[t]
n , Y

[t]
n , S[t]

n ) = 0, t ∈ N, (4.2)

where ∆
[t]
θ is the update (with (P − Pr)ℓ zero and Prℓ non-zero updates, where ℓ

is the subpacketization) of submodel θ[t] generated by the user at time t.4

Security of submodels: No information on the parameters of submodels at time

t is allowed to leak to any of the databases, i.e., for each database n, n ∈ {1, . . . , N},

I(W
[t]
1:M ;S[t]

n , Q[t]
n , Y

[t]
n ) = 0, t ∈ Z+

0 , (4.3)

where W
[t]
1:M represents the parameters of submodels 1 to M at time t.

Correctness in the reading phase: The user should be able to correctly decode

the sparse set of Pr′ subpackets (denoted by J) of the required submodel, determined

by the downlink sparsification protocol, from the answers received in the reading

3A detailed explanation on the privacy/security constraints and how they compare with the
constraints of basic PRUW is provided in Remark 4.3.

4Note that the privacy of both values and positions of the sparse updates is considered in the

constraint in (4.2) as ∆
[t]
θ contains both zero and non-zero updates of which the values are not

revealed.

106



phase, i.e.,

H(W
[t−1]
θ,J |Q[t]

1:N , A
[t]
1:N , θ

[t]) = 0, t ∈ N, (4.4)

where W
[t−1]
θ,J is the set of subpackets in set J of submodel Wθ at time t− 1 and A

[t]
n

is the answer from database n at time t.

Correctness in the writing phase: Let θ[t] be the updating submodel index and

J ′ be the set of most significant Pr subpackets of Wθ[t] updated by a given user at

time t. Then, the subpacket s of submodel m at time t given by W
[t]
m (s) is correctly

updated as,

W [t]
m (s) =


W

[t−1]
m (s) + ∆

[t]
m(s), if m = θ[t] and s ∈ J ′

W
[t−1]
m (s), if m ̸= θ[t] or s /∈ J ′

, (4.5)

where ∆
[t]
m(s) is the corresponding update of W

[t−1]
m (s). The reading and writing

costs are defined the same as in Section 3.2.

4.3 Main Result

In this section, we provide the achievable reading and writing costs of the scheme

proposed to perform top r sparsification in FSL, while guaranteeing information-

theoretic privacy of the updating submodel index and the values of the updates

(which includes the indices of sparse updates). The key component of the proposed

scheme is a novel permutation technique, which requires the databases to store
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certain noise-added permutation reversing matrices. We propose two cases of the

scheme based on the structure and the size of the noise-added permutation reversing

matrices. Theorem 4.1 summarizes the results of the two cases.

Theorem 4.1 In a private FSL setting with N databases, M submodels (each of size

L), P subpackets in each submodel, and r and r′ sparsification rates in the uplink

and downlink, respectively, the following reading and writing costs are achievable

with the corresponding sizes of the noise-added permutation reversing matrices. The

reading and writing costs are,

CR =
4r′ + 4

N
(1 + r′) logq P

1− 2
N

(4.6)

CW =
4r(1 + logq P )

1− 2
N

, (4.7)

with noise-added permutation reversing matrices of size O
(

L2

N2

)
and,

CR =
2r′ + 2

N
(1 + r′) logq P

1− 4
N

(4.8)

CW =
2r(1 + logq P )

1− 4
N

, (4.9)

with noise-added permutation reversing matrices of size O(L2).

Remark 4.1 If sparsification is not considered in the PRUW process, the lowest

achievable reading and writing costs are given by CR = CW = 2
1− 2

N

; see Theorem 3.1.

Therefore, sparsification with smaller values of r and r′ results in significantly re-

duced communication costs as shown in Theorem 4.1.
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Remark 4.2 The reading and writing costs double (approximately) as the size of

the noise-added permutation reversing matrices reduces from O(L2) to O
(

L2

N2

)
.

Remark 4.3 PRUW in FSL with top r sparsification require additional information

from the user, compared to basic PRUW described in Chapter 3, to privately indicate

the selected positions of the sparse updates. The privacy and security constraints

defined for PRUW with top r sparsification in Section 4.2 are not as strong as the

corresponding constraints in basic PRUW due to the extra information required by

the users, that results in significantly reduced communication costs via sparsification.

As defined in [94], a database (in a non-colluding setting) that has access to all

past storages, queries and information on updates/positions is called an internal

adversary, and a database that only has access to the current storage, queries and

information on updates/positions is called an external adversary. The basic PRUW

scheme presented in Chapter 3 is protected from internal adversaries, while the top

r sparsification scheme is only safe from external adversaries. The comparison of

the privacy and security constraints in the two schemes is as follows.

The privacy constraint on the submodel index guaranteed in basic PRUW, i.e.,

(3.7) can be equivalently stated as I(θ[1:t];Q
[1:t]
n , U

[1;t]
n , S

[0]
n ) = 0 as each S

[t′]
n , t′ ∈

{1, . . . , t} term can be written as S
[t′]
n = S

[t′−1]
n + Ū

[t′]
n ,5 which makes the two sets

{S[0:t]
n } and {S[0]

n , Ū
[1:t]
n } statistically equivalent. Moreover, the incremental update

Ū
[t′]
n is a deterministic function of all the information received by the user, i.e.,

Q
[t′]
n and U

[t′]
n , which makes the two sets {Q[1:t]

n , U
[1:t]
n , S

[0:t]
n } and {Q[1:t]

n , U
[1:t]
n , S

[0]
n }

5Ū
[t]
n is the incremental update at time t. This is explained in Section 3.4.
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statistically equivalent as well. This results in the equivalent form of (3.7) above.

It can be shown that the scheme proposed in Section 4.4 for top r sparsification

satisfies the privacy constraint I(θ[1:t];Q
[1:t]
n , Û

[1;t]
n , k

[t]
n , S

[0]
n ) = 0, where Û

[1:t]
n and

k
[t]
n are the quantities uploaded to convey information on the values and positions

of the sparse updates, respectively, at corresponding time instances. Note that this

constraint is the same as the equivalent form of (3.7), i.e., I(θ[1:t];Q
[1:t]
n , U

[1;t]
n , S

[0]
n ) =

0, with the additional piece of information collected by the user on the positions of

the sparse updates at time t, denoted by k
[t]
n . Therefore, the top r sparsification

scheme presented in Section 4.4, which is based on the basic PRUW scheme in

Section 3.4 is able to satisfy the stronger privacy constraint of basic PRUW even with

the additional information on the positions of sparse updates at time t. However,

the top r sparsification scheme cannot guarantee the stronger privacy constraint if

the information on the positions of sparse updates at all time instances {0, 1, . . . , t}

is available to the databases. Due to the mismatch between the roles of each database

as an internal adversary on queries/values of updates and an external adversary on

the positions of sparse updates, we have defined the privacy/security constraints of

Section 4.2 (top r sparsification) such that the submodel index, values/positions of

sparse updates and submodel values are protected against an external adversary, to

make the definitions uniform.6

The top r sparsification scheme is unable to guarantee the stronger privacy

constraint I(θ[1:t];Q
[1:t]
n , Û

[1;t]
n , k

[1:t]
n , S

[1:t]
n ) = 0 (with information on sparse positions

at all time instances) because the scheme uses a permutation technique that uses the

6The analysis presented for θ[1:t] above is applicable for ∆
[1:t]
θ as well.
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same permutation at all time instances, which leaks information about the indices

of the sparse updates, when the databases have the permuted information at multiple

time instances. This is based on the fact that the most significant Pr subpacket

indices that the user chooses in the writing phase at different time instances are

correlated. In cases where it is reasonable to assume that the Pr subpackets chosen

by a given user at time t is independent of the same quantity at time t′ for all

t ̸= t′, the top r sparsification scheme can also achieve the stronger privacy constraint

I(θ[1:t];Q
[1:t]
n , Û

[1;t]
n , k

[1:t]
n , S

[1:t]
n ) = 0.

4.4 Proposed Scheme

The scheme is similar to what is presented in Section 3.4 with the additional compo-

nent of sparse uploads and downloads. In the writing (reading) phase of the scheme

in Section 3.4, the updates (values) of all parameters in a given subpacket are com-

bined into a single bit. Thus, a user sends (receives) P bits per database, where P

is the number of subpackets in a submodel. In this section, using similar concepts

as in Section 3.4, the user only downloads and uploads Pr′ ≪ P and Pr ≪ P bits

corresponding to the respective sparse subpackets in the reading and writing phases,

respectively, which significantly reduces the communication cost. However, reveal-

ing the indices of the subpackets with no update (all zeros) in the writing phase leaks

privacy, as the values of those updates (zero) are directly known by the databases.7

Therefore, to send the indices of the sparse updates privately to the databases in

7The sparse set of subpackets in the downlink is determined by the databases with no additional
information from the users. Therefore, privacy leakage from the sparse subpacket indices only
occurs in the writing phase.
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the process of top r sparsification, we use a permutation technique, which is the key

component of the proposed scheme. The basic idea of this technique is to add noise

to the sparse subpacket indices, to hide the real indices from the databases. Note

that basic PRUW adds noise to storage, queries and updates, while PRUW with

sparsification adds noise to the sparse subpacket indices, in addition to the storage,

queries and updates. This is analogous to the case with normal and timing channels,

where the normal channels add noise to the values while the timing channels add

noise to the timings. Basic PRUW is analogous to a normal channel while PRUW

with sparsification is analogous to a channel that combines characteristics of both

normal and timing channels.

The process of adding noise to the sparse subpacket indices is as follows. In

the writing phase, each user sends a random set of indices corresponding to the

Pr sparse subpackets (with non-zero updates) instead of sending the real indices.

This random set of indices is generated by the users based on a specific random

permutation of all subpacket indices, which is not known by the databases. However,

in order to guarantee the correctness of the writing process, the permutation needs

to be reversed, and the databases should be able to place the received updates at

the correct positions. This is accomplished by the use of noise-added permutation

reversing matrices, stored at the databases. These permutation reversing matrices

rearrange the permuted indices of the sparse subpackets received by the users in

the correct order in such a way that the databases do not learn the underlying

permutation or the real indices of the sparse updates. The noise-added permutation

reversing matrices convert the noise in the sparse subpacket indices (timing channel)
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into added noise in the incremental update calculation (normal channel). These

extra noise terms in the incremental update calculation require extra noise terms

to be added to storage, for the correctness of the writing phase, which adversely

affects the efficiency of the process. However, the fact that the process is carried out

only on r fraction of the original number of subpackets makes the overall process

significantly efficient in communication cost.

The random selection and assignment of the permutation (to users) and the

noise-added permutation reversing matrices (to databases) are performed by the

same coordinator that assigns similar noise terms to all databases at the initializa-

tion stage of basic PRUW. Based on the structure and the size of the noise-added

permutation reversing matrices stored at each database, we have two cases for the

scheme, which result in two different total communication costs. Cases 1 and 2 cor-

respond to noise-added permutation reversing matrices of sizes O
(

L2

N2

)
and O(L2),

respectively. The general scheme for case 1 is described in detail next, along with

the respective modifications for case 2.8

8An example setting for PRUW with top r sparsification is provided in Section 4.4.2 for both
cases 1 and 2. The reader can skip to Section 4.4.2 to get an overview of the proposed scheme.
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4.4.1 General Scheme

Storage and initialization: The storage of a single subpacket in database n is,

Sn =




W1,1 + (f1 − αn)

∑x
i=0 α

i
nZ

[1]
1,i

...

WM,1 + (f1 − αn)
∑x

i=0 α
i
nZ

[1]
M,i


...

W1,ℓ + (fℓ − αn)
∑x

i=0 α
i
nZ

[ℓ]
1,i

...

WM,ℓ + (fℓ − αn)
∑x

i=0 α
i
nZ

[ℓ]
M,i





, (4.10)

for each n ∈ {1, . . . , N}, where ℓ is the subpacketization, Wi,j is the jth bit of the

given subpacket of the ith submodel Wi, Z
[k]
i,j is the (j + 1)st noise term for the

kth bit of Wi, and {fi}ℓi=1, {αn}Nn=1 are globally known distinct constants chosen

from Fq, such that each αn and fi − αn for all i ∈ {1, . . . , ℓ} and n ∈ {1, . . . , N}

are coprime with q. The degree of the noise polynomial in storage (value of x) for

cases 1 and 2 are x = 2ℓ and x = ℓ+ 1, respectively.

In PRUW, at time t = 0, it should be ensured that all noise terms in storage

are the same in all databases. This is handled by the coordinator in Figure 4.1. We

make use of this coordinator again in PRUW with top r sparsification as follows. In

the reading and writing phases, the user only reads and writes parameters/updates

corresponding to a subset of subpackets (≪ P ) without revealing their true indices.

The coordinator is used to privately shuffle the true non-zero subpacket indices as
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explained next.

At the beginning of the FSL system design, t = 0, the coordinator picks a

random permutation of indices {1, . . . , P} out of all P ! options, denoted by P̃ ,

where P is the number of subpackets. The coordinator sends P̃ to all users involved

in the PRUW process. Then, the coordinator sends the corresponding noise-added

permutation reversing matrix to database n, n ∈ {1, . . . , N}, given by Rn, whose

explicit forms are given below for the two cases. Each user sends the sparse updates

to databases in the form (update, position), based on the order specified by P̃ ,

and the databases can reverse the permutations using Rn, without knowing the

permutation explicitly.

Case 1: The noise-added permutation reversing matrix is given by,

Rn = R +
ℓ∏

i=1

(fi − αn)Z̄, (4.11)

where R is the permutation reversing matrix and Z̄ is a random noise matrix, both

of size P × P .9 For example, for a case where P = 3, the matrix R for a random

permutation given by P̃ = {2, 3, 1} is given by,

R =


0 0 1

1 0 0

0 1 0

 (4.12)

For each database, Rn is a random noise matrix from Shannon’s one time pad

9Since P = L
ℓ and ℓ = O(N), Rn is of O(P 2) which is O

(
L2

N2

)
.
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theorem, from which nothing can be learned about the random permutation P̃ .

The matrix Rn is fixed at database n at all time instances.

Case 2: The noise-added permutation reversing matrix is given by,

Rn = R̃n + Z̃, (4.13)

where R̃n is the permutation reversing matrix as in case 1 (i.e., R) with all its entries

multiplied (element-wise) by the diagonal matrix,

Γn =



1
f1−αn

0 . . . 0

0 1
f2−αn

. . . 0

...
...

...
...

0 0 . . . 1
fℓ−αn


. (4.14)

Therefore, Rn is of size Pℓ× Pℓ = L× L. Z̃ is a random noise matrix of the same

size. For the same example with P = 3 and P̃ = {2, 3, 1}, the matrix R̃n is given

by,

R̃n =


0ℓ×ℓ 0ℓ×ℓ Γn

Γn 0ℓ×ℓ 0ℓ×ℓ

0ℓ×ℓ Γn 0ℓ×ℓ

 . (4.15)

Reading phase: The process of reading (downlink) a subset of parameters

of a given submodel without revealing the submodel index or the parameter indices
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within the submodel to databases is explained in this section.10 In the proposed

scheme, all communications between the users and databases take place only in terms

of the permuted subpacket indices. The users at time t−1 send the permuted indices

of the sparse subpackets to databases in the writing phase, and the databases work

only with these permuted indices of all users to identify the sparse set of subpackets

for the next downlink, and send the permuted indices of the selected set of Pr′ sparse

subpackets to all users at time t. Precisely, let Ṽ be the set of permuted indices of

the Pr′ subpackets chosen by the databases (e.g., union of permuted indices received

by all users at time t−1) at time t, to be sent to the users in the reading phase. One

designated database sends Ṽ to each user at time t, from which the users find the

real indices of the subpackets in Ṽ , using the known permutation P̃ , received by the

coordinator at the initialization stage, i.e., the real indices V corresponding to the

permuted set Ṽ is given by V (i) = P̃ (Ṽ (i)), i ∈ {1, . . . , P r′}. The next steps of the

reading phase at time t are as follows. Note that the following steps are identical

in both cases. However, the equations given next correspond to case 1, followed by

the respective calculations of case 2, separately after the calculations of case 1.

1. The user sends a query to each database n, n ∈ {1, . . . , N} to privately specify

10The privacy constraints of the problem only imply the privacy of the submodel index in the
reading phase. However, the privacy constraints applicable to the writing phase in the previous
iteration imply the privacy of the sparse subpacket indices of the current reading phase.
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the required submodel Wθ given by,

Qn =



1
f1−αn

eM(θ) + Z̃1

1
f2−αn

eM(θ) + Z̃2

...

1
fℓ−αn

eM(θ) + Z̃ℓ


, (4.16)

where eM(θ) is the all zeros vector of size M × 1 with a 1 at the θth position

and Z̃i are random noise vectors of the same size.

2. In order to send the non-permuted version of the ith, i ∈ {1, . . . , |Ṽ |}, sparse

subpacket (i.e., V (i) = P̃ (Ṽ (i))) from the set Ṽ , database n picks the column

Ṽ (i) of the permutation reversing matrix Rn given in (4.11) indicated by

Rn(:, Ṽ (i)) and calculates the corresponding query given by,

Q[V (i)]
n =


Rn(1, Ṽ (i))Qn

...

Rn(P, Ṽ (i))Qn

 (4.17)

=


(R(1, Ṽ (i))+

∏ℓ
i=1(fi−αn)Z̄(1, Ṽ (i)))Qn

...

(R(P, Ṽ (i))+
∏ℓ

i=1(fi−αn)Z̄(P, Ṽ (i)))Qn

 (4.18)
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=



1{V (i)=1}


1

f1−αn
eM(θ)

...

1
fℓ−αn

eM(θ)

+ Pαn(ℓ)

...

1{V (i)=P}


1

f1−αn
eM(θ)

...

1
fℓ−αn

eM(θ)

+ Pαn(ℓ)



, (4.19)

where Pαn(ℓ) are noise vectors consisting of polynomials in αn of degree ℓ.

3. Then, the user downloads (non-permuted) subpacket V (i) = P̃ (Ṽ (i)), i ∈

{1, . . . , |Ṽ |} of the required submodel using the answers received by the N

databases given by,

A[V (i)]
n = ST

nQ
[V (i)]
n (4.20)

=
1

f1 − αn

W
[V (i)]
θ,1 + . . .+

1

fℓ − αn

W
[V (i)]
θ,ℓ + Pαn(ℓ+ x+ 1), (4.21)

from which the ℓ bits of subpacket V (i), i ∈ {1, . . . , |Ṽ |} can be obtained from

the N answers, given that N = ℓ + ℓ + x + 2 = 4ℓ + 2 is satisfied. Thus, the

subpacketization is ℓ = N−2
4

, and the reading cost is,

CR =
P logq P + |Ṽ |(N + logq P )

L
(4.22)

=
P logq P + Pr′(N + logq P )

P × N−2
4

(4.23)
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=
4r′ + 4

N
(1 + r′) logq P

1− 2
N

, (4.24)

where r′, 0 ≤ r′ ≤ 1 is the sparsification rate in the downlink given by |Ṽ | =

Pr′.

Calculations of case 2: The steps described above for case 1 are the same for

case 2 as well, with the following modifications in the equations. The query sent by

the user to database n, n ∈ {1, . . . , N} in step 1 is given by,

Qn =



Q̂1 = eM(θ) + (f1 − αn)Z̃1

Q̂2 = eM(θ) + (f2 − αn)Z̃2

...

Q̂ℓ = eM(θ) + (fℓ − αn)Z̃ℓ


, (4.25)

with the same notation. Then, in step 2, to download the (non-permuted) subpacket

V (i) = P̃ (Ṽ (i)) each database n uses the following procedure. Denote the Pℓ × ℓ

sized submatrix of Rn (in (4.13)) that includes the first ℓ columns of Rn by R
[1]
n ,

and the submatrix that includes the second ℓ columns of Rn by R
[2]
n , and so on, i.e.,

R
[s]
n = Rn(:, (s − 1)ℓ + 1 : sℓ). Now, to download subpacket V (i), database n picks

R
[Ṽ (i)]
n , computes the sum of the columns in R

[Ṽ (i)]
n as,

R̂[Ṽ (i)]
n =

ℓ∑
j=1

R[Ṽ (i)]
n (:, j) =

ℓ∑
j=1

Rn(:, (Ṽ (i)− 1)ℓ+ j), (4.26)
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and calculates the corresponding query as,

Q[V (i)]
n =





R̂
[Ṽ (i)]
n (1)Q̂1

R̂
[Ṽ (i)]
n (2)Q̂2

...

R̂
[Ṽ (i)]
n (ℓ)Q̂ℓ




R̂
[Ṽ (i)]
n (ℓ+ 1)Q̂1

R̂
[Ṽ (i)]
n (ℓ+ 2)Q̂2

...

R̂
[Ṽ (i)]
n (2ℓ)Q̂ℓ


...

R̂
[Ṽ (i)]
n ((P − 1)ℓ+ 1)Q̂1

R̂
[Ṽ (i)]
n ((P − 1)ℓ+ 2)Q̂2

...

R̂
[Ṽ (i)]
n (Pℓ)Q̂ℓ





=



1{V (i)=1}


1

f1−αn
eM(θ)

...

1
fℓ−αn

eM(θ)

+ Pαn(1)

1{V (i)=2}


1

f1−αn
eM(θ)

...

1
fℓ−αn

eM(θ)

+ Pαn(1)

...

1{V (i)=P}


1

f1−αn
eM(θ)

...

1
fℓ−αn

eM(θ)

+ Pαn(1)



,

(4.27)

where Pαn(1) is vector polynomial in αn of degree 1 of size Mℓ× 1. Then, in step 3,

database n sends the answers to the queries in the same way as,

A[V (i)]
n = ST

nQ
[V (i)]
n (4.28)

=
1

f1 − αn

W
[V (i)]
θ,1 + . . .+

1

fℓ − αn

W
[V (i)]
θ,ℓ + Pαn(x+ 2), (4.29)

where W
[k]
i,j is the jth bit of submodel i in subpacket k. The ℓ bits of Wθ in subpacket
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V (i) are obtained when N = ℓ + x + 3 = 2ℓ + 4 is satisfied, which gives the

subpacketization of case 2 as ℓ = N−4
2

, that results in the reading cost given by,

CR =
P logq P + |Ṽ |(N + logq P )

L
(4.30)

=
P logq P + Pr′(N + logq P )

P × N−4
2

(4.31)

=
2r′ + 2

N
(1 + r′) logq P

1− 4
N

, (4.32)

with the same notation used for case 1.

Writing phase: Similar to the presentation of the reading phase, we describe

the general scheme that is valid for both cases, along with the equations relevant

to case 1, and provide the explicit equations corresponding to case 2 at the end.

The writing phase of the PRUW scheme with top r sparsification consists of the

following steps.

1. The user generates combined updates (one bit per subpacket) of the non-zero

subpackets and has zero as the combined update of the rest of the P (1 − r)

subpackets. The update of subpacket s for database n is given by,11

Un(s) =


0, s ∈ Bc,

∑ℓ
i=1 ∆̃

[s]
θ,i

∏ℓ
j=1,j ̸=i(fj − αn) +

∏ℓ
j=1(fj − αn)Zs, s ∈ B,

(4.33)

where B is the set of subpacket indices with non-zero updates, Zs is a random

noise bit and ∆̃
[s]
θ,i =

∆
[s]
θ,i∏ℓ

j=1,j ̸=i(fj−fi)
with ∆

[s]
θ,i being the update for the ith bit

11A permuted version of these updates is sent to the databases.
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of subpacket s of Wθ.

2. The user permutes the updates of subpackets using P̃ . The permuted com-

bined updates are given by,

Ûn(i) = Un(P̃ (i)), i = 1, . . . , P. (4.34)

3. Then, the user sends the following (update, position) pairs to each database

n,

Y [j]
n = (Û [j]

n , k[j]), j = 1, . . . , P r, (4.35)

where Û
[j]
n is the jth non-zero entry in the vector Ûn in (4.34), and k[j] is its

index, i.e., the position of Û
[j]
n in the vector Ûn.

4. Based on the received (update, position) pairs, each database constructs an

update vector V̂n of size P × 1 with Û
[j]
n placed as the k[j]th entry,

V̂n =
Pr∑
j=1

Û [j]
n eP (k

[j]) = Ûn. (4.36)

5. V̂n in (4.36) contains the combined updates of the form (4.33) arranged in a

random permutation given by P̃ . The databases are unable to determine the

true indices of the subpackets since P̃ is not known by the databases. However,

for correctness in the writing phase, the updates in V̂n must be rearranged in

the correct order. This is done with the noise-added permutation reversing
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matrix given in (4.11) as,

Tn = RnV̂n = RV̂n +
ℓ∏

i=1

(fi − αn)Pαn(ℓ), (4.37)

where Pαn(ℓ) is a P × 1 vector containing noise polynomials in αn of degree

ℓ, RV̂n contains all updates of all subpackets (including zeros) in the correct

order, while
∏ℓ

i=1(fi−αn)Pαn(ℓ) contains random noise, that hides the indices

of the zero update subpackets.

6. The incremental update is calculated in the same way as described in Sec-

tion 3.4 in each subpacket as,

Ūn(s)= Dn × Tn(s)×Qn (4.38)

= Dn × Un(s)×Qn +Dn × Pαn(2ℓ) (4.39)

=





∆
[s]
θ,1eM(θ)

...

∆
[s]
θ,ℓeM(θ)


+



(f1− αn)Pαn(2ℓ)

...

(fℓ− αn)Pαn(2ℓ)


, s ∈ B,



(f1 − αn)Pαn(2ℓ)

...

(fℓ − αn)Pαn(2ℓ)


, s ∈ Bc,

(4.40)

where Pαn(2ℓ) here are noise vectors of size Mℓ × 1 in (4.39) and M × 1 in

(4.40) with polynomials in αn of degree 2ℓ and Dn is the scaling matrix given
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by,

Dn =


(f1 − αn)IM . . . 0

...
...

...

0 . . . (fℓ − αn)IM

 , (4.41)

for all n. Ūn(s) is in the same format as the storage in (4.10) with x = 2ℓ

(case 1) and hence can be added to the existing storage to obtain the updated

storage, i.e.,

S[t]
n (s) = S[t−1]

n (s) + Ūn(s), s = 1, . . . , P. (4.42)

Note that the degree ℓ noise polynomials in αn (noise matrix) in the noise-

added permutation reversing matrix in (4.11) introduces ℓ extra noise terms

in the incremental update calculation, compared to the basic PRUW scheme

in which the incremental update has a noise polynomial in αn of degree ℓ.

In other words, the permutation technique requires ℓ dimensions from the

N dimensional space which reduces the number of dimensions left for data

downloads and uploads to guarantee the privacy of the sparsification process.

The writing cost of the scheme is given by,12

CW =
PrN(1 + logq P )

L
(4.43)

12Note that the upload cost of the query vector from the reading phase, which is of size Mℓ× 1
and is not considered in the writing cost calculation since Mℓ

L is negligible.
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=
PrN(1 + logq P )

P × N−2
4

(4.44)

=
4r(1 + logq P )

1− 2
N

. (4.45)

Calculations of case 2: Steps 1-4 in the general scheme are valid for case 2 with

the same equations. In step 5, the updates of permuted subpackets V̂n are privately

arranged in the correct order as follows. Using the noise added permutation reversing

matrix Rn in (4.13), database n, n ∈ {1, . . . , N} calculates,

Tn = Rn × [V̂n(1)1ℓ, V̂n(2)1ℓ, . . . V̂n(P )1ℓ]
T (4.46)

= (R̃n + Z̃)[V̂n(1)1ℓ, V̂n(2)1ℓ, . . . V̂n(P )1ℓ]
T (4.47)

=



Un(1)


1

f1−αn

...

1
fℓ−αn



Un(2)


1

f1−αn

...

1
fℓ−αn


...

Un(P )


1

f1−αn

...

1
fℓ−αn





+Pαn(ℓ) =




∆

[1]
θ,1

f1−αn

...

∆
[1]
θ,ℓ

fℓ−αn


∆

[2]
θ,1

f1−αn

...

∆
[2]
θ,ℓ

fℓ−αn


...

∆
[P ]
θ,1

f1−αn

...

∆
[P ]
θ,ℓ

fℓ−αn





+Pαn(ℓ), (4.48)

where 1ℓ is an all ones vector of size ℓ × 1 and Pαn(ℓ) here is a vector polynomial
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in αn of degree ℓ of size Pℓ × 1. Note that many Un(i)s in the above calculation

are zero due to sparsification. The last equality is derived from the application of

Lemma 3.1 on expressions of the form Un(i)
fj−αn

. Recall that ∆
[i]
θ,j = 0, j ∈ {1, . . . , ℓ}

for all subpackets i, that are not within the Pr selected subpackets with non-zero

updates.

Now that the updates are privately arranged in the correct order, it remains

only to place the updates at the intended submodel in the storage. Note that the

updates of the first subpacket are in the first ℓ rows of Tn, the updates of the second

subpacket are in the next ℓ rows of Tn, and so on. Therefore, we divide Tn, based

on its correspondence to subpackets as,

T [s]
n = Tn((s− 1)ℓ+ 1 : sℓ), (4.49)

for s ∈ {1, . . . , P}. With this initialization, for step 6, each database calculates

the incremental update of subpacket s, s ∈ {1, . . . , P} using the the query in the

reading phase (4.25) as,

Ūn(s) = Dn ×


T

[s]
n (1)Q̂1

...

T
[s]
n (ℓ)Q̂ℓ

 (4.50)

= Dn ×



(
∆

[s]
θ,1

f1−αn
+Pαn(ℓ)

)
(eM(θ)+(f1 − αn)Z̃1)

...(
∆

[s]
θ,ℓ

fℓ−αn
+Pαn(ℓ)

)
(eM(θ)+(fℓ − αn)Z̃1)


(4.51)
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=


∆

[s]
θ,1eM(θ) + (f1 − αn)Pαn(ℓ+ 1)

...

∆
[s]
θ,ℓeM(θ) + (fℓ − αn)Pαn(ℓ+ 1)

 , (4.52)

with the same notation used in case 1. Since the incremental update is in the same

form as the storage in (4.10) with x = ℓ + 1, Ūn(s) for s ∈ {1, . . . , P} is added to

the existing storage to obtain the updated version similar to case 1. The resulting

writing cost is given by,

CW =
PrN(1 + logq P )

L
(4.53)

=
PrN(1 + logq P )

P × N−4
2

(4.54)

=
2r(1 + logq P )

1− 4
N

. (4.55)

Remark 4.4 This problem can also be solved by considering a classical FSL setting

without sparsification with P submodels, i.e., M = P , and by using the private FSL

scheme in Section 3.4 to update the sparse Pr submodels. However, in this case the

normalized cost of sending the queries Qn given by NMℓ
L

= NPℓ
L

= N is large, and

cannot be neglected.

4.4.2 Example

Assume that there are N = 10 databases containing M submodels, each with P = 5

subpackets. The coordinator first picks a random permutation of {1, . . . , 5} out of

the 5! options available. Let the realization of the permutation be P̃ = {2, 5, 1, 3, 4}.
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Case 1: The subpacketization is ℓ = N−2
4

= 2 and the storage of database n

consists of the model given by,13

Sn =




W1,1 + (f1 − αn)

∑4
i=0 α

i
nZ

[1]
1,i

...

WM,1 + (f1 − αn)
∑4

i=0 α
i
nZ

[1]
M,i


W1,2 + (f2 − αn)

∑4
i=0 α

i
nZ

[2]
1,i

...

WM,2 + (f2 − αn)
∑4

i=0 α
i
nZ

[2]
M,i





, (4.56)

since the degree of the noise polynomial is 2ℓ = 4. The permutation reversing matrix

is given by,

Rn =



0 0 1 0 0

1 0 0 0 0

0 0 0 1 0

0 0 0 0 1

0 1 0 0 0


+

2∏
i=1

(fi − αn)Z̄, (4.57)

where Z̄ is a random noise matrix of size 5×5. The coordinator places matrix Rn at

database n at the beginning of the process and sends P̃ to each user. Assume that

a given user wants to update submodel θ at time t. In the reading phase, the user

only downloads the sparse set of subpackets indicated by the permuted set of indices

Ṽ = {2, 3}, which is determined by the databases. One designated database sends

13Here we have only presented the storage of a single subpacket.
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these permuted indices to each of the users at time t. Then, the user obtains the real

indices of the subpackets in Ṽ , using V (i) = P̃ (Ṽ (i)) for i = 1, 2, i.e., V = {5, 1}.

The user sends the query specifying the requirement of submodel θ given by,

Qn =

 1
f1−αn

eM(θ) + Z̃1

1
f2−αn

eM(θ) + Z̃2

 (4.58)

to database n. Then, each database privately calculates the non-permuted query

vector for each subpacket V (i) using the noise added permutation reversing matrix

and the query received. The query for subpacket V (1) = 5 is,

Q[5]
n =


Rn(1, Ṽ (1))Qn

...

Rn(P, Ṽ (1))Qn

 =



02M

02M

02M

02M

Qn


+ Pαn(2) (4.59)

where Pαn(2) is a vector of size 10M × 1 consisting of polynomials in αn of degree

2 and 02M is the all zeros vector of size 2M × 1. Then, the answer from database n

corresponding to subpacket V (1) = 5 is given by,

A[5]
n = ST

nQ
[5]
n (4.60)

=
1

f1 − αn

W
[5]
θ,1 +

1

f2 − αn

W
[5]
θ,2 + Pαn(3× 2 + 1), (4.61)

from which the 2 bits of subpacket 5 of submodel θ can be correctly obtained by
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using the N = 10 answers from the ten databases. Similarly, the user can obtain

subpacket 1 of Wθ by picking column Ṽ (2) = 3 of Rn in (4.57) in the calculation of

(4.59) and following the same process.

Once the user downloads and trains Wθ, the user generates the r fraction of

subpackets with non-zero updates. Let the subpacket indices with non-zero updates

be 1 and 4. The noisy updates generated by the user to be sent to database n

according to (4.33) is given by Un = [Un(1), 0, 0, Un(4), 0]
T in the correct order. The

user then permutes Un based on the given permutation P̃ , i.e., Ûn(i) = Un(P̃ (i)) for

i = {1, . . . , 5},

Ûn = [0, 0, Un(1), 0, Un(4)]
T . (4.62)

The user sends the values and the positions of the non-zero updates as (Un(1), 3)

and (Un(4), 5) based on the permuted order. Each database receives these pairs and

reconstructs (4.62),

V̂n = Un(1)e5(3) + Un(4)e5(5) = Ûn. (4.63)

To rearrange the updates back in the correct order privately, database n multiplies

V̂n by the permutation reversing matrix,

Tn = Rn × V̂n (4.64)
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=



0 0 1 0 0

1 0 0 0 0

0 0 0 1 0

0 0 0 0 1

0 1 0 0 0


V̂n +

2∏
i=1

(fi − αn)Z̄ × V̂n (4.65)

= [Un(1), 0, 0, Un(4), 0]
T +

2∏
i=1

(fi − αn)Pαn(2), (4.66)

since Un(1) and Un(4) are of the form
∑2

i=1 ∆̃θ,i

∏2
j=1,j ̸=i(fj−αn)+

∏2
j=1(fj−αn)Z =

Pαn(2). The incremental update of subpacket s, is calculated by,

Ūn(s) = Dn × Tn(s)×Qn (4.67)

=



∆
[s]
1,1eM(θ)

∆
[s]
1,2eM(θ)

+

(f1 − αn)Pαn(4)

(f2 − αn)Pαn(4)

 , s = 1, 4

(f1 − αn)Pαn(4)

(f2 − αn)Pαn(4)

 , s = 2, 3, 5

(4.68)

using Lemma 3.1, where Pαn(4) are vectors of size M ×1 consisting of noise polyno-

mials in αn of degree 4. Since the incremental update is in the same format as the

storage in (4.56), the existing storage can be updated as S
[t]
n (s) = S

[t−1]
n (s) + Ūn(s)

for s = 1, . . . , 5, where S
[t]
n (s) is the storage of subpacket s in (4.56) at time t.

Case 2: For this case, the subpacketization is ℓ = N−4
2

= 3 and the storage of
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the model is given by,

Sn =




W1,1 + (f1 − αn)

∑4
i=0 α

i
nZ

[1]
1,i

...

WM,1 + (f1 − αn)
∑4

i=0 α
i
nZ

[1]
M,i


W1,2 + (f2 − αn)

∑4
i=0 α

i
nZ

[2]
1,i

...

WM,2 + (f2 − αn)
∑4

i=0 α
i
nZ

[2]
M,i


W1,3 + (f3 − αn)

∑4
i=0 α

i
nZ

[3]
1,i

...

WM,3 + (f3 − αn)
∑4

i=0 α
i
nZ

[3]
M,i





, (4.69)

since the degree of the noise polynomial x = ℓ+ 1 = 4. The permutation reversing

matrix stored in database n, n ∈ {1, . . . , N} is given by,

Rn =



03×3 03×3 Γn 03×3 03×3

Γn 03×3 03×3 03×3 03×3

03×3 03×3 03×3 Γn 03×3

03×3 03×3 03×3 03×3 Γn

03×3 Γn 03×3 03×3 03×3


+ Z̃, (4.70)

where Γn =


1

f1−αn
0 0

0 1
f2−αn

0

0 0 1
f3−αn

, and 03×3 is the all zeros matrix of size 3 × 3.

133



For the same example where users need to read the permuted subpackets Ṽ = {2, 3},

a designated database sends Ṽ to each user, from which the user obtains the non-

permuted subpacket indices V = {5, 1} using P̃ . The user sends the following query

to specify the required submodel index θ,

Qn =


Q̂1 = eM(θ) + (f1 − αn)Z̃1

Q̂2 = eM(θ) + (f2 − αn)Z̃2

Q̂3 = eM(θ) + (f3 − αn)Z̃3

 . (4.71)

To read subpacket V (1) = 5, database n first computes the sum of the ℓ = 3 columns

of the Ṽ (1) = 2nd submatrix of Rn given by,

R̂[Ṽ (1)]
n = R̂[2]

n =
3∑

j=1

Rn(:, 3 + i) =



03

03

03

03

1
f1−αn

1
f2−αn

1
f3−αn



+ Ẑ, (4.72)

where 03 is the all zeros vector of size 3 × 1, Ẑ is a random vector of size 15 × 1.
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Then, each database computes the specific query for V (1) = 5 given by,

Q[5]
n =




R̂

[2]
n (1)Q̂1

R̂
[2]
n (2)Q̂2

R̂
[2]
n (3)Q̂3


...

R̂
[2]
n (13)Q̂1

R̂
[2]
n (14)Q̂2

R̂
[2]
n (15)Q̂3





=



0× Q̂1

0× Q̂1

0× Q̂3

...

0× Q̂1

0× Q̂1

0× Q̂3

1
f1−αn

Q̂1

1
f2−αn

Q̂2

1
f3−αn

Q̂3



+ Pαn(1) =



03M

03M

03M

03M

1
f1−αn

eM(θ)

1
f2−αn

eM(θ)

1
f3−αn

eM(θ)



+ Pαn(1), (4.73)

where the polynomial vectors Pαn(1) are resulted by the multiplications of the form

ẐiQ̂j and by the residual terms of the calculations of the form 1
fi−αn

Q̂j. Note that the

two Pαn(1) vectors in (4.73) are not the same, and they are both some random vector

polynomials in αn of degree 1 of size 15M × 1. Each database n, n ∈ {1, . . . , N}

then sends the answers to this query given by,

A[5]
n = ST

nQ
[5]
n (4.74)

=
1

f1−αn

W
[5]
θ,1 +

1

f2−αn

W
[5]
θ,2 +

1

f3−αn

W
[5]
θ,3 + Pαn(6), (4.75)

from which the three bits of subpacket 5 can be obtained since N = 3+ 6+ 1 = 10.

For the same example considered in case 1, the user sends the two updates
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corresponding to subpackets 1 and 4, along with the permuted positions, from which

the databases compute V̂n = [0, 0, Un(1), 0, Un(4)]
T given in (4.63), where Un(1) and

Un(4) are of the form
∑3

i=1 ∆̃θ,i

∏3
j=1,j ̸=i(fj−αn)+

∏3
j=1(fj−αn)Z = Pαn(3). Then,

database n, n ∈ {1, . . . , N} rearranges the updates in the correct order as,

Tn = Rn ×


V̂n(1)13

...

V̂n(5)13

 (4.76)

=





03×3 03×3 Γ 03×3 03×3

Γ 03×3 03×3 03×3 03×3

03×3 03×3 03×3 Γ 03×3

03×3 03×3 03×3 03×3 Γ

03×3 Γ 03×3 03×3 03×3


+ Z̄





03×1

03×1

Un(1)13

03×1

Un(4)13


(4.77)

=



Un(1)


1

f1−αn

1
f2−αn

1
f3−αn


03×1

03×1

Un(4)


1

f1−αn

1
f2−αn

1
f3−αn


03×1



+ Pαn(3) =




∆

[1]
θ,1

f1−αn

∆
[1]
θ,2

f2−αn

∆
[1]
θ,3

f3−αn


03×1

03×1
∆

[4]
θ,1

f1−αn

∆
[4]
θ,2

f2−αn

∆
[4]
θ,3

f3−αn


03×1



+ Pαn(3), (4.78)

136



where the last equality is obtained by using Lemma 3.1. Since the subpacketization

is ℓ = 3, we divide Tn into blocks of 3 elements each (subpackets) as shown in (4.49).

For example, T
[1]
n =

[
∆

[1]
θ,1

f1−αn
,

∆
[1]
θ,2

f2−αn
,

∆
[1]
θ,3

f3−αn

]T
+Pαn(3) and T

[2]
n = Pαn(3), where Pαn(3)

is a vector polynomial of size 3 × 1. Then, as an example, the incremental update

of the first subpacket is calculated as,

Ūn(1) = Dn ×


T

[1]
n (1)Q̂1

T
[1]
n (2)Q̂2

T
[1]
n (3)Q̂3

 (4.79)

= Dn×



(
∆

[1]
θ,1

f1−αn
+Pαn(3)

)
(eM(θ)+(f1−αn)Z̃1)(

∆
[1]
θ,2

f2−αn
+Pαn(3)

)
(eM(θ)+(f2−αn)Z̃2)(

∆
[1]
θ,3

f3−αn
+Pαn(3)

)
(eM(θ)+(f3−αn)Z̃3)


(4.80)

=


∆

[1]
θ,1eM(θ) + (f1 − αn)Pα(4)

∆
[1]
θ,2eM(θ) + (f2 − αn)Pα(4)

∆
[1]
θ,3eM(θ) + (f3 − αn)Pα(4)

 , (4.81)

where Pαn(4) is a vector polynomial in αn of degree 4, of size M × 1. The above

incremental update is directly added to the first subpacket of the existing storage

in (4.69) since both are of the same format.

4.4.3 Proof of Privacy

Privacy of the submodel index: The uploads of the user in the writing phase of

the proposed scheme is given by Yn = (Ûn, k), (see (4.35)) where Ûn are the val-
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ues of sparse updates and k are the corresponding permuted positions. For any

m ∈ {1, . . . ,M} and arbitrary realizations of storage, queries, updates and per-

muted positions (s̄n, r̄n, ūn, k̄), consider the following aposteriori probability from

the perspective of an individual database,

P (θ[t] = m|S[t]
n = s̄n, Q

[t]
n = r̄n, Û

[t]
n = ūn, k

[t] = k̄)

=
P (θ[t] = m,S

[t]
n = s̄n, Q

[t]
n = r̄n, Û

[t]
n = ūn, k

[t] = k̄)

P (S
[t]
n = s̄n, Q

[t]
n = r̄n, Û

[t]
n = ūn, k[t] = k̄)

(4.82)

=
P (θ[t] = m, k[t] = k̄)P (S

[t]
n = s̄n, Q

[t]
n = r̄n, Û

[t]
n = ūn)

P (S
[t]
n = s̄n, Q

[t]
n = r̄n, Û

[t]
n = ūn)P (k[t] = k̄)

(4.83)

=
P (k[t] = k̄|θ[t] = m)P (θ[t] = m)

P (k[t] = k̄)
, (4.84)

where (4.83) is due to the fact that S
[t]
n , Q

[t]
n and Û

[t]
n are random noise terms that

are independent of θ[t] and k[t].14 For all realizations of updates at time t, i.e., ∆
[t]
θ ,

denoted by δ and permutations P̃ , denoted by p̃,

P (k[t] = k̄|θ[t] = m) =
∑
δ

∑
p̃

P (k[t] = k̄, P̃ = p̃,∆
[t]
θ = δ|θ[t] = m) (4.85)

=
∑
δ

∑
p̃

P (k[t] = k̄|P̃ = p̃,∆
[t]
θ = δ, θ[t] = m)

× P (P̃ = p̃,∆
[t]
θ = δ|θ[t] = m) (4.86)

=
∑
δ

P (∆
[t]
θ =δ|θ[t]=m)

∑
p̃

1{P̃=p̃,∆
[t]
θ =δ,k[t]=k̄}P (P̃ = p̃) (4.87)

=
(Pr)!(P − Pr)!

P !
(4.88)

14Note that S
[t]
n = S

[0]
n +

∑t
t′=1 Ū

[t′]
n is random noise, based on the random noise component in

S
[0]
n (added to submodels at time t = 0), from Shannon’s one time pad theorem.
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=
1(
P
Pr

) , (4.89)

where (4.87) is from the fact that the randomly selected permutation P̃ is indepen-

dent of the updating submodel index and the values of updates. Moreover,

P (k[t] = k̄) =
M∑

m=1

P (k[t] = k̄|θ[t] = m)P (θ[t] = m) (4.90)

=
1(
P
Pr

) M∑
m=1

P (θ[t] = m) =
1(
P
Pr

) . (4.91)

Therefore, from (4.84),

P (θ[t] = m|S[t]
n = s̄n, Q

[t]
n = r̄n, Û

[t]
n = ūn, k

[t] = k̄)

=
P (k[t] = k̄|θ[t] = m)P (θ[t] = m)

P (k[t] = k̄)
(4.92)

=

1

( P
Pr)

P (θ[t] = m)

1

( P
Pr)

(4.93)

= P (θ[t] = m), (4.94)

which proves (4.1).

Privacy of the values of updates: For any set of updates of submodel θ[t] given

by, q̃ ∈ FL
q and arbitrary realizations of storage, queries, updates and positions

(s̄n, r̄n, ūn, k̄), consider the following aposteriori probability from the perspective of

an individual database,

P (∆
[t]
θ = q̃|S[t]

n = s̄n, Q
[t]
n = r̄n, Û

[t]
n = ūn, k

[t] = k̄)
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=
P (∆

[t]
θ = q̃, S

[t]
n = s̄n, Q

[t]
n = r̄n, Û

[t]
n = ūn, k

[t] = k̄)

P (S
[t]
n = s̄n, Q

[t]
n = r̄n, Û

[t]
n = ūn, k[t] = k̄)

(4.95)

=
P (∆

[t]
θ = q̃, k[t] = k̄)P (S

[t]
n = s̄n, Q

[t]
n = r̄n, Û

[t]
n = ūn)

P (S
[t]
n = s̄n, Q

[t]
n = r̄n, Û

[t]
n = ūn)P (k[t] = k̄)

, (4.96)

as S
[t]
n , Q

[t]
n and Û

[t]
n are random noise terms that are independent of the val-

ues/positions of sparse updates and the submodel index. Therefore,

P (∆
[t]
θ = q̃|S[t]

n = s̄n, Q
[t]
n = r̄n, Û

[t]
n = ūn, k

[t] = k̄) =
P (k[t] = k̄|∆[t]

θ = q̃)P (∆
[t]
θ = q̃)

P (k[t] = k̄)
,

(4.97)

Note that for all possible realizations of permutations p̃,

P (k[t] = k̄|∆[t]
θ = q̃) =

∑
p̃

P (k[t] = k̄, P̃ = p̃|∆[t]
θ = q̃) (4.98)

=
∑
p̃

P (k[t] = k̄|P̃ = p̃,∆
[t]
θ = q̃)P (P̃ = p̃|∆[t]

θ = q̃) (4.99)

=
∑
p̃

1{k[t]=k̄,∆
[t]
θ =q̃,P̃=p̃}P (P̃ = p̃) (4.100)

=
(Pr)!(P − Pr)!

P !
(4.101)

=
1(
P
Pr

) , (4.102)

where (4.100) is due to the fact that the permutation is independently and randomly

selected, irrespective of the values of updates. Therefore, from (4.97),

P (∆
[t]
θ = q̃|S[t]

n = s̄n, Q
[t]
n = r̄n, Û

[t]
n = ūn, k

[t] = k̄) =

1

( P
Pr)

P (∆
[t]
θ = q̃)

1

( P
Pr)

(4.103)
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= P (∆
[t]
θ = q̃), (4.104)

which proves (4.2).

Security of the stored submodels: For any w̄ ∈ FMℓ
q and arbitrary realizations

of storage, queries, updates and positions (s̄n, r̄n, ūn, k̄),

P (W
[t]
[1:M ] = w̄|Q[t]

n = r̄n, S
[t]
n = s̄n, Û

[t]
n = ūn, k

[t] = k̄)

=
P (Q

[t]
n = r̄n, S

[t]
n = s̄n, Û

[t]
n = ūn, k

[t] = k̄,W
[t]
[1:M ] = w̄)

P (Q
[t]
n = r̄n, S

[t]
n = s̄n, Û

[t]
n = ūn, k[t] = k̄)

(4.105)

=
P (Q

[t]
n = r̄n, S

[t]
n = s̄n, Û

[t]
n = ūn)P (W

[t]
1:M = w̄, k[t] = k̄)

P (Q
[t]
n = r̄n, S

[t]
n = s̄n, Û

[t]
n = ūn)P (k[t] = k̄)

(4.106)

as Û
[t]
n , Q

[t]
n and S

[t]
n values are random noise terms that do not depend on the

submodel values or sparse update positions. Therefore,

P (W
[t]
1:M = w̄|Q[t]

n = r̄n, S
[t]
n = s̄n, Û

[t]
n = ūn, k

[t] = k̄)

=
P (k[t] = k̄|W [t]

1:M = w̄)P (W
[t]
1:M = w̄)

P (k[t] = k̄)
. (4.107)

For all realizations of updates δ and permutations p̃,

P (k[t] = k̄|W [t]
1:M = w̄) =

∑
δ

∑
p̃

P (k[t] = k̄, P̃ = p̃,∆
[t]
θ = δ|W [t]

1:M = w̄) (4.108)

=
∑
δ

∑
p̃

P (k[t] = k̄|P̃ = p̃,∆
[t]
θ = δ,W

[t]
1:M = w̄)

× P (P̃ = p̃,∆
[t]
θ = δ|W [t]

1:M = w̄) (4.109)
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=
∑
δ

P (∆
[t]
θ = δ|W [t]

1:M = w̄)

×
∑
p̃

1{P̃=p̃,∆
[t]
θ =δ,k[t]=k̄}P (P̃ = p̃) (4.110)

=
(Pr)!(P − Pr)!

P !
(4.111)

=
1(
P
Pr

) . (4.112)

Therefore, from (4.107) and (4.91),

P (W
[t]
1:M = w̄|S[t]

n = s̄n, Q
[t]
n = r̄n, Û

[t]
n = ūn, k

[t] = k̄) =

1

( P
Pr)

P (W
[t]
1:M = w̄)

1

( P
Pr)

(4.113)

= P (W
[t]
1:M = w̄) (4.114)

which proves the condition in (4.3).

4.5 Conclusions

In this chapter, we considered the problem of PRUW in FSL with top r sparsi-

fication, where only a selected number of parameters and updates are read and

written in the reading and writing phases, respectively, in the FSL process. These

parameters/updates are selected based on their significance. Therefore, in order to

guarantee the information-theoretic privacy of the users participating in the FSL

process, the updating submodel index, values of the sparse updates/parameters,

and the positions of the sparse updates/parameters must be kept private. This is

an extension of the basic PRUW problem considered in Chapter 3. To satisfy the
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additional privacy constraint on the positions of the sparse updates/parameters,

we introduced a permutation technique, which is based on certain properties of

Lagrange polynomials. This permutation technique however requires noise-added

permutation reversing matrices to be stored in databases. Based on the structure

and size of these matrices, the proposed scheme is able to achieve asymptotic (large

N) normalized reading and writing costs as low as 2r or 4r, where r is the spar-

sification rate, which is typically around 10−2 to 10−3. The main drawback of the

proposed methods is the additional storage cost incurred by the large noise-added

permutation reversing matrices. We focus on this issue and provide solutions in the

context of FL in Chapter 6 .
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CHAPTER 5

Private Federated Submodel Learning (FSL) with Random

Sparsification

5.1 Introduction

In this Chapter, we investigate the problem of private FSL with random sparsi-

fication, which is also formulated as a rate-distortion trade-off in PRUW. In this

work, we study how the communication cost of PRUW in FSL can be reduced by

performing random sparsification, where pre-determined amounts of randomly cho-

sen parameters and updates are not downloaded and uploaded in the reading and

writing phases, respectively. This process introduces some amount of distortion in

the two phases since a pre-determined amount of downloads and uploads are made

zero (not communicated) irrespective of their real values. We study the behavior of

the communication cost with the level of distortion (random sparsification rate) al-

lowed. Our results characterize the rate-distortion trade-off in PRUW, and provide

an achievable scheme that works under any given distortion budget.
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5.2 Problem Formulation

We consider the basic PRUW setting described in Section 3.2 with N non-colluding

databases storing M independent submodels {W1, . . . ,WM} of size L, each contain-

ing random symbols from Fq. At each time instance t, a user updates an arbitrary

submodel without revealing its index or the values of updates. Pre-determined

amounts of distortion (random sparsification rates in the uplink and downlink) are

allowed in the reading and writing phases (D̃r and D̃w, respectively), in order to

reduce the communication cost.

Distortion in the reading phase: A distortion of no more than D̃r is allowed

in the reading phase, i.e., Dr ≤ D̃r, with

Dr =
1

L

L∑
i=1

1Wθ,i ̸=Ŵθ,i
(5.1)

whereWθ,i, Ŵθ,i are the actual and downloaded versions of the ith bit of the required

submodel Wθ.

Distortion in the writing phase: A distortion of no more than D̃w is allowed

in the writing phase, i.e., Dw ≤ D̃w, with

Dw =
1

L

L∑
i=1

1∆θ,i ̸=∆̂θ,i
(5.2)

where ∆θ,i and ∆̂θ,i are the actual and uploaded versions of the ith bit of the update

to the required submodel.
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The goal of this work is to find schemes that result in the lowest total commu-

nication cost under given distortion budgets in the reading and writing phases in the

PRUW setting, i.e., a rate-distortion trade-off in PRUW. The privacy constraints

on the updating submodel index and the values of updates as well as the security

constraint on the submodels are the same as (3.7), (3.8) and (3.9), respectively. The

correctness conditions are defined as follows.

Correctness in the reading phase: The user should be able to correctly decode

the sparse set of parameters (denoted by G) of the required submodel Wθ from the

answers received in the reading phase, i.e.,

H(W
[t−1]
θ,G |Q[t]

1:N , A
[t]
1:N , θ

[t]) = 0, t ∈ N, (5.3)

where W
[t−1]
θ,G is the set of parameters in set G of submodel Wθ before updating, Q

[t]
n

is the query sent to database n at time t, A
[t]
n is the corresponding answer and θ[t]

is the updating submodel index at time t.1

Correctness in the writing phase: Let G′ be the sparse set of parameters with

non-zero updates of Wθ in the writing phase. Then, the ith parameter of submodel

1The correctness condition in (5.3) states that the set of random parameters that the user
decides to download from the required submodel in the reading phase, denoted by G, must be

correctly downloaded without any uncertainty. The entropy of the entire submodel W
[t−1]
θ , given

all queries and answers is not zero, as the user only downloads parts of it, and the rest account
for distortion. However, the parameters that the user randomly chooses to download must be
downloaded with zero ambiguity.
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m at time t, t ∈ N given by W
[t]
m,i is correctly updated as,

W
[t]
m,i =


W

[t−1]
m,i +∆

[t]
m,i, if m = θ[t] and i ∈ G′

W
[t−1]
m,i , if m ̸= θ[t] or i /∈ G′

, (5.4)

where ∆
[t]
m,i is the corresponding update of W

[t−1]
m,i .

In the reading phase, users privately send queries to download a randomly

selected set of parameters of the required submodel, and in the writing phase, users

privately send updates to be added to a randomly selected set of parameters of the

existing submodels while ensuring the distortions resulted by sparse downloads and

uploads in the two phases are within the allowed budgets (D̃r, D̃w). The reading,

writing and total costs are defined the same as in Section 3.2. 2

5.3 Main Result

Theorem 5.1 For a PRUW setting with N non-colluding databases containing M

independent submodels, where D̃r and D̃w amounts of distortion are allowed in the

reading and writing phases, respectively, the following reading and writing costs are

2Note that PRUW with top r sparsification considered in Chapter 4 also results in incomplete
downloads/uploads, as only a selected set of subpackets are downloaded/updated. However, these
parameters and updates are carefully chosen based on their significance to improve the accuracy.
It has been shown in certain cases that top r sparsification outperforms non-sparse distributed
learning [80, 86, 98]. Therefore, we do not consider the ignored subpackets in the reading and
writing phases in top r sparsification as distortion. However, in random sparsification, since the
selected parameters/updates are chosen randomly, we treat the ignored parameters/updates as
distortion, to characterize the rate-distortion trade-off in PRUW.
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achievable,

CR =



2
1− 2

N

(1− D̃r), even N

2− 2
N

1− 3
N

(1− D̃r), odd N , D̃r < D̃w

2
1− 3

N

(1− D̃r), odd N , D̃r ≥ D̃w

, (5.5)

CW =



2
1− 2

N

(1− D̃w), even N

2
1− 3

N

(1− D̃w), odd N , D̃r < D̃w

2− 2
N

1− 3
N

(1− D̃w), odd N , D̃r ≥ D̃w

. (5.6)

Remark 5.1 The total communication cost decreases linearly with the increasing

amounts of distortion allowed in the reading and writing phases, i.e., the rate-

distortion characterization is linear.

Remark 5.2 From the perspective of random sparsification, 1− D̃r and 1− D̃w are

the sparsification rates in the reading and writing phases, respectively, as D̃r and

D̃w fractions of parameters and updates that are not downloaded and updated. The

reading and writing costs in Theorem 5.1 are essentially the reading and writing

costs of basic PRUW, scaled by the sparsification rate.

5.4 Proposed Scheme

The proposed scheme is an extension of the scheme presented in Section 3.4. The

scheme in Section 3.4 considers ⌊N
2
⌋−1 bits of the required submodel at a time (called

subpacketization) and reads from and writes to ⌊N
2
⌋ − 1 bits using a single bit in

148



each of the reading and writing phases with no error. In this section, we consider

larger subpackets with more bits, i.e., ℓ ≥ ⌊N
2
⌋ − 1, and correctly read from/write

to only ⌊N
2
⌋ − 1 selected bits in each subpacket using single bits in the two phases.

The rest of the ℓ−⌊N
2
⌋+1 bits in each subpacket account for the distortion in each

phase, which is maintained under the allowed distortion budgets. The privacy of

the updating submodel index as well as the values of updates is preserved in this

scheme, while also not revealing the indices of the distorted uploads/downloads.

The proposed scheme consists of the following three tasks: 1) calculating the

optimum reading and writing subpacketizations ℓ∗r and ℓ∗w based on the given dis-

tortion budgets D̃r and D̃w, 2) specifying the scheme, i.e., storage, reading/writing

queries and single bit updates, for given values of ℓ∗r and ℓ∗w, and 3) in cases where

the subpacketizations calculated in task 1 are non-integers, the model is divided into

two sections and two different integer-valued subpacketizations are assigned to the

two sections in such a way that the resulting distortion is within the given budgets.

Then, task 2 is performed in each of the two sections.

For task 2, note that the scheme in Section 3.4 allocates distinct constants

fi, i ∈ {1, . . . , ℓ} to the ith bit of each subpacket in all submodels (see (3.14)) in

the storage, which makes it possible to combine all parameters/updates in a given

subpacket to a single bit in a way that the parameters/updates can be correctly

and privately decomposed. However, in this scheme, since there may be two sub-

packetizations in the two phases (reading and writing), we need to ensure that each

subpacket in both phases consists of bits with distinct associated fis. In order to

do this, we associate distinct fis with each consecutive max{ℓ∗r, ℓ∗w} bits in a cyclic
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manner so that each subpacket in both phases have distinct fis. The proposed

scheme is explained in detail next, along with an example.

The scheme is defined on a single subpacket in each of the two phases, and

is applied repeatedly on all subpackets. Since the number of bits correctly down-

loaded/updated remains constant at ⌊N
2
⌋ − 1 for a given N , the distortion in a

subpacket of size ℓ is
ℓ−⌊N

2
⌋+1

ℓ
. Note that this agrees with the definitions in (5.1)

and (5.2) since the same distortion is resulted by all subpackets.3 Therefore, the

optimum subpacketizations in the two phases, ℓ∗r and ℓ∗w, are functions of D̃r, D̃w

and N , and will be calculated in Section 5.4.3. First, we describe the general scheme

for any given ℓ∗r and ℓ∗w. The scheme is studied under two cases, 1) y = ℓ∗w > ℓ∗r, and

2) y = ℓ∗r ≥ ℓ∗w.

3Here, we assume that the integer-valued subpacketization ℓ is uniform throughout the stor-
age, i.e., task 3 is not applicable. The extension to non-uniform subpacketizations (two different
subpacketizations as in task 3) is derived from the same concept and is described in detail in
Section 5.4.3.
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5.4.1 Case 1: y = ℓ∗w > ℓ∗r

Storage and initialization: The storage of y = max{ℓ∗r, ℓ∗w} = ℓ∗w bits of all

submodels in database n, n ∈ {1, . . . , N} is given by,

Sn =




1

f1−αn
W1,1 +

∑⌊N
2
⌋−1

j=0 αj
nZ

[1]
1,j

...

1
f1−αn

WM,1 +
∑⌊N

2
⌋−1

j=0 αj
nZ

[1]
M,j


...

1
fy−αn

W1,y +
∑⌊N

2
⌋−1

j=0 αj
nZ

[y]
1,j

...

1
fy−αn

WM,y +
∑⌊N

2
⌋−1

j=0 αj
nZ

[y]
M,j





, (5.7)

where Wi,j is the jth bit of submodel i, Z
[k]
i,j s are random noise terms and {fi}yi=1,

{αn}Nn=1 are globally known distinct constants from Fq, such that each αn and fi−αn

for all i ∈ {1, . . . , ℓ} and n ∈ {1, . . . , N} are coprime with q.

Reading phase: In this case, the user considers subpackets of size ℓ∗r and

only downloads ⌊N
2
⌋ − 1 bits of each subpacket. Note that each consecutive y = ℓ∗w

bits in storage are associated with distinct fis, which makes each consecutive set

of ℓ∗r (reading subpacket size) fis distinct as well (since ℓ∗r ≤ ℓ∗w). However, not all

reading subpackets have the same fi allocated to their ith bit due to the definition

of the storage structure (cyclic allocation of ℓ∗w distinct values of fi). Therefore, we

cannot define the reading query on a single subpacket and use it repeatedly, since

the reading queries depend on fis. Thus, we define γr = lcm{ℓ∗r ,ℓ∗w}
ℓ∗r

queries to read
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writing

reading

y = ℓ
∗

w
= 8

writing subpacketization

ℓ
∗

r
= 6

reading subpacketization

β = 24

f1 f2 f3 f4 f5 f6 f7 f8 f1 f2 f3 f4 f5 f6 f7 f8 f1 f2 f3 f4 f5 f6 f7 f8

f1 f2 f3 f4 f5 f6 f7 f8 f1 f2 f3 f4 f5 f6 f7 f8 f1 f2 f3 f4 f5 f6 f7 f8

distinct fis in each subpacket

γr = 4

Figure 5.1: An example setting for case 1.

any γr consecutive subpackets. Note that the super subpacket which consists of any

γr consecutive reading subpackets have the same set of fis that occur in a cyclic

manner in the storage. Therefore, the γr queries can be defined once on a super

subpacket, and can be used repeatedly throughout the process. An example setting

is given in Figure 5.1, where the reading and writing subpacketizations are given

by ℓ∗r = 6, ℓ∗w = 8 and the storage structure repeats at every y = 8 bits. Each

square in Figure 5.1 corresponds to a single bit of all submodels associated with the

corresponding value of fi. It shows three consecutive storage/writing subpackets on

the top row. The same set of bits are viewed as γr =
lcm{6,8}

6
= 4 reading subpackets,

each of size ℓ∗r = 6 in the bottom row. Note that each reading subpacket contains

distinct fis, which are not the same across the four subpackets. However, it is clear

that the structure of the super subpacket which contains the four regular subpackets

keeps repeating with the same set of fis in order. The reading phase has the following

steps.

The user sends the following queries to database n to obtain each of the arbi-
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trary sets of ⌊N
2
⌋−1 bits of each subpacket in each set of γr =

lcm{ℓ∗r ,ℓ∗w}
ℓ∗r

consecutive,

non-overlapping subpackets. Let J
[s]
r be the set of ⌊N

2
⌋− 1 randomly chosen param-

eter indices that are read correctly from subpacket s for s ∈ {1, . . . , γr}. The query

to download subpacket s is,

Qn(s) =


eM(θ)1{1∈J [s]

r } + (fg((s−1)ℓ∗r+1) − αn)Z̃s,1

...

eM(θ)1{ℓ∗r∈J
[s]
r } + (fg(sℓ∗r) − αn)Z̃s,ℓ∗r

 , (5.8)

and the corresponding subpacket s is,

Sn(s) =




1

fg((s−1)ℓ∗r+1)−αn
W

[s]
1,1 +

∑⌊N
2
⌋−1

j=0 αj
nZ

[1]
1,j(s)

...

1
fg((s−1)ℓ∗r+1)−αn

W
[s]
M,1 +

∑⌊N
2
⌋−1

j=0 αj
nZ

[1]
M,j(s)


...

1
fg(sℓ∗r)−αn

W
[s]
1,ℓ∗r

+
∑⌊N

2
⌋−1

j=0 αj
nZ

[y]
1,j(s)

...

1
fg(sℓ∗r)−αn

W
[s]
M,ℓ∗r

+
∑⌊N

2
⌋−1

j=0 αj
nZ

[y]
M,j(s)





, (5.9)

where eM(θ) is the all zeros vector of size M × 1 with a 1 at the θth position, Z̃i,js

are random noise vectors of size M × 1 and the function g(·) is defined as,

g(x) =


x mod y, if x mod y ̸= 0

y, if x mod y = 0

(5.10)
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Note that the super subpacket Sn = [S
[1]
n , . . . , S

[γr]
n ]T is the concatenation of

lcm{ℓ∗r ,ℓ∗w}
y

blocks of the form (5.7). The γr answers received by database n, n ∈

{1, . . . , N}, are given by,

An(s)=Sn(s)
TQn(s) (5.11)

=

ℓ∗r∑
i=1

(
1

fg((s−1)ℓ∗r+i) − αn

W
[s]
θ,i

)
1{i∈J [s]

r }+Pαn(⌊
N

2
⌋) (5.12)

for each s ∈ {1, . . . , γr}, where Pαn(⌊N
2
⌋) is a polynomial in αn of degree ⌊N

2
⌋. Since

|J [s]
r | = ⌊N

2
⌋ − 1 for each s ∈ {1, . . . , γr}, the required ⌊N

2
⌋ − 1 bits of each of

the γr subpackets can be correctly retrieved from 2⌊N
2
⌋ answers of the form (5.12)

(corresponding to 2⌊N
2
⌋ databases). Note that when N is odd, the user has to

download answers from only N − 1 databases, since N − 1 equations of the form

(5.12) with distinct αns suffice to solve for the ⌊N
2
⌋ − 1 parameters of the required

submodel when N is odd. The resulting reading cost of the first case is given by,

C
[1]
R =


γr×N
γr×ℓ∗r

= N
ℓ∗r
, even N,

γr×(N−1)
γr×ℓ∗r

= N−1
ℓ∗r

, odd N.

(5.13)

For a better understanding of the reading phase, we present the queries and

answers corresponding to the example in Figure 5.1 next. Assume that N = 6 for

this example and the set of ⌊N
2
⌋ − 1 = 2 parameter indices that are read correctly

from the second subpacket (out of γr = 4 subpackets) is given by J
[2]
r = {2, 5}.
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Then, the query corresponding to the second subpacket is given by,

Qn(2) =



(f7 − αn)Z̃2,1

eM(θ)+ (f8 − αn)Z̃2,2

(f1 − αn)Z̃2,3

(f2 − αn)Z̃2,4

eM(θ)+ (f3 − αn)Z̃2,5

(f4 − αn)Z̃2,6



, (5.14)

which is used to obtain the 2nd and 5th elements of the second reading subpacket

given by,

Sn(2) =



1
f7−αn

W
[2]
·,1 +

∑2
j=0 α

j
nZ

[1]
·,j (2)

1
f8−αn

W
[2]
·,2 +

∑2
j=0 α

j
nZ

[2]
·,j (2)

1
f1−αn

W
[2]
·,3 +

∑2
j=0 α

j
nZ

[3]
·,j (2)

1
f2−αn

W
[2]
·,4 +

∑2
j=0 α

j
nZ

[4]
·,j (2)

1
f3−αn

W
[2]
·,5 +

∑2
j=0 α

j
nZ

[5]
·,j (2)

1
f4−αn

W
[2]
·,6 +

∑2
j=0 α

j
nZ

[6]
·,j (2)



, (5.15)

where W
[2]
·,i = [W

[2]
1,i , . . . ,W

[2]
M,i]

T and Z
[i]
·,j(2) = [Z

[i]
1,j(2), . . . , Z

[i]
M,j(2)]

T . Then, the

answer from database n, n ∈ {1, . . . , 6} for this specific subpacket (s = 2) is given

by,

An(2) =Sn(2)
TQn(2) (5.16)
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=
1

f8 − αn

W
[2]
θ,2 +

1

f3 − αn

W
[2]
θ,5 + Pαn(3), (5.17)

where Pαn(3) is a polynomial in αn of degree 3. The user can then find W
[2]
θ,2 and

W
[2]
θ,5 by solving,


A1(2)

...

A6(2)

 =


1

f8−α1

1
f3−α1

1 α1 α2
1 α3

1

...
...

...
...

...
...

1
f8−α6

1
f3−α6

1 α6 α2
6 α3

6





W
[2]
θ,2

W
[2]
θ,5

R0

R1

R2

R3



. (5.18)

Writing phase: Since the subpacketization in the writing phase is y, which is

the same as the period of the cyclic structure of the storage in (5.7), a single writing

query, specifying the submodel index and the correctly updated bit indices, defined

on a single subpacket suffices to repeatedly update all subpackets, as the fis in all

subpackets are identical. The writing query sent to database n, n ∈ {1, . . . , N}, is,

Q̃n =


1

f1−αn
eM(θ)1{1∈Jw} + Ẑ1

...

1
fy−αn

eM(θ)1{y∈Jw} + Ẑy

 , (5.19)

where Jw is the set of indices of the ⌊N
2
⌋ − 1 parameters of each subpacket that are

updated correctly and Ẑs are random noise vectors of size M × 1. Since Q̃n is sent
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only once, the same set of Jw indices will be correctly updated in all subpackets.

The user then sends a single bit combined update for each subpacket of the form

(5.7) given by,

Un =
∑
i∈Jw

∆̃θ,i

∏
j∈Jw,j ̸=i

(fj − αn) +
∏
j∈Jw

(fj − αn)Z, (5.20)

for each n ∈ {1, . . . , N} where ∆̃θ,i =
∆θ,i∏

j∈Jw,j ̸=i(fj−fi)
with ∆θ,i being the update of

the ith parameter of submodel θ (of the subpacket considered) and Z is a random

noise bit. Each database then calculates the incremental update as,

Ũn = Un × Q̃n (5.21)

=


∆θ,1

f1−αn
eM(θ)1{1∈Jw} + Pαn(⌊N

2
⌋ − 1)

...

∆θ,y

fy−αn
eM(θ)1{y∈Jw} + Pαn(⌊N

2
⌋ − 1)

 , (5.22)

where Pαn(·) is a polynomial in αn of degree in parenthesis,4 and (5.22) is obtained

from (5.21) by applying Lemma 3.1. Since the incremental update in (5.22) is in the

same form as the storage in (5.7), (5.22) is directly added to the existing storage to

obtain the updated submodel as,

S[t]
n = S[t−1]

n + Ū [t]
n , (5.23)

for each n ∈ {1, . . . , N} for both even and odd N . The writing cost of case 1 is

4Note that all Pαn(·) are not the same and each polynomial is resulted by the combination of
all unwanted terms (noise subspace) resulting from the decomposition of combined updates.
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given by,

C
[1]
W =

N

ℓ∗w
. (5.24)

5.4.2 Case 2: y = ℓ∗r ≥ ℓ∗w

Storage and initialization: The storage of y = max{ℓ∗r, ℓ∗w} = ℓ∗r bits of all

submodels in database n, n ∈ {1, . . . , N} is given by,

Sn =




1

f1−αn
W1,1 +

∑⌈N
2
⌉−1

j=0 αj
nZ

[1]
1,j

...

1
f1−αn

WM,1 +
∑⌈N

2
⌉−1

j=0 αj
nZ

[1]
M,j


...

1
fy−αn

W1,y +
∑⌈N

2
⌉−1

j=0 αj
nZ

[y]
1,j

...

1
fy−αn

WM,y +
∑⌈N

2
⌉−1

j=0 αj
nZ

[y]
M,j





, (5.25)

where Wi,j is the jth bit of submodel i and the Zs are random noise terms.

Reading phase: In the reading phase, each user correctly downloads ⌊N
2
⌋−1

bits from each subpacket while not downloading the rest of the ℓ∗r − ⌊N
2
⌋ + 1 bits.

The user randomly picks the ⌊N
2
⌋−1 bits within the subpacket that are downloaded

correctly and prepares the query to be sent to database n as follows. Let Jr be the
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set of indices of the ⌊N
2
⌋ − 1 bits that need to be downloaded correctly. Then,

Qn =


eM(θ)1{1∈Jr} + (f1 − αn)Z̃1

...

eM(θ)1{y∈Jr} + (fy − αn)Z̃y

 , (5.26)

where Z̃ are random noise vectors of size M × 1. The answer of database n is,

An = ST
nQn =

y∑
i=1

(
1

fi − αn

Wθ,i

)
1{i∈Jr} + Pαn(⌈

N

2
⌉). (5.27)

Since |Jr| = ⌊N
2
⌋−1, the user required ⌊N

2
⌋−1 bits ofWθ can be correctly downloaded

using the answers received by the N databases. The resulting reading cost of case 2

is given by,

C
[2]
R =

N

ℓ∗r
. (5.28)

Writing phase: In the writing phase, the user considers subpackets of size ℓ∗w

and only updates ⌊N
2
⌋ − 1 out of the ℓ∗w bits correctly, while making the updates of

the rest of the ℓ∗w−⌊N
2
⌋+1 bits zero. The ⌊N

2
⌋−1 bits that are correctly updated are

chosen randomly. The following steps describe the writing process when ℓ∗w ≤ ℓ∗r = y.

1. A general writing query that specifies the submodel to which the update should

be added, along with the positions of the ⌊N
2
⌋ − 1 non-zero updates in each

subpacket is sent first. The same query from the reading phase (5.26) can

be used if the subpacketization and the indices of the correct ⌊N
2
⌋ − 1 bits
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within the subpacket are the same in both phases. However, for the strict case

ℓ∗r > ℓ∗w, we need a new general query Q̃n for the writing phase. Q̃n consists

of γw = lcm{ℓ∗r ,ℓ∗w}
ℓ∗w

sub-queries, where each sub-query corresponds to a single

subpacket of size ℓ∗w. These sub-queries are required since the storage structure

of these γw subpackets is not identical, which calls for γw different queries,

customized for each subpacket. An example setting for case 2 is given in

Figure 5.2, where y = ℓ∗r = 6 in the storage given in (5.25), and ℓ∗w = 4, which

results in distinct sets of associated fis in every γw = lcm{ℓ∗r ,ℓ∗w}
ℓ∗w

= 3 consecutive

writing subpackets of size ℓ∗w. However, the super subpacket containing these

γw = lcm{ℓ∗r ,ℓ∗w}
ℓ∗w

= 3 regular subpackets keep repeating with the same set of

associated fis. Therefore, we only send the γw = lcm{ℓ∗r ,ℓ∗w}
ℓ∗w

= 3 sub-queries

of Q̃n once to each database, which will be repeatedly used throughout the

writing process. The general writing scheme that writes to each of the γw

consecutive subpackets is described in the next steps.

2. Let J
[s]
w be the set of indices of the correctly updated ⌊N

2
⌋ − 1 parameters in

subpacket s for s ∈ {1, . . . , γw}. Then, the sub-query s, s ∈ {1, . . . , γw} of the

writing query for database n is given by,

Q̃n(s) =


1

fg((s−1)ℓ∗w+1)−αn
eM(θ)1{1∈J [s]

w } + Ẑs,1

...

1
fg(sℓ∗w)−αn

eM(θ)1{ℓ∗w∈J [s]
w } + Ẑs,ℓ∗w

 , (5.29)

where Ẑ are random noise vectors of size M × 1 and the function g(·) is

160



writing

reading

ℓ
∗

w
= 4

writing subpacketization

y = ℓ
∗

r
= 6

reading subpacketization

f1 f2 f3 f4 f5 f6 f1 f2 f3 f4 f5 f6

f1 f2 f3 f4 f5 f6 f1 f2 f3 f4 f5 f6

γw = 3

Figure 5.2: An example setting for case 2.

defined as (5.10). For the example considered in Figure 5.2, the sub-query

corresponding to subpacket 2 if J
[2]
w = {1, 3} is given by,

Q̃n(2) =



1
f5−αn

eM(θ)+ Ẑ2,1

Ẑ2,2

1
f1−αn

eM(θ)+ Ẑ2,3

Ẑ2,4


. (5.30)

Note that the values of fi in each individual section of Q̃n are distinct due to

ℓ∗w ≤ y (in the example, the first section has fi = {1, 2, 3, 4} and the second has

fi = {5, 6, 1, 2} and so on). This makes it possible for the user to send a single

combined update bit (combining the updates of the ⌊N
2
⌋− 1 non-zero updates

in each subpacket) to each individual subpacket as described in Section 3.4.

The query Q̃n (consisting of γw sub-queries) will only be sent once to each

database. Therefore, the indices of the non-zero updates J
[s]
w , s ∈ {1, . . . , γw}

will be fixed at each consecutive non-overlapping group of γw subpackets.
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3. Next, the user sends a single combined update bit corresponding to each sub-

packet. The γw combined updates sent to database n, n ∈ {1, . . . , N} corre-

sponding to a given set of γw consecutive subpackets is given by,

Un(s) =
∑
i∈J [s]

w

∆̃
[s]
θ,i

∏
j∈J [s]

w ,j ̸=i

(fg((s−1)ℓ∗w+j) − αn) +
∏
j∈J [s]

w

(fg((s−1)ℓ∗w+j) − αn)Zs,

(5.31)

for each subpacket s ∈ {1, . . . , γw}, where ∆̃[s]
θ,i =

∆
[s]
θ,i∏

j∈J
[s]
w ,j ̸=i

(fg((s−1)ℓ∗w+j)−fg((s−1)ℓ∗w+i))

with ∆
[s]
θ,i being the update of the ith parameter of subpacket s of submodel

θ and Zs are random noise bits. Note that each Un(s) is a polynomial in

αn of degree ⌊N
2
⌋ − 1. For the example in Figure 5.2, the combined update

corresponding to subpacket 2 with J
[2]
w = {1, 3} is given by,

Un(2) = ∆̃
[2]
θ,1(f1 − αn) + ∆̃

[2]
θ,3(f5 − αn) + (f1 − αn)(f5 − αn)Z2, (5.32)

where ∆̃
[2]
θ,1 =

∆
[2]
θ,1

f1−f5
and ∆̃

[2]
θ,3 =

∆
[2]
θ,3

f5−f1
.

4. Each database then calculates the incremental update of each subpacket as

follows. The incremental update of subpacket s, s ∈ {1, . . . , γw} is given by,

Ũn(s) =


Un(s)× Q̃n(s), even N

Ω̃n(s)× Un(s)× Q̃n(s), odd N

(5.33)
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where,

Ω̃n(s) =



αr−αn

αr−fg((s−1)ℓ∗w+1)
IM 0 . . . 0

0 αr−αn

αr−fg((s−1)ℓ∗w+2)
IM . . . 0

...
...

...
...

0 0 . . . αr−αn

αr−fg(sℓ∗w)
IM


. (5.34)

Then, from (5.33),

Ũn(s) =





∆
[s]
θ,1

fg((s−1)ℓ∗w+1)−αn
eM(θ)1{1∈J [s]

w } + Pαn(⌊N
2
⌋ − 1)

...

∆
[s]

θ,ℓ∗w
fg(sℓ∗w)−αn

eM(θ)1{ℓ∗w∈J [s]
w } + Pαn(⌊N

2
⌋ − 1)


, even N



∆
[s]
θ,1

fg((s−1)ℓ∗w+1)−αn
eM(θ)1{1∈J [s]

w } + Pαn(⌊N
2
⌋)

...

∆
[s]

θ,ℓ∗w
fg(sℓ∗w)−αn

eM(θ)1{ℓ∗w∈J [s]
w } + Pαn(⌊N

2
⌋)


, odd N

(5.35)

where r is a randomly chosen database out of the N databases for odd N . Note

that when N is odd, the user can reduce the writing cost by not sending the

combined updates to database r, since Ũr(s) = 0 for all s. The convention for

the updates of each i /∈ J
[s]
w is ∆

[s]
θ,i = 0. Lemmas 3.1 and 3.2 are used to obtain

(5.35) from (5.33). Note that the concatenation of all γw incremental updates

of the form (5.35) is in the same format as the concatenation of η = lcm{ℓ∗r ,ℓ∗w}
y

reading subpackets (storage in (5.25)) since g(γwℓ
∗
w) = g(lcm{ℓ∗r, ℓ∗w}) = y,
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and therefore, can be added to the corresponding subpackets to obtain their

updated versions, i.e.,

[S[t]
n (1), . . . , S[t]

n (η)]T = [S[t−1]
n (1), . . . , S[t−1]

n (η)]T + [Ũn(1), . . . , Ũn(γw)]
T ,

(5.36)

where [S
[t]
n (1), . . . , S

[t]
n (η)]T contains η consecutive Sns of the form given in

(5.25).

The writing cost of case 2 is given by,

C
[2]
W =


γw×N
γw×ℓ∗w

= N
ℓ∗w
, even N,

γw×(N−1)
γw×ℓ∗w

= N−1
ℓ∗w

, odd N.

(5.37)

Remark 5.3 For even N , both cases achieve reading and writing costs given by N
ℓ∗r

and N
ℓ∗w
, respectively. However, when N is odd, it is possible to achieve either a lower

reading cost (N−1
ℓ∗r

) with fewer noise terms in storage (⌊N
2
⌋ − 1), or a lower writing

cost (N−1
ℓ∗w

) with an extra noise term in storage (⌈N
2
⌉ − 1), with case 1 and case 2,

respectively. In particular, when N is odd, the total costs for the two options are

given by N−1
ℓ∗r

+ N
ℓ∗w

= N(ℓ∗r+ℓ∗w)
ℓ∗rℓ

∗
w

− 1
ℓ∗r

and N
ℓ∗r
+ N−1

ℓ∗w
= N(ℓ∗r+ℓ∗w)

ℓ∗rℓ
∗
w

− 1
ℓ∗w
, respectively. This

justifies the extra noise term in storage for case 2 when N is odd.

Remark 5.4 Note that the cost of sending Qn and Q̃n is not considered in the above

writing cost since they are sent only once to each database in the entire PRUW

process (not per subpacket) and the maximum combined cost of Qn and Q̃n given by
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M
L
(lcm{ℓ∗r, ℓ∗w}+max{ℓ∗r, ℓ∗w}) is negligible since L is very large.

5.4.3 Calculation of Optimum ℓ∗r and ℓ∗w for Given (D̃r, D̃w)

In order to minimize the total communication cost, the user correctly reads from

and writes to only ⌊N
2
⌋ − 1 out of each of the ℓ∗r and ℓ∗w bits in reading and writing

phases, respectively. This results in an error that needs to be kept within the given

distortion budgets of D̃r and D̃w. Note that minCR +minCW ≤ minCR + CW . In

this section, we find the subpacketizations in the reading and writing phases (ℓ∗r, ℓ
∗
w)

that achieve minCR + minCW while being compatible with the proposed scheme.

Note that each reading/writing cost in both cases is of the form N
ℓ
or N−1

ℓ
, where

ℓ is the respective subpacketization. Since only ⌊N
2
⌋ − 1 bits in a subpacket are

read/written correctly, the subpacketization in general can be written as,

ℓ = ⌊N
2
⌋ − 1 + i (5.38)

for some i ∈ Z+
0 . Therefore, the reading/writing costs of both cases are of the form

N
⌊N

2
⌋−1+i

or N−1
⌊N

2
⌋−1+i

for some i ∈ Z+
0 , both decreasing in i. For a subpacketization of

the form ℓ = ⌊N
2
⌋−1+ i (irrespective of reading or writing), the resulting distortion

is given by,

D =
i

⌊N
2
⌋ − 1 + i

, (5.39)
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if the same subpacketization is considered throughout the storage. Since the result-

ing distortion must satisfy D ≤ D̃,5 an upper bound on i is derived as,

i ≤ D̃

1− D̃

(
⌊N
2
⌋ − 1

)
. (5.40)

Therefore, for given distortion budgets in the reading and writing phases (D̃r,D̃w),

the optimum values of i are given by,

i∗r =
D̃r

1− D̃r

(
⌊N
2
⌋ − 1

)
(5.41)

i∗w =
D̃w

1− D̃w

(
⌊N
2
⌋ − 1

)
, (5.42)

which determine the optimum subpacketizations from (5.38). For cases where

i∗r /∈ Z+
0 or i∗w /∈ Z+

0 , we divide all submodels into two sections, assign two sepa-

rate integer-subpacketizations that guarantee the distortion budget, and apply the

scheme on the two sections independently, which achieves the minimum costs in

(5.5)-(5.6), after using an optimum ratio for the subsection lengths. To find the

optimum ratio, we solve the following optimization problem. Let λi be the fraction

of each submodel with subpacketization ℓi = ⌊N
2
⌋ − 1 + i for some i = η1, η2 ∈ Z+

0 .

In this calculation, we drop the r and w subscripts which indicate the phase (read-

ing/writing), since the calculation is the same for both phases.6 The given D̃r and

D̃w must be substituted for D̃ in the following calculation to obtain the specific

5Here, D̃ refers to D̃r or D̃w, based on the phase the subpacketization is defined for.
6Note that we focus on minimizing each individual cost (reading/writing cost) at a time since

minCR +minCW ≤ minCR + CW .
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results for the reading and writing phases, respectively. The optimum subpacketi-

zations are obtained by solving,7

min
∑

i=η1,η2

λi
N

⌊N
2
⌋ − 1 + i

s.t.
∑

i=η1,η2

λi
i

⌊N
2
⌋ − 1 + i

≤ D̃

λη1 + λη2 = 1

λη1 , λη2 ≥ 0. (5.43)

This problem has multiple solutions that give the same minimum total com-

munication costs. As one of the solutions, consider η1 = 0 and η2 = η, where

η = ⌈ D̃
1−D̃

(⌊N
2
⌋ − 1)⌉,

λ0 = 1− D̃

η

(
⌊N
2
⌋ − 1 + η

)
, (5.44)

λη =
D̃

η

(
⌊N
2
⌋ − 1 + η

)
. (5.45)

This gives a minimum cost of Cmin = N
⌊N

2
⌋−1

(1− D̃) (or Cmin = N−1
⌊N

2
⌋−1

(1− D̃)) which

match the terms in (5.5)-(5.6), with D̃ = D̃r and D̃ = D̃w. The optimality of the

solution to the optimization problem is obvious since the resulting total cost is the

same as what is achieved by the optimum subpacketizations characterized by (5.41)

and (5.42), with no segmentation of submodels.

Next, we present the explicit expressions of optimum subpacketizations, with

7Even though there are two types of reading and writing costs costs ( N
⌊N

2 ⌋−1+i
and N−1

⌊N
2 ⌋−1+i

),

the optimization problem remains the same since the two costs are scaled versions of one another.
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the optimum values of i obtained above. For a setting with given N , D̃r and D̃w,

the reading and writing costs given in (5.5)-(5.6) are achievable with corresponding

subpacketizations given by,

ℓ∗r =


⌊N

2
⌋ − 1, for λ

[r]
0 of submodel,

⌊N
2
⌋ − 1 + ⌈ D̃r(⌊N

2
⌋−1)

1−D̃r
⌉, for 1− λ

[r]
0 of submodel,

(5.46)

and

ℓ∗w =


⌊N

2
⌋ − 1, for λ

[w]
0 of submodel,

⌊N
2
⌋ − 1 + ⌈ D̃w(⌊N

2
⌋−1)

1−D̃w
⌉, for 1− λ

[w]
0 of submodel,

(5.47)

where λ
[r]
0 and λ

[w]
0 are λ0 in (5.44) with D̃ replaced by D̃r and D̃w, respectively. Once

the subpacketizations of both reading and writing phases are determined based on

the given distortion budgets, each section of all submodels is assigned a case, based

on the corresponding values of ℓ∗r and ℓ∗w, which determines the specific form of stor-

age from either (5.7) or (5.25). An example setting is shown in Figure 5.3. Assume

that the subpacketizations satisfy ℓ1 < ℓ2 < ℓ3, and therefore, for example the mid-

dle section which has a reading subpacketization of ℓ2 and a writing subpacketization

of ℓ1 satisfying ℓ1 < ℓ2, belongs to case 2 by definition.
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submodel

Figure 5.3: Storage of submodels

5.4.4 Proof of Privacy

The structures and sizes of the queries, updates and storage are determined at

the initialization stage (when the subpacketizations are calculated and the storage

is initialized), based on the given distortion budgets in the proposed scheme, and

do not depend on each user’s updating submodel index or the values of sparse

updates. Moreover, the queries Qn, updates Un and storage Sn in this scheme are

random noise terms that are independent of the values and positions of the sparse

updates as well as the updating submodel index. Therefore, the proofs presented

in Section 3.4.4 for the privacy of submodel index, privacy of values of updates and

security of submodels are valid in this section as well.

5.5 Conclusions

In this chapter, we considered the problem of PRUW in FSL with random sparsifi-

cation, where each user only reads and writes a randomly selected set of parameters
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and updates in the learning process to reduce the communication cost. The problem

is formulated in terms of a rate-distortion characterization as the unread/unwritten

parameters and updates introduce a certain amount of distortion. As the main result

of this work, we showed that a linear rate-distortion characterization is achievable,

and proposed a scheme that minimizes the total communication cost (within the

scope of CSA) for given amounts of distortion allowed in the reading and writing

phases. The resulting asymptotic normalized reading and writing costs are both

equal to 2r, where r = 1 − D̃, where D̃ is the distortion allowed. Since a fraction

of D̃ parameters of the entire submodel are not read/updated, the sparsification

rate for this case is r = 1 − D̃. It is clear that random sparsification outperforms

(or performs equally) top r sparsification in terms of the communication cost when

similar sparsification rates are considered. However, random sparsification may not

be as effective as top r sparsification since it does not capture the most significant

variations of the gradients in the stochastic gradient descent (SGD) process, in rela-

tion to the underlying learning task. This may have an adverse effect on the model

convergence time as well as on the accuracy of the trained model.

Private FSL with top r sparsification considered in Chapter 4 also results

in incomplete downloads/uploads, as only a selected set of subpackets are down-

loaded/updated. However, these parameters and updates are carefully chosen based

on their significance to improve the accuracy. It has been shown in certain cases

that top r sparsification outperforms non-sparse distributed learning. Therefore, we

do not consider the ignored subpackets in the reading and writing phases in top r

sparsification as distortion. However, in random sparsification, since the selected
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parameters/updates are chosen randomly, we treat the ignored parameters/updates

as distortion, to characterize the rate-distortion trade-off in PRUW.
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CHAPTER 6

Weakly Private Read-Update-Write (PRUW) in Federated

Learning (FL) with Top r Sparsification

6.1 Introduction

In this chapter, we consider the problem of PRUW in FL with top r sparsification.

The main goal of this work is to develop schemes that perform the user-database

communications in FL with top r sparsification while guaranteeing information-

theoretic privacy of the values and the indices of the sparse updates/parameters. For

this, we use the same permutation technique introduced in Chapter 4, which however

incurs a significantly large storage cost in FL, compared to FSL. To that end, we

propose schemes that reduce the storage cost at the expense of a given amount

of information leakage. This is achieved by dividing the ML model into multiple

segments and carrying out permutations within each segment. This is illustrated

in Fig. 6.1. The number of segments is chosen based on the allowed amount of

information leakage and the storage capacity of the databases. In general, this

chapter presents the trade-off between the communication cost, storage complexity

and information leakage in private FL with sparsification.
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1 2 3 P

update these subpackets without revealing their values or positions

need large L× L noisy

permutation reversing

matrix
random permutation P̃ O(L2)

no information leakage

(a) Without segmentation.

1 2 3 P

divide into B sub groups

1 2 B

P/B

P̃1 P̃2 P̃B

permutation

reversing
matrix

O(L2/B2)

permutation

reversing
matrix

O(L2/B2)

permutation

reversing
matrix

O(L2/B2)

O(L2/B)

information leakage > 0

noise addednoise addednoise added

(b) With segmentation.

Figure 6.1: Motivation for segmentation in permutation techniques: (a) Permutation
of the entire model without segmentation. (b) Permutation within segments with
segmentation.

6.2 Problem Formulation

We consider a FL setting in which a ML model consisting of L parameters belonging

to P subpackets is stored in N non-colluding databases. The parameters take values

from a large enough finite field Fq. A given user at a given time t reads (downloads)

the required parameters of the model from the databases, trains the model using
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positions of sparse updates

model model model

reversing matrices

Figure 6.2: System model: A user reads (downloads), updates, writes (uploads) a
ML model.

the user’s local data, and writes (uploads) the most significant r fraction of updates

back to all databases. In this work, we consider sparsification in both uplink and

downlink, to reduce the communication cost. In particular, the sparsification rates

of the reading (downlink) and writing (uplink) phases are given by r′ and r, respec-

tively. In other words, in the reading (download) phase, the users only download

a selected set of Pr′ subpackets determined by the databases.1 Once the model is

trained locally, each user only uploads the most significant Pr set of updates (cor-

responding subpackets) to the databases in the writing phase.2 The system model

is shown in Fig. 6.2, where the coordinator is used to initialize the process.

1These subpackets could be determined by the databases based on the sparse updates received
at the previous time step, or by any other downlink sparsification protocol. For example, the
databases can choose the most commonly updated Pr′ subpackets in the writing phase of time
t− 1 to be sent to the users in the reading phase at time t.

2We assume that all values in the sparse set of Pr subpackets in the writing phase are non-zero.
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Note that the users send no information to the databases in the reading phase.

Therefore, no information about the user’s local data is leaked to the databases in

the reading phase. The users send the sparse updates and their positions (indices) to

the databases in the writing phase to train the model. Information about the user’s

local data can be leaked to the databases from these updates and their indices.3 In

this work, we consider the following privacy guarantees on the values and the indices

of the sparse updates.

Privacy of the values of sparse updates: No information on the values of the

sparse updates is allowed to leak to any of the databases, i.e.,

I(∆
[t]
i ;G

[t]
n ) = 0, n ∈ {1, . . . , N}, ∀i (6.1)

where ∆
[t]
i is the value of the ith sparse (non-zero) update of a given user at time t

and G
[t]
n contains all the information sent by the user to database n at time t.

Privacy of the positions (indices) of sparse updates: The amount of informa-

tion leaked on the indices of the sparse updates need to be maintained under a given

privacy leakage budget ϵ, i.e.,

I(X [t];G[t]
n ) ≤ ϵ, n ∈ {1, . . . , N}, (6.2)

where X [t] is the set of indices of the sparse subpackets updated by a given user

at time t. The system model with the privacy constraints is shown in Fig. 6.2.

3The positions (indices) of the sparse updates leak information about the most and least signif-
icant parameters in the model for a given user, which may leak information about the user’s local
data.
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A coordinator is used to initialize the FL process.4 In addition to the privacy

constraints, we require the following security and correctness conditions for the

reliability of the scheme.

Security of the model: No information about the model parameters is allowed

to leak to the databases, i.e.,

I(W [t];S[t]
n ) = 0, n ∈ {1, . . . , N}, (6.3)

where W [t] is the ML model and S
[t]
n is the data content in database n at time t.

Correctness in the reading phase: The user should be able to correctly decode

the sparse set of subpackets (denoted by J) of the model, determined by the downlink

sparsification protocol, from the downloads in the reading phase, i.e.,

H(W
[t−1]
J |A[t]

1:N) = 0, (6.4)

where W
[t−1]
J is the set of subpackets in set J of the model W at time t− 1 (before

updating) and A
[t]
n is the information downloaded from database n at time t.

Correctness in the writing phase: Let J ′ be the set of most significant Pr

subpackets of the model, updated by a given user at time t. The model should be

4The coordinator is only available at the initialization stage, and will not be part of the system
model once the FL process begins.
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correctly updated as,

W [t]
s =


W

[t−1]
s +∆

[t]
s , if s ∈ J ′

W
[t−1]
s , if s /∈ J ′

, (6.5)

where W
[t−1]
s is subpacket s of the model at time t− 1 and ∆

[t]
s is the corresponding

update of subpacket s at time t.

Reading and writing costs: The reading and writing costs are defined as CR =

D
L
and CW = U

L
, respectively, where D is the total number of symbols downloaded in

the reading phase, U is the total number of symbols uploaded in the writing phase,

and L is the size of the model. The total cost CT is the sum of the reading and

writing costs CT = CR + CW .

Storage complexity: The storage complexity is quantified by the order of the

total number of symbols stored in each database.

In this work, we propose schemes to perform FL with top r sparsification, that

result in the minimum total communication costs and storage complexities, while

satisfying all privacy, security and correctness conditions described above.

6.3 Main Result

Theorem 6.1 Consider a FL model stored in N non-colluding databases, consisting

of L parameters with values from a finite field Fq, which are included in P subpack-

ets. The model is divided into B segments of equal size (1 ≤ B < P ), such that

each consecutive P
B

subpackets constitute each segment. Assume that the FL model
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is being updated by users at each time instance with uplink and downlink sparsifi-

cation rates (top r sparsification) of r and r′, respectively. Let X̂i be the random

variable representing the number of subpackets with sparse (non-zero) updates in the

ith segment, uploaded by any given user, and let (X̃1, . . . , X̃B) be the general vector

representing all distinct combinations of (X̂1, . . . , X̂B), irrespective of the segment

index. Then, the reading/writing costs, storage complexities and amounts of infor-

mation leakage presented in Table 6.1 are achievable in a single round of the FL

process in the perspective of a single user.

case reading cost writing cost storage complexity information leakage

1
2r′(1+

logq P

N
)

1− 2
N

2r(1+logq P )

1− 2
N

O(L
2

B
) H(X̂1, . . . , X̂B)

2
3r′(1+

logq P

N
)

1− 1
N

3r(1+logq P )

1− 1
N

O( L2

BN2 ) H(X̂1, . . . , X̂B)

3
2r′(1+

logq P

N
)

1− 4
N

2r(1+logq P )

1− 4
N

max{O(L
2

B
), O(N2B2)} H(X̃1, . . . , X̃B)

4
5r′(1+

logq P

N
)

1− 1
N

5r(1+logq P )

1− 1
N

max{O( L2

N2B
), O(B2)} H(X̃1, . . . , X̃B)

Table 6.1: Achievable sets of communication costs, storage costs and information
leakage.

Remark 6.1 The information leakage in Table 6.1 corresponds to the amount of

information leaked on the indices of the sparse updates.5 For a given privacy leak-

age budget on the indices of the sparse updates given by ϵ, the optimum number

of segments B can be calculated by minimizing the storage complexity, such that

H(X̂1, . . . , X̂B) < ϵ or H(X̃1, . . . , X̃B) < ϵ is satisfied (based on the considered

case). This is valid for all four cases.

Remark 6.2 When B = 1 (no segmentation present), X̂1 = X̃1 = Pr and the

5Information theoretic privacy of the values of updates is guaranteed, as stated in the problem
formulation.
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corresponding information leakage is zero since Pr is fixed and H(X̂1) = H(X̃1) = 0,

i.e., the four schemes corresponding to the four cases achieve information theoretic

privacy of the values and positions of the sparse updates while incurring the same

communication costs stated in Table 6.1, when B = 1. However, in this case, the

storage costs increase to either O(L2) or O
(

L2

N2

)
.

Remark 6.3 H(X̂1, . . . , X̂B) > H(X̃1, . . . , X̃B) since H(X̂1, . . . , X̂B) considers all

possible values of X̂i, while H(X̃1, . . . , X̃B) only considers distinct sets of {X̂i}Bi=1.

For example, if B = 2, H(X̂1, X̂2) considers both permutations {1, 2} and {2, 1}

while H(X̃1, X̃2) only takes one of them into account, i.e., the probabilities con-

sidered in H(X̃1, . . . , X̃B) are more dense and concentrated compared to that of

H(X̂1, . . . , X̂B).

Remark 6.4 Cases 1-4 are achieved by schemes that utilize both CSA [97] and per-

mutation techniques which are described in detail in Section 6.4. The schemes for

cases 1 and 2 use a single round permutation technique (only within-segment permu-

tations) while cases 3 and 4 use a two-round permutation technique (both within and

inter-segment permutations) which reduces the information leakage further. Cases 3

and 4 are extensions of cases 1 and 2, respectively, with the additional permutation

round. Cases 3 and 4 incur larger communication costs compared to cases 1 and 2,

while resulting in lower amounts of information leakage.

Remark 6.5 The four cases (schemes) have different properties. Cases 1 and 3

result in the lowest communication costs at the expense of a larger storage complexity

resulted by replicated storage and larger noisy permutation reversing matrices. Cases
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Figure 6.3: Information leakage of an example setting with P = 12 and different
values of B.

2 and 4 use MDS coded storage and compact permutation reversing matrices, which

reduces the storage complexity at the expense of larger communication costs.

Remark 6.6 The communication cost does not depend on the number of segments

B.

Remark 6.7 Consider an example setting with P = 12 subpackets divided into

B = 1, 2, 3, 4, 6 segments. Assume that each subpacket is equally probable to be

selected to the set of most significant Pr = 3 subpackets. The behavior of the

information leakage for each value of B is shown in Fig. 6.3.
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6.4 Proposed Schemes

In this section, we present four schemes that perform private FL with top r sparsi-

fication, which have different properties. The schemes differ from each other based

on their storage structure (MDS coded or uncoded) and the number of permutation

stages.

6.4.1 General Schemes With Examples

In this section, we provide the proposed schemes for all four cases. In all four

schemes, we divide the P subpackets into B non-overlapping equal-sized segments to

control the storage cost and the information leakage. The parameter B is a variable

that can be chosen based on the given privacy leakage budget and the limitations on

the storage capacities. In this section, we present the general schemes for arbitrary

values of B, P , r and r′. As a further illustration, we provide examples along with

the general scheme for all four cases. In the two examples corresponding to cases

1 and 2, we assume the same setting with P = 15 subpackets (subpacketization ℓ),

divided into B = 3 equal segments as shown in Fig. 6.4.

Case 1: Uncoded6 storage and larger permutation reversing matrices are used

in this case to reduce the communication cost, at the expense of a larger storage

cost.

Initialization: A single subpacket (subpacket s) in case 1 is stored in database

6Even though the model parameters and noise symbols are combined together (coded form) in
the storage in (6.6), each parameter is not combined with other parameters, resulting in uncoded
storage.
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for the three segments

assigns storage
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Figure 6.4: Initialization of the scheme for cases 1 and 2.

n, n ∈ {1, . . . , N} as,

S[s]
n =


1

f1−αn
W

[s]
1 +

∑ℓ
j=0 α

j
nZ

[s]
1,j

...

1
fℓ−αn

W
[s]
ℓ +

∑ℓ
j=0 α

j
nZ

[s]
ℓ,j

 , (6.6)

where W
[s]
i is the ith parameter of subpacket s, Z

[s]
i,j are random noise symbols and

{fi}ℓi=1, {αn}Nn=1 are globally known distinct constants from Fq. The subpackets in

each segment are stacked one after the other in the order of subpacket 1 through

subpacket P
B
. At the initialization stage, the coordinator sends B (B = 3 for the

example considered) randomly and independently chosen permutations of the P
B

(P
B

= 5 for the example considered) subpackets in each of the B segments to all

users. These permutations are denoted by P̃1, . . . , P̃B. The coordinator also sends
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the B corresponding noise added permutation reversing matrices given by,

R[i]
n = (R̃[i] ⊗ Γn) + Z̃ [i], i = 1, . . . , B, (6.7)

to database n, n ∈ {1, . . . , N}, as shown in Fig. 6.4, where R̃[i] is the permutation

reversing matrix corresponding to the permutation P̃i, Γn is the diagonal matrix

given by,

Γn =


1

f1−αn

. . .

1
fℓ−αn

 , (6.8)

and Z̃ [i] is a random noise matrix of size Pℓ
B
× Pℓ

B
. Based on the example considered,

the permutation reversing matrix for database n, n ∈ {1, . . . , N} corresponding to

the first segment (permutation: P̃1 = (2, 1, 4, 5, 3)) is given by,

R[1]
n =





0 1 0 0 0

1 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 0 1 0


⊗ Γn


+ Z̃ [1] =



0ℓ×ℓ Γn 0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ

Γn 0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ

0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ Γn

0ℓ×ℓ 0ℓ×ℓ Γn 0ℓ×ℓ 0ℓ×ℓ

0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ Γn 0ℓ×ℓ


+ Z̃ [1],

(6.9)

Similarly, for the second segment (permutation:P̃2 = (3, 5, 2, 4, 1)), the permutation
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reversing matrix for database n, n ∈ {1, . . . , N} is given by,

R[2]
n =



0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ Γn

0ℓ×ℓ 0ℓ×ℓ Γn 0ℓ×ℓ 0ℓ×ℓ

Γn 0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ

0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ Γn 0ℓ×ℓ

0ℓ×ℓ Γn 0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ


+ Z̃ [2]. (6.10)

The coordinator leaves the system once the storage, permutations and noise

added permutation reversing matrices are initialized and the system is ready to

begin the FL process. All subsequent communications take place only between indi-

vidual users and databases in terms of permuted subpacket indices. The databases

never learn the underlying permutations despite having access to the noise added

permutation reversing matrices, since the added noise Z̃ [i] makes the noisy matrices

independent of the original permutation reversing matrix from Shannon’s one time

pad theorem.

Reading Phase: The databases decide the permuted indices of the Pr′ sparse

subpackets to be sent to the users at time t in the reading phase, based on the

permuted subpacket indices received in the writing phase at time t−1. For example,

the databases consider the permuted indices of the subpackets updated by all users

at time t − 1, and select the most popular Pr′ of them to be sent to the users in

the reading phase of time t. Note that the databases are unaware of the real indices

of the sparse subpacket indices updated by users in the writing phase at each time
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instance and only work with the permuted indices in both phases. We denote the

permuted indices of the sparse subpackets to be sent to the users from segment j as

Ṽj for j ∈ {1, . . . , B}. For this example, let the sparse set of permuted subpacket

indices corresponding to the first segment be Ṽ1 = {1, 3}.7 One designated database

sends these permuted indices of each segment to the users. The users then find

the real indices, using the known permutations as Vj(i) = P̃j(Ṽj(i)) for each sparse

subpacket i in segment j ∈ {1, . . . , B}. For this example (segment 1), the real set

of indices is given by,

V1(i) = P̃1(Ṽ1(i)), i = 1, 2 (6.11)

V1 = {2, 4}. (6.12)

In order to send the ith sparse subpacket of segment j, Ṽj(i), each database n,

n ∈ {1, . . . , N} generates the following query.

Q[Ṽj(i)]
n =

ℓ∑
k=1

R[j]
n (:, (i− 1)ℓ+ k). (6.13)

For example, the query corresponding to the first sparse subpacket of the first seg-

7Two similar sets (with same or different cardinalities, such that the sum of all three cardinalities
equals Pr′) exist for segments 2 and 3 as well.

185



ment (i.e., Ṽ1(1) = 1) is given by,

Q[Ṽ1(1)]
n = Q[1]

n =
ℓ∑

k=1

R[1]
n (:, k) =



0ℓ

1
f1−αn

...

1
fℓ−αn

0ℓ

0ℓ

0ℓ



+ Z1, (6.14)

where Z1 is a random noise vector resulted by the noise component of R
[1]
n . Similarly,

the query for the second sparse subpacket of segment 1 (i.e., Ṽ1(2) = 3) is given by,

Q[Ṽ1(2)]
n = Q[3]

n =
ℓ∑

k=1

R[1]
n (:, 2ℓ+ k) =



0ℓ

0ℓ

0ℓ

1
f1−αn

...

1
fℓ−αn

0ℓ



+ Z2. (6.15)

Note that the reversal of the permutations is hidden from the databases by the

random noise vectors Z1 and Z2. Then, database n, n ∈ {1, . . . , N} sends the answer

corresponding to the ith sparse subpacket of segment j to all users by calculating
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the dot product between the queries and the scaled storage as,

A[Ṽj(i)]
n = (Dn × Sn)

TQ[Ṽj(i)]
n , j ∈ {1, . . . , B} (6.16)

=
1

f1 − αn

W
[Vj(i)]
1 + . . .+

1

fℓ − αn

W
[Vj(i)]
ℓ + Pαn(ℓ+ 1), (6.17)

where Dn is the diagonal matrix of size Pℓ
B

× Pℓ
B

given by,

Dn = IP
B
⊗ Γ−1

n =


Γ−1
n

. . .

Γ−1
n

 , (6.18)

where IP
B
is the identity matrix of size P

B
× P

B
and Pαn(ℓ+1) is a polynomial in αn of

degree ℓ + 1. For example, the answer of database n,n ∈ {1, . . . , N} corresponding

to the first sparse subpacket of segment 1 (i.e., Ṽ1(1) = 1) is given by,

A[Ṽ1(1)]
n = (Dn × Sn)

TQ[Ṽ1(1)]
n (6.19)

=





Γ−1
n 0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ

0ℓ×ℓ Γ−1
n 0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ

0ℓ×ℓ 0ℓ×ℓ Γ−1
n 0ℓ×ℓ 0ℓ×ℓ

0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ Γ−1
n 0ℓ×ℓ

0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ Γ−1
n






1

f1−αn
W

[1]
1 +

∑ℓ
j=0 α

j
nI1,j

...

1
fℓ−αn

W
[1]
ℓ +

∑ℓ
j=0 α

j
nIℓ,j


...

1
f1−αn

W
[5]
1 +

∑ℓ
j=0 α

j
nI1,j

...

1
fℓ−αn

W
[5]
ℓ +

∑ℓ
j=0 α

j
nIℓ,j







T
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×





0ℓ

1
f1−αn

...

1
fℓ−αn

0ℓ

0ℓ

0ℓ



+ Z1



(6.20)

=
1

f1 − αn

W
[2]
1 + . . .+

1

fℓ − αn

W
[2]
ℓ + Pαn(ℓ+ 1). (6.21)

Now, the users obtain the parameters of real subpacket 2 of segment 1, (i.e., V1(1) =

P̃1(Ṽ1(1)) = 2) by solving,


A

Ṽ1(1)
1

...

A
Ṽ1(1)
N

 =


1

f1−α1
. . . 1

fℓ−α1
1 α1 . . . αℓ+1

1

...
...

...
...

...
...

...

1
f1−αN

. . . 1
fℓ−αN

1 αN . . . αℓ+1
N





W
[2]
1

...

W
[2]
ℓ

R0

...

Rℓ+1



, (6.22)

where Ri are the coefficents of the polynomial Pαn(ℓ + 1) in (6.21). Note that

(6.22) (and the corresponding general set of equations in (6.17)) is solvable given

that N = 2ℓ + 2, which determines the subpacketization as ℓ = N−2
2

. The same

procedure described above is carried out for all sparse subpackets in each of the
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B segments. The resulting reading cost (including both data and permuted index

downloads) is given by,

CR =
Pr′(logq

P
B
+ logq B) + Pr′N

L
=

Pr′(logq P +N)

P N−2
2

=
2r′(1 +

logq P

N
)

1− 2
N

. (6.23)

Writing Phase: In the writing phase, each user selects the Pr subpackets with

the most significant updates and sends the corresponding noise added combined

updates (single bit per subpacket) along with their permuted subpacket indices to

each of the databases. The noise added combined update of real subpacket i of

segment j (assuming this subpacket is among the Pr selected subpackets) sent to

database n, n ∈ {1, . . . , N}) is given by,

U [i,j]
n =

ℓ∑
k=1

ℓ∏
r=1,r ̸=k

(fr − αn)∆̃
[i,j]
k +

ℓ∏
r=1

(fr − αn)Z
[i,j], (6.24)

where ∆̃
[i,j]
k =

∆
[i,j]
k∏ℓ

r=1,r ̸=k(fr−fk)
with ∆

[i,j]
k being the update of the kth bit of the sparse

subpacket i of segment j and Z [i,j] is a random noise bit. To determine the permuted

subpacket index of subpacket i of segment j, consider the permutation assigned for

segment j (i.e., P̃j) to be a one-to-one mapping from the set {1, . . . , P
B
} to the set P̃j

in the exact order. Then, the permuted subpacket index corresponding to subpacket

i of segment j is given by,

Y [i,j] = P̃−1
j (i), j ∈ {1, . . . , B}. (6.25)
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Once the combined updates and permuted subpacket indices corresponding to all

Pr chosen subpackets are computed, the user uploads the Pr (update, subpacket,

segment) tuples to all databases.8

For example, assume that a given user wants to update the real subpackets 2

and 4 from segment 1, subpacket 2 from segment 2 and subpacket 5 from segment 3.

Based on the permutations considered in this example, i.e., P̃1 = {2, 1, 4, 5, 3}, P̃2 =

{3, 5, 2, 4, 1} and P̃3 = {5, 2, 3, 1, 4}, the user generates the combined updates U
[2,1]
n ,

U
[4,1]
n , U

[2,2]
n and U

[5,3]
n which are of the form (6.24). The corresponding permuted

subpacket indices are given by,

Y [2,1] = P̃−1
1 (2) = 1 (6.26)

Y [4,1] = P̃−1
1 (4) = 3 (6.27)

Y [2,2] = P̃−1
2 (2) = 3 (6.28)

Y [5,3] = P̃−1
3 (5) = 1. (6.29)

Therefore, the two permuted (update, subpacket, segment) tuples corresponding to

segment 1, sent by the user to database n are given by, (U
[2,1]
n , 1, 1) and (U

[4,1]
n , 3, 1).

Similarly, the permuted (update, subpacket, segment) tuples corresponding to seg-

ments 2 and 3 are given by (U
[2,2]
n , 3, 2) and (U

[5,3]
n , 1, 3), respectively.9 Once database

n, n ∈ {1, . . . , N} receives the Pr (update, subpacket, segment) tuples, it creates

8Note that the ‘subpacket’ and ‘segment’ elements in the (update, subpacket, segment) refer to
the permuted subpacket index and the real segment index, respectively.

9Note that there is no permutation in the segment index, and only the subpacket indices within
each segment is being permuted.
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the permuted update vectors Ŷ
[j]
n for each segment j ∈ {1, . . . , B} given by,

Ŷ [j]
n =

P
B∑
i=1

U [i,j]
n eP

B
(Y [i,j]), (6.30)

where eP
B
(Y [i,j]) is the all zeros vector of size P

B
× 1 with a 1 at the Y [i,j]th position.

Note that we consider U
[i,j]
n = 0 for those values of i, i ∈ {1, . . . , P

B
} whose corre-

sponding subpackets are not included in the set of Pr selected subpackets. In order

to reverse the permutation privately, each database creates,

Û [j]
n = Ŷ [j]

n ⊗ 1ℓ = [Ŷ [j]
n (1) · 1Tℓ , . . . , Ŷ [j]

n (
P

B
) · 1Tℓ ]T , (6.31)

for each segment j, where 1ℓ is the all ones vector of size ℓ × 1. For the example

considered, the Û
[j]
n vectors for the three segments, generated by database n, n ∈

{1, . . . , N} based on the received information (U
[2,1]
n , 1, 1), (U

[4,1]
n , 3, 1),(U

[2,2]
n , 3, 2)

and (U
[5,3]
n , 1, 3) are given by,

Û [1]
n =



U
[2,1]
n · 1ℓ

0 · 1ℓ

U
[4,1]
n · 1ℓ

0 · 1ℓ

0 · 1ℓ


, Û [2]

n =



0 · 1ℓ

0 · 1ℓ

U
[2,2]
n · 1ℓ

0 · 1ℓ

0 · 1ℓ


, Û [3]

n =



U
[5,3]
n · 1ℓ

0 · 1ℓ

0 · 1ℓ

0 · 1ℓ

0 · 1ℓ


. (6.32)

Next, the databases privately rearrange the updates in the real order and calculate

the incremental updates of each segment as Ū
[j]
n = R

[j]
n Û

[j]
n for j ∈ {1, . . . , B}, and

191



add it to the jth segment of the existing storage to obtain the updated storage. Con-

sider the incremental update calculation of segment 1 in database n, n ∈ {1, . . . , N}

for the example considered,

Ū [1]
n = R[1]

n Û [1]
n (6.33)

=





0ℓ×ℓ Γn 0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ

Γn 0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ

0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ Γn

0ℓ×ℓ 0ℓ×ℓ Γn 0ℓ×ℓ 0ℓ×ℓ

0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ Γn 0ℓ×ℓ


+ Z̄1





U
[2,1]
n · 1ℓ

0 · 1ℓ

U
[4,1]
n · 1ℓ

0 · 1ℓ

0 · 1ℓ


(6.34)

=



0ℓ

U
[2,1]
n

f1−αn

...

U
[2,1]
n

fℓ−αn

0ℓ

U
[4,1]
n

f1−αn

...

U
[4,1]
n

fℓ−αn

0ℓ



+ Pαn(ℓ) =



0ℓ

∆
[2,1]
1

f1−αn

...

∆
[2,1]
ℓ

fℓ−αn

0ℓ

∆
[4,1]
1

f1−αn

...

∆
[4,1]
ℓ

fℓ−αn

0ℓ



+ Pαn(ℓ), (6.35)

where Pαn(ℓ) here is a vector of size Pℓ
B

consisting of polynomial in αn of degree

ℓ, and the last equality is obtained by applying Lemma 3.1. The same process is

carried out for the other two segments as well. Since the incremental update is in
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the same form as the storage in (6.6), the storage of segment j, j ∈ {1, 2, 3} at time

t can be updated as,

S[j]
n (t) = S[j]

n (t− 1) + Ū [j]
n , n ∈ {1, . . . , N}. (6.36)

Note from (6.35) that for segment 1, the two real sparse subpackets 2 and 4 have

been correctly updated, while ensuring that the rest of the subpackets remain the

same, without revealing the real subpacket indices 2 and 4 to any of the databases.

The resulting writing cost is given by,

CW =
PrN(1 + logq B + logq

P
B
)

L
=

PrN(1 + logq P )

P N−2
2

=
2r(1 + logq P )

1− 2
N

. (6.37)

The total storage complexity (including both data and the permutation reversing

matrices) is given by O(L)+O(L
2

B2 ×B) = O(L
2

B
). The information leakage is derived

in Section 6.4.2.

Case 2: MDS coded storage and smaller permutation reversing matrices are

used in this case to reduce the storage cost, at the expense of a larger communication

cost. The information leakage is the same for both cases 1 and 2, since they both use

only within-segment permutations. The same example considered for case 1 (shown

in Fig. 6.4) is considered in this case as well.

Initialization: A single subpacket s in case 2 is stored in database n, n ∈
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{1, . . . , N} as,

S[s]
n =

ℓ∑
i=1

1

αi
n

W
[s]
i +

ℓ∑
i=0

αi
nZ

[s]
i . (6.38)

Therefore, the storage of segment j, j ∈ {1, . . . , B} is given by,

S[j]
n =


∑ℓ

i=1
1
αi
n
W

[1,j]
i +

∑ℓ
i=0 α

i
nZ

[1,j]
i

...∑ℓ
i=1

1
αi
n
W

[P
B
,j]

i +
∑ℓ

i=0 α
i
nZ

[P
B
,j]

i

 , (6.39)

where W
[s,j]
i is the ith parameter of subpacket s in segment j and Z

[s,j]
i are random

noise symbols. Note that P
B

= 5 for the example considered. Similar to case 1,

the coordinator initializes all noise terms in storage, assigns B permutations P̃i,

i ∈ {1, . . . , B} of the subpackets in each of the B segments and sends them to the

users, and sends the corresponding B noise added permutation reversing matrices

R
[i]
n , i ∈ {1, . . . , B} to database n, n ∈ {1, . . . .N}, as shown in Fig. 6.4. The noise

added permutation reversing matrices are of the form,

R[i]
n = R̄[i] + αℓ

nZ̄
[i], i ∈ {1, . . . , B}, (6.40)

where R̄[i] is the permutation reversing matrix corresponding to the ith permutation

P̃i, and Z̄ [i] is a random noise matrix, both of size P
B
× P

B
. The noise added permu-

tation reversing matrices corresponding to the three segments, sent to database n,

n ∈ {1, . . . , N} for the example in Fig. 6.4 are given by (recall: P̃1 = (2, 1, 4, 5, 3),

194



P̃2 = (3, 5, 2, 4, 1), P̃3 = (5, 2, 3, 1, 4)),

R[1]
n =



0 1 0 0 0

1 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 0 1 0


+ αℓ

nZ̄
[1] (6.41)

R[2]
n =



0 0 0 0 1

0 0 1 0 0

1 0 0 0 0

0 0 0 1 0

0 1 0 0 0


+ αℓ

nZ̄
[2] (6.42)

R[3]
n =



0 0 0 1 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 1

1 0 0 0 0


+ αℓ

nZ̄
[3]. (6.43)

As explained in case 1, the coordinator leaves the system once the FL process

begins, and all subsequent communications take place only between the users and

databases using permuted subpacket indices.

Reading Phase: As described in case 1, let Ṽj be the set of permuted indices

of the sparse subpackets chosen from segment j to be sent to the users for j ∈
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{1, . . . , B}. For example, let Ṽ1 = {1, 3} be the permuted set of sparse subpackets

of segment 1 that needs to be sent to the users at time t. One designated database

sends the permuted subpacket indices of each segment (segment 1: Ṽ1 = {1, 3})

to the users, from which the users identify the corresponding real sparse subpacket

indices using the known permutations using Vj(i) = P̃j(Ṽj(i)), where Vj is the vector

containing the real indices of the sparse subpackets in segment j. In particular, the

users perform the same calculation in (6.12) for segment 1 as well as for the other

two segments, based on the received sets Ṽ2 and Ṽ3. Similar to case 1, each database

generates a query to send each of the chosen subpackets. The query corresponding

to the ith permuted sparse subpacket of segment j is given by,

Q[Ṽj(i)]
n = R[j]

n (:, Ṽj(i)), j ∈ {1, . . . , B}. (6.44)

Following are the two queries generated by database n, n ∈ {1, . . . , N} to send the

two sparse subpackets (with permuted indices Ṽ1 = {1, 3}) of segment 1 to the users,

Q[Ṽ1(1)]
n = Q[1]

n = R[1]
n (:, 1) =



0

1

0

0

0


+ αℓ

nẐ1 (6.45)
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Q[Ṽ1(2)]
n = Q[3]

n = R[1]
n (:, 3) =



0

0

0

1

0


+ αℓ

nẐ3, (6.46)

where Ẑ1 and Ẑ3 are the first and third columns of Z̄ [1] in (6.41). Then, database n,

n ∈ {1, . . . , N} sends the answers corresponding to each sparse subpacket of each

segment to the users as,

A[Ṽj(i)]
n = (S[j]

n )TQ[Ṽj(i)]
n , j ∈ {1, . . . , B} (6.47)

=
ℓ∑

i=1

1

αi
n

W
[Vj(i),j]
i + Pαn(2ℓ), (6.48)

where Pαn(2ℓ) is a polynomial in αn of degree 2ℓ. For example, the answer corre-

sponding to the first sparse subpacket of segment 1 (Ṽ1(1) = 1), sent by database

n, n ∈ {1, . . . , N} to the users is given by,

A[Ṽ1(1)]
n = (S[1]

n )TQ[Ṽ1(1)]
n (6.49)

=


∑ℓ

i=1
1
αi
n
W

[1,1]
i +

∑ℓ
i=0 α

i
nZ

[1,1]
i

...∑ℓ
i=1

1
αi
n
W

[5,1]
i +

∑ℓ
i=0 α

i
nZ

[5,1]
i



T





0

1

0

0

0


+ αℓ

nẐ1


(6.50)
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=
ℓ∑

i=1

1

αi
n

W
[2,1]
i + Pαn(2ℓ). (6.51)

The users obtain the parameters of the real subpacket 2 of segment 1, (i.e., V1(1) =

P̃1(Ṽ1(1)) = 2) by solving,


A

Ṽ1(1)
1

...

A
Ṽ1(1)
N

 =


1
αℓ
1

. . . 1
α1

1 α1 . . . α2ℓ
1

...
...

...
...

...
...

...

1
αℓ
N

. . . 1
αN

1 αN . . . α2ℓ
N





W
[2,1]
ℓ

...

W
[2,1]
1

R0

...

R2ℓ



, (6.52)

where Ri are the coefficients of the polynomial in (6.51). Note that (6.52) (and also

the general answers in (6.48)) is solvable given that N = 3ℓ + 1, which determines

the subpacketization as ℓ = N−1
3

. The same procedure described above is carried

out for all sparse subpackets in each of the B segments. The resulting reading cost

is given by,

CR =
Pr′ logq P + Pr′N

L
=

Pr′(logq P +N)

P N−1
3

=
3r′(1 +

logq P

N
)

1− 1
N

. (6.53)

Writing Phase: In the writing phase, the user generates Pr combined up-

dates corresponding to the Pr subpackets with the most significant updates. The

combined update of the ith subpacket of segment j is defined as (assuming this
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subpacket is among the Pr selected subpackets),

U [i,j]
n =

ℓ∑
k=1

1

αk
n

∆
[i,j]
k + Z [i,j], (6.54)

where ∆
[i,j]
k is the update of the kth bit of the ith subpacket of segment j and

Z [i,j] is a random noise symbol. Similar to case 1, the user generates the permuted

subpacket indices corresponding to the real subpacket indices i of each segment j,

of the selected Pr subpackets, using (6.25). Once the permuted subpacket indices

are generated, the user sends the permuted (update, subpacket, segment) tuples of

the Pr selected subpackets to all databases similar to case 1. For the same example

considered in case 1 where the user wants to update the real subpackets 2 and 4 from

segment 1, subpacket 2 from segment 2 and subpacket 5 from segment 3, the user

sends the same permuted (update, subpacket, segment) tuples sent in case 1 given by,

(U
[2,1]
n , 1, 1), (U

[4,1]
n , 3, 1), (U

[2,2]
n , 3, 2), (U

[5,3]
n , 1, 3) to database n, n ∈ {1, . . . , N} as-

suming the same three permutations given by P̃1 = {2, 1, 4, 5, 3}, P̃2 = {3, 5, 2, 4, 1}

and P̃3 = {5, 2, 3, 1, 4}, for the three segments. Once the databases receive the Pr

(update, subpacket, segment) tuples, they create the permuted update vectors Ŷ
[j]
n

for each segment j ∈ {1, . . . , B} using (6.30). For the example considered, the three
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permuted update vectors created at database n are given by,

Ŷ [1]
n =



U
[2,1]
n

0

U
[4,1]
n

0

0


, Ŷ [2]

n =



0

0

U
[2,2]
n

0

0


, Ŷ [3]

n =



U
[5,3]
n

0

0

0

0


, (6.55)

based on the received information (U
[2,1]
n , 1, 1), (U

[4,1]
n , 3, 1), (U

[2,2]
n , 3, 2), (U

[5,3]
n , 1, 3).

Using the permuted update vectors Ŷ
[j]
n , j ∈ {1, . . . , B}, database n, n ∈ {1, . . . , N}

privately calculates the correctly rearranged incremental update vector of each seg-

ment as Ū
[j]
n = R

[j]
n Ŷ

[j]
n , j ∈ {1, . . . , B}. The resulting incremental update is of the

same form as the storage in (6.39), and therefore can be added to the existing stor-

age to obtain the updated storage of each segment. To explain the above process

in terms of an example, consider the incremental update of segment 1 in the same

example considered so far,

Ū [1]
n = R[1]

n Ŷ [1]
n =





0 1 0 0 0

1 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 0 1 0


+ αℓ

nZ̄
[1]





U
[2,1]
n

0

U
[4,1]
n

0

0


(6.56)
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=



0

U
[2,1]
n

0

U
[4,1]
n

0


+ Pαn(ℓ) =



0∑ℓ
i=1

1
αi
n
∆

[2,1]
i

0∑ℓ
i=1

1
αi
n
∆

[4,1]
i

0


+ Pαn(ℓ), (6.57)

where Pαn(ℓ) here is a vector of size 5× 1, consisting of polynomials in αn of degree

ℓ. Since the incremental update of each segment (i.e., (6.57)) is in the same form

as the storage in (6.39), the incremental update is directly added to the existing

storage to obtain it’s updated version, i.e.,

S[j]
n (t) = S[j]

n (t− 1) + Ū [j]
n , j ∈ {1, . . . , B}, n ∈ {1, . . . , N}. (6.58)

The writing cost for case 2 is given by,

CW =
PrN(1 + logq B + logq

P
B
)

L
=

PrN(1 + logq P )

P N−1
3

=
3r(1 + logq P )

1− 1
N

. (6.59)

The total storage complexity (including both data and the permutation reversing

matrices) is given by O(P ) + O(P
2

B2 × B) = O(P
2

B
) = O( L2

BN2 ). The information

leakage is derived in Section 6.4.2.

Case 3: In this case, we use uncoded storage with large permutation revers-

ing matrices. Note that in both cases 1 and 2, only the subpacket indices within

each segment were permuted, and the real segment indices were uploaded to the
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databases by the users. In this case, we permute subpacket indices within segments

as well as the segment indices to reduce the information leakage further. However,

this increases the storage cost since the permutation of segment indices requires an

additional noise added permutation reversing matrix to be stored at the databases.

The communication cost is not significantly affected by the additional round of

permutation, compared to case 1 (lowest communication cost thus far).

For cases 3 and 4, we present the general scheme along with the example

setting with P = 12 subpackets (with subpacketization ℓ) which are divided into

and B = 3 equal segments, as shown in Fig. 6.5.

Initialization: The storage of a single subpacket (subpacket s) in case 3 is

given by,

S[s]
n =


1

f1−αn
W

[s]
1 +

∑ℓ+1
j=0 α

j
nZ

[s]
1,j

...

1
fℓ−αn

W
[s]
ℓ +

∑ℓ+1
j=0 α

j
nZ

[s]
ℓ,j

 , (6.60)

with the same notation as in case 1. The subpackets are stacked one after the

other (subpacket 1 through subpacket P
B
in each segment) in the order of segment 1

through segment B. At the initialization stage, the coordinator sends B randomly

and independently chosen permutations of the P
B

subpackets in each of the B seg-

ments , P̃1, . . . , P̃B, as well as a randomly and independently chosen permutation of

the B segments P̂ to the users. The coordinator also places the corresponding noise

added permutation reversing matrices (corresponding to B within-segments permu-
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tations: R
[1]
n ,. . . ,R

[B]
n and one inter-segment permutation: R̂n) at each database n,

n ∈ {1, . . . , N}. The noise added permutation reversing matrix corresponding to

the ith segment, i ∈ {1, . . . , B} stored in database n, n ∈ {1, . . . , N} is given by,

R[i]
n = (R̃[i] ⊗ Γn) + Z̃ [i], (6.61)

with the same notation as in case 1. The noise added permutation reversing

matrix corresponding to the inter-segment permutation P̂ stored in database n,

n ∈ {1, . . . , N} is given by,

R̂n = (R̄⊗ Iℓ) + (IB ⊗ Γ−1
n )Ẑ =


b
[n]
1,1 . . . b

[n]
1,B

...
. . .

...

b
[n]
B,1 . . . b

[n]
B,B

 , (6.62)

where R̄ is the permutation reversing matrix corresponding to the inter-segment

permutation P̂ , Ik is the identity matrix of size k × k, Γ−1
n is the diagonal matrix

given by,

Γ−1
n =


f1 − αn

. . .

fℓ − αn

 (6.63)

and Ẑ is a random noise matrix of size Bℓ × Bℓ. Each matrix R̂n is represented

in blocks of size ℓ × ℓ, as shown in the last equality in (6.62). According to the

203



segment 1 segment 2 segment 3

1 1 12 22 23 3 34 4 4

random
permutations

(2, 4, 3, 1) (1, 3, 2, 4) (3, 1, 4, 2)

coordinator

R
[1]
1 R

[2]
1 R

[3]
1 R

[1]
N

R
[2]
N

R
[3]
N

database 1 database N

all users

assigns three random permutations
for the three sections

assigns random noise
and noisy permutation
reversing matrices

P̃3P̃2P̃1

permutation
of segments

P̂ = (2, 3, 1)

R̂1 R̂N

permutations within
segments: P̃1,P̃2,P̃3

Figure 6.5: Initialization of the scheme for cases 3 and 4.

given permutations in Figure 6.5, the noise added permutation reversing matrix

corresponding to the first within-segment permutation (P̃1 = (2, 4, 3, 1)), i.e., R
[1]
n is

given by,

R[1]
n =





0 0 0 1

1 0 0 0

0 0 1 0

0 1 0 0


⊗ Γn


+ Z̃ [1] =



0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ Γn

Γn 0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ

0ℓ×ℓ 0ℓ×ℓ Γn 0ℓ×ℓ

0ℓ×ℓ Γn 0ℓ×ℓ 0ℓ×ℓ


+ Z̃ [1]. (6.64)
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Similarly, R
[2]
n and R

[3]
n are given by,

R[2]
n =



Γn 0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ

0ℓ×ℓ 0ℓ×ℓ Γn 0ℓ×ℓ

0ℓ×ℓ Γn 0ℓ×ℓ 0ℓ×ℓ

0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ Γn


+ Z̃ [2], R[3]

n =



0ℓ×ℓ Γn 0ℓ×ℓ 0ℓ×ℓ

0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ Γn

Γn 0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ

0ℓ×ℓ 0ℓ×ℓ Γn 0ℓ×ℓ


+ Z̃ [3],

(6.65)

For the same example, the inter-segment noise added permutation reversing matrix

for database n, n ∈ {1, . . . , N} is given by,

R̂n =




0 0 1

1 0 0

0 1 0

⊗ Φ

+




1 0 0

0 1 0

0 0 1

⊗ Γ−1
n

 Ẑ (6.66)

=


0ℓ×ℓ 0ℓ×ℓ Φ

Φ 0ℓ×ℓ 0ℓ×ℓ

0ℓ×ℓ Φ 0ℓ×ℓ

+


Γ−1
n 0ℓ×ℓ 0ℓ×ℓ

0ℓ×ℓ Γ−1
n 0ℓ×ℓ

0ℓ×ℓ 0ℓ×ℓ Γ−1
n

 Ẑ =


b
[n]
1,1 b

[n]
1,2 b

[n]
1,3

b
[n]
2,1 b

[n]
2,2 b

[n]
2,3

b
[n]
3,1 b

[n]
3,2 b

[n]
3,3

 , (6.67)

where Φ = Iℓ. Each matrix R̂n is represented in blocks of size ℓ × ℓ, as shown

in the last equality in (6.67), which is useful in the subsequent calculations. The

coordinator leaves the system once the storage and permutations are initialized,

and the noise added permutation reversing matrices are placed at the databases,

before the FL process begins. All communications in the FL process are carried out

between the users and databases using permuted subpacket and segment indices.
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Reading Phase: The databases determine the set of Pr′ subpackets to be

sent to the users at time t, based on the permuted information received from the

users in the writing phase at time t − 1. For example, the databases consider the

permuted indices of the subpackets updated by all users at time t − 1, and select

the most popular Pr′ of them (in terms of permuted indices) to be sent to the users

in the reading phase of time t. In case 3, the databases are unaware of the real

indices of subpackets within each segment, as well as the corresponding real inidces

of the segments, updated by the users. However, the databases can communicate

the sparse subpacket and segment indices with the users in their permuted versions

(same as what was received in the writing phase at time t−1). The users are able to

convert the permuted indices into their real versions as all permutations are known

by the users. Let the permuted (subpacket, segment) information of each of the Pr′

subpackets be indicated by (ηp, ϕp). This information is sent to all users at time t

by one designated database. The users can convert each permuted (ηp, ϕp) into its

real versions (ηr, ϕr) using,

ϕr = P̂ (ϕp) (6.68)

ηr = P̃ϕr(ηp). (6.69)

For the example in Fig. 6.5, assume that the following permuted (subpacket, seg-

ment) pairs are received by a given user from the designated database,

(ηp, ϕp) = {(1, 3), (1, 1), (1, 2)}. (6.70)
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Recall that the permutations considered in this example are given by P̃1 = (2, 4, 3, 1),

P̃2 = (1, 3, 2, 4), P̃3 = (3, 1, 4, 2) and P̂ = (2, 3, 1). In order to see how the real

subpacket and segment indices are obtained, consider the first permuted pair (1, 3).

Since the permuted segment index is ϕp = 3, the corresponding real segment index

is ϕr = P̂ (3) = 1. Then, the user can decode the subpacket index within the

first segment as, ηr = P̃1(1) = 2. Therefore, the real (subpacket, segment) pair

corresponding to the permuted (subpacket, segment) pair (ηp, ϕp) = (1, 3) is given by

(ηr, ϕr) = (2, 1). Similarly, the real set of (subpacket, segment) pairs corresponding

to the three permuted pairs are given by,

(ηr, ϕr) = {(2, 1), (1, 2), (3, 3)}. (6.71)

Once the real indices of the sparse subpackets and segments are obtained, the user

downloads the corresponding subpackets, one by one. To perform the calculations

in the reading phase, each database first generates a combined noise added permu-

tation reversing matrix, that combines the within-segment and inter-segment noise

added permutation reversing matrices into a single noise added permutation revers-

ing matrix, to facilitate the subsequent calculations. The combined noise added

permutation reversing matrix of database n, n ∈ {1, . . . , N} is given by,

Rn =


R

[1]
n

. . .

R
[B]
n

×


IP

B
⊗ b

[n]
1,1 . . . IP

B
⊗ b

[n]
1,B

...
...

...

IP
B
⊗ b

[n]
B,1 . . . IP

B
⊗ b

[n]
B,B

 (6.72)
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=



R
[1]
n


b
[n]
1,1

. . .

b
[n]
1,1


Pℓ
B

×Pℓ
B

. . . R
[1]
n


b
[n]
1,B

. . .

b
[n]
1,B


Pℓ
B

×Pℓ
B

. . .

R
[B]
n


b
[n]
B,1

. . .

b
[n]
B,1


Pℓ
B

×Pℓ
B

. . . R
[B]
n


b
[n]
B,B

. . .

b
[n]
B,B


Pℓ
B

×Pℓ
B



(6.73)

= Ṙn + Pαn(1), (6.74)

where Ṙn is the combined permutation reversing matrix obtained by replacing the

1 in the ith row of R̄ in (6.62) by R[i] ⊗ Γn in (6.61), and the zeros by all zeros

matrices of size Pℓ
B
× Pℓ

B
. Pαn(1) is a matrix of size L×L consisting of elements that

are degree 1 polynomials in αn.

As an example, consider the generation of the combined noise added permu-

tation reversing matrix of database n, n ∈ {1, . . . , N}, for the example setting in

Fig. 6.5,

Rn =


R

[1]
n 0 0

0 R
[2]
n 0

0 0 R
[3]
n

×


I4 ⊗ b

[n]
1,1 . . . I4 ⊗ b

[n]
1,3

...
...

...

I4 ⊗ b
[n]
3,1 . . . I4 ⊗ b

[n]
3,3

 (6.75)
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=



R
[1]
n


b
[n]
1,1

. . .

b
[n]
1,1


4ℓ×4ℓ

R
[1]
n


b
[n]
1,2

. . .

b
[n]
1,2


4ℓ×4ℓ

R
[1]
n


b
[n]
1,3

. . .

b
[n]
1,3


4ℓ×4ℓ

R
[2]
n


b
[n]
2,1

. . .

b
[n]
2,1


4ℓ×4ℓ

R
[2]
n


b
[n]
2,2

. . .

b
[n]
2,2


4ℓ×4ℓ

R
[2]
n


b
[n]
2,3

. . .

b
[n]
2,3


4ℓ×4ℓ

R
[3]
n


b
[n]
3,1

. . .

b
[n]
3,1


4ℓ×4ℓ

R
[3]
n


b
[n]
3,2

. . .

b
[n]
3,2


4ℓ×4ℓ

R
[3]
n


b
[n]
3,3

. . .

b
[n]
3,3


4ℓ×4ℓ



.

(6.76)

Note that,

R[1]
n


b
[n]
1,1

. . .

b
[n]
1,1


4ℓ×4ℓ

=





0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ Γn

Γn 0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ

0ℓ×ℓ 0ℓ×ℓ Γn 0ℓ×ℓ

0ℓ×ℓ Γn 0ℓ×ℓ 0ℓ×ℓ


+ Z̃ [1]



×



Γ−1
n Ẑ1,1 0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ

0ℓ×ℓ Γ−1
n Ẑ1,1 0ℓ×ℓ 0ℓ×ℓ

0ℓ×ℓ 0ℓ×ℓ Γ−1
n Ẑ1,1 0ℓ×ℓ

0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ Γ−1
n Ẑ1,1


(6.77)
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=



0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ Ẑ1,1

Ẑ1,1 0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ

0ℓ×ℓ 0ℓ×ℓ Ẑ1,1 0ℓ×ℓ

0ℓ×ℓ Ẑ1,1 0ℓ×ℓ 0ℓ×ℓ


+ Pαn(1) = Pαn(1) (6.78)

where Ẑ1,1 is the submatrix of Ẑ in (6.67) consisting of the first ℓ rows and first ℓ

columns, Pαn(1) here are matrices of size 4ℓ× 4ℓ, consisting of polynomials in αn of

degree 1 and 0ℓ×ℓ is the all zeros matrix of size ℓ× ℓ. Next, consider the calculation

of,

R[1]
n


b
[n]
1,3

. . .

b
[n]
1,3


4ℓ×4ℓ

=





0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ Γn

Γn 0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ

0ℓ×ℓ 0ℓ×ℓ Γn 0ℓ×ℓ

0ℓ×ℓ Γn 0ℓ×ℓ 0ℓ×ℓ


+ Z̃ [1]



×





Φ 0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ

0ℓ×ℓ Φ 0ℓ×ℓ 0ℓ×ℓ

0ℓ×ℓ 0ℓ×ℓ Φ 0ℓ×ℓ

0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ Φ


+



Γ−1
n Ẑ1,3 0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ

0ℓ×ℓ Γ−1
n Ẑ1,3 0ℓ×ℓ 0ℓ×ℓ

0ℓ×ℓ 0ℓ×ℓ Γ−1
n Ẑ1,3 0ℓ×ℓ

0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ Γ−1
n Ẑ1,3




(6.79)
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=



0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ Γn

Γn 0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ

0ℓ×ℓ 0ℓ×ℓ Γn 0ℓ×ℓ

0ℓ×ℓ Γn 0ℓ×ℓ 0ℓ×ℓ


+ Pαn(1), (6.80)

where Ẑ1,3 is the submatrix of Ẑ in (6.67) consisting of the first ℓ rows and the

column indices given by 2ℓ+1 to 3ℓ and Pαn(1) is a matrix of size 4ℓ×4ℓ consisting

of polynomials of αn of degree 1. Based on similar calculations, we can write the

combined permutation reversing matrix Rn in (6.76) as,

Rn =



04ℓ×4ℓ 04ℓ×4ℓ



0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ Γn

Γn 0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ

0ℓ×ℓ 0ℓ×ℓ Γn 0ℓ×ℓ

0ℓ×ℓ Γn 0ℓ×ℓ 0ℓ×ℓ




Γn 0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ

0ℓ×ℓ 0ℓ×ℓ Γn 0ℓ×ℓ

0ℓ×ℓ Γn 0ℓ×ℓ 0ℓ×ℓ

0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ Γn


04ℓ×4ℓ 04ℓ×4ℓ

04ℓ×4ℓ



0ℓ×ℓ Γn 0ℓ×ℓ 0ℓ×ℓ

0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ Γn

Γn 0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ

0ℓ×ℓ 0ℓ×ℓ Γn 0ℓ×ℓ


04ℓ×4ℓ


+ Pαn(1), (6.81)
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where Pαn(1) here is a matrix of size 12ℓ× 12ℓ, whose elements are polynomials in

αn of degree 1. Note that the first part of the combined noise added permutation

reversing matrix Rn is simply the 1 in the ith row of R̄ (permutation reversing

matrix corresponding to the inter-segment permutation P̂ ) replaced by R̃[i] ⊗ Γn,

where R̃[i] is the permutation reversing matrix corresponding to the within-segment

permutation P̃i, for each i ∈ {1, 2, 3}.

In order to download the subpacket corresponding to the permuted pair (ηp, ϕp),

each database generates the query given by,

Q[ηp,ϕp]
n = (IP ⊗ Γ−1

n )×
ℓ∑

k=1

Rn(:, (ϕp − 1)
P

B
ℓ+ (ηp − 1)ℓ+ k), (6.82)

where IP is the identity matrix of size P × P . Then, database n, n ∈ {1, . . . , N}

sends the answer corrresponding to the permuted subpacket (ηp, ϕp) as,

A[ηp,ϕp]
n = ST

nQ
[ηp,ϕp]
n =

1

f1 − αn

W
[ηr,ϕr]
1 + · · ·+ 1

fℓ − αn

W
[ηr,ϕr]
ℓ + Pαn(ℓ+ 3),

(6.83)

where Pαn(ℓ + 3) is a polynomial in αn of degree ℓ + 3. Then, the user can

obtain the values of the corresponding real subpacket indicated by (ηr, ϕr), i.e.,
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W
[ηr,ϕr]
1 , . . . ,W

[ηr,ϕr]
ℓ using all answers received by the N databases as,


A

[ηp,ϕp]
1

...

A
[ηp,ϕp]
N

 =


1

f1−α1
. . . 1

fℓ−α1
1 α1 . . . αℓ+3

1

...
...

...
...

...
...

...

1
f1−αN

. . . 1
fℓ−αN

1 αN . . . αℓ+3
N





W
[ηr,ϕr]
1

...

W
[ηr,ϕr]
ℓ

R0:ℓ+3


, (6.84)

where each Ri corresponds to the ith coefficient of the polynomial Pαn(ℓ + 3) in

(6.83). The equation in (6.84) is solvable if N = 2ℓ + 4, which determines the

subpacketization as ℓ = N−4
2

.

As an example, consider the download of the permuted subpacket indicated

by (ηp, ϕp) = (1, 3), from the same example setting in Fig. 6.5. Database n, n ∈

{1, . . . , N} creates the query given by,

Q[1,3]
n = (I12 ⊗ Γ−1

n )×
ℓ∑

k=1

Rn(:, 8ℓ+ k) (6.85)

=


Γ−1
n

. . .

Γ−1
n


12ℓ×12ℓ

×





0ℓ

1
f1−αn

...

1
fℓ−αn

010ℓ


+ Ṗαn(1)


(6.86)
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=


0ℓ

1ℓ

010ℓ

+




(f1 − αn)Pαn(1)

...

(fℓ − αn)Pαn(1)


...

(f1 − αn)Pαn(1)

...

(fℓ − αn)Pαn(1)




L×1

, (6.87)

where Ṗαn(1) is a vector of size 12ℓ × 1, consisting of polynomials in αn of degree

1, and Pαn(1) are polynomials of αn of degree 1. Note that 0k and 1k refer to all

zeros and all ones vectors of size k × 1, respectively. The answer corresponding to

the above query, sent to the users by database n, n ∈ {1, . . . , N} is given by,

A[1,3]
n = ST

nQ
[1,3]
n (6.88)

=




1

f1−αn
W

[1]
1 +

∑ℓ+1
j=0 α

j
nZ

[1]
1,j

...

1
fℓ−αn

W
[1]
ℓ +

∑ℓ+1
j=0 α

j
nZ

[1]
ℓ,j


...

1
f1−αn

W
[12]
1 +

∑ℓ+1
j=0 α

j
nZ

[12]
1,j

...

1
fℓ−αn

W
[12]
ℓ +

∑ℓ+1
j=0 α

j
nZ

[12]
ℓ,j





T

×




0ℓ

1ℓ

010ℓ

+




(f1 − αn)Pαn(1)

...

(fℓ − αn)Pαn(1)


...

(f1 − αn)Pαn(1)

...

(fℓ − αn)Pαn(1)




L×1


(6.89)
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=
1

f1 − αn

W
[2]
1 + · · ·+ 1

fℓ − αn

W
[2]
ℓ + Pαn(ℓ+ 3), (6.90)

from which the (real) second subpacket of segment 1, i.e., (ηr, ϕr) = (2, 1) can be

obtained using all answers of the N databases if N = 2ℓ + 4 is satisfied, which

determines the subpacketization as ℓ = N−4
2

. The resulting reading cost is given by,

CR =
Pr′(N + logq B + logq

P
B
)

L
=

Pr′(N + logq P )

P N−4
2

=
2r′(1 +

logq P

N
)

1− 4
N

. (6.91)

Writing Phase: In the writing phase, the user sends the combined updates,

permuted subpacket indices and permuted segment indices of the Pr subpackets

with the most significant updates to all databases. Let (η
[i]
r , ϕ

[i]
r ), i ∈ {1, . . . , P r} be

the real (subpacket, segment) pair corresponding to the ith selected subpacket. For

each of the Pr selected subpackets, the user generates a combined update bit given

by,

U [η
[i]
r ,ϕ

[i]
r ]

n =
ℓ∑

k=1

ℓ∏
j=1,j ̸=k

(fj − αn)∆̃
[η

[i]
r ,ϕ

[i]
r ]

k +
ℓ∏

j=1

(fj − αn)Z
[η

[i]
r ,ϕ

[i]
r ], i ∈ {1, . . . , P r},

(6.92)

where ∆̃
[η

[i]
r ,ϕ

[i]
r ]

k =
∆

[η
[i]
r ,ϕ

[i]
r ]

k∏ℓ
j=1,j ̸=k(fj−fk)

, with ∆
[η

[i]
r ,ϕ

[i]
r ]

k being the update of the kth parameter

of subpacket η
[i]
r of segment ϕ

[i]
r and Z [η

[i]
r ,ϕ

[i]
r ] is a random noise symbol. The user

sends the permuted (update, subpacket, segment) tuple given by (U
[η

[i]
r ,ϕ

[i]
r ]

n , η
[i]
p , ϕ

[i]
p )

for the ith selected subpacket where U
[η

[i]
r ,ϕ

[i]
r ]

n is the combined update of the subpacket
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of the form (6.92), η
[i]
p is the permuted subpacket index obtained by,

η[i]p = P̃−1

ϕ
[i]
r

(η[i]r ) (6.93)

and ϕ
[i]
p is the permuted segment index obtained by,

ϕ[i]
p = P̂−1(ϕ[i]

r ) (6.94)

where P̃
ϕ
[i]
r
and P̂ are considered to be the one-to-one mappings from j to P̃

ϕ
[i]
r
(j) for

j = 1, . . . , P
B
and i to P̂ (i), for i = 1, . . . , B, respectively. For the example in Fig. 6.5,

assume that a given user wants to update the Pr sparse subpackets identified by

the real (subpacket, segment) pairs given by, (ηr, ϕr) = {(2, 1), (2, 2), (3, 3)}. Based

on the within segment permutations given by P̃1 = (2, 4, 3, 1), P̃2 = (1, 3, 2, 4),

P̃3 = (3, 1, 4, 2), and the segment-wise permutation given by P̂ = (2, 3, 1), the user

sends the following (permuted) information to database n, n ∈ {1, . . . , N},

(U [ηr,ϕr]
n , ηp, ϕp)

= {(U [2,1]
n , P̃−1

1 (2), P̂−1(1)), (U [2,2]
n , P̃−1

2 (2), P̂−1(2)), (U [3,3]
n , P̃−1

3 (3), P̂−1(3))}

(6.95)

= {(U [2,1]
n , 1, 3), (U [2,2]

n , 3, 1), (U [3,3]
n , 1, 2)}, (6.96)

where the three U
[ηr,ϕr]
n terms are generated as in (6.92). As an illustration, the real

(subpacket, segment) pair given by (2, 1), is converted to the permuted pair (1, 3) as
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follows. Note that in the segment-wise permutation P̂ = (2, 3, 1), the real segment

index 1 lies in the third position. Therefore, ϕr = 1 is converted to ϕp = 3. Next, in

the permutation corresponding to segment 1 (P̃1 = (2, 4, 3, 1)), the subpacket index

2 lies in the first position. Therefore, ηr = 2 is converted to ηp = 1.

Once the databases receive all permuted (update, subpacket, segment) tuples,

they construct the permuted update vector as,

Ũn =
Pr∑
i=1

U [η
[i]
r ,ϕ

[i]
r ]

n eP ((ϕ
[i]
p − 1)

P

B
+ η[i]p ), (6.97)

where ep((ϕ
[i]
p − 1)P

B
+ η

[i]
p ) is the all zeros vector of size P with a 1 at the (ϕ

[i]
p −

1)P
B
+ η

[i]
p th position. This vector is then scaled by an all ones vector of size ℓ × 1

(i.e., 1ℓ) to aid the rest of the calculations. The scaled permuted update vector is

given by,

Ûn = Ũn ⊗ 1ℓ =


Ũn(1) · 1ℓ

...

Ũn(P ) · 1ℓ

 . (6.98)

Then, database n, n ∈ {1, . . . , N} calculates the incremental update using the

combined noise added permutation reversing matrix in (6.74) as,

Ūn = Rn × Ûn, (6.99)

which is of the same form as the storage in (6.60). Therefore, the storage at time t,
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S
[t]
n can be updated as,

S[t]
n = S[t−1]

n + Ūn. (6.100)

For the example considered, the scaled permuted update vector based on the

information received by the databases in (6.96) is given by,

Ûn = (U [2,1]
n e12(9) + U [2,2]

n e12(3) + U [3,3]
n e12(5))⊗ 1ℓ =





0 · 1ℓ

0 · 1ℓ

U
[2,2]
n · 1ℓ

0 · 1ℓ




U
[3,3]
n · 1ℓ

0 · 1ℓ

0 · 1ℓ

0 · 1ℓ




U
[2,1]
n · 1ℓ

0 · 1ℓ

0 · 1ℓ

0 · 1ℓ





(6.101)

Then, database n, n ∈ {1, . . . , N} computes the incremental update using the com-

bined noise added permutation reversing matrix in (6.81) as,

Ūn = Rn × Ûn (6.102)
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=



04ℓ×4ℓ 04ℓ×4ℓ



0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ Γn

Γn 0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ

0ℓ×ℓ 0ℓ×ℓ Γn 0ℓ×ℓ

0ℓ×ℓ Γn 0ℓ×ℓ 0ℓ×ℓ




Γn 0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ

0ℓ×ℓ 0ℓ×ℓ Γn 0ℓ×ℓ

0ℓ×ℓ Γn 0ℓ×ℓ 0ℓ×ℓ

0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ Γn


04ℓ×4ℓ 04ℓ×4ℓ

04ℓ×4ℓ



0ℓ×ℓ Γn 0ℓ×ℓ 0ℓ×ℓ

0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ Γn

Γn 0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ

0ℓ×ℓ 0ℓ×ℓ Γn 0ℓ×ℓ


04ℓ×4ℓ







0 · 1ℓ

0 · 1ℓ

U
[2,2]
n · 1ℓ

0 · 1ℓ




U
[3,3]
n · 1ℓ

0 · 1ℓ

0 · 1ℓ

0 · 1ℓ




U
[2,1]
n · 1ℓ

0 · 1ℓ

0 · 1ℓ

0 · 1ℓ




+ Pαn(ℓ+ 1) (6.103)

=

[
0ℓ,

U
[2,1]
n

f1 − αn

, . . . ,
U

[2,1]
n

fℓ − αn

, 03ℓ,
U

[2,2]
n

f1 − αn

, . . . ,
U

[2,2]
n

fℓ − αn

, 04ℓ,
U

[3,3]
n

f1 − αn

, . . . ,
U

[3,3]
n

fℓ − αn

, 0ℓ,

]T

+ Pαn(ℓ+ 1) (6.104)

=

[
0ℓ,

∆
[2,1]
1

f1 − αn

, . . . ,
∆

[2,1]
ℓ

fℓ − αn

, 03ℓ,
∆

[2,2]
1

f1 − αn

, . . . ,
∆

[2,2]
ℓ

fℓ − αn

, 04ℓ,
∆

[3,3]
1

f1 − αn

, . . . ,
∆

[3,3]
ℓ

fℓ − αn

, 0ℓ,

]T

+ Pαn(ℓ+ 1), (6.105)

where Pαn(ℓ + 1) is a vector of size L× 1 whose elements are polynomials in αn of

degree ℓ+1, and (6.105) follows from Lemma 3.1. Note from (6.105) that the (real)

subpacket 2 of segment 1, subpacket 2 of segment 2 and subpacket 3 of segment 3
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are correctly updated, without revealing these real indices to any of the databases.10

Since Ūn is in the same form as the storage in (6.60), the storage at time t can be

updated by adding Ūn to the existing storage. The resulting writing cost is given

by,

CW =
PrN(1 + logq B + logq

P
B
)

L
=

PrN(1 + logq P )

P N−4
2

=
2r(1 + logq P )

1− 4
N

. (6.106)

The storage complexities of data, within-segment noise added permutation revers-

ing matrices and the inter-segment noise added permutation reversing matrix are

given by O(L), O(L
2

B
) and O(ℓ2B2) = O(N2B2), respectively. Therefore the storage

complexity is max{O(L
2

B
), O(N2B2)}. The information leakage (on the indices of

sparse updates) is derived in Section 6.4.2.

Case 4: In this case, we consider coded storage and smaller permutation re-

versing matrices to reduce the storage cost. Both within-segment and inter-segment

permutations are considered in this case to reduce the information leakage.

Initialization: The storage of a single subpacket s in database n, n ∈ {1, . . . , N}

is given by,

S[s]
n =

ℓ∑
i=1

1

αi
n

W
[s]
i +

2ℓ∑
i=0

αi
nZ

[s]
i , (6.107)

with the same notation used in case 2. Therefore, the storage of a given segment j,

10Note that the vector Pαn(ℓ+ 1) in (6.105) hides these non-zero updates from the databases.
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j ∈ {1, . . . , B} is given by,

Sn,j =


∑ℓ

i=1
1
αi
n
W

[1,j]
i +

∑2ℓ
i=0 α

i
nZ

[1,j]
i

...∑ℓ
i=1

1
αi
n
W

[P
B
,j]

i +
∑2ℓ

i=0 α
i
nZ

[P
B
,j]

i

 , (6.108)

where W
[k,j]
i is the ith parameter of subpacket k of segment j and Z

[k,j]
i are random

noise symbols. The segments are stacked one after the other in the order of segment

1 through segment B. As described in case 3, the coordinator sends the within-

segment and inter-segment permutations P̃1, . . . , P̃B and P̂ to the users and the

corresponding noise added permutation reversing matrices given by R
[1]
n , . . . , R

[B]
n

and R̂n to database n, n ∈ {1, . . . , N}. The noise added permutation reversing

matrices for the within segment permutations P̃i are of the form (6.40), and the noise

added permutation reversing matrix corresponding to the inter-segment permutation

P̂ is of the form,

R̂n = R̂ + αℓ
nZ, (6.109)

where R̂ is the permutation reversing matrix corresponding to P̂ and Z is a random

noise matrix, both of size B × B. For the example considered in Figure 6.5, the

noise added permutation reversing matrices corresponding to P̃1 = {2, 4, 3, 1}, P̃2 =

{1, 3, 2, 4}, P̃3 = {3, 1, 4, 2} and P̂ = {2, 3, 1}, stored in database n, n ∈ {1, . . . , N}
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are given by,

R[1]
n =



0 0 0 1

1 0 0 0

0 0 1 0

0 1 0 0


+ αℓ

nZ̄
[1], R[2]

n =



1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


+ αℓ

nZ̄
[2], R[3]

n =



0 1 0 0

0 0 0 1

1 0 0 0

0 0 1 0


+ αℓ

nZ̄
[3]

(6.110)

and R̂n =


0 0 1

1 0 0

0 1 0

+ αℓ
nZ. (6.111)

The initialization stage ends and the coordinator leaves the system once the storage,

permutations and the noise added permutation reversing matrices are initialized.

To aid the calculations in the reading and writing phases described next, the

databases compute a combined noise added permutation reversing matrix as de-

scribed in case 3. This matrix for database n, n ∈ {1, . . . , N} is given by,

Rn =


R

[1]
n

. . .

R
[B]
n

× (R̂n ⊗ IP
B
) (6.112)

=


R

[1]
n

. . .

R
[B]
n

×


R̂n(1, 1)IP

B
. . . R̂n(1, B)IP

B

...
...

...

R̂n(B, 1)IP
B

. . . R̂n(B,B)IP
B

 (6.113)
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where IP
B

is the identity matrix of size P
B
× P

B
. The combined matrix Rn places

R
[i]
n at the position of the 1 in the ith row of R̂ in (6.109), with added noise. The

combined noise added permutation reversing matrix for the example considered in

Fig. 6.5 for database n, n ∈ {1, . . . , N} is given by,

Rn =


R

[1]
n 04×4 04×4

04×4 R
[2]
n 04×4

04×4 04×4 R
[3]
n

×


R̂n(1, 1)I4 R̂n(1, 2)I4 R̂n(1, 3)I4

R̂n(2, 1)I4 R̂n(2, 2)I4 R̂n(2, 3)I4

R̂n(3, 1)I4 R̂n(3, 2)I4 R̂n(3, 3)I4

 (6.114)

=





0 0 0 1

1 0 0 0

0 0 1 0

0 1 0 0


+ αℓ

nZ̄
[1] 04×4 04×4

04×4



1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


+ αℓ

nZ̄
[2] 04×4

04×4 04×4



0 1 0 0

0 0 0 1

1 0 0 0

0 0 1 0


+ αℓ

nZ̄
[3]


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×





04×4 04×4


1

. . .

1


4×4

1

. . .

1


4×4

04×4 04×4

04×4


1

. . .

1


4×4

04×4



+ αℓ
nZ̃



(6.115)

=



04×4 04×4



0 0 0 1

1 0 0 0

0 0 1 0

0 1 0 0




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


04×4 04×4

04×4



0 1 0 0

0 0 0 1

1 0 0 0

0 0 1 0


04×4



+ αℓ
nPαn(ℓ), (6.116)
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where Z̃ in (6.115) is a random noise matrix of size 12 × 12, resulted by the noise

component of R̂n and Pαn(ℓ) in (6.116) is a matrix of size 12 × 12 with entries

consisting of polynomials in αn of degree ℓ. Note that the combined noise added

permutation reversing matrix in (6.116) places each R
[i]
n at the position of the 1 in

the ith row of the permutation reversing matrix in (6.111) for i = 1, 2, 3, with added

noise.

Reading Phase: As explained in case 3, the databases determine the permuted

(subpacket, segment) tuples given by (ηp, ϕp) for the Pr′ sparse subpackets and send

them to the users. The users obtain the real (subpacket, segment) information of

the (ηp, ϕp) tuples from (6.68) and (6.69). For the example considered in Fig. 6.5,

the (ηp, ϕp) and (ηr, ϕr) pairs in (6.70) and (6.71) considered in case 3 are valid for

case 4 as well.

In order to send the subpacket corresponding to the permuted (subpacket,

segment) pair (ηp, ϕp), database n, n ∈ {1, . . . , N} creates a query given by,

Q[ηp,ϕp]
n = Rn(:, (ϕp − 1)

P

B
+ ηp). (6.117)
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For (ηp, ϕp) = (1, 3), the corresponding query is given by,

Q[1,3]
n = Rn(:, 9) =





0

1

0

0


08


+ αℓ

nPαn(ℓ), (6.118)

where Pαn(ℓ) here is a vector of size 12 × 1 with entries consisting of polynomials

in αn of degree ℓ. The databases send the answer to each query corresponding to

(ηp, ϕp) as,

A[ηp,ϕp]
n = ST

nQ
[ηp,ϕp]
n =

ℓ∑
k=1

1

αk
n

W
[ηr,ϕr]
k + Pαn(4ℓ), (6.119)

where Pαn(4ℓ) is a polynomial in αn of degree 4ℓ. The users can obtain the param-

eters of the corresponding real (subpacket, segment) pair (ηr, ϕr) using,


A

[ηp,ϕp]
1

...

A
[ηp,ϕp]
N

 =


1
αℓ
1

. . . 1
α1

1 α1 . . . α4ℓ
1

...
...

...
...

...
...

...

1
αℓ
N

. . . 1
αN

1 αN . . . α4ℓ
N





W
[ηr,ϕr]
ℓ

...

W
[ηr,ϕr]
1

R0:4ℓ


, (6.120)

where Ri are the coefficients of the polynomial in (6.119), if N = 5ℓ+ 1 is satisfied.

This determines the subpacketization as ℓ = N−1
5

. For the example considered, the
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answer for (ηp, ϕp) = (1, 3) from database n, n ∈ {1, . . . , N} is given by,

A[1,3]
n = ST

nQ
[1,3]
n =




∑ℓ

i=1
1
αi
n
W

[1,1]
i +

∑2ℓ
i=0 α

i
nZ

[1,1]
i

...∑ℓ
i=1

1
αi
n
W

[4,1]
i +

∑2ℓ
i=0 α

i
nZ

[4,1]
i


∑ℓ

i=1
1
αi
n
W

[1,2]
i +

∑2ℓ
i=0 α

i
nZ

[1,2]
i

...∑ℓ
i=1

1
αi
n
W

[4,2]
i +

∑2ℓ
i=0 α

i
nZ

[4,2]
i


∑ℓ

i=1
1
αi
n
W

[1,3]
i +

∑2ℓ
i=0 α

i
nZ

[1,3]
i

...∑ℓ
i=1

1
αi
n
W

[4,3]
i +

∑2ℓ
i=0 α

i
nZ

[4,3]
i





T







0

1

0

0


08


+ αℓ

nPαn(ℓ)



(6.121)

=
ℓ∑

i=1

1

αi
n

W
[2,1]
i + Pαn(4ℓ). (6.122)

The users can obtain the parameters of the (real) second subpacket of segment 1

(since the real indices corresponding to permuted (ηp, ϕp) = (1, 3) are (ηr, ϕr) = (2, 1)

from (6.70) and (6.71).) using the N answers received if N = 5ℓ + 1 is satisfied.

This defines the subpacketization for case 4 as ℓ = N−1
5

. The resulting reading cost

is given by,

CR =
Pr′(N + logq B + logq

P
B
)

L
=

Pr′(N + logq P )

P N−1
5

=
5r′(1 +

logq P

N
)

1− 1
N

. (6.123)

Writing phase: Similar to case 3, the user selects the Pr subpackets with the

227



most significant updates and let (η
[i]
r , ϕ

[i]
r ), i ∈ {1, . . . , P r} be the real (subpacket,

segment) information of the ith selected subpacket. For each such subpacket, the

user generates a combined update (single symbol) given by,

U [η
[i]
r ,ϕ

[i]
r ]

n =
ℓ∑

k=1

1

αk
n

∆
[η

[i]
r ,ϕ

[i]
r ]

k + Z [η
[i]
r ,ϕ

[i]
r ], (6.124)

where ∆
[η

[i]
r ,ϕ

[i]
r ]

k is the update of the kth parameter of subpacket η
[i]
r of segment ϕ

[i]
r ,

and Z [η
[i]
r ,ϕ

[i]
r ] is a random noise symbol. The user sends the permuted (update,

subpacket, segment) tuple given by (U
[η

[i]
r ,ϕ

[i]
r ]

n , η
[i]
p , ϕ

[i]
p ) for the ith sparse subpacket

for i ∈ {1, . . . , P r} where U
[η

[i]
r ,ϕ

[i]
r ]

n is the combined update of the subpacket of the

form (6.124), η
[i]
p is the permuted subpacket index obtained by η

[i]
p = P̃−1

ϕ
[i]
r

(η
[i]
r ) and

ϕ
[i]
p is the permuted segment index obtained by ϕ

[i]
p = P̂−1(ϕ

[i]
r ), with the same

notation used in the description of case 3. For the example considered, assume

that a user wants to update real (subpacket, segment) pairs given by (ηr, ϕr) =

{(2, 1), (2, 2), (3, 3)}. Based on the within-segment permutations given by P̃1 =

(2, 4, 3, 1), P̃2 = (1, 3, 2, 4), P̃3 = (3, 1, 4, 2), and the inter-segment permutation given

by P̂ = (2, 3, 1), the user sends the following (permuted) information to database

n, n ∈ {1, . . . , N}, as described in case 3,

(Un, ηp, ϕp) = {(U [2,1]
n , 1, 3), (U [2,2]

n , 3, 1), (U [3,3]
n , 1, 2)}. (6.125)

Based on the permuted sparse update tuples (U
[η

[i]
r ,ϕ

[i]
r ]

n , η
[i]
p , ϕ

[i]
p ), i ∈ {1, . . . , P r}

received, database n, n ∈ {1, . . . , N} constructs the permuted update vector given
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in (6.97). Then, database n, n ∈ {1, . . . , N} calculates the permutation-reversed

incremental update as Ūn = RnŨn which is of the same form as the storage in

(6.108). Therefore, the storage at time t can be updated as S
[t]
n = S

[t−1]
n + Ūn. For

the example considered, the permuted update vector from (6.97) is given by,

Ũn = [0, 0, U [2,2]
n , 0, U [3,3]

n , 0, 0, 0, U [2,1]
n , 0, 0, 0]T . (6.126)

Then, each database calculates the permutation-reversed incremental update as,

Ūn = RnŨn (6.127)

=





04×4 04×4



0 0 0 1

1 0 0 0

0 0 1 0

0 1 0 0




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


04×4 04×4

04×4



0 1 0 0

0 0 0 1

1 0 0 0

0 0 1 0


04×4



+ αℓ
nPαn(ℓ)



×



0

0

U
[2,2]
n

0

U
[3,3]
n

0

0

0

U
[2,1]
n

0

0

0


(6.128)
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= [0, U [2,1]
n , 0, 0, 0, U [2,2]

n , 0, 0, 0, 0, U [3,3]
n , 0]T + Pαn(2ℓ) (6.129)

=

[
0,

ℓ∑
i=1

1

αi
n

∆
[2,1]
i , 0, 0, 0,

ℓ∑
i=1

1

αi
n

∆
[2,2]
i , 0, 0, 0, 0,

ℓ∑
i=1

1

αi
n

∆
[3,3]
i , 0

]T
+ Pαn(2ℓ)

(6.130)

where Pαn(2ℓ) is a vector of size 12 × 1, consisting of polynomials in αn of degree

2ℓ. Note that the (real) subpacket 2 of segment 1, subpacket 2 of segment 2 and

subpacket 3 of segment 3 ((ηr, ϕr) = {(2, 1), (2, 2), (3, 3)}) are correctly placed in

(6.130), without revealing the real indices to the databases.11 Since the incremental

update in (6.130) is of the same form as (6.108), it is directly added to the existing

storage to obtain the updated storage. The writing cost is given by,

CW =
PrN(1 + logq B + logq

P
B
)

L
=

PrN(1 + logq P )

P N−1
5

=
5r(1 + logq P )

1− 1
N

. (6.131)

The storage complexities of data, noise added within and inter-segment permutation

reversing matrix are given by O(P ) = O( L
N
), O(P

2

B
) = O( L2

N2B
) and O(B2), respec-

tively. Therefore, the storage complexity is max{O( L2

N2B
), O(B2)}. The information

leakage on the indices of the sparse updates is derived in Section 6.4.2.

6.4.2 Information Leakage

In this section, we quantify the information leakage of the four cases for a given

FL setting with N databases, P subpackets, B segments and uplink and downlink

11The sparse updates in the first part of (6.130) are hidden from the databases by the noise
vector Pαn(2ℓ).
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sparsficiation rates give by r, r′. In the proposed scheme, the users send no informa-

tion to the databases in the reading phase, and the databases determine the sparse

set of subpackets and send them to the users. Therefore, there is no information

leakage in the reading phase. In the writing phase, the users send Pr permuted

tuples of the form (update, subpacket, segment) to databases, from which a given

amount of information about the sparse subpacket indices updated by a given user

is allowed to leak.

There are two types of information within a given user’s uploads that leak

information about the user’s local data, namely, 1) values of sparse updates, 2)

positions of sparse updates. Note that in the proposed scheme, a random noise

symbol is added to all combined sparse updates sent to the databases in all four

cases. Therefore, from Shannon’s one time pad theorem, the combined update values

sent by the user to all databases are random noise symbols which are independent of

the values of the sparse updates included in it. Therefore, the amount of information

leaked by the values of the sparse updates in this work is zero.

From the set of permuted (update, subpacket, segment) tuples sent by a given

user at time t, only the (subpacket, segment) pairs may possibly contain information

about the real positions of the sparse updates, since the update component is simply

random noise that is independent of the real positions of the sparse updates. Let Y [t]

be the set of Pr subpacket indices corresponding to the set of permuted (subpacket,

segment) pairs sent by a given user at time t. Let X [t] be the set of real indices of

the Pr sparse subpackets of the model, chosen to be updated by the user at time

t. Therefore, the amount of information leaked to the databases about the real
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positions of the sparse updates at time t is quantified by the mututal information

between X [t] and Y [t], i.e., I(X [t];Y [t]). In this section, we quantify this mutual

information for all four cases.

Cases 1 and 2: In cases 1 and 2, permutations exist only within each segment

and not among segments. To simplify the notation, we drop the time index in

the following calculation, and assume that each X and Y correspond to real and

permuted quantities at time t. In order to quantify I(X;Y ), we first derive the

following conditional probability.

P (X = x|Y = y) =

∑
p̃1,...,p̃B

P (X = x, Y = y, P̃1 = p̃1, . . . , P̃B = p̃B)

P (Y = y)
(6.132)

=

∑
p̃1,...,p̃B

P (Y = y|X = x, P̃1 = p̃1, . . . , P̃B = p̃B)P (X = x)
∏B

i=1 P (P̃i = p̃i)

P (Y = y)

(6.133)

=
P (X = x)

∑
p̃1,...,p̃B

1{Y=y,X=x,P̃1=p̃1,...,P̃B=p̃B}
∏B

i=1 P (P̃i = p̃i)

P (Y = y)
(6.134)

=


P (X=x)

∏B
i=1 ŷi!

∏B
i=1(

P
B
−ŷi)!

(P
B )!BP (Y=y)

, for x, y : x̂i = ŷi, ∀ i

0, otherwise

(6.135)

=


P (X=x)
P (Y=y)

∏B
i=1

ŷi!(
P
B
−ŷi)!

(P
B )!

, for x, y : x̂i = ŷi, ∀ i

0, otherwise

(6.136)

=


P (X=x)
P (Y=y)

∏B
i=1

1

(P/B
ŷi
)
, for x, y : x̂i = ŷi, ∀ i

0, otherwise

(6.137)

where x̂i and ŷi are the numbers of real and permuted sparse subpackets in segment i,
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respectively, and (6.133) is obtained by the mutual independence of the permutations

of the B segments and the real positions of the sparse updates. (6.135) is derived

by counting the number of all possible permutations that result in the given Y = y

from the given X = x. Next, we compute the probability,

P (Y = y) =
∑

p̃1,...,p̃B

∑
x

P (Y = y,X = x, P̃1 = p̃1, . . . , P̃B = p̃B) (6.138)

=
∑

p̃1,...,p̃B

∑
x

P (Y = y|X = x, P̃1 = p̃1, . . . , P̃B = p̃B)P (X = x)
B∏
i=1

P (P̃i = p̃i)

(6.139)

=
∑
x

P (X = x)
∑

p̃1,...,p̃B

1{Y=y,X=x,P̃1=p̃1,...,P̃B=p̃B}

B∏
i=1

P (P̃i = p̃i) (6.140)

=
∑

x:x̂i=ŷi,∀i

P (X = x)

∏B
i=1 ŷi!

∏B
i=1(

P
B
− ŷi)!

1

(P
B )!B

(6.141)

=
B∏
i=1

1(
P/B
ŷi

) ∑
x:x̂i=ŷi,∀i

P (X = x) (6.142)

for each y such that
∑B

i=1 ŷi = Pr. Therefore, from (6.137),

P (X = x|Y = y) =


P (X=x)∑

x:x̂i=ŷi,∀i
P (X=x)

, for x, y : x̂i = ŷi, ∀i

0, otherwise

(6.143)

. Then,

H(X|Y = y) = −
∑
x

P (X = x|Y = y) logP (X = x|Y = y) (6.144)

= −
∑

x:x̂i=ŷi,∀i

P (X = x)∑
x:x̂i=ŷi,∀i P (X = x)

log
P (X = x)∑

x:x̂i=ŷi,∀i P (X = x)
, (6.145)
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from which we obtain,

H(X|Y ) =
∑
y

P (Y = y)H(X|Y = y) (6.146)

= −
∑
y

(
B∏
i=1

1(
P/B
ŷi

) ∑
x:x̂i=ŷi,∀i

P (X = x)

)

×
∑

x:x̂i=ŷi,∀i

P (X = x)∑
x:x̂i=ŷi,∀i P (X = x)

log
P (X = x)∑

x:x̂i=ŷi,∀i P (X = x)
(6.147)

= −
∑

ŷ:
∑B

i=1 ŷi=Pr

B∏
i=1

(
P/B

ŷi

)( B∏
i=1

1(
P/B
ŷi

) ∑
x:x̂i=ŷi,∀i

P (X = x)

)

×
∑

x:x̂i=ŷi,∀i

P (X = x)∑
x:x̂i=ŷi,∀i P (X = x)

log
P (X = x)∑

x:x̂i=ŷi,∀i P (X = x)
(6.148)

= −
∑

ŷ:
∑B

i=1 ŷi=Pr

∑
x:x̂i=ŷi,∀i

P (X = x)
∑

x:x̂i=ŷi,∀i

P (X = x)∑
x:x̂i=ŷi,∀i P (X = x)

× log
P (X = x)∑

x:x̂i=ŷi,∀i P (X = x)
(6.149)

= −
∑

x̂:
∑B

i=1 x̂i=Pr

∑
x∈x̂

P (X = x)
∑
x∈x̂

P (X = x)∑
x∈x̂ P (X = x)

log
P (X = x)∑
x∈x̂ P (X = x)

,

(6.150)

where ŷ = (ŷ1, . . . , ŷB) and x̂ = (x̂1, . . . , x̂B) are specific realizations of the numbers

of permuted and real sparse subpackets in each of the B segments, respectively,

and x ∈ X̂ corresponds to each realization of X that result in x̂1, . . . , x̂B numbers

of sparse subpackets in the B segments. In general, the random variable X̂ =

(X̂1, . . . , X̂B) represents the numbers of (real) sparse subpackets updated by the

user in each of the B segments, such that they sum up to Pr. Note that we

do not assume any specific distribution of X in this calculation. Observing that

234



∑
x∈x̂ P (X = x) = P (X̂ = x̂), the conditional entropy in (6.150) simplifies to,

H(X|Y ) =
∑

x̂:
∑B

i=1 x̂i=Pr

P (X̂ = x̂) logP (X̂ = x̂)

−
∑

x̂:
∑B

i=1 x̂i=Pr

∑
x∈x̂

P (X = x) logP (X = x) (6.151)

= −H(X̂) +H(X), (6.152)

since all realizations of X satisfy
∑B

i=1 x̂i = Pr, based on the given uplink sparsifi-

cation rate. Therefore,

I(X;Y ) = H(X)−H(X|Y ) = H(X̂) = H(X̂1, . . . , X̂B). (6.153)

Cases 3 and 4: In cases 3 and 4, we consider permutations within segments

as well as among segments to reduce the information leakage further. Recall that the

permutations within the B segments are denoted by {P̃i}Bi=1 and the permutation

among segments is denoted by P̂ . Similar to the above calculation, in order to calcu-

late the information leakage I(X;Y ), we first compute the conditional distribution

given by,

P (X = x|Y = y)

=

( ∑
p̃1,...,p̃B

∑
p̂

P (Y = y|X = x, P̂ = p̂, P̃1 = p̃1, . . . , P̃B = p̃B)

×P (X = x)P (P̂ = p̂)
B∏
i=1

P (P̃i = p̃i)

)
/P (Y = y) (6.154)
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=
P (X = x)

P (Y = y)

1

B!

1

(P/B)!B

∑
p̃1,...,p̃B

∑
p̂

1{Y=y,X=x,P̂=p̂,P̃1=p̃1,...,P̃B=p̃B} (6.155)

=


P (X=x)
P (Y=y)

1
B!

1
(P/B)!B

∏B
i=1 ŷi!(P/B − ŷi)!

∏B
i=1 Kŷi , for x, y : {x̂} = {ŷ}

0, otherwise

(6.156)

=


P (X=x)
P (Y=y)

1
B!

∏B
i=1

1

(P/B
ŷi
)
Kŷi , for x, y : {x̂} = {ŷ}

0, otherwise

(6.157)

where Kŷi =
∑B

j=i 1ŷj=ŷi , (i.e., number of segments after (and including) segment

i with equal number of sparse subpackets as that of segment i)12 and the notation

{x̂} = {ŷ} implies that the two sets x̂ and ŷ are the same, irrespective of their order,

i.e., if {x̂} = {ŷ}, for each x̂i ∈ x̂, there exist some ŷj ∈ ŷ, such that x̂i = ŷj, and

vice versa. Next we calculate P (Y = y) for any y such that
∑Pr

i=1 ŷi = Pr as,

P (Y = y) =
∑
x

∑
p̃1,...,p̃B

∑
p̂

P (Y = y|X = x, P̂ = p̂, P̃1 = p̃1, . . . , P̃B = p̃B)

× P (X = x)P (P̂ = p̂)
B∏
i=1

P (P̃i = p̃i) (6.158)

=
∑
x

P (X = x)
1

B!

1

(P/B)!B

∑
p̃1,...,p̃B

∑
p̂

1{Y=y,X=x,P̂=p̂,P̃1=p̃1,...,P̃B=p̃B}

(6.159)

=
1

B!

B∏
i=1

1(
P/B
ŷi

)Kŷi

∑
x:{x̂}={ŷ}

P (X = x) (6.160)

12This definition of Kŷi
and the term

∏B
i=1 Kŷi

in (6.156) makes sure that all distinct permuta-
tions within each set of segments with equal number of sparse subpackets is counted in the term∑

p̃1,...,p̃B

∑
p̂ 1{Y=y,X=x,P̂=p̂,P̃1=p̃1,...,P̃B=p̃B} of (6.155).
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Therefore, from (6.157),

P (X = x|Y = y) =


P (X=x)∑

x:{x̂}={ŷ} P (X=x)
, for x, y : {x̂} = {ŷ}

0, otherwise

. (6.161)

Then,

H(X|Y = y)

= −
∑
x

P (X = x|Y = y) logP (X = x|Y = y) (6.162)

= −
∑

x:{x̂}={ŷ}

P (X = x)∑
x:{x̂}={ŷ} P (X = x)

log
P (X = x)∑

x:{x̂}={ŷ} P (X = x)
(6.163)

= log

 ∑
x:{x̂}={ŷ}

P (X = x)

− 1∑
x:{x̂}={ŷ} P (X = x)

∑
x:{x̂}={ŷ}

P (X = x) logP (X = x),

(6.164)

from which we obtain,

H(X|Y )

=
∑
y

P (Y = y)H(X|Y = y) (6.165)

=
∑
y

1

B!

B∏
i=1

1(
P/B
ŷi

)Kŷi

∑
x:{x̂}={ŷ}

P (X = x) log

 ∑
x:{x̂}={ŷ}

P (X = x)


−
∑
y

1

B!

B∏
i=1

1(
P/B
ŷi

)Kŷi

∑
x:{x̂}={ŷ}

P (X = x)
1∑

x:{x̂}={ŷ} P (X = x)

×
∑

x:{x̂}={ŷ}

P (X = x) logP (X = x) (6.166)
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=
1

B!

∑
ŷ:
∑B

i=1 ŷi=Pr

B∏
i=1

(
P/B

ŷi

) B∏
i=1

1(
P/B
ŷi

)Kŷi

∑
x:{x̂}={ŷ}

P (X = x) log

 ∑
x:{x̂}={ŷ}

P (X = x)


− 1

B!

∑
ŷ:
∑B

i=1 ŷi=Pr

B∏
i=1

(
P/B

ŷi

) B∏
i=1

1(
P/B
ŷi

)Kŷi

∑
x:{x̂}={ŷ}

P (X = x) logP (X = x)

(6.167)

=
1

B!

∑
ŷ:
∑B

i=1 ŷi=Pr

B∏
i=1

Kŷi

∑
x:{x̂}={ŷ}

P (X = x) log

 ∑
x:{x̂}={ŷ}

P (X = x)


− 1

B!

∑
ŷ:
∑B

i=1 ŷi=Pr

B∏
i=1

Kŷi

∑
x:{x̂}={ŷ}

P (X = x) logP (X = x) (6.168)

=
1

B!

∑
ỹ:
∑B

i=1 ŷi=Pr

B!∏B
i=1Kŷi

B∏
i=1

Kŷi

∑
x:{x̂}={ŷ}

P (X = x) log

 ∑
x:{x̂}={ŷ}

P (X = x)


− 1

B!

∑
ỹ:
∑B

i=1 ŷi=Pr

B!∏B
i=1Kŷi

B∏
i=1

Kŷi

∑
x:{x̂}={ŷ}

P (X = x) logP (X = x) (6.169)

=
∑

ỹ:
∑B

i=1 ŷi=Pr

∑
x:{x̂}={ŷ}

P (X = x) log

 ∑
x:{x̂}={ŷ}

P (X = x)


−

∑
ỹ:
∑B

i=1 ŷi=Pr

∑
x:{x̂}={ŷ}

P (X = x) logP (X = x), (6.170)

where ỹ introduced in (6.169) and x̃ are the realizations of corresponding random

variables Ỹ and X̃ representing all distinct sets of ŷ and x̂, respectively. For example,

if B = 2, (1, 2) and (2, 1) are considered to be two different realizations of ŷ (or x̂),

while it is the same realization of ỹ (or x̃). Moreover,

P (X̃ = x̃) =
∑
x∈x̃

P (X = x) (6.171)

=
∑

all permutations of x∈x̂

P (X = x) (6.172)
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With this notation, the above entropy is further simplified to,

H(X|Y ) =
∑

ỹ:
∑B

i=1 ŷi=Pr

∑
x:{x̂}={ŷ}

P (X = x) log

 ∑
x:{x̂}={ŷ}

P (X = x)


−

∑
ỹ:
∑B

i=1 ŷi=Pr

∑
x:{x̂}={ŷ}

P (X = x) logP (X = x) (6.173)

=
∑

ỹ:
∑B

i=1 ŷi=Pr

P (X̃ = ỹ) logP (X̃ = ỹ) +H(X) (6.174)

= −H(X̃) +H(X). (6.175)

Therefore, the information leakage is given by,

I(X;Y ) = H(X)−H(X|Y ) = H(X̃) = H(X̃1, . . . , X̃B). (6.176)

6.5 Conclusions

In this chapter, we considered the problem of private FL with top r sparsifica-

tion. In FL with top r sparsification, the values and the positions of the sparse

updates/parameters leak information about the user’s private data. We proposed

four schemes with different properties to perform FL with top r sparsification with-

out revealing the values or the positions of the sparse updates/parameters to the

databases. The schemes follow a permutation technique which requires a large stor-

age cost. To this end, we generalized the schemes to incur a reduced storage cost

at the expense of a certain amount of information leakage, using a model segmenta-

tion mechanism. The four proposed schemes differ from each other based on their
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storage structures, i.e., MDS coded storage/uncoded storage, and the number of

permutation stages. It was shown that having two stages of permutations reduces

the information leakage significantly compared to what was achieved with one. The

intuition behind the expressions derived for the information leakage in the four cases

is as follows. When no segmentation is present, the user sends a random set of in-

dices (in the writing phase) corresponding to the real sparse update indices based

on some random permutation known only to the user, which leaks zero information.

However, when segmentation is present, the user sends the permuted indices of each

segment separately, which reveals information the databases about the numbers of

sparse updates in each segment, even though the indices are permuted. This is

what is reflected by the entropy expressions in the derivations for the information

leakage. With single-stage permutations, the user only caries out within-segment

permutations, which increases the user’s information leakage with increasing number

of segments. This is because it reveals more information on how the sparse updates

are distributed across the model, to the databases. With two-stage permutations,

the user carries out both within and inter-segment permutations, which reduces the

information leakage after a certain number of segments as the permuted segment

indices also increase the uncertainty at the databases on the mapping between the

real sparse indices and what is received.

Based on the requirements of a given FL system, one could select one of the

four schemes with the parameters tuned to minimize the total communication cost

while satisfying the given information leakage budget and the storage limitations of

databases. In other words, this work presents the trade-off between the communi-
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cation cost, storage complexity and information leakage in private FL with top r

sparsification.
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CHAPTER 7

Private Read-Update-Write (PRUW) with Storage Constrained

Databases

7.1 Introduction

In this chapter, we study the problem of PRUW with storage constrained databases

in the context of FSL. The problem considers the practical scenario where the mul-

tiple non-colluding databases in the PRUW setting are allowed to have arbitrary

storage constraints. The goal of this work is to develop read-write schemes and stor-

age mechanisms for FSL that efficiently utilize the available storage in each database

to store the submodel parameters in such a way that the total communication cost

is minimized while guaranteeing information-theoretic privacy of the updating sub-

model index and the values of the updates. As the main result, we consider both

heterogeneous and homogeneous storage constrained databases, and propose private

read-write and storage schemes for the two cases.
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7.2 Problem Formulation

We consider an FSL setting where the model to be trained consists ofM independent

submodels, each containing L parameters, taking values from a finite field Fq. The

submodels are stored in a system of N , N ≥ 4, non-colluding databases. Database n

has a storage capacity of µ(n)ML symbols, where µ(n) ∈ (0, 1] for n ∈ {1, . . . , N}.

In other words, each database must satisfy

H(Sn) ≤ µ(n)ML, n ∈ {1, . . . , N}, (7.1)

where Sn is the content of database n.

The storage constraints µ(n) can be divided into two main categories, namely,

heterogeneous constraints where there exists at least one pair of distinct storage

constraints in the system, i.e., µ(ñ) ̸= µ(n) for some ñ ̸= n, ñ, n ∈ {1, . . . , N}, and

homogeneous constraints that satisfy µ(ñ) = µ(n) for all ñ, n ∈ {1, . . . , N}. At any

given time instance, a user downloads a required submodel by sending queries to all

databases, without revealing the required submodel index to any of the databases.

This is the reading phase of the PRUW process. The user then updates the submodel

using the local data, and uploads the updates back to the same submodel in all

databases without revealing the values of the updates or the updating submodel

index to any of the databases. This is known as the writing phase. The two phases

of the PRUW process are illustrated in Fig. 7.1. The following formal privacy and

security constraints must be met in the PRUW process.
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database 1 database 2 database N

θ

θ θ θ

µ1ML µ2ML
µNML

query

answer

(a) Reading phase.

database 1 database 2 database N

(θ,∆θ)

µ1ML µ2ML
µNML

(θ,∆θ) (θ,∆θ) (θ,∆θ)

updates

(b) Writing phase.

Figure 7.1: A user reads a submodel, updates it, and writes it back to the databases.

Privacy of the submodel index: At any given time t, no information on the

indices of submodels updated up to time t, θ[1:t], is allowed to leak to any of the

databases,1 i.e., for each n, n ∈ {1, . . . , N},

I(θ[1:t];Q[1:t]
n , U [1:t]

n , S[0:t]
n ) = 0, (7.2)

where Qn and Un are the queries and information on updates sent by the user to

database n at time instances denoted in square brackets in the reading and writing

phases, respectively.

Privacy of the values of the updates: At any given time t, no information on

the values of the updates generated by the user up to time t, ∆
[1:t]
θ , is allowed to

leak to any of the databases, i.e., for each n, n ∈ {1, . . . , N},

I(∆
[1:t]
θ ;U [1:t]

n , Q[1:t]
n , S[0:t]

n ) = 0. (7.3)

1The notation [1 : t] indicates all integers from 1 to t.
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Security of the submodels: At any given time t, no information on the values of

the parameters up to time t in submodels is allowed to leak to any of the databases,

i.e., for each n, n ∈ {1, . . . , N},

I(W
[0:t]
1:M ;U [1:t]

n , Q[1:t]
n , S[0:t]

n ) = 0, (7.4)

where Wk represents the values of the parameters in the kth submodel at the time

instance stated within brackets. Apart from the privacy and security guarantees,

the process requires the following correctness conditions to be met in the reading

and writing phases to ensure the reliability of the FSL process.

Correctness in the reading phase: The user at time t should be able to correctly

download the required submodel from the answers received in the reading phase,

i.e.,

H(W
[t−1]
θ |Q[t]

1:N , A
[t]
1:N) = 0, (7.5)

where A
[t]
n is the answer received from database n at time t.

Correctness in the writing phase: The submodels in all databases must be

correctly updated as,

W [t]
m =


W

[t−1]
m +∆

[t]
m, if m = θ[t]

W
[t−1]
m , if m ̸= θ[t].

(7.6)

The reading and writing costs are defined as CR = D
L

and CW = U
L
, respec-
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tively, where D is the total number of symbols downloaded in the reading phase and

U is the total number of symbols uploaded in the writing phase. The total cost CT

is the sum of the reading and writing costs, i.e., CT = CR + CW .

7.3 Main Result

Theorems 7.1 and 7.2 in this section present the achievable total communication

costs of the proposed schemes for heterogeneous and homogeneous storage con-

straints, respectively.

Theorem 7.1 In a PRUW setting with N non-colluding databases having arbi-

trary heterogeneous storage constraints µ(n), n ∈ {1, . . . , N}, let k = 1
maxn µ(n)

,

p =
∑N

n=1 µ(n), r = kp and s = ⌊k⌋p. Then, there exist a storage mechanism and a

PRUW scheme that completely fills the N databases and achieves a total communi-

cation cost of C = min{C1, C2}, where

C1 = (⌈s⌉ − s)CT (⌊k⌋, ⌊s⌋) + (s− ⌊s⌋)CT (⌊k⌋, ⌈s⌉) (7.7)

C2 = αβCT (⌊k⌋, ⌊r⌋) + α(1− β)CT (⌊k⌋, ⌈r⌉) + (1− α)δCT (⌈k⌉, ⌊r⌋)

+ (1− α)(1− δ)CT (⌈k⌉, ⌈r⌉) (7.8)

where a, β and δ are given as,

α =


⌊k⌋(p⌈k⌉−⌈r⌉)
⌈k⌉⌊r⌋−⌊k⌋⌈r⌉ , if r − ⌊r⌋ > k − ⌊k⌋, s ≤ ⌊r⌋

⌊k⌋
k
(⌈k⌉ − k), else

(7.9)
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β =


⌈r⌉−r
⌈k⌉−k

, if r − ⌊r⌋ > k − ⌊k⌋, s > ⌊r⌋

1, else

(7.10)

δ =


1− r−⌊r⌋

k−⌊k⌋ , if r − ⌊r⌋ ≤ k − ⌊k⌋

0, else

, (7.11)

if ⌊r⌋ − ⌊k⌋ is odd, and

α =


⌊k⌋
k
(⌈k⌉ − k), if r − ⌊r⌋ < ⌈k⌉ − k

⌊k⌋(p⌈k⌉−⌊r⌋)
⌈k⌉⌈r⌉−⌊k⌋⌊r⌋ , else

(7.12)

β =


1− r−⌊r⌋

⌈k⌉−k
, if r − ⌊r⌋ < ⌈k⌉ − k

0, else

(7.13)

δ = 1 (7.14)

if ⌊r⌋ − ⌊k⌋ is even, with the function CT (a, b) defined as,

CT (a, b) =


4b

b−a−1
, if b− a is odd

4b−2
b−a−2

, if b− a is even.

(7.15)

Remark 7.1 The intuition behind the value p is the maximum number of times

a given uncoded parameter can be replicated within the system of databases. The

values r and s represent the number of times the parameters can be replicated if they

are k and ⌊k⌋ coded, respectively.

247



Remark 7.2 As an illustration of the main result, consider the following example.

Let maxn µ(n) = 0.37 and p =
∑N

n=1 µ(n) = 4.3. Then, k = 2.7, r = 11.61 and

s = 8.6, which results in C1 = 6.6 as shown by the blue star in Fig. 7.2. Since

⌊r⌋ − ⌊k⌋ = 9 is odd, s = 8.6 < 11 = ⌊r⌋ and r − ⌊r⌋ = 0.61 < 0.7 = k − ⌊k⌋, for

the calculation of C2, α, β and δ are given by α = ⌊k⌋
k
(⌈k⌉ − k) = 2

9
, β = 1 and

δ = 1− r−⌊r⌋
k−⌊k⌋ =

9
70
, respectively. Hence, C2 = 5.99 (blue dot in Fig. 7.2). Note that

C1 is obtained by storing ⌈s⌉−s and s−⌊s⌋ fractions of parameters of all submodels

using (⌊k⌋, ⌊s⌋) and (⌊k⌋, ⌈s⌉) MDS codes, respectively. Similarly, C2 is obtained by

storing α, (1 − α)δ and (1 − α)(1 − δ1) fractions of all submodels using (⌊k⌋, ⌊r⌋),

(⌈k⌉, ⌊r⌋) and (⌈k⌉, ⌈r⌉) MDS codes, respectively. This is illustrated in Fig. 7.2. The

minimum achievable cost for this example is min{C1, C2} = C2.

Remark 7.3 The values of a and b in the total cost expression in (7.15) represent

the coding parameter, i.e., the number of parameters linearly combined to a single

symbol, and the number of databases each parameter is replicated at, respectively.

The total communication cost decreases with the number of replications b, and in-

creases with the coding parameter a, as shown in (7.15). However, when the number

of replications is chosen as a linear function of the coding parameter, i.e., r = kp,

s = ⌊k⌋p, the total cost decreases with the coding parameter (see Section 7.4.2.2).

Therefore, C2 in the main result uses the maximum k by considering both ⌊k⌋ and

⌈k⌉ when k /∈ Z+. However, based on the fluctuating structure of the total cost in

(7.15) (dotted lines in Fig. 7.2) for special cases of k and p, a lower total cost can

be achieved by only considering ⌊k⌋. These cases are handled by C1.
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Figure 7.2: Example setting with k = 2.7 and p = 4.3.

Remark 7.4 For a given PRUW setting with arbitrary storage constraints {µ(n)}Nn=1,

let the total available storage be p =
∑N

n=1 µ(n). Then, there exists an uncoded

PRUW scheme (the proposed scheme in Section 7.4.2 with k = 1 and r = p) that

replicates ⌈p⌉ − p and p − ⌊p⌋ fractions of uncoded submodel parameters in ⌊p⌋

and ⌈p⌉ databases, respectively, achieving a total cost of (⌈p⌉ − p)CT (1, ⌊p⌋) + (p−

⌊p⌋)CT (1, ⌈p⌉). Note that the total cost only depends on the sum of all arbitrary

storage constraints (not on individual constraints), which is consistent with the cor-

responding result of private information retrieval with uncoded heterogeneous storage

constraints. However, in PRUW, the total cost is minimized when k = 1
maxn µ(n)

is

maximized, i.e., when all storage constraints are equal.
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Theorem 7.2 Consider a PRUW setting consisting of N non-colluding databases

with a homogeneous storage constraint given by µ(n) = µ ∈
[

1
N−3

, 1
]
for all n ∈

{1, . . . , N}. Then, there exists a scheme that satisfies all privacy and security con-

straints for any given µ ∈
[

1
N−3

, 1
]
, and the resulting total communication cost is

characterized by the lower convex hull of the following (µ̄, CT (µ̄)) pairs, where µ̄ and

CT (µ̄) are given by,

(
µ̃ =

R

NKR

, CT (µ̃) =
4R

R−KR − 1

)
, R = 4, . . . , N, KR = 1, . . . , R− 3,

(7.16)

satisfying (R−KR − 1) mod 2 = 0.

Remark 7.5 The scheme proposed for heterogeneous storage constraints is based

on the idea of finding the optimum coding parameters in (K,R) MDS coded storage

that minimizes the total communication cost. However, as PRUW results in lower

and higher communication costs for (K,R) MDS codes with odd and even R −K,

respectively, as shown in Fig. 7.2, the costs presented in Theorem 7.1 are generally

greater than what is presented in Theorem 7.2, as the scheme proposed for homoge-

neous constraints are able to avoid the (K,R) MDS codes with even R−K. However,

a direct comparison cannot be made, as in general, the scheme proposed for hetero-

geneous constraints is not applicable for homogeneous constraints, as shown in the

proofs of Lemmas 7.1 and 7.2 in Appendices 7.7.1 and 7.7.2.
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7.4 Proposed Scheme: Heterogeneous Storage Constraints

In this section, we present the proof of Theorem 7.1. The proposed scheme for

heterogeneous storage constrained PRUW consist of two components, namely, the

storage mechanism and the PRUW scheme. The storage mechanism deals with

finding the optimum coding parameters and optimum submodel partitions to be

stored in each of the N databases that result in the minimum reading and writing

costs. The PRUW scheme is what states the steps of the read-write process based on

the given storage structure. The PRUW scheme we use in this work is an optimized

version of the general PRUW scheme in [94]. In this section, we first present the

optimized PRUW scheme, and then move on to the proposed storage mechanisms

for any given set of storage constraints.

7.4.1 General PRUW scheme

In this section, we use the general PRUW scheme proposed in [94] for general (K,R)

MDS coded storage, and modify it by including the optimum subpacketization2 and

the optimum number of noise terms in storage to guarantee privacy, while minimizing

the reading and writing costs.

Storage: The contents of a single subpacket in database n, n ∈ {1, . . . , R},
2Subpacketization is the number of parameters considered in each subpacket. A subpacket is

a collection of parameters of all submodels, on which the scheme is defined. The scheme is then
applied repeatedly on all subpackets identically.
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with a subpacketization of y and x+ 1 noise terms is given by,3

Sn =



∑K
i=1

1
f1,i−αn


W

[i]
1,1

...

W
[i]
M,1

+
∑x

j=0 α
j
nZ1,j

...

∑K
i=1

1
fy,i−αn


W

[i]
1,y

...

W
[i]
M,y

+
∑x

j=0 α
j
nZy,j



, (7.17)

where W
[i]
m,j is the ith parameter of the jth coded symbol of submodel m (in the

subpacket considered), Zi,j are random noise vectors of size M × 1 and fi,js and αns

are globally known distinct constants from Fq. Note that the jth coded data symbol

(without the noise) is stored in terms of a (K,R) MDS code, with the generator

matrix given by,

G =


1

fj,1−α1

1
fj,2−α1

. . . 1
fj,K−α1

...
...

...
...

1
fj,1−αR

1
fj,2−αR

. . . 1
fj,K−αR

 , j ∈ {1, . . . , y}. (7.18)

The variables K, R, x and y are optimized to achieve minimum reading and writing

costs at the end of this section.

Reading phase: In the reading phase, the user sends queries to all databases

3Here, we consider storing each subpacket in only R databases out of N , since all subpackets
cannot be stored in all databases due to limited storage capacities in databases. R is a variable
which will be optimized later.
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to download the required submodel Wθ. The queries sent to database n, n ∈

{1, . . . , R}, to download the K × y parameters of each subpacket of the required

submodel is given by,

Qn,ℓ =



∏K
i=1,i ̸=ℓ(f1,i−αn)∏K
i=1,i ̸=ℓ(f1,i−f1,ℓ)

eM(θ) +
∏K

i=1(f1,i − αn)Z̃1,ℓ

...

∏K
i=1,i ̸=ℓ(fy,i−αn)∏K
i=1,i ̸=ℓ(fy,i−fy,ℓ)

eM(θ) +
∏K

i=1(fy,i − αn)Z̃y,ℓ

 , ℓ ∈ {1, . . . , K}, (7.19)

where eM(θ) is the all zeros vector of size M×1 with a 1 at the θth position and Z̃j,ℓ

are random noise vectors of size M × 1. Then, database n, n ∈ {1, . . . , R}, sends

the corresponding answers given by,

An,ℓ = ST
nQn,ℓ, ℓ ∈ {1, . . . , K} (7.20)

=



∑K
i=1

1
f1,i−αn


W

[i]
1,1

...

W
[i]
M,1

+
∑x

j=0 α
j
nZ1,j

...

∑K
i=1

1
fy,i−αn


W

[i]
1,y

...

W
[i]
M,y

+
∑x

j=0 α
j
nZy,j



T



∏K
i=1,i ̸=ℓ(f1,i−αn)∏K
i=1,i ̸=ℓ(f1,i−f1,ℓ)

eM(θ)+
∏K

i=1(f1,i − αn)Z̃1,ℓ

...

∏K
i=1,i ̸=ℓ(fy,i−αn)∏K
i=1,i ̸=ℓ(fy,i−fy,ℓ)

eM(θ)+
∏K

i=1(fy,i − αn)Z̃y,ℓ



(7.21)

=

y∑
j=1

1

fj,ℓ − αn

W
[ℓ]
θ,j + Pαn(K + x), ℓ ∈ {1, . . . , K}, (7.22)
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where Pαn(h) is a polynomial in αn of degree h, and (7.22) is a result of

1

fj,i − αn

×
∏K

i=1,i ̸=ℓ(fj,i − αn)∏K
i=1,i ̸=ℓ(fj,i − fj,ℓ)

=


1

fj,ℓ−αn
+ Pαn(K − 2), if i = ℓ

Pαn(K − 2), if i ̸= ℓ,

(7.23)

which is obtained by applying Lemma 3.1. Note that the terms corresponding to

W
[i ̸=ℓ]
θ,j for j = 1, . . . , y and i = 1, . . . , K in the calculation of the answers in (7.22)

are included in the combined noise polynomial Pαn(K + x). Using the K answers

from each database, the user obtains the K× y parameters of each subpacket of the

required submodel Wθ by solving,


A1,ℓ

...

AR,ℓ

 =


1

f1,ℓ−α1
. . . 1

fy,ℓ−α1
1 α1 . . . αK+x

1

...
...

...
...

...
...

...

1
f1,ℓ−αR

. . . 1
fy,ℓ−αR

1 αR . . . αK+x
R





W
[ℓ]
θ,1

...

W
[ℓ]
θ,y

v
[ℓ]
0

...

v
[ℓ]
K+x



, ℓ ∈ {1, . . . , K},

(7.24)

where v
[ℓ]
i is the coefficient of αi

n in Pαn(K + x) of (7.22). Note that the K × y

parameters in each subpacket of Wθ can be obtained by (7.24) if R = y+K + x+1

is satsisfied. This determines the subpacketization (number of coded symbols in a

subpacket of each submodel) as y = R − K − x − 1, which results in the reading
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cost given by,

CR =
R×K

y ×K
=

R

R−K − x− 1
. (7.25)

Writing phase: In the writing phase, the user sends K symbols to each of the

R databases. The ℓth symbol (out of the K symbols uploaded) is the combined

update that consists of the updates of Wθ corresponding to the ℓth parameter of

each of the y coded parameters in each subpacket. The K combined updates sent

to database n, n ∈ {1, . . . , R}, are given by,

Un,ℓ =

y∑
j=1

y∏
i=1,i ̸=j

(fi,ℓ − αn)∆̃
[ℓ]
θ,j +

y∏
i=1

(fi,ℓ − αn)ẑℓ, ℓ ∈ {1, . . . , K}, (7.26)

where ∆̃
[ℓ]
θ,j =

∏K
i=1,i ̸=ℓ(fj,i−fj,ℓ)∏y
i=1,i ̸=j(fi,ℓ−fj,ℓ)

∆
[ℓ]
θ,j for j ∈ {1, . . . , y}, with ∆

[ℓ]
θ,j being the update of

the ℓth parameter of the jth coded bit of the considered subpacket in submodel

θ and ẑℓ is a random noise symbol. Once database n receives the update bits, it

calculates the incremental update with the aid of the two matrices given by,

Ωn,ℓ = diag

(∏
r∈F(αr − αn)∏
r∈F(αr − f1,ℓ)

1M , . . . ,

∏
r∈F(αr − αn)∏
r∈F(αr − fy,ℓ)

1M

)
, (7.27)

D̃n,ℓ = diag

(
1∏K

i=1(f1,i − αn)
1M , . . . ,

1∏K
i=1(fy,i − αn)

1M

)
, (7.28)

where Ωn,ℓ is the null shaper in [94] with F being any subset of randomly chosen

databases satisfying |F| = x− y. The null shaper is used to place some of the zeros

(x − y zeros) of the incremental update polynomial at specific αns to reduce the
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writing cost by not having to send any updates to the databases corresponding to

those αns. Here, F is any subset of x − y databases. D̃n,ℓ is a scaling matrix and

1M is the vector of all ones of size 1×M . The incremental update is calculated as,

Ūn,ℓ = Ωn,ℓ × Un,ℓ × D̃n,ℓ ×Qn,ℓ, ℓ ∈ {1, . . . , K} (7.29)

= Ωn,ℓ × Un,ℓ ×



1∏K
i=1(f1,i−αn)

( ∏K
i=1,i̸=ℓ(f1,i−αn)∏K
i=1,i̸=ℓ(f1,i−f1,ℓ)

eM(θ) +
∏K

i=1(f1,i − αn)Z̃1,ℓ

)
...

1∏K
i=1(fy,i−αn)

( ∏K
i=1,i ̸=ℓ(fy,i−αn)∏K
i=1,i ̸=ℓ(fy,i−fy,ℓ)

eM(θ) +
∏K

i=1(fy,i − αn)Z̃y,ℓ

)


(7.30)

= Ωn,ℓ × Un,ℓ ×


1∏K

i=1,i ̸=ℓ(f1,i−f1,ℓ)

1
(f1,ℓ−αn)

eM(θ) + Z̃1,ℓ

...

1∏K
i=1,i̸=ℓ(fy,i−fy,ℓ)

1
(fy,ℓ−αn)

eM(θ) + Z̃y,ℓ

 (7.31)

= Ωn,ℓ ×


1

(f1,ℓ−αn)
∆

[ℓ]
θ,1eM(θ) + P

[1]
αn(y)

...

1
(fy,ℓ−αn)

∆
[ℓ]
θ,yeM(θ) + P

[y]
αn(y)

 (7.32)

=


1

f1,ℓ−αn
∆

[ℓ]
θ,1eM(θ) + P

[1]
αn(x)

...

1
fy,ℓ−αn

∆
[ℓ]
θ,yeM(θ) + P

[y]
αn(x)

 , ℓ ∈ {1, . . . , K}, (7.33)

where P
[j]
αn(h) here is a vector of size M×1 consisting of polynomials in αn of degree

h. Note that (7.32) and (7.33) are obtained by applying Lemma 3.1 and Lemma 3.2,

respectively. Since the incremental updates are of the same form as the storage in
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(7.17), the submodels are updated by,

Sn(t) = Sn(t− 1) +
K∑
ℓ=1

Ūn,ℓ. (7.34)

The resulting writing cost is,

CW =
K × (R− (x− y))

K × y
=

2R− 2x−K − 1

R− x−K − 1
, (7.35)

which together with the reading cost in (7.25) gives the total cost,

CT = CR + CW =
3R− 2x−K − 1

R− x−K − 1
. (7.36)

The total cost is an increasing function of x since dCT

dx
= R+K+1

(R−x−K−1)2
> 0.

Note that x ≥ y must be satisfied by x in order to write to y parameters using a

single symbol. This is because the decomposition of the combined update in (7.32)

results in a noise polynomial of degree y, which requires the existing storage to have

at least a degree y noise polynomial, as the incremental update is added to the

existing storage in the updating process. Therefore, the optimum value of x that

minimizes the total cost is,

x =


y = R−K−1

2
, if R−K is odd,

y + 1 = R−K
2

, if R−K is even.

(7.37)

The resulting minimum total cost of the PRUW process with (K,R) MDS coded
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storage is,

CT =


4R

R−K−1
, if R−K is odd,

4R−2
R−K−2

, if R−K is even.

(7.38)

Note that since the subpacketization y ≥ 1, R and K must satisfy,

1 ≤ K ≤


R− 3, if R−K is odd,

R− 4, if R−K is even.

(7.39)

7.4.2 Storage Mechanism

The proposed storage mechanism consists of submodel partitioning and submodel

encoding, where the parameters are encoded with a specific (K,R) MDS code and

stored at different subsets of databases in parts. In this section, we find the optimum

coding parameters and fractions of submodels stored in each database to minimize

the total cost.

7.4.2.1 Submodel Partitioning

This determines the fractions of all (K,R) MDS coded submodels to be stored in the

N databases with arbitrary storage constraints. Based on the (K,R) MDS coded

structure, each coded parameter must be stored in exactly R databases. Let ηi be

the fraction of all submodels that are stored in the same subset of R databases (the

subset of databases indexed by i). Let B be the basis containing all N × 1 vectors
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with elements in {0, 1} with exactly R ones, denoted by B = {b1, b2, . . . , b|B|}. Note

that each bi corresponds to a specific subset of R databases, indexed by i. Then, it

is required to find the ηis that satisfy,

1

K

|B|∑
i=1

ηibi = µ, where µ = [µ(1), . . . , µ(N)]T (7.40)

|B|∑
i=1

ηi = 1, 0 ≤ η1, . . . , η|B| ≤ 1, (7.41)

to replicate each coded parameter at exactly R databases, while ensuring that all

databases are completely filled. The solution to this problem with uncoded param-

eters (K = 1) is provided in [18] and [24] along with a necessary and sufficient

condition for a solution to exist, given by,

µ(n) ≤
∑N

n=1 µ(n)

R
, n ∈ {1, . . . , N}. (7.42)

The intuition behind this condition is as follows. Consider database n which can

store up to µ(n)ML bits. If each bit is expected to be replicated at R databases,

the total available storage in all databases
∑N

i=1 µ(n)ML must be greater than or

equal to µ(n)MLR, to successfully replicate the µ(n)ML bits of database n in R

databases. This must be satisfied by all N databases, which results in (7.42). Note

that this condition is valid for any (K,R) MDS coded setting, as the available

storage in each database does not change with the submodel encoding structure.

In this work, we find the optimum coding parameters K and R that result in

the minimum total cost of the PRUW process while satisfying (7.42), and solve
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(7.40)-(7.41) to find the partitions ηi of coded submodels to be stored in each

database.

7.4.2.2 Submodel Encoding

For a given set of storage constraints {µ(n)}Nn=1, the total available storage is p =∑N
n=1 µ(n) where the intuition behind the value of p is the maximum number of

times each parameter in the model can be replicated in the system of databases if

the parameters are uncoded. Let the parameters of the model be stored using a

(K,R) MDS code. Therefore, the total number of coded parameters in the model

is ML
K

, which allows each coded parameter to be replicated at a maximum of,

R ≤
∑N

n=1 µ(n)ML
ML
K

= Kp (7.43)

databases, given that the value of K satisfies K ≤ N
p
. At the same time, to com-

pletely utilize the available space in each database, the number of parameters stored

in each database must satisfy,

µ(n)ML ≤ ML

K
, n ∈ {1, . . . , N} =⇒ K ≤ 1

µ̄
, (7.44)

where µ̄ = maxn µ(n). Therefore, the coding parameter K must satisfy,

K ≤ min

{
1

µ̄
,
N

p

}
=

1

µ̄
, (7.45)

260



as p =
∑N

n=1 µ(n) ≤ µ̄N implies 1
µ̄

≤ N
p
. Since the total cost of the PRUW

scheme decreases with the number of replications R (see (7.38)), for given K, p ∈ Z+

satisfying (7.45), the optimum R for the (K,R) MDS code is given by Kp (from

(7.43)), and the resulting total cost is,

CT (K,R) =


4Kp

Kp−K−1
, odd K, even p,

4Kp−2
Kp−K−2

, otherwise,

(7.46)

which decreases with K. Therefore, for a given set of storage constraints {µ(n)}Nn=1,

the minimum total cost is achieved by the (K,R) MDS code in (7.17) with K and

R given by,

K =
1

µ̄
def
= k, R = kp

def
= r (7.47)

which automatically satisfies (7.42) since
∑N

n=1 µ(n)

r
= µ̄≥ µ(n) for all n. However,

since k and r are not necessarily integers, we need additional calculations to obtain

the optimum (k, r) MDS codes with k, r ∈ Z+ that collectively result in the lowest

total cost.

Consider the general case where k, r /∈ Z+. The general idea here is to divide

each submodel into four sections and encode them using the four MDS codes given

in Table 7.1. The sizes (fractions) of the four sections are defined by the parameters

α, β and δ, where 0 ≤ α, β, δ ≤ 1 (see Table 7.1). The total spaces allocated for the
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four MDS codes in the entire system of databases are given by,

N∑
n=1

µ̂1(n) =
αβ

⌊k⌋
⌊r⌋ (7.48)

N∑
n=1

µ̂2(n) =
α(1− β)

⌊k⌋
⌈r⌉ (7.49)

N∑
n=1

µ̄1(n) =
(1− α)δ

⌈k⌉
⌊r⌋ (7.50)

N∑
n=1

µ̄2(n) =
(1− α)(1− δ)

⌈k⌉
⌈r⌉ (7.51)

case MDS code fraction of submodel space allocated in database n
1 (⌊k⌋, ⌊r⌋) αβ µ̂1(n)
2 (⌊k⌋, ⌈r⌉) α(1− β) µ̂2(n)
3 (⌈k⌉, ⌊r⌋) (1− α)δ µ̄1(n)
4 (⌈k⌉, ⌈r⌉) (1− α)(1− δ) µ̄2(n)

Table 7.1: Fractions of submodels and corresponding MDS codes.

The space allocated for each individual MDS code in each database must

satisfy (7.42) separately, to ensure that all databases are completely filled while also

replicating each coded parameter at the respective number of databases, i.e.,

µ̂1(n) ≤
αβ

⌊k⌋
(7.52)

µ̂2(n) ≤
α(1− β)

⌊k⌋
(7.53)

µ̄1(n) ≤
(1− α)δ

⌈k⌉
(7.54)

µ̄2(n) ≤
(1− α)(1− δ)

⌈k⌉
. (7.55)

262



All four storage allocations in each database must satisfy,

µ̂1(n) + µ̂2(n) + µ̄1(n) + µ̄2(n) = µ(n), ∀n. (7.56)

It remains to find the values of µ̂1(n), µ̂2(n), µ̄1(n), µ̄2(n), α, β and δ that minimize

the total cost given by,

C = αβCT (⌊k⌋, ⌊r⌋) + α(1− β)CT (⌊k⌋, ⌈r⌉) + (1− α)δCT (⌈k⌉, ⌊r⌋)

+ (1− α)(1− δ)CT (⌈k⌉, ⌈r⌉) (7.57)

while satisfying (7.48)-(7.56), where CT is defined in (7.15). We consider two cases,

1) α = 1, 2) α < 1. When α = 1, only cases 1, 2 in Table 7.1 are used in storage,

and (7.42) becomes R ≤ ⌊k⌋p, which results in ⌊k⌋p = s maximum replications.

This replaces all rs in Table 7.1 and (7.48)-(7.55) by s when α = 1. The optimum

values of the parameters in Table 7.1 that minimize the total cost in (7.57) when

α = 1 and α < 1 are stated in Lemma 7.1 and Lemmas 7.2-7.3, respectively. For a

given set of storage constraints, we choose the set of optimum values corresponding

to either α = 1 or α < 1, based on the case that results in the minimum total cost.

In other words, C1 and C2 stated in (7.7) and (7.8) in Section 7.3 indicate the total

costs corresponding to the two cases α = 1 and α < 1, respectively, from which the

minimum is chosen.

Lemma 7.1 When α = 1, β is fixed at β = ⌈s⌉ − s to satisfy (7.48)-(7.49), and
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µ̂1(n), µ̂2(n) satisfying (7.52)-(7.53) are given by,

µ̂1(n) = m̃(n) + (µ(n)− m̃(n)− h̃(n))γ̃ (7.58)

µ̂2(n) = h̃(n) + (µ(n)− m̃(n)− h̃(n))(1− γ̃) (7.59)

for all n ∈ {1, . . . , N} where,

m̃(n)=

[
µ(n)− s−⌊s⌋

⌊k⌋

]+
, h̃(n)=

[
µ(n)−⌈s⌉−s

⌊k⌋

]+
(7.60)

γ̃ =

⌊s⌋
⌊k⌋(⌈s⌉ − s)−

∑N
n=1 m̃(n)

p−
∑N

n=1 m̃(n)−
∑N

n=1 h̃(n)
, (7.61)

with [x]+=max{x, 0}. The resulting total cost is given in (7.7).

Lemma 7.2 The following values of µ̂1(n), µ̂2(n), µ̄1(n) and µ̄2(n) for n ∈ {1, . . . , N}

satisfy (7.48)-(7.56) with any α < 1, β and δ that satisfy α ≥ ⌊k⌋
k
(⌈k⌉ − k),

β ≥
[
1− ⌊k⌋

kα
(r − ⌊r⌋)

]+
and δ ≥

[
1− ⌈k⌉

k(1−α)
(r − ⌊r⌋)

]+
,

µ̂1(n) =


µ̂(n)β, if β ∈ {0, 1}

m̂(n) + (µ̂(n)− m̂(n)− ĥ(n))γ̂, if β ∈ (0, 1)

(7.62)

µ̂2(n) =


µ̂(n)(1− β), if β ∈ {0, 1}

ĥ(n) + (µ̂(n)− m̂(n)− ĥ(n))(1− γ̂), if β ∈ (0, 1)

(7.63)

µ̄1(n) =


µ̄(n)δ, if δ ∈ {0, 1}

m̄(n) + (µ̄(n)− m̄(n)− h̄(n))γ̄, if δ ∈ (0, 1)

(7.64)
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µ̄2(n) =


µ̄(n)(1− δ), if δ ∈ {0, 1}

h̄(n) + (µ̄(n)− m̄(n)− h̄(n))(1− γ̄), if δ ∈ (0, 1)

(7.65)

for all n ∈ {1, . . . , N} where,

µ̂(n) = m(n) + (µ(n)−m(n)− h(n))γ (7.66)

µ̄(n) = h(n) + (µ(n)−m(n)− h(n))(1− γ) (7.67)

m(n)=

[
µ(n)− 1− α

⌈k⌉

]+
, h(n)=

[
µ(n)− α

⌊k⌋

]+
(7.68)

γ =

α
⌊k⌋(⌈r⌉ − β)−

∑N
n=1 m(n)

p−
∑N

n=1 m(n)−
∑N

n=1 h(n)
(7.69)

m̂(n)=

[
µ̂(n)−α(1− β)

⌊k⌋

]+
, ĥ(n)=

[
µ̂(n)− αβ

⌊k⌋

]+
(7.70)

γ̂ =

αβ
⌊k⌋⌊r⌋ −

∑N
n=1 m̂(n)

α
⌊k⌋(⌈r⌉ − β)−

∑N
n=1 m̂(n)−

∑N
n=1 ĥ(n)

(7.71)

m̄(n)=

[
µ̄(n)− (1−α)(1−δ)

⌈k⌉

]+
, h̄(n)=

[
µ̄(n)− (1−α)δ

⌈k⌉

]+
(7.72)

γ̄ =

(1−α)δ
⌈k⌉ ⌊r⌋ −

∑N
n=1 m̄(n)

1−α
⌈k⌉ (⌈r⌉ − δ)−

∑N
n=1 m̄(n)−

∑N
n=1 h̄(n)

. (7.73)

Lemma 7.3 For the case where α < 1, the values of α, β and δ that minimize the

total cost in (7.57) while satisfying the constraints in Lemma 7.2 are specified in

Theorem 7.1, and the corresponding total cost is given in (7.8).

The three lemmas stated above provide the proof of Theorem 7.1. The proofs

of Lemmas 7.1, 7.2 and 7.3 are given in the Appendix. Once all parameters in

Table 7.1 are determined from Lemmas 7.1, 7.2, 7.3, equations (7.40)-(7.41) are

solved for ηis for the four sets of storage allocations, {µ̂1}Nn=1, {µ̂2}Nn=1, {µ̄1}Nn=1,
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{µ̄2}Nn=1 separately. These four sets of solutions determine where each individual

coded symbol is replicated in the system of databases. Then, the storage structure

and the scheme provided in Section 7.4.1 is used to perform private FSL.

7.4.3 Example

As an example, consider a PRUW setting with N = 12 databases, where µ(1) =

. . . µ(5) = 0.37 and µ(6) = . . . µ(12) = 0.35. Note that the values of k, r and s here

are the same as what is considered in Remark 7.2, and therefore result in the same

α, β, δ and total cost stated in Remark 7.2, i.e., k = 2.7, r = 11.61, s = 8.6, α = 2
9
,

β = 1 and δ = 9
70
. Using (7.62)-(7.73) we find the storage allocations as,

µ̂1(n) = µ̂(n) =


0.1107, for n = 1, . . . 5

0.0951, for n = 6, . . . 12

(7.74)

µ̄1(n) =


0.033, for n = 1, . . . 5

0.029, for n = 6, . . . 12

(7.75)

µ̂2(n) = 0, µ̄2(n) = 0.226, ∀n. (7.76)

Note that the (⌊k⌋, ⌈r⌉) MDS code is not used as µ̂2(n) = 0, ∀n, and the allocated

space for the (⌈k⌉, ⌈r⌉) MDS code in all databases is the same since µ̄2(n) = 0.226,

∀n. Therefore, the optimum storage mechanism for PRUW with homogeneous stor-

age constraints presented in Section 7.5 is used to place the (⌈k⌉, ⌈r⌉) coded parame-

ters. The storage allocations for (⌊k⌋, ⌊r⌋) and (⌈k⌉, ⌊r⌋) codes have different storage
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allocations for different databases (two different values in (7.74), (7.75)). Therefore,

for these two cases, we solve (7.40)-(7.41) separately, to find the fractions of coded

parameters to be stored in each database. For example, for the (⌊k⌋, ⌊r⌋) MDS

code, we find the solution (values of ηi) to (7.40)-(7.41) with N = 12, K = ⌊k⌋ = 2,

R = ⌊r⌋ = 11 and µ = [µ̂1(1) : µ̂1(12)]
T as follows. For this case, (7.40)-(7.41) is

given by,

12∑
i=1

αβML

⌊k⌋
ηibi = µML (7.77)

∑
i=1

ηi = 1, (7.78)

where bi is the all ones vector of size 12 × 1 with a zero at the ith position. As a

solution, we get η̃1 = . . . = η̃5 = 0 and η̃6 = . . . = η̃12 = 0.0315, where η̃i = αβηi.

To explain how the submodel parameters are stored, consider η̃6 = 0.0315. From

each submodel, a fraction of η̃6 = 0.0315 is chosen to be replicated at all databases

except for database 6. The chosen set of parameters from all submodels are (⌊k⌋, ⌊r⌋)

MDS coded based on the structure shown in Section 7.4.1, and the PRUW process

is carried out accordingly.

7.4.4 Improved Scheme for Special Cases

The key idea behind the scheme proposed in Section 7.4.2 is to find the optimum

linear combination of (K,R) MDS codes to store the submodel parameters, as shown

in the example in Fig. 7.2. However, note in the same figure that the achievable

267



total communication costs have a fluctuating structure based on whether the values

of K and R result in odd or even R−K in (7.38). For any (K,R) MDS code with

even R−K, the total cost results in a local peak. Therefore, the total communication

cost can be decreased further if for a given set of storage constraints {µ(n)}Nn=1, the

model parameters can be stored as a linear combination of (K,R) MDS codes with

only odd R −K instead of the four codes considered in Table 7.1. This eliminates

the involvement of the local peaks. We begin the analysis of such cases with the

following lemma.

Lemma 7.4 Let (µ1, CT (µ1)) and (µ2, CT (µ2)) be two pairs of storage constraints

and the corresponding achievable total costs. The storage constraints are given by

µ1 = {µ1(n)}Nn=1 and µ2 = {µ2(n)}Nn=1. Then, the pair (µ, CT (µ)) is also achievable

for any γ ∈ [0, 1] where µ = {µ(n)}Nn=1 with,

µ(n) = γµ1(n) + (1− γ)µ2(n), n ∈ {1, . . . , N} (7.79)

CT (µ) = γCT (µ1) + (1− γ)CT (µ2) (7.80)

Proof: Since (µ1, CT (µ1)) and (µ2, CT (µ2)) are achievable, let S1 and S2 be the

schemes that produce the achievable pairs (µ1, CT (µ1)) and (µ2, CT (µ2)), respec-

tively. A new scheme can be generated by applying S1 on a γ fraction of bits of all

submodels and S2 on the rest of the bits. The storage capacity of database n in this

combined scheme is given by γMLµ1(n) + (1 − γ)MLµ2(n) = µ(n)ML bits. The
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corresponding total cost is,

CT =
γLCT (µ1) + (1− γ)LCT (µ2)

L
= γCT (µ1) + (1− γ)CT (µ2). (7.81)

completing the proof. ■

Corollary 7.1 Consider a PRUW setting with an arbitrary set of storage con-

straints µ = {µ(n)}Nn=1. Based on Lemma 7.4, a γ fraction of all submodel pa-

rameters can be stored using any (K1, R1) MDS code, and the rest of the 1 − γ

fraction can be stored using any (K2, R2) MDS code to achieve a total cost of

γCT (K1, R1) + (1− γ)CT (K2, R2) if there exist two sets of storage constraints µ1 =

{µ1(n)}Nn=1 and µ2 = {µ2(n)}Nn=1 that only use (K1, R1) and (K2, R2) MDS codes,

respectively, to store the submodel parameters. For this, µ1 and µ2 must satisfy the

following conditions.

γµ1(n) + (1− γ)µ2(n) = µ(n), n ∈ {1, . . . , N} (7.82)

N∑
n=1

µ1(n) =
R1

K1

(7.83)

max
n

µ1(n) ≤
1

K1

(7.84)

N∑
n=1

µ2(n) =
R2

K2

(7.85)

max
n

µ2(n) ≤
1

K2

(7.86)

where (7.82) is straightforward from Lemma 7.4, (7.83), (7.85) are based on the fact

that a (K,R) MDS code combines K bits together and stores them at R databases,
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resulting in a total of ML
K

×R bits stored across all databases, and (7.84), (7.86) are

required by (7.42).

The method proposed in Section 7.4.2 cannot be used to find µ1 = {µ1(n)}Nn=1

and µ2 = {µ2(n)}Nn=1 in (7.82)-(7.86) for any given set of arbitrary storage con-

straints because of (7.82) and limitations on R1, R2, K1, K2. In this section, we

discuss a specific type of storage constraints µ = {µ(n)}Nn=1 for which a direct so-

lution to (7.82)-(7.86) is available. For this type of storage constraints, the local

peaks in the achievable costs curves can be eliminated, which results in reduced

total communication costs compared to what can be achieved from the scheme in

Section 7.4.2 for the same storage constraints.

Consider the case of homogeneous storage constraints, i.e., µ(n) = µ for n ∈

{1, . . . , N}. This is the specific type of storage constraints we consider in this section

with a direct solution to (7.82)-(7.86). Note that for this case, (7.82), (7.83) and

(7.85) imply,

µ = γ
R1

NK1

+ (1− γ)
R2

NK2

. (7.87)

Therefore, for any µ such that R1

NK1
≤ µ ≤ R2

NK2
,4 one solution to (7.82)-(7.86) is

given by,

µ1(n) =
R1

NK1

, n ∈ {1, . . . , N} (7.88)

µ2(n) =
R2

NK2

, n ∈ {1, . . . , N}, (7.89)

4Without loss of generality, we assume that R1

K1
≤ R2

K2
.
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as N ≥ R1, R2 must be satisfied by any (Ki, Ri) MDS coded storage in a system of

N databases. The value of γ for the given µ is determined by (7.87).

The above solution basically implies that when a given homogeneous storage

constraint µ is in the range R1

NK1
≤ µ ≤ R2

NK2
for any R1, R2, K1, K2, a total cost

of γCT (K1, R1) + (1− γ)CT (K2, R2) is achievable, where γ =
Nµ−R2

K2
R1
K1

−R2
K2

. This further

implies that all points on the line connecting ( R1

NK1
, CT (

R1

NK1
)) and ( R2

NK2
, CT (

R2

NK2
))

for any R1, R2, K1, K2 with
R1

K1
≤ R2

K2
are achievable. This allows for any point on the

line connecting the adjacent local minima in the total costs curves to be achievable,

which eliminates the local peaks.

Next, we present the general storage scheme for homogeneous storage con-

straints based on the above arguments.

7.5 Proposed Scheme: Homogeneous Storage Constraints

In this section, we present the general scheme for arbitrary homogeneous storage

constraints denoted by µ(n) = µ, n ∈ {1, . . . , N}. The basic idea of this scheme is

to find all achievable pairs of the form (µ,CT (µ)),
5, find its lower convex hull, and

apply Lemma 7.4 for a given µ with the closest points on the convex hull to obtain

the minimum achievable cost with the PRUW scheme presented in Section 7.4.1.

The detailed storage scheme is given next.

For a given N we first find the achievable pairs of (µ,CT (µ)) as follows. Let

µ = R
NKR

for R = 4, . . . , N and KR = 1, . . . , R − 3. For a given µ with a given R

and KR, the following steps need to be followed in order to perform PRUW while

5µ in Lemma 7.4 is replaced by µ, as all storage constraints are equal.
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meeting the storage constraint:

1. Divide the L bits of each submodel intoN sections and label them as {1, . . . , N}.

2. Allocate sections n : (n− 1 +R) mod N to database n for n ∈ {1, . . . , N}.6

3. Use the storage specified in (7.17) with K = KR and x, y given in (7.37) to

encode each of the allocated sections of all submodels. Note that a given

coded bit of a given section of each submodel stored across different databases

contains the same noise polynomial that only differs in αn.

4. Use the PRUW scheme described in Section 7.4.1 on each of the subsets of

n : (n−1+R) mod N databases to read/write to section (n−1+R) mod N

of the required submodel for n ∈ {1, . . . , N}.

For each µ = R
NKR

, R = 4, . . . , N , KR = 1, . . . , R − 3, the above process en-

codes the submodel parameters using a (KR, R) MDS code, and gives an achievable

(µ,CT (µ)) pair, where CT (µ) is given by

CT (µ) =


4R

R−KR−1
, if R−KR is odd

4R−2
R−KR−2

, if R−KR is even.

(7.90)

Note that the above two cases, which correspond to the value of (R −KR) mod 2,

are a result of two different schemes. The case with odd values of R − KR has a

subpacketization that is equal to the degree of noise polynomial in storage, which

6The indices here follow a cyclic pattern, i.e., if (n − 1 + R) mod N < n, then n : (n − 1 + R)
mod N implies {n, . . . , N, 1, . . . , (n− 1 +R) mod N}.
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does not require the null shaper, while the case with even values of R−KR contains

two more noise terms than the subpacketization, which requires the null shaper; see

(7.37). The scheme corresponding to even values of R−KR is inefficient compared to

the even case due to the additional noise term present in storage. This observation

combined with Lemma 7.4 results in the following lemma, which formally states how

the local peaks in achievable costs can be eliminated.

Lemma 7.5 For a given µ = R
NKR

, if R and KR are such that R−KR is even, it is

more efficient to perform a linear combination of two PRUW schemes with nearest

two odd R[i] − K
[i]
R , i = 1, 2, instead of performing direct PRUW with the given R

and KR, while satisfying the same storage constraint µ, i.e., with µ1 = R[1]

NK
[1]
R

and

µ2 =
R[2]

NK
[2]
R

.

Proof: For a given µ = R
NKR

with even R−KR, the nearest µ1 =
R[1]

NK
[1]
R

is R−1
NKR

, since

(7.39) with K replaced by KR needs to be satisfied for the PRUW scheme to work.

Similarly, µ2 =
R+1
NKR

. Let CT (µ), CT (µ1) and CT (µ2) be the total costs incurred by

the scheme with µ, µ1 and µ2, respectively. From (7.90), we have

CT (µ) =
4R− 2

R−KR − 2
> CT (µ1) =

4R− 4

R−KR − 2
> CT (µ2) =

4(R + 1)

R−KR

. (7.91)

Note that µ1 < µ < µ2. From Lemma 7.4, there exists some γ ∈ [0, 1] that allocates

the storage for the two PRUW schemes corresponding to µ1 and µ2 that achieves the

same storage constraint as µ, and results in a total cost of γCT (µ1)+(1−γ)CT (µ2),

273



that satisfies

CT (µ2) < γCT (µ1) + (1− γ)CT (µ2) < CT (µ1) < CT (µ), (7.92)

completing the proof. ■

Once the basic (µ,CT (µ)) pairs corresponding to µ = R
NKR

for R = 4, . . . , N ,

KR = 1, . . . , R − 3 with odd R − KR are obtained, the minimum achievable total

cost of the improved scheme for any µ is characterized by the lower convex hull

of the above basic (µ,CT (µ)) pairs, denoted by Tach. This is straightforward from

Lemmas 7.4 and 7.5. Therefore, for a given N and µ, if µ1 =
R1

NK1
and µ2 =

R2

NK2
are

the nearest storage constraints to µ such that µ1 ≤ µ ≤ µ2, with (µ1, CT (µ1)) and

(µ1, CT (µ1)) being elements of the set of basic pairs that determine Tach, a total cost

of γCT (K1, R1)+(1−γ)CT (K2, R2) with γ = µ2−µ
µ2−µ1

is achievable by storing γ fraction

of all submodels using a (K1, R1) MDS code, and the rest of the 1−γ fractions of all

submodels using a (K2, R2) MDS code. Once the storage is determined, the PRUW

scheme presented in Section 7.4.1 is used to perform the private FSL.

7.5.1 Comparison with Other Schemes

The two straightforward methods to handle homogeneous storage constraints is to

consider divided storage and coded storage. Divided storage, i.e., KR = 1, R < N

is where the submodel parameters are uncoded, but divided and stored at subsets

of databases to meet the storage constraints. Coded storage, i.e., KR > 1, R = N

is where the submodel parameters are encoded to combine multiple symbols into a
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Figure 7.3: All possible pairs of (R,KR) and corresponding values of µ for N = 10.

single symbol and stored at all N databases. Note that both divided and coded stor-

age mechanisms are subsets of the proposed storage mechanism which considers all

cases that correspond to KR ≥ 1 and R ≤ N . In other words, the proposed scheme

can be viewed as a hybrid mechanism of both divided and coded schemes. The

hybrid scheme achieves lower total costs compared to divided and coded schemes,

as it considers a larger set of basic (µ,CT (µ)) pairs to find the lower convex hull,

which includes all points considered in divided and coded schemes individually. As

an illustration, consider the example with N = 10 databases. The proposed hybrid

storage mechanism first determines the basic achievable
(
µ = R

NKR
, CT (µ)

)
pairs

for R = 4, . . . , N , KR = 1, . . . , R − 3 with odd R −KR. The pairs of (R,KR) and

the corresponding values of µ are shown in Fig. 7.3.

The set of basic achievable
(
µ = r

NKr
, CT (µ)

)
pairs on the lower convex hull

corresponds to storage constraints µ with (R,KR) pairs corresponding to R = N =

10, R = N − 1 = 9 and R = N − 2 = 8 with KR values that satisfy (R −KR − 1)
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Figure 7.4: Lowest achievable costs of coded, divided and hybrid schemes forN = 10.

mod 2 = 0, as marked in green in Fig. 7.3. Note that the minimum achievable

costs of divided and coded schemes are determined by the lower convex hull of the

points marked in blue and red in Fig. 7.3, respectively, which are subsets of all points

considered in the lower convex hull search of the hybrid scheme, which clearly results

in lower achievable costs as shown in Fig. 7.4.

7.5.2 Example

In this section, we describe how the PRUW process is carried out in an arbitrary

setting with givenN and µ. Consider an example withN = 8 databases and µ = 0.7.

The first step is to find the basic achievable
(
µ = R

NKR
, CT (µ)

)
pairs of N = 8

that lie on the lower convex hull boundary. Fig. 7.5(a) shows the (R,KR) pairs

and the corresponding µs of such pairs. The required storage constraint µ = 0.7

is in between 0.44 and 0.75, which correspond to (R,KR) pairs (7, 2) and (6, 1),

respectively. Therefore, the PRUW scheme for N = 8, µ = 0.7 is obtained by the
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(b) Achievable total cost at µ = 0.7.

Figure 7.5: Example with N = 8.

following steps:

1. γL bits of all submodels are stored according to the proposed storage mech-

anism corresponding to (R,KR) = (7, 2), and the rest of the (1 − γ)L bits

of all submodels are stored according to (R,KR) = (6, 1). Therefore, γL

bits of the required submodel are updated using the scheme corresponding to

(R,KR) = (7, 2), and the rest of the bits are updated by the scheme corre-

sponding to (6, 1). In order to find the value of γ, we equate the total storage

of each database to the given constraint, i.e.,

γML× 7

8
× 1

2
+ (1− γ)ML× 6

8
= 0.7ML (7.93)

which gives γ = 0.16.

2. Let L1 = 0.16L and L2 = 0.84L. L1 bits of each submodel is divided into
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8 sections and labeled 1, . . . , 8. Sections n : (n + 6) mod 8 are allocated to

database n for n ∈ {1, . . . , N}. Each database uses the storage in (7.17) with

K = 2 and y = x = R−KR−1
2

= 2 to store each subpacket of all sections

allocated to it. Then, the PRUW scheme described in Section 7.4.1 is applied

to read/write to the L1 bits of the required submodel.

3. The same process is carried out on the rest of the L2 bits with the scheme

corresponding to (6, 1).

The total costs incurred by the two schemes are CT1 = 4R
R−KR−1

= 4×7
7−2−1

= 7

and CT2 = 4R
R−KR−1

= 4×6
6−1−1

= 6, respectively. Therefore, the total cost of N = 8

and µ = 0.7 is CT =
γLCT1

+(1−γ)LCT2

L
= 6.16, which is shown in Fig. 7.5(b).

7.6 Conclusions

In this work, we considered the problem of information-theoretically private FSL

with storage constrained databases. We considered both heterogeneous and homo-

geneous storage constraints, and proposed schemes to perform private FSL in both

settings, with the goal of minimizing the total communication cost while guaran-

teeing the privacy of the updating submodel index and the values of the updates.

As the main result, we proposed a PRUW scheme and a storage mechanism that

is applicable to any given set of heterogeneous storage constraints, and a different

storage mechanism built upon the same PRUW scheme for homogeneous storage

constraints. Although the proposed scheme for heterogeneous constraints is not ap-

plicable to homogeneous constraints in general, the communication costs achieved
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by the latter are lower than what is achieved by the former. This is because the

scheme proposed for homogeneous constraints is able to eliminate an inefficient MDS

coding structure in its storage, which is not possible in the heterogeneous case if the

scheme must serve any given set of heterogeneous storage constraints.

7.7 Appendix

7.7.1 Proof of Lemma 7.1

Proof: When α = 1, the only coding parameter used in the entire storage is ⌊k⌋,

which modifies the maximum number of replications in (7.43) as,

R ≤
∑N

n=1 µ(n)ML
ML
⌊k⌋

= ⌊k⌋p = s. (7.94)

If s ∈ Z+, all parameters are encoded with the (⌊k⌋, s) MDS code. However, if

s /∈ Z+ we need to find the optimum fractions β and storage allocations7 µ̂1(n),

µ̂2(n) of each submodel to be encoded with (⌊k⌋, ⌊s⌋) and (⌊k⌋, ⌈s⌉) MDS codes

that minimize the modified total cost in (7.57) given by,

C = βCT (⌊k⌋, ⌊s⌋) + (1− β)CT (⌊k⌋, ⌈s⌉). (7.95)

7µ̂1(n) and µ̂2(n) are the storage allocations for (⌊k⌋, ⌊s⌋) and (⌊k⌋, ⌈s⌉) MDS codes in database
n.
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The total storage allocations in the entire system of databases for the two MDS

codes must satisfy (modified (7.48) and (7.49)),

N∑
n=1

µ̂1(n) =
β

⌊k⌋
⌊s⌋ (7.96)

N∑
n=1

µ̂2(n) =
1− β

⌊k⌋
⌈s⌉. (7.97)

Moreover, since

N∑
n=1

µ̂1(n) +
N∑

n=1

µ̂2(n) =
N∑

n=1

µ(n) = p =
⌈s⌉ − β

⌊k⌋
, (7.98)

β is fixed at β = ⌈s⌉−s, and the resulting total cost is given by (7.7). Note that the

total cost in (7.95) does not depend on each individual µ̂1(n) and µ̂2(n). Therefore,

any set of µ̂1(n) and µ̂2(n) satisfying (7.96) and (7.97) with β = ⌈s⌉ − s along with

the following constraints (modified (7.52) and (7.53)) results in the same total cost.

Modified (7.52) and (7.53) are given by,

µ̂1(n) ≤
⌈s⌉ − s

⌊k⌋
(7.99)

µ̂2(n) ≤
s− ⌊s⌋
⌊k⌋

. (7.100)

Therefore, it remains to prove that µ̂1(n) and µ̂1(n) for each n provided in Lemma 7.1

satisfy (7.96)-(7.100) when β = ⌈s⌉ − s. Note that (7.58) results in,

N∑
n=1

µ̂1(n) =
N∑

n=1

m̃(n) + γ̃(p−
N∑

n=1

m̃(n)−
N∑

n=1

h̃(n)) =
⌊s⌋
⌊k⌋

(⌈s⌉ − s), (7.101)
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which proves (7.96). Similarly, summing up (7.59) results in (7.97). Assuming that

0 ≤ γ̃ ≤ 1, (7.58) gives,

µ̂1(n) ≤ µ(n)− h̃(n) (7.102)

≤


⌈s⌉−s
⌊k⌋ , if µ(n) ≥ ⌈s⌉−s

⌊k⌋

µ(n), if µ(n) < ⌈s⌉−s
⌊k⌋ ,

(7.103)

which proves (7.99). A similar proof is valid for (7.100) as well, given that 0 ≤ γ̃ ≤ 1,

which is proved next. Let N and D denote the numerator and the denominator of

γ̃ in (7.61). Note that m̃(n) + h̃(n) is given by,

m̃(n) + h̃(n) =



µ(n)− s−⌊s⌋
⌊k⌋ , if s−⌊s⌋

⌊k⌋ ≤ µ(n) ≤ ⌈s⌉−s
⌊k⌋

µ(n)− ⌈s⌉−s
⌊k⌋ , if ⌈s⌉−s

⌊k⌋ ≤ µ(n) ≤ s−⌊s⌋
⌊k⌋

2µ(n)− 1
⌊k⌋ , if ⌈s⌉−s

⌊k⌋ , s−⌊s⌋
⌊k⌋ ≤ µ(n)

0, if ⌈s⌉−s
⌊k⌋ , s−⌊s⌋

⌊k⌋ ≥ µ(n)

≤ µ(n), (7.104)

since maxn µ(n) ≤ 1
k
≤ 1

⌊k⌋ , and the equality holds only if µ(n) = 1
⌊k⌋ . Therefore,

N∑
n=1

m̃(n) +
N∑

n=1

h̃(n) ≤ p, (7.105)

and the equality holds only if µ(n) = 1
⌊k⌋ , ∀n, which specifies a set of homogeneous

storage constraints. Since we only consider heterogeneous storage constraints, we

have,
∑N

n=1 m̃(n) +
∑N

n=1 h̃(n) < p, which proves D > 0. Therefore, it remains to
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prove that N ≤ D and N ≥ 0, to prove 0 ≤ γ̃ ≤ 1. Note that N ≤ D is equivalent

to ⌊s⌋
⌊k⌋(⌈s⌉ − s) ≤ p−

∑N
n=1 h̃(n). Let V be defined as,

V =
N∑

n=1

1{µ(n)≥ ⌈s⌉−s
⌊k⌋ }. (7.106)

where 1{·} is the indicator function. From the definition of h̃(n) in (7.60) and since

µ(n) ≤ 1
⌊k⌋ ,

N∑
n=1

h̃(n) ≤ V

⌊k⌋
− V (⌈s⌉ − s)

⌊k⌋
. (7.107)

Moreover, since the total available space in the V databases must not exceed p,

N∑
n=1

h̃(n) +
V (⌈s⌉ − s)

⌊k⌋
≤ p =⇒

N∑
n=1

h̃(n) ≤ p− V (⌈s⌉ − s)

⌊k⌋
(7.108)

must be satisfied. Note that the upper bound on
∑N

n=1 h̃(n) in (7.107) is tighter

than that of (7.108) when V ≤ ⌊k⌋p = s and vice versa. Therefore, the highest

upper bound on
∑N

n=1 h̃(n) is given by,

N∑
n=1

h̃(n) ≤


⌊s⌋
⌊k⌋(s− ⌊s⌋), if V < s

p− ⌈s⌉
⌊k⌋(⌈s⌉ − s), if V > s

, (7.109)
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since V ∈ Z+ and s /∈ Z+,8 which proves,

p−
N∑

n=1

h̃(n) ≥


p− ⌊s⌋

⌊k⌋(s− ⌊s⌋), if V < s

⌈s⌉
⌊k⌋(⌈s⌉ − s), if V > s

(7.110)

≥ ⌊s⌋
⌊k⌋

(⌈s⌉ − s) =⇒ N ≤ D. (7.111)

To prove N ≥ 0, we need to show that
∑N

n=1 m̃(n) ≤ ⌊s⌋
⌊k⌋(⌈s⌉− s). Let Y be defined

as,

Y =
N∑

n=1

1{µ(n)≥ s−⌊s⌋
⌊k⌋ }. (7.112)

Then, similar to (7.107) and (7.108), we have,

N∑
n=1

m̃(n) ≤ Y

⌊k⌋
− Y (s− ⌊s⌋)

⌊k⌋
(7.113)

N∑
n=1

m̃(n) ≤ p− Y (s− ⌊s⌋)
⌊k⌋

, (7.114)

and (7.113) provides a tighter upper bound on
∑N

n=1 m̃(n) compared to (7.114) when

Y ≤ ⌊k⌋p = s, and vice versa. Therefore, the highest upper bound on
∑N

n=1 m̃(n)

is given by,

N∑
n=1

m̃(n) ≤


⌊s⌋
⌊k⌋(⌈s⌉ − s), if Y < s

p− ⌈s⌉
⌊k⌋(s− ⌊s⌋), if Y > s

(7.115)

8If s ∈ Z+ all parameters in all submodels will be (⌊k⌋, s) MDS coded, which does not require
any fractions/storage allocations to be calculated.
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=
⌊s⌋
⌊k⌋

(⌈s⌉ − s) =⇒ N ≥ 0 (7.116)

since Y ∈ Z+ and s /∈ Z+, which completes the proof of 0 ≤ γ̃ ≤ 1.

■

7.7.2 Proof of Lemma 7.2

Here, we prove that the storage allocations provided in Lemma 7.2 satisfy (7.48)-

(7.56) for the case where α < 1. The storage allocations µ̂1(n), µ̂2(n), µ̄1(n) and

µ̄2(n) correspond to MDS codes (⌊k⌋, ⌊r⌋), (⌊k⌋, ⌈r⌉), (⌈k⌉, ⌊r⌋) and (⌈k⌉, ⌈r⌉), re-

spectively. We first determine the storage allocations corresponding to the two

coding parameters ⌊k⌋ and ⌈k⌉, i.e., the total storage allocations for the two pairs

of MDS codes {(⌊k⌋, ⌊r⌋), (⌊k⌋, ⌈r⌉)} and {(⌈k⌉, ⌊r⌋), (⌈k⌉, ⌈r⌉)} given by,

µ̂(n) = µ̂1(n) + µ̂2(n), n ∈ {1, . . . , N} (7.117)

µ̄(n) = µ̄1(n) + µ̄2(n), n ∈ {1, . . . , N}. (7.118)

Then, the constraints (7.48)-(7.56) impose the following constraints on µ̂(n) and

µ̄(n),

N∑
n=1

µ̂(n) =
α

⌊k⌋
(⌈r⌉ − β) (7.119)

N∑
n=1

µ̄(n) =
1− α

⌈k⌉
(⌈r⌉ − δ) (7.120)

µ̂(n) ≤ α

⌊k⌋
, n ∈ {1, . . . , N} (7.121)
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µ̄(n) ≤ 1− α

⌈k⌉
, n ∈ {1, . . . , N} (7.122)

µ̂(n) + µ̄(n) = µ(n), ∀n. (7.123)

The combination of (7.119)-(7.123) gives,

µ(n)− 1− α

⌈k⌉
≤ µ̂(n) ≤ α

⌊k⌋
, n ∈ {1, . . . , N} (7.124)

µ(n)− α

⌊k⌋
≤ µ̄(n) ≤ 1− α

⌈k⌉
, n ∈ {1, . . . , N} (7.125)

α

⌊k⌋
(⌈r⌉ − β) +

1− α

⌈k⌉
(⌈r⌉ − δ) = p. (7.126)

Based on (7.124) and (7.125), for each n ∈ {1, . . . , N} define,

m(n) =

[
µ(n)− 1− α

⌈k⌉

]+
, h(n) =

[
µ(n)− α

⌊k⌋

]+
. (7.127)

Then, the total storage allocations corresponding to the two coding parameters ⌊k⌋

and ⌈k⌉ in database n, n ∈ {1, . . . , N}, are chosen as,

µ̂(n) = m(n) + (µ(n)−m(n)− h(n))γ (7.128)

µ̄(n) = h(n) + (µ(n)−m(n)− h(n))(1− γ), (7.129)

where

γ =

α
⌊k⌋(⌈r⌉ − β)−

∑N
n=1 m(n)

p−
∑N

n=1m(n)−
∑N

n=1 h(n)
. (7.130)
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Claim 1: For each n ∈ {1, . . . , N}, µ̂(n) and µ̄(n), in (7.128) and (7.129)

(same as (7.66) and (7.67)) satisfy (7.119)-(7.123) for those α, β, δ stated in Lemma 7.2.

Proof: Summing each µ̂(n) term in (7.128) yields,

N∑
n=1

µ̂(n) =
N∑

n=1

m(n) + γ(p−
N∑

n=1

m(n)−
N∑

n=1

h(n)) =
α

⌊k⌋
(⌈r⌉ − β), (7.131)

from (7.130), which proves (7.119). A similar proof results in (7.120). Assuming

that 0 ≤ γ ≤ 1, (7.128) can be upper bounded by,

µ̂(n) ≤ µ(n)− h(n) (7.132)

=


α
⌊k⌋ , if µ(n) ≥ α

⌊k⌋

µ(n), if µ(n) < α
⌊k⌋

(7.133)

≤ α

⌊k⌋
, (7.134)

which proves (7.121). Similarly, (7.122) is proven by considering µ̄(n). (7.123) is

obvious from (7.128) and (7.129). Hence, it remains to prove that 0 ≤ γ ≤ 1.

Similar to the proof of 0 ≤ γ̃ ≤ 1 in Lemma 7.1, let N and D denote the numerator
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and the denominator of γ in (7.130). Then, m(n) + h(n) is given by,

m(n) + h(n) =



µ(n)− α
⌊k⌋ , if α

⌊k⌋ ≤ µ(n) ≤ 1−α
⌈k⌉

µ(n)− 1−α
⌈k⌉ , if 1−α

⌈k⌉ ≤ µ(n) ≤ α
⌊k⌋

2µ(n)− α
⌊k⌋ −

1−α
⌈k⌉ , if α

⌊k⌋ ,
1−α
⌈k⌉ ≤ µ(n)

0, if α
⌊k⌋ ,

1−α
⌈k⌉ ≥ µ(n)

(7.135)

≤ µ(n), (7.136)

if µ(n) ≤ α
⌊k⌋ +

1−α
⌈k⌉ , ∀n, i.e., α ≥ ⌊k⌋

k
(⌈k⌉ − k), which is the constraint on α stated

in Lemma 7.2. Therefore,

N∑
n=1

m(n) +
N∑

n=1

h(n) ≤ p, (7.137)

and the equality holds only if µ(n) = 1
k
, ∀n and α = ⌊k⌋

k
(⌈k⌉ − k), which specifies

a set of homogeneous storage constraints. Since we only consider heterogeneous

storage constraints, (7.137) is satisfied with strict inequality when α is chosen such

that ⌊k⌋
k
(⌈k⌉ − k) ≤ α < 1, which proves D > 0. Therefore, it remains to prove

that N ≤ D and N ≥ 0, to prove 0 ≤ γ ≤ 1. Note that N ≤ D is equivalent to

α
⌊k⌋(⌈r⌉ − β) ≤ p−

∑N
n=1 h(n). Let V be defined as,

V =
N∑

n=1

1{µ(n)≥ α
⌊k⌋}. (7.138)
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Therefore from the definition of h(n) in (7.127) and since µ(n) ≤ 1
k
, ∀n,

N∑
n=1

h(n) ≤ V

k
− V α

⌊k⌋
. (7.139)

Moreover, since the total available space in the V databases must not exceed p,

N∑
n=1

h(n) +
V α

⌊k⌋
≤ p =⇒

N∑
n=1

h(n) ≤ p− V α

⌊k⌋
(7.140)

must be satisfied. The upper bound on
∑N

n=1 h(n) in (7.139) is tighter than that

of (7.140) when V ≤ kp = r and vice versa. Thus, the highest upper bound on∑N
n=1 h(n) is given by,

N∑
n=1

h(n) ≤


⌊r⌋
k
− ⌊r⌋α

⌊k⌋ , if V < r

p− ⌈r⌉α
⌊k⌋ , if V > r

, (7.141)

since V ∈ Z+, which gives the tightest upper bound on p−
∑N

n=1 h(n) for a general

set of {µ(n)}Nn=1 as,

p−
N∑

n=1

h(n) ≥


p− ⌊r⌋

k
+ ⌊r⌋α

⌊k⌋ , if V < r

⌈r⌉α
⌊k⌋ , if V > r

. (7.142)
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Therefore, in order to satisfy N ≤ D for any given set of {µ(n)}Nn=1, i.e.,

p−
N∑

n=1

h(n) ≥


p− ⌊r⌋

k
+ ⌊r⌋α

⌊k⌋ , if V < r

⌈r⌉α
⌊k⌋ , if V > r

(7.143)

≥ α

⌊k⌋
(⌈r⌉ − β) (7.144)

it requires β to satisfy β ≥ 1 − ⌊k⌋
kα

(r − ⌊r⌋), which is the constraint given on β in

Lemma 7.2. To prove N ≥ 0, we need to show that
∑N

n=1m(n) ≤ α
⌊k⌋(⌈r⌉− β). Let

Y be defined as,

Y =
N∑

n=1

1{µ(n)≥ 1−α
⌈k⌉ }. (7.145)

Then, similar to (7.139) and (7.140), we have,

N∑
n=1

m(n) ≤ Y

k
− Y (1− α)

⌈k⌉
(7.146)

N∑
n=1

m(n) ≤ p− Y (1− α)

⌈k⌉
, (7.147)

and (7.146) provides a tighter upper bound on
∑N

n=1m(n) compared to (7.147) when

Y ≤ kp = r, and vice versa. Therefore, the highest upper bound on
∑N

n=1m(n)

considering any arbitrary set of {µ(n)}Nn=1 is given by,

N∑
n=1

m(n) ≤


⌊r⌋
k
− ⌊r⌋(1−α)

⌈k⌉ , if Y < r

p− ⌈r⌉(1−α)
⌈k⌉ , if Y > r

(7.148)
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since Y ∈ Z+. Therefore, N ≥ 0 is satisfied for any set of {µ(n)}Nn=1 if

N∑
n=1

m(n) ≤


⌊r⌋
k
− ⌊r⌋(1−α)

⌈k⌉ , if Y < r

p− ⌈r⌉(1−α)
⌈k⌉ , if Y > r

(7.149)

≤ α

⌊k⌋
(⌈r⌉ − β) (7.150)

is satisfied, which requires δ ≥ 1− ⌈k⌉
k(1−α)

(r − ⌊r⌋). This is the constraint stated in

Lemma 7.2, which is derived using (7.126). Therefore, 0 ≤ γ ≤ 1 is satisfied by any

given set of arbitrary heterogeneous storage constraints {µ(n)}Nn=1 when

1 > α ≥ ⌊k⌋
k

(⌈k⌉ − k) (7.151)

1 ≥ β ≥
[
1− ⌊k⌋

kα
(r − ⌊r⌋)

]+
(7.152)

1 ≥ δ ≥
[
1− ⌈k⌉

k(1− α)
(r − ⌊r⌋)

]+
. (7.153)

which completes the proof of Claim 1. ■

The above proof finalizes the storage allocations corresponding to coding pa-

rameters ⌊k⌋ and ⌈k⌉. Next, we find the storage allocations corresponding to each of

the two MDS codes relevant to each coding parameter, i.e., (⌊k⌋, ⌊r⌋) and (⌊k⌋, ⌈r⌉)

corresponding to ⌊k⌋ and (⌈k⌉, ⌊r⌋) and (⌈k⌉, ⌈r⌉) corresponding to ⌈k⌉. In other

words, we further divide µ̂(n) into µ̂1(n), µ̂2(n) and µ̄(n) into µ̄1(n), µ̄2(n) such that

µ̂1(n), µ̂2(n), µ̄1(n), µ̄2(n) satisfy (7.48)-(7.56). Note that the constraints (7.52)-
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(7.55) result in,

µ̂(n)− α(1− β)

⌊k⌋
≤ µ̂1(n) ≤

αβ

⌊k⌋
(7.154)

µ̂(n)− αβ

⌊k⌋
≤ µ̂2(n) ≤

α(1− β)

⌊k⌋
(7.155)

µ̄(n)− (1− α)(1− δ)

⌈k⌉
≤ µ̄1(n) ≤

(1− α)δ

⌈k⌉
(7.156)

µ̄(n)− (1− α)δ

⌈k⌉
≤ µ̄2(n) ≤

(1− α)(1− δ)

⌈k⌉
, (7.157)

for each n ∈ {1, . . . , N}. Based on (7.154)-(7.157), for each n ∈ {1, . . . , N} define

m̂(n) =

[
µ̂(n)− α(1− β)

⌊k⌋

]+
, ĥ(n) =

[
µ̂(n)− αβ

⌊k⌋

]+
(7.158)

m̄(n) =

[
µ̄(n)− (1− α)(1− δ)

⌈k⌉

]+
, h̄(n) =

[
µ̄(n)− (1− α)δ

⌈k⌉

]+
. (7.159)

Then, define the storage allocations in database n, n ∈ {1, . . . , N} corresponding to

MDS codes (⌊k⌋, ⌊r⌋), (⌊k⌋, ⌈r⌉), (⌈k⌉, ⌊r⌋) and (⌈k⌉, ⌈r⌉) as

µ̂1(n) =


µ̂(n)β, if β ∈ {0, 1}

m̂(n) + (µ̂(n)− m̂(n)− ĥ(n))γ̂, if β ∈ (0, 1)

(7.160)

µ̂2(n) =


µ̂(n)(1− β), if β ∈ {0, 1}

ĥ(n) + (µ̂(n)− m̂(n)− ĥ(n))(1− γ̂), if β ∈ (0, 1)

(7.161)

µ̄1(n) =


µ̄(n)δ, if δ ∈ {0, 1}

m̄(n) + (µ̄(n)− m̄(n)− h̄(n))γ̄, if δ ∈ (0, 1)

(7.162)
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µ̄2(n) =


µ̄(n)(1− δ), if δ ∈ {0, 1}

h̄(n) + (µ̄(n)− m̄(n)− h̄(n))(1− γ̄), if δ ∈ (0, 1)

, (7.163)

respectively, where,

γ̂ =

αβ
⌊k⌋⌊r⌋ −

∑N
n=1 m̂(n)

α
⌊k⌋(⌈r⌉ − β)−

∑N
n=1 m̂(n)−

∑N
n=1 ĥ(n)

(7.164)

γ̄ =

(1−α)δ
⌈k⌉ ⌊r⌋ −

∑N
n=1 m̄(n)

1−α
⌈k⌉ (⌈r⌉ − δ)−

∑N
n=1 m̄(n)−

∑N
n=1 h̄(n)

. (7.165)

Claim 2: For each n ∈ {1, . . . , N}, µ̂1(n) and µ̂2(n), in (7.160) and (7.161)

(same as (7.62) and (7.63)) satisfy (7.48)-(7.49) and (7.52)-(7.53) for those α, β, δ

stated in Lemma 7.2.

Proof: Case 1: β = 1: When β = 1, all parameters that are ⌊k⌋ coded are replicated

in only ⌊r⌋ databases since the fraction of submodels that are (⌊k⌋, ⌈r⌉) MDS coded

is α(1 − β) (see Table 7.1). Therefore, µ̂1(n) = µ̂(n) and µ̂2(n) = 0 for each

n ∈ {1, . . . , N}. Then,

N∑
n=1

µ̂1(n) =
N∑

n=1

µ̂(n) =
α

⌊k⌋
⌊r⌋, (7.166)

from (7.119), which proves (7.48). Moreover, µ̂2(n) = 0, ∀n proves (7.49). For each

n ∈ {1, . . . , N}, (7.121) results in µ̂1(n) = µ̂(n) ≤ α
⌊k⌋ , which proves (7.52), and

µ̂2(n) = 0, ∀n proves (7.53).

Case 2: β = 0: The proof contains identical steps to the proof of Case 1.
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Case 3: β ∈ (0, 1): Summing each µ̂1(n) term in (7.160) yields,

N∑
n=1

µ̂1(n) =
N∑

n=1

m̂(n) + γ̂(
α

⌊k⌋
(⌈r⌉ − β)−

N∑
n=1

m̂(n)−
N∑

n=1

ĥ(n)) =
αβ

⌈k⌉
⌊r⌋, (7.167)

from (7.164), which proves (7.48). A similar proof results in (7.49). Assuming that

0 ≤ γ ≤ 1, (7.160) can be upper bounded by,

µ̂1(n) ≤ µ̂(n)− ĥ(n) (7.168)

=


αβ
⌊k⌋ , if µ̂(n) ≥ αβ

⌊k⌋

µ̂(n), if µ(n) < αβ
⌊k⌋

(7.169)

≤ αβ

⌊k⌋
, (7.170)

which proves (7.52). Similarly, (7.53) is proven by considering µ̂2(n). Hence, it

remains to prove that 0 ≤ γ̂ ≤ 1. Let N and D denote the numerator and the

denominator of γ̂ in (7.164). Then, m̂(n) + ĥ(n) is given by,

m̂(n) + ĥ(n) =



µ̂(n)− α(1−β)
⌊k⌋ , if α(1−β)

⌊k⌋ ≤ µ̂(n) ≤ αβ
⌊k⌋

µ̂(n)− αβ
⌊k⌋ , if αβ

⌊k⌋ ≤ µ̂(n) ≤ α(1−β)
⌊k⌋

2µ̂(n)− α
⌊k⌋ , if αβ

⌊k⌋ ,
α(1−β)
⌈k⌉ ≤ µ̂(n)

0, if αβ
⌊k⌋ ,

α(1−β)
⌊k⌋ ≥ µ̂(n)

(7.171)

≤ µ̂(n), (7.172)
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since µ̂(n) ≤ α
⌊k⌋ , ∀n, from (7.121). Therefore, from (7.119),

N∑
n=1

m̂(n) +
N∑

n=1

ĥ(n) ≤ α

⌊k⌋
(⌈r⌉ − β), (7.173)

and the equality holds only if µ̂(n) = α
⌊k⌋ , ∀n, since the cases where β ∈ {0, 1} are

already considered. µ̂(n) = α
⌊k⌋ , ∀n specifies a set of homogeneous storage constraints

which can be directly stored using the optimum storage mechanism provided in

Section 7.5 for homogeneous storage constraints.9 Note that this case is not in the

scope of Claim 2. For all other cases, (7.173) is satisfied with strict inequality, which

proves D > 0. Therefore, it remains to prove that N ≤ D and N ≥ 0, to prove

0 ≤ γ̂ ≤ 1. Note that N ≤ D is equivalent to αβ
⌊k⌋⌊r⌋ ≤ α

⌊k⌋(⌈r⌉ − β) −
∑N

n=1 ĥ(n).

Let V be defined as,

V =
N∑

n=1

1{µ̂(n)≥ αβ
⌊k⌋}

. (7.174)

Therefore, from the definition of ĥ(n) in (7.158) and since µ̂(n) ≤ α
⌊k⌋ , ∀n from

9The purpose of this step in the scheme is to divide the α fraction of all submodels that are ⌊k⌋
coded into two MDS codes given by (⌊k⌋, ⌊r⌋) and (⌊k⌋, ⌈r⌉) such that all databases are filled and
the coded parameters are replicated in the respective number of databases. This is satisfied by the
scheme in Section 7.5 for homogeneous storage constraints as explained next. µ̂(n) corresponds
to the storage allocated in database n for all ⌊k⌋ coded parameters. Based on the discussion
in Section 7.5, any linear combination of CT (⌊k⌋, ⌊r⌋) and CT (⌊k⌋, ⌈r⌉) is achievable by storing
β and 1 − β fractions of all ⌊k⌋ coded parameters using (⌊k⌋, ⌊r⌋) and (⌊k⌋, ⌈r⌉) MDS codes,
respectively, for any β ∈ [0, 1], given that ⌊k⌋ ≤ ⌊r⌋− 4. Therefore, for the case where µ̂(n) = α

⌊k⌋ ,

∀n, the α fraction of all submodels that are ⌊k⌋ coded in Table 7.1 can be arbitrarily divided
(arbitrary β) and encoded with the two MDS codes (⌊k⌋, ⌊r⌋) and (⌊k⌋, ⌈r⌉) to achieve a total cost
of αβCT (⌊k⌋, ⌊r⌋) + α(1− β)CT (⌊k⌋, ⌈r⌉), while filling all databases.
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(7.121),

N∑
n=1

ĥ(n) ≤ V α

⌊k⌋
− V αβ

⌊k⌋
=

V α(1− β)

⌊k⌋
. (7.175)

Moreover, since the total available space in the V databases must not exceed∑N
n=1 µ̂(n) =

α
⌊k⌋(⌈r⌉ − β),

N∑
n=1

ĥ(n) +
V αβ

⌊k⌋
≤ α

⌊k⌋
(⌈r⌉ − β) =⇒

N∑
n=1

ĥ(n) ≤ α

⌊k⌋
(⌈r⌉ − β)− V αβ

⌊k⌋

(7.176)

must be satisfied. The upper bound on
∑N

n=1 ĥ(n) in (7.175) is tighter than that of

(7.176) when V ≤ ⌈r⌉ − β and vice versa. Therefore, the highest upper bound on∑N
n=1 ĥ(n) is given by,

N∑
n=1

ĥ(n) ≤


α(1−β)
⌊k⌋ ⌊r⌋, if V ≤ ⌈r⌉ − β

α
⌊k⌋(⌈r⌉ − β)− αβ

⌊k⌋⌈r⌉, if V > ⌈r⌉ − β

, (7.177)

since V ∈ Z+, which gives the tightest upper bound on α
⌊k⌋(⌈r⌉ − β) −

∑N
n=1 ĥ(n)

for a general set of {µ(n)}Nn=1 as,

α

⌊k⌋
(⌈r⌉ − β)−

N∑
n=1

ĥ(n) ≥


α
⌊k⌋(1− β + β⌊r⌋), if V ≤ ⌈r⌉ − β

αβ
⌊k⌋⌈r⌉, if V < ⌈r⌉ − β

(7.178)

≥ αβ

⌊k⌋
⌊r⌋, (7.179)
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which proves N ≤ D. To prove N ≥ 0, we need to show that
∑N

n=1 m̂(n) ≤ αβ
⌊k⌋⌊r⌋.

Let Y be defined as,

Y =
N∑

n=1

1{µ̂(n)≥α(1−β)
⌊k⌋ }. (7.180)

Then, similar to (7.175) and (7.176), we have

N∑
n=1

m̂(n) ≤ Y α

⌊k⌋
− Y α(1− β)

⌊k⌋
(7.181)

N∑
n=1

m̂(n) ≤ α

⌊k⌋
(⌈r⌉ − β)− Y α(1− β)

⌊k⌋
, (7.182)

and (7.181) provides a tighter upper bound on
∑N

n=1 m̂(n) compared to (7.182) when

Y ≤ ⌈r⌉ − β, and vice versa. Therefore, the highest upper bound on
∑N

n=1 m̂(n)

considering any arbitrary set of {µ(n)}Nn=1 is given by,

N∑
n=1

m̂(n) ≤


⌊r⌋αβ
⌊k⌋ , if Y ≤ ⌈r⌉ − β

α
⌊k⌋(⌈r⌉ − β)− ⌈r⌉α(1−β)

⌊k⌋ , if Y > ⌈r⌉ − β

(7.183)

=
αβ

⌊k⌋
⌊r⌋ (7.184)

since Y ∈ Z+, proving N ≥ 0, completing the proof of 0 ≤ γ̂ ≤ 1. This proves

Claim 2. ■

Claim 3: For each n ∈ {1, . . . , N}, µ̄1(n) and µ̄2(n), in (7.162) and (7.163)

(same as (7.64) and (7.65)) satisfy (7.50)-(7.51) and (7.54)-(7.55) for those α, β, δ

stated in Lemma 7.2.
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Proof: The proof of Claim 3 consists of the exact same steps as in the proof of

Claim 2. ■

7.7.3 Proof of Lemma 7.3

Proof: Here, we derive the optimum values of α, β, δ that minimize (7.57) while

satisfying (7.48)-(7.56) for the case where α < 1. Note that the constraints in

(7.151)-(7.153) and (7.126) must be satisfied by α, β, δ to guarantee (7.48)-(7.56).

The following optimization problem is solved to obtain the optimum fractions:

min C = αβCT (⌊k⌋, ⌊r⌋) + α(1− β)CT (⌊k⌋, ⌈r⌉) + (1− α)δCT (⌈k⌉, ⌊r⌋)

+ (1− α)(1− δ)CT (⌈k⌉, ⌈r⌉) (7.185)

s.t.
⌊k⌋
k

(⌈k⌉ − k) ≤ α < 1 (7.186)[
1− ⌊k⌋

kα
(r − ⌊r⌋)

]+
≤ β ≤ 1 (7.187)[

1− ⌈k⌉
k(1− α)

(r − ⌊r⌋)
]+

≤ δ ≤ 1 (7.188)

α

⌊k⌋
(⌈r⌉ − β) +

1− α

⌈k⌉
(⌈r⌉ − δ) = p. (7.189)

where the total cost is explicitly given by,

C =


4αβ⌊r⌋

⌊r⌋−⌊k⌋−1
+ α(1−β)(4⌈r⌉−2)

⌈r⌉−⌊k⌋−2
+ (1−α)δ(4⌊r⌋−2)

⌊r⌋−⌈k⌉−2
+ 4(1−α)(1−δ)⌈r⌉

⌈r⌉−⌈k⌉−1
, if ⌊r⌋ − ⌊k⌋ is odd

αβ(4⌊r⌋−2)
⌊r⌋−⌊k⌋−2

+ 4α(1−β)⌈r⌉
⌈r⌉−⌊k⌋−1

+ 4(1−α)δ⌊r⌋
⌊r⌋−⌈k⌉−1

+ (1−α)(1−δ)(4⌈r⌉−2)
⌈r⌉−⌈k⌉−2

, if ⌊r⌋ − ⌊k⌋ is even

.

(7.190)
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We consider two cases for the two different total costs, and obtain the KKT condi-

tions:

Case 1: Odd ⌊r⌋ − ⌊k⌋: The Lagrangian function for this case is given by,10

J = C + λ1(α− 1) + λ2

(
⌊k⌋
k

(⌈k⌉ − k)− α

)
+ λ3(β − 1) + λ4

(
1− ⌊k⌋

kα
(r − ⌊r⌋)− β

)
− λ5β + λ6(δ − 1) + λ7

(
1− ⌈k⌉

k(1− α)
(r − ⌊r⌋)− δ

)
− λ8δ

+ λ9

(
α

⌊k⌋
(⌈r⌉ − β) +

1− α

⌈k⌉
(⌈r⌉ − δ)− p

)
. (7.191)

The KKT conditions for this case are,

∂J

∂α
=

4β⌊r⌋
⌊r⌋ − ⌊k⌋ − 1

+
(1− β)(4⌈r⌉ − 2)

⌈r⌉ − ⌊k⌋ − 2
− δ(4⌊r⌋ − 2)

⌊r⌋ − ⌈k⌉ − 2
− 4(1− δ)⌈r⌉

⌈r⌉ − ⌈k⌉ − 1
+ λ1 − λ2

+ λ4
⌊k⌋
kα2

(r − ⌊r⌋)− λ7
⌈k⌉

k(1− α)2
(r − ⌊r⌋) + λ9

(
⌈r⌉ − β

⌊k⌋
− ⌈r⌉ − δ

⌈k⌉

)
= 0

(7.192)

∂J

∂β
=

4α⌊r⌋
⌊r⌋ − ⌊k⌋ − 1

− α(4⌈r⌉ − 2)

⌈r⌉ − ⌊k⌋ − 2
+ λ3 − λ4 − λ5 − λ9

α

⌊k⌋
= 0 (7.193)

∂J

∂δ
=

(1− α)(4⌊r⌋ − 2)

⌊r⌋ − ⌈k⌉ − 2
− 4(1− α)⌈r⌉

⌈r⌉ − ⌈k⌉ − 1
+ λ6 − λ7 − λ8 − λ9

(1− α)

⌈k⌉
= 0 (7.194)

λ1(α− 1) = 0, λ2

(
⌊k⌋
k

(⌈k⌉ − k)− α

)
= 0, λ3(β − 1) = 0, (7.195)

λ4

(
1− ⌊k⌋

kα
(r − ⌊r⌋)− β

)
= 0, λ5β = 0, λ6(δ − 1) = 0, (7.196)

λ7

(
1− ⌈k⌉

k(1− α)
(r − ⌊r⌋)− δ

)
= 0, λ8δ = 0 (7.197)

λi ≥ 0, i ∈ {1, . . . , 8}, (7.198)

10We treat the constraint α < 1 as α ≤ 1 in the Lagrangian, and avoid the case α = 1 in the
analysis.
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and (7.186)-(7.189). Solving the above KKT conditions results in the optimum

α, β, δ stated in (7.9)-(7.11) in Theorem 7.1, along with the minimum total cost.

Case 2: Even ⌊r⌋ − ⌊k⌋: The Lagrangian function for this case is the same

as (7.191), with the respective total cost C from (7.190). The KKT conditions for

this case are,

∂J

∂α
=

β(4⌊r⌋ − 2)

⌊r⌋ − ⌊k⌋ − 2
+

4(1− β)⌈r⌉
⌈r⌉ − ⌊k⌋ − 1

− 4δ⌊r⌋
⌊r⌋ − ⌈k⌉ − 1

− (1− δ)(4⌈r⌉ − 2)

⌈r⌉ − ⌈k⌉ − 2
+ λ1 − λ2

+ λ4
⌊k⌋
kα2

(r − ⌊r⌋)− λ7
⌈k⌉

k(1− α)2
(r − ⌊r⌋) + λ9

(
⌈r⌉ − β

⌊k⌋
− ⌈r⌉ − δ

⌈k⌉

)
= 0

(7.199)

∂J

∂β
=

α(4⌊r⌋ − 2)

⌊r⌋ − ⌊k⌋ − 2
− 4α⌈r⌉

⌈r⌉ − ⌊k⌋ − 1
+ λ3 − λ4 − λ5 − λ9

α

⌊k⌋
= 0 (7.200)

∂J

∂δ
=

4(1− α)⌊r⌋
⌊r⌋ − ⌈k⌉ − 1

− (1− α)(4⌈r⌉ − 2)

⌈r⌉ − ⌈k⌉ − 2
+ λ6 − λ7 − λ8 − λ9

(1− α)

⌈k⌉
= 0 (7.201)

λ1(α− 1) = 0, λ2

(
⌊k⌋
k

(⌈k⌉ − k)− α

)
= 0, λ3(β − 1) = 0, (7.202)

λ4

(
1− ⌊k⌋

kα
(r − ⌊r⌋)− β

)
= 0, λ5β = 0, λ6(δ − 1) = 0, (7.203)

λ7

(
1− ⌈k⌉

k(1− α)
(r − ⌊r⌋)− δ

)
= 0, λ8δ = 0 (7.204)

λi ≥ 0, i ∈ {1, . . . , 8}, (7.205)

and (7.186)-(7.189). Solving the above KKT conditions results in the optimum

α, β, δ stated in (7.12)-(7.14) in Theorem 7.1.

■
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CHAPTER 8

Deceptive Information Retrieval (DIR)

8.1 Introduction

In this chapter, we introduce the problem of deceptive information retrieval (DIR),

in which a user wishes to download a required file out of multiple independent

files stored in a system of databases while deceiving the databases by making the

databases’ predictions on the user-required file index incorrect with high probability.

Conceptually, DIR is an extension of private information retrieval (PIR). In PIR, a

user downloads a required file without revealing its index to any of the databases.

The metric of deception is defined as the probability of error of databases’ prediction

on the user-required file, minus the corresponding probability of error in PIR. The

problem is defined on time-sensitive data that keeps updating from time to time.

In the proposed scheme, the user deceives the databases by sending real queries

to download the required file at the time of the requirement and dummy queries

at multiple distinct future time instances to manipulate the probabilities of sending

each query for each file requirement, using which the databases’ make the predictions

on the user-required file index. The proposed DIR scheme is based on a capacity
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achieving probabilistic PIR scheme, and achieves rates lower than the PIR capacity

due to the additional downloads made to deceive the databases. When the required

level of deception is zero, the proposed scheme achieves the PIR capacity.

8.2 Problem Formulation and System Model

We consider N non-colluding databases storing K independent files, each consisting

of L uniformly distributed symbols from a finite field Fq, i.e.,

H(W1, . . . ,WK) =
K∑
i=1

H(Wi) = KL, (8.1)

where Wi is the ith file. The files keep updating from time to time, and a given

user wants to download an arbitrary file at arbitrary time instances Ti, i ∈ N. We

assume that all files are equally probable to be requested by the user.

The user sends queries at arbitrary time instances to download the required file

while deceiving the databases. We assume that the databases are only able to store

data (files, queries from users, time stamps of received queries etc.) corresponding

to the current time instance, and that the file updates at distinct time instances are

mutually independent. Therefore, the user’s file requirements and the queries sent

are independent of the stored files at all time instances, i.e.,

I(θ[t], Q[t]
n ;W

[t]
1:K) = 0, n ∈ {1, . . . , N}, ∀t, (8.2)

where θ[t] is the user’s file requirement, Q
[t]
n is the query sent by the user to database
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n, and W
[t]
1:K is the set of K files, all at time t.1 At any given time t when each

database n, n ∈ {1, . . . , N}, receives a query from the user, it sends the correspond-

ing answer as a function of the received query and the stored files, thus,

H(A[t]
n |Q[t]

n ,W
[t]
1:K) = 0, n ∈ {1, . . . , N}, (8.3)

where A
[t]
n is the answer received by the user from database n at time t. At each

time Ti, i ∈ N, the user must be able to correctly decode the required file, that is,

H(Wθ[Ti]|Q
[Ti]
1:N , A

[Ti]
1:N) = 0, i ∈ N. (8.4)

At any given time t when each database n, n ∈ {1, . . . , N}, receives a query from

the user, it makes a prediction on the user-required file index using the maximum

aposteriori probability (MAP) estimate as follows,

θ̂
[t]

Q̃
= argmax

i
P (θ[t] = i|Q[t]

n = Q̃), n ∈ {1, . . . , N}, (8.5)

where θ̂
[t]

Q̃
is the predicted user-required file index based on the realization of the

received query Q̃ at time t. The probability of error of each database’s prediction

is defined as,

Pe = E[P (θ̂
[Ti]

Q̃
̸= θ[Ti])], (8.6)

1The notation 1 : K indicates all integers from 1 to K.
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where the expectation is taken across all Q̃ and Ti. Note that in PIR, P (θ
[t]

Q̃
=

i|Q[t]
n = Q̃) = P (θ

[t]

Q̃
= j|Q[t]

n = Q̃) for all i, j ∈ {1, . . . , N}, any Q̃[t], which results in

PPIR
e = 1− 1

K
. Based on this information, we define the metric of deception as,

D = Pe −
(
1− 1

K

)
. (8.7)

For PIR, the amount of deception is D = 0, and for weakly PIR where some amount

of information is leaked on the user-required file index, the amount of deception takes

a negative value as the probability of error is smaller than 1− 1
K
. The goal of this

work is to generate schemes that meet a given level of deception D = d > 0, while

minimizing the normalized download cost defined as,

DL =
H(A1:N)

L
, (8.8)

where A1:N represents all the answers received by all N databases, corresponding

to a single file requirement of the user. The DIR rate is defined as the reciprocal of

DL.

8.3 Main Result

In this section we present the main result of this work, along with some remarks.

Consider a system of N non-colluding databases containing K identical files. A user

is able to retrieve any file k, while deceiving the databases by leaking information

about some other file k′ to the databases.
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Theorem 8.1 Consider a system of N non-colluding databases storing K indepen-

dent files. A required level of deception d, satisfying 0 ≤ d < (K−1)(N−1)
K(NK−N)

is achievable

at a DIR rate,

R =

 1 +
(

NK−N
N−1

)
eϵ

1 + (NK−1 − 1)eϵ
+

(
N

N − 1

)
(2u− u(u+ 1)α)

−1

, (8.9)

where

ϵ = ln

(
dKN + (K − 1)(N − 1)

dKN + (K − 1)(N − 1)− dKNK

)
(8.10)

α =
N + (NK −N)eϵ

(N − 1)e2ϵ + (NK −N)eϵ + 1
(8.11)

u = ⌊ 1
α
⌋ (8.12)

Remark 8.1 For given N and K, ϵ ≥ 0 is a one-to-one continuous function of d,

the required level of deception, and α ∈ (0, 1] is a one-to-one continuous function of

ϵ. For a given u ∈ Z+, there exists a range of values of α, specified by 1
u+1

< α ≤ 1
u
,

which corresponds to a unique range of values of ϵ, for which (7.3) is valid. Since

(0, 1] = ∪{α : 1
u+1

< α ≤ 1
u
, u ∈ Z+}, there exists an achievable rate (as well as an

achievable scheme) for any ϵ ≥ 0 as well as for any d in the range 0 ≤ d <

(K−1)(N−1)
K(NK−N)

.

Remark 8.2 When the user specified amount of deception is zero, i.e., d = 0, the

corresponding values of α and u are α = 1 and u = 1. The achievable rate for this

case is
1− 1

N

1− 1

NK
, which is equal to the PIR capacity.
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Figure 8.1: Achievable DIR rate for varying levels of deception and different number
of databases when K = 3.

Remark 8.3 The achievable DIR rate monotonically decreases with increasing amount

of deception d for any given N and K.

Remark 8.4 The variation of the achievable DIR rate with the level of deception

for different number of databases when the number of files fixed at K = 3 is shown

in Fig. 8.1. The achievable rate for different number of files when the number of

databases is fixed at N = 2 is shown in Fig. 8.2. For any given N and K, the rate

decreases exponentially when the level of deception is close to the respective upper

bound, i.e., d < (K−1)(N−1)
K(NK−N)

.
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Figure 8.2: Achievable DIR rate for varying levels of deception and different number
of files when N = 2.

8.4 DIR Scheme

The DIR scheme introduced in this section is designed for a system of N non-

colluding databases containing K independent files, with a pre-determined amount

of deception d > 0 required. For each file requirement at time Ti, i ∈ N, the user

chooses a set of M + 1 queries to be sent to database n, n ∈ {1, . . . , N}, at time

Ti as well as at future time instances ti,j, j ∈ {1, . . . ,M}, such that each ti,j > Ti.

The query sent at time Ti is used to download the required file, while the rest of the

M queries are sent to deceive the databases. The queries sent at times Ti, i ∈ N

and ti,j, j ∈ {1, . . . ,M}, i ∈ N are known as real and dummy queries, respectively.

The binary random variable R is used to specify whether a query sent by the user

is real or dummy, i.e., R = 1 corresponds to a real query sent at time Ti, and
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R = 0 corresponds to a dummy query sent at time ti,j. Next, we define another

classification of queries used in the proposed scheme.

Definition 8.1 (ϵ-deceptive query) An ϵ-deceptive query Q̃ with respect to file k

is defined as a query that always satisfies,

P (Qn = Q̃|θ = k,R = 1)

P (Qn = Q̃|θ = ℓ, R = 1)
= e−ϵ,

P (θ = k|Qn = Q̃)

P (θ = ℓ|Qn = Q̃)
= eϵ, ∀ℓ ∈ {1, . . . , K}, ℓ ̸= k,

(8.13)

for some ϵ > 0, where Qn and θ are the random variables representing a query

sent to database n, n ∈ {1, . . . , N}, and the user-required file index. An equivalent

representation of (8.13) is given by,

P (R = 1|θ = ℓ) + P (Qn=Q̃|θ=ℓ,R=0)

P (Qn=Q̃|θ=ℓ,R=1)
P (R = 0|θ = ℓ)

P (R = 1|θ = k) + P (Qn=Q̃|θ=k,R=0)

P (Qn=Q̃|θ=k,R=1)
P (R = 0|θ = k)

= e−2ϵ, ∀ℓ ∈ {1, . . . , K}, ℓ ̸= k.

(8.14)

Definition 8.2 (PIR query) A query Q̃ that satisfies (8.13) with ϵ = 0 for all

k ∈ {1, . . . , K}, i.e., a 0-deceptive query, is known as a PIR query.

Remark 8.5 The intuition behind the definition of an ϵ-deceptive query with respect

to message k in Definition 8.1 is as follows. Note that the second equation in (8.13)

fixes the databases’ prediction on the user’s requirement as Wk for the query Q̃. This

is because the aposteriori probability corresponding to message k, when Q̃ is received

by the databases, is greater than that of any other message ℓ, ℓ ̸= k. However, the

first equation in (8.13), which is satisfied at the same time, ensures that the user
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sends the query Q̃ with the least probability when the user requires to download mes-

sage k, compared to the probabilities of sending Q̃ for other message requirements.

In other words, since we assume equal priors, the query Q̃ is mostly sent when the

user requires to download Wℓ for ℓ ̸= k, and is rarely sent to download Wk, while the

databases’ prediction on the user-required message upon receiving query Q̃ is fixed

at Wk, which is incorrect with high probability, hence, the deception.

At a given time t, there exists a set of queries consisting of both deceptive and

PIR queries, sent to the N databases. Database n, n ∈ {1, . . . , N}, is aware of the

probability of receiving each query, for each file requirement, i.e., P (Qn = Q̃|θ = k),

for k ∈ {1, . . . , K}, Q̃ ∈ Q, where Q is the set of all queries. However, the databases

are unaware of being deceived, and are unable to determine whether the received

query Q̃ is real or dummy or deceptive or PIR. The proposed scheme generates a

list of real and dummy queries for a given N and K along with the probabilities of

using them as ϵ-deceptive and PIR queries, based on the required level of deception

d. The scheme also characterizes the optimum number of dummy queries M to be

sent to the databases for each file requirement, to minimize the download cost. As an

illustration of the proposed scheme, consider the following representative examples.

8.4.1 Example 1: Two Databases and Two Files, N = K = 2

In this example, we present how the proposed DIR scheme is applied in a system of

two databases containing two files each. In the proposed scheme, the user generates

M + 1 queries for any given file-requirement which consists of one real query and
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M dummy queries. The user sends the real query at the time of the requirement

Ti, and the rest of the M dummy queries at M different future time instances

ti,j. Tables 8.1 and 8.2 give possible pairs of real queries that are sent to the two

databases to retrieve W1 and W2, respectively, at time Ti, i ∈ N. The probability

of using each pair of queries is indicated in the first columns of Tables 8.1 and 8.2.

Note that the correctness condition in (8.4) is satisfied at each time Ti as each row

of Tables 8.1 and 8.2 decodes files W1 and W2, respectively, with no error.

P (Q|θ = 1, R = 1) DB 1 DB 2
p W1 ϕ
p ϕ W1

p′ W2 W1 +W2

p′ W1 +W2 W2

Table 8.1: Real query table – W1.

P (Q|θ = 2, R = 1) DB 1 DB 2
p W2 ϕ
p ϕ W2

p′ W1 W1 +W2

p′ W1 +W2 W1

Table 8.2: Real query table – W2.

P (Q|θ = 1, R = 0) DB 1 DB 2
1 W1 W1

Table 8.3: Dummy query table – W1.

P (Q|θ = 2, R = 0) DB 1 DB 2
1 W2 W2

Table 8.4: Dummy query table – W2.

The dummy queries sent to each database at time ti,j are given in Tables 8.3

and 8.4. The purpose of the dummy queries sent at future time instances is to

deceive the databases by manipulating the aposteriori probabilities, which impact

their predictions. For example, if the user wants to download W1 at time Ti, the

user selects one of the four query options in Table 8.1 based on the probabilities

in column 1,2 and sends the corresponding queries to database 1 and 2 at time

Ti. Based on the information in Table 8.3, the user sends the query W1 to both

databases at M distinct future time instances ti,j, j ∈ {1, . . . ,M}.
2The values of p and p′ are derived later in this section.
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Based on the information in Tables 8.1-8.4, when the user-required file is W1,

the probability of each query being received by database n, n ∈ {1, 2}, at an arbi-

trary time instance t is calculated as follows. Let P (R = 1|θ = i) = α for i ∈ {1, 2}.3

Then,

P (Qn = W1|θ = 1) = P (Qn = W1|θ = 1, R = 1)P (R = 1|θ = 1)

+ P (Qn = W1|θ = 1, R = 0)P (R = 0|θ = 1) (8.15)

= pα + 1− α (8.16)

P (Qn = W2|θ = 1) = P (Qn = W2|θ = 1, R = 1)P (R = 1|θ = 1)

+ P (Qn = W2|θ = 1, R = 0)P (R = 0|θ = 1) (8.17)

= p′α (8.18)

P (Qn = W1 +W2|θ = 1) = P (Qn = W1 +W2|θ = 1, R = 1)P (R = 1|θ = 1)

+ P (Qn = W1 +W2|θ = 1, R = 0)P (R = 0|θ = 1)

(8.19)

= p′α (8.20)

P (Qn = ϕ|θ = 1) = P (Qn = ϕ|θ = 1, R = 1)P (R = 1|θ = 1)

+ P (Qn = ϕ|θ = 1, R = 0)P (R = 0|θ = 1) (8.21)

= pα (8.22)

3The intuition behind P (R = 1|θ = i) is the probability of a query received by any database
being real when the user-required file index is i. For a fixed M , P (R = 1|θ = i) = 1

M+1 .
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Thus, writing these probabilities compactly, we have,

P (Qn = W1|θ = 1) = pα + 1− α (8.23)

P (Qn = W2|θ = 1) = p′α (8.24)

P (Qn = W1 +W2|θ = 1) = p′α (8.25)

P (Qn = ϕ|θ = 1) = pα. (8.26)

Similarly, when the user-required file is W2, the corresponding probabilities are,

P (Qn = W1|θ = 2) = p′α (8.27)

P (Qn = W2|θ = 2) = pα + 1− α (8.28)

P (Qn = W1 +W2|θ = 2) = p′α (8.29)

P (Qn = ϕ|θ = 2) = pα. (8.30)

These queries and the corresponding probabilities of sending them to each

database for each message requirement are known to the databases. However, the de-

composition of these probabilities based on whether the query is real or dummy, i.e.,

Tables 8.1-8.4, is not known by the databases. When database n, n ∈ {1, . . . , N},

receives a query Q̃ at time t, it calculates the aposteriori probability distribution

of the user-required file index, to predict the user’s requirement using (8.5). The

aposteriori probabilities corresponding to the four queries received by database n,
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n ∈ {1, 2}, are calculated as follows,

P (θ = i|Qn = Q̃) =
P (Qn = Q̃|θ = i)P (θ = i)

P (Qn = Q̃)
. (8.31)

Then, the explicit a posteriori probabilities are given by,

P (θ = 1|Qn = W1) =
1
2
(pα + 1− α)

P (Qn = W1)
(8.32)

P (θ = 2|Qn = W1) =
1
2
p′α

P (Qn = W1)
(8.33)

P (θ = 1|Qn = W2) =
1
2
p′α

P (Qn = W2)
(8.34)

P (θ = 2|Qn = W2) =
1
2
(pα + 1− α)

P (Qn = W2)
(8.35)

P (θ = 1|Qn = W1 +W2) =
1
2
p′α

P (Qn = W1 +W2)
(8.36)

P (θ = 2|Qn = W1 +W2) =
1
2
p′α

P (Qn = W1 +W2)
(8.37)

P (θ = 1|Qn = ϕ) =
1
2
pα

P (Qn = ϕ)
(8.38)

P (θ = 2|Qn = ϕ) =
1
2
pα

P (Qn = ϕ)
. (8.39)

While queries ϕ and W1 + W2 are PIR queries as stated in Definition 8.2,

queries W1 and W2 are ϵ-deceptive with respect to file indices 1 and 2, respectively,

for an ϵ that depends on the required amount of deception d. The values of p and

p′ in Tables 8.1-8.4 are calculated based on the requirements in Definition 8.1 as

follows. It is straightforward to see that p′ = peϵ follows from the first part of (8.13)

for each query Q̃ = W1 and Q̃ = W2, which also gives p = 1
2(1+eϵ)

. The second part

of (8.13) (as well as (8.14)) results in α = 2
1+eϵ

for both ϵ-deceptive queries W1 and
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W2. Based on the aposteriori probabilities (8.32)-(8.39) calculated by the databases

using the information in (8.23)-(8.30), each database predicts the user’s requirement

at each time it receives a query from the user. The predictions corresponding to

each query received by database n, n = 1, 2, which are computed using (8.5), are

shown in Table 8.5.

query Q̃ P (θ̂Q̃ = 1) P (θ̂Q̃ = 2)

W1 1 0
W2 0 1

W1 +W2
1
2

1
2

ϕ 1
2

1
2

Table 8.5: Probabilities of each database predicting the user-required file in Exam-
ple 1.

Based on this information, when a database receives query Q = W1, it always

decides that the requested message is W1, and when it receives query Q = W2,

it always decides that the requested message is W2. For queries Q = ϕ and Q =

W1 + W2, the databases flip a coin to choose either W1 or W2 as the requested

message.

As the queries are symmetric across all databases, the probability of error

corresponding to some query Q̃ received by database n at time Ti is given by,

P (θ̂
[Ti]

Q̃
̸= θ[Ti])

= P (θ[Ti] = 1, θ̂
[Ti]

Q̃
= 2|Q[Ti]

n = Q̃) + P (θ[Ti] = 2, θ̂
[Ti]

Q̃
= 1|Q[Ti]

n = Q̃) (8.40)

=
1

P (Q
[Ti]
n = Q̃)

(
P (θ̂

[Ti]

Q̃
= 2|θ[Ti] = 1, Q[Ti]

n = Q̃)P (Q[Ti]
n = Q̃|θ[Ti] = 1)P (θ[Ti] = 1)
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+P (θ̂
[Ti]

Q̃
= 1|θ[Ti] = 2, Q[Ti]

n = Q̃)P (Q[Ti]
n = Q̃|θ[Ti] = 2)P (θ[Ti] = 2)

)
(8.41)

=
1

P (Q
[Ti]
n = Q̃)

(
P (θ̂

[Ti]

Q̃
= 2|Q[Ti]

n = Q̃)P (Q[Ti]
n = Q̃|θ[Ti] = 1)P (θ[Ti] = 1)

+P (θ̂Q̃ = 1|Q[Ti]
n = Q̃)P (Q[Ti]

n = Q̃|θ[Ti] = 2)P (θ[Ti] = 2)
)
, (8.42)

as the predictions only depend on the received queries. The explicit probabilities

corresponding to the four queries are,4

P (θ̂
[Ti]
W1

̸= θ[Ti]) =
1

P (Q
[Ti]
n = W1)

eϵ

4(1 + eϵ)
(8.43)

P (θ̂
[Ti]
W2

̸= θ[Ti]) =
1

P (Q
[Ti]
n = W2)

eϵ

4(1 + eϵ)
(8.44)

P (θ̂
[Ti]
W1+W2

̸= θ[Ti]) =
1

P (Q
[Ti]
n = W1 +W2)

eϵ

4(1 + eϵ)
(8.45)

P (θ̂
[Ti]
ϕ ̸= θ[Ti]) =

1

P (Q
[Ti]
n = ϕ)

1

4(1 + eϵ)
. (8.46)

As the same scheme is used for all user-requirements at all time instances, the

probability of error of each database’s prediction for this example is calculated using

(8.6) as,

Pe =
∑
Q̃∈Q

P (Q[Ti]
n = Q̃)P (θ̂

[Ti]

Q̃
̸= θ[Ti]) (8.47)

=
3eϵ + 1

4(1 + eϵ)
(8.48)

4Note that P (Qn = Q̃|θ[Ti] = i) implies P (Qn = Q̃|θ = i, R = 1) as only real queries are sent
at time Ti.
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where Q = {W1,W2,W1 +W2, ϕ}, which results in a deception of D = 3eϵ+1
4(1+eϵ)

− 1
2
=

eϵ−1
4(1+eϵ)

. Therefore, for a required amount of deception d < 1
4
, the value of ϵ is chosen

as ϵ = ln
(
4d+1
1−4d

)
.

The download cost of this scheme is computed as follows. As the scheme is

symmetric across all file retrievals, and since the apriori probability distribution of

the files is uniform, without loss of generality, we can calculate the download cost

of retrieving W1. The download cost of retrieving W1 for a user specified amount of

deception d is given by,

DL =
1

L

(
2Lp+ 2(2L)peϵ + 2L

∞∑
m=0

pmm

)
(8.49)

=
1 + 2eϵ

1 + eϵ
+ 2E[M ] (8.50)

where pm is the probability of sending m dummy queries per each file requirement.

To minimize the download cost, we need to find the probability mass function (PMF)

of M which minimizes E[M ] such that P (R = 1|θ = i) = α = 2
1+eϵ

is satisfied for

any i. Note that for any i, P (R = 1|θ = i) can be written as,

P (R = 1|θ = i) = α =
∞∑

m=0

pm
1

m+ 1
= E

[
1

M + 1

]
, (8.51)

where M is the random variable representing the number of dummy queries sent to

each database per file requirement. Thus, the following optimization problem needs
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to be solved, for a given ϵ, that is a function of the given value of d,

min E[M ]

s.t. E
[

1

M + 1

]
=

2

1 + eϵ
= α. (8.52)

The solution to this problem is given in Lemma 8.1, and the resulting minimum

download cost is given by,

DL =
1 + 2eϵ

1 + eϵ
+ 4u− 2u(u+ 1)α, (8.53)

where u = ⌊ 1
α
⌋. When d = 0, it follows that ϵ = 0 and u = 1, and the achievable

rate is 2
3
, which is the same as the PIR capacity for N = 2 and K = 2.

8.4.2 Example 2: Three Databases and Three Files, N = K = 3

Similar to the previous example, the user sends real queries at time Ti and dummy

queries at times ti,j, j ∈ {1, . . . ,M}, for each i ∈ N, based on the probabilities

shown in Tables 8.7-8.12. The notation W j
i in these tables correspond to the jth

segment of Wi, where each file Wi is divided into N − 1 = 2 segments of equal

size. Database n, n ∈ {1, . . . , N}, only knows the overall probabilities of receiving

each query for each file requirement of the user shown in Table 8.6. These overall

probabilities which are calculated using,

P (Qn = Q̃|θ = k) = P (Qn = Q̃|θ = k,R = 1)P (R = 1|θ = k)
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+ P (Qn = Q̃|θ = k,R = 0)P (R = 0|θ = k), k ∈ {1, . . . , K}

(8.54)

where P (R = 1|θ = i) = α for any i = 1, 2, 3, are the same for each database as the

scheme is symmetric across all databases.

query Q̃ P (Qn = Q̃|θ = 1) P (Qn = Q̃|θ = 2) P (Qn = Q̃|θ = 3)
ϕ pα pα pα
W 1

1 pα + 1
2
(1− α) p′α p′α

W 2
1 pα + 1

2
(1− α) p′α p′α

W 1
2 p′α pα + 1

2
(1− α) p′α

W 2
2 p′α pα + 1

2
(1− α) p′α

W 1
3 p′α p′α pα + 1

2
(1− α)

W 2
3 p′α p′α pα + 1

2
(1− α)

other queries p′α p′α p′α

Table 8.6: Queries received by database n, n ∈ {1, . . . , N}, at a given time t for
each file requirement, and the corresponding probabilities.

The entry “other queries” in Table 8.6 includes all queries that have sums of

two or three elements. Based on this available information, each database calcu-

lates the aposteriori probability of the user-required file index conditioned on each

received query Q̃ using (8.31). Each query of the form W j
k is an ϵ-deceptive query

with respect to file k, where ϵ is a function of the required amount of deception,

which is derived towards the end of this section. All other queries including the

null query and all sums of two or three elements are PIR queries. As all ϵ-deceptive

queries must satisfy (8.13), the value of p′ is given by p′ = peϵ, which results in

p = 1
3(1+8eϵ)

, based on the same arguments used in the previous example. Using

(8.13) and (8.31) for any given deceptive query, the value of α is calculated as fol-

lows. Note that for a query of the form W j
k , for each database n, n ∈ {1, . . . , N},
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using P (θ = k) = 1
K
, we have

P (θ = k|Qn = W j
k )

P (θ = ℓ|Q = W j
k )

=
P (Qn = W j

k |θ = k)

P (Qn = W j
k |θ = ℓ)

=
pα + 1

2
(1− α)

p′α
, (8.55)

The value of α is computed as α = 1
2p(e2ϵ−1)+1

, using (8.55) and (8.13) by solving

pα+ 1
2
(1−α)

p′α
= eϵ.

P (Q|θ = 1, R = 1) Database 1 Database 2 Database 3
p W 1

1 W 2
1 ϕ

p W 2
1 ϕ W 1

1

p ϕ W 1
1 W 2

1

p′ W 1
1 +W 1

2 W 2
1 +W 1

2 W 1
2

p′ W 2
1 +W 1

2 W 1
2 W 1

1 +W 1
2

p′ W 1
2 W 1

1 +W 1
2 W 2

1 +W 1
2

p′ W 1
1 +W 2

2 W 2
1 +W 2

2 W 2
2

p′ W 2
1 +W 2

2 W 2
2 W 1

1 +W 2
2

p′ W 2
2 W 1

1 +W 2
2 W 2

1 +W 2
2

p′ W 1
1 +W 1

3 W 2
1 +W 1

3 W 1
3

p′ W 2
1 +W 1

3 W 1
3 W 1

1 +W 1
3

p′ W 1
3 W 1

1 +W 1
3 W 2

1 +W 1
3

p′ W 1
1 +W 2

3 W 2
1 +W 2

3 W 2
3

p′ W 2
1 +W 2

3 W 2
3 W 1

1 +W 2
3

p′ W 2
3 W 1

1 +W 2
3 W 2

1 +W 2
3

p′ W 1
1 +W 1

2 +W 1
3 W 2

1 +W 1
2 +W 1

3 W 1
2 +W 1

3

p′ W 2
1 +W 1

2 +W 1
3 W 1

2 +W 1
3 W 1

1 +W 1
2 +W 1

3

p′ W 1
2 +W 1

3 W 1
1 +W 1

2 +W 1
3 W 2

1 +W 1
2 +W 1

3

p′ W 1
1 +W 2

2 +W 1
3 W 2

1 +W 2
2 +W 1

3 W 2
2 +W 1

3

p′ W 2
1 +W 2

2 +W 1
3 W 2

2 +W 1
3 W 1

1 +W 2
2 +W 1

3

p′ W 2
2 +W 1

3 W 1
1 +W 2

2 +W 1
3 W 2

1 +W 2
2 +W 1

3

p′ W 1
1 +W 1

2 +W 2
3 W 2

1 +W 1
2 +W 2

3 W 1
2 +W 2

3

p′ W 2
1 +W 1

2 +W 2
3 W 1

2 +W 2
3 W 1

1 +W 1
2 +W 2

3

p′ W 1
2 +W 2

3 W 1
1 +W 1

2 +W 2
3 W 2

1 +W 1
2 +W 2

3

p′ W 1
1 +W 2

2 +W 2
3 W 2

1 +W 2
2 +W 2

3 W 2
2 +W 2

3

p′ W 2
1 +W 2

2 +W 2
3 W 2

2 +W 2
3 W 1

1 +W 2
2 +W 2

3

p′ W 2
2 +W 2

3 W 1
1 +W 2

2 +W 2
3 W 2

1 +W 2
2 +W 2

3

Table 8.7: Real query table – W1.

Assume that the user wants to download W2 at some time Ti. Then, at time
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P (Q|θ = 1, R = 0) DB 1 P (Q|θ = 1, R = 0) DB 2 P (Q|θ = 1, R = 0) DB 3
1
2

W 1
1

1
2

W 1
1

1
2

W 1
1

1
2

W 2
1

1
2

W 2
1

1
2

W 2
1

Table 8.8: Dummy query table – W1.

Ti, the user picks a row of queries from Table 8.9 based on the probabilities in the

first column, and sends them to each of the three databases. Note that correctness

is satisfied as it is possible to decode W2 from any row of Table 8.9. Next, the user

picks M future time instances ti,j, j ∈ {1, . . . ,M}, and at each time ti,j the user

independently and randomly picks a row from Table 8.10 and sends the queries to

the databases. This completes the scheme, and the value of M that minimizes the

download cost is calculated at the end of this example.

The databases make predictions with the received query at each time t, based

on the information available in Table 8.6. As the aposteriori probabilities P (θ =

k|Qn = Q̃) are proportional to the corresponding probabilities given by P (Qn =

Q̃|θ = k) from (8.31), the databases’ predictions (using (8.5)) and the corresponding

probabilities are shown in Table 8.13.

The probability of error for each type of query is calculated as follows. First,

consider the ϵ-deceptive queries with respect to file k, given by W j
k , j ∈ {1, 2}.

For these queries, the error probability from the perspective of database n, n ∈

{1, . . . , N}, is given by,

P (θ̂
[Ti]

W j
k

̸= θ[Ti]) = P (θ[Ti] ̸= k|Q[Ti]
n = W j

k ) (8.56)

=
3∑

ℓ=1,ℓ ̸=k

P (θ[Ti] = ℓ|Q[Ti]
n = W j

k ) (8.57)
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P (Q|θ = 2, R = 1) Database 1 Database 2 Database 3
p W 1

2 W 2
2 ϕ

p W 2
2 ϕ W 1

2

p ϕ W 1
2 W 2

2

p′ W 1
1 +W 1

2 W 1
1 +W 2

2 W 1
1

p′ W 1
1 +W 2

2 W 1
1 W 1

1 +W 1
2

p′ W 1
1 W 1

1 +W 1
2 W 1

1 +W 2
2

p′ W 2
1 +W 1

2 W 2
1 +W 2

2 W 2
1

p′ W 2
1 +W 2

2 W 2
1 W 2

1 +W 1
2

p′ W 2
1 W 2

1 +W 1
2 W 2

1 +W 2
2

p′ W 1
2 +W 1

3 W 2
2 +W 1

3 W 1
3

p′ W 2
2 +W 1

3 W 1
3 W 1

2 +W 1
3

p′ W 1
3 W 1

2 +W 1
3 W 2

2 +W 1
3

p′ W 1
2 +W 2

3 W 2
2 +W 2

3 W 2
3

p′ W 2
2 +W 2

3 W 2
3 W 1

2 +W 2
3

p′ W 2
3 W 1

2 +W 2
3 W 2

2 +W 2
3

p′ W 1
1 +W 1

2 +W 1
3 W 1

1 +W 2
2 +W 1

3 W 1
1 +W 1

3

p′ W 1
1 +W 2

2 +W 1
3 W 1

1 +W 1
3 W 1

1 +W 1
2 +W 1

3

p′ W 1
1 +W 1

3 W 1
1 +W 1

2 +W 1
3 W 1

1 +W 2
2 +W 1

3

p′ W 1
1 +W 1

2 +W 2
3 W 1

1 +W 2
2 +W 2

3 W 1
1 +W 2

3

p′ W 1
1 +W 2

2 +W 2
3 W 1

1 +W 2
3 W 1

1 +W 1
2 +W 2

3

p′ W 1
1 +W 2

3 W 1
1 +W 1

2 +W 2
3 W 1

1 +W 2
2 +W 2

3

p′ W 2
1 +W 1

2 +W 1
3 W 2

1 +W 2
2 +W 1

3 W 2
1 +W 1

3

p′ W 2
1 +W 2

2 +W 1
3 W 2

1 +W 1
3 W 2

1 +W 1
2 +W 1

3

p′ W 2
1 +W 1

3 W 2
1 +W 1

2 +W 1
3 W 2

1 +W 2
2 +W 1

3

p′ W 2
1 +W 1

2 +W 2
3 W 2

1 +W 2
2 +W 2

3 W 2
1 +W 2

3

p′ W 2
1 +W 2

2 +W 2
3 W 2

1 +W 2
3 W 2

1 +W 1
2 +W 2

3

p′ W 2
1 +W 2

3 W 2
1 +W 1

2 +W 2
3 W 2

1 +W 2
2 +W 2

3

Table 8.9: Real query table – W2.

P (Q|θ = 2, R = 0) DB 1 P (Q|θ = 2, R = 0) DB 2 P (Q|θ = 2, R = 0) DB 3
1
2

W 1
2

1
2

W 1
2

1
2

W 1
2

1
2

W 2
2

1
2

W 2
2

1
2

W 2
2

Table 8.10: Dummy query table – W2.

=

∑3
ℓ=1,ℓ̸=k P (Q

[Ti]
n = W j

k |θ[Ti] = ℓ)P (θ[Ti] = ℓ)

P (Q
[Ti]
n = W j

k )
(8.58)

=
1

P (Q
[Ti]
n = W j

k )

2

3
peϵ, (8.59)
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P (Q|θ = 3, R = 1) Database 1 Database 2 Database 3
p W 1

3 W 2
3 ϕ

p W 2
3 ϕ W 1

3

p ϕ W 1
3 W 2

3

p′ W 1
1 +W 1

3 W 1
1 +W 2

3 W 1
1

p′ W 1
1 +W 2

3 W 1
1 W 1

1 +W 1
3

p′ W 1
1 W 1

1 +W 1
3 W 1

1 +W 2
3

p′ W 2
1 +W 1

3 W 2
1 +W 2

3 W 2
1

p′ W 2
1 +W 2

3 W 2
1 W 2

1 +W 2
3

p′ W 2
1 W 2

1 +W 2
3 W 2

1 +W 1
3

p′ W 1
2 +W 1

3 W 1
2 +W 2

3 W 1
2

p′ W 1
2 +W 2

3 W 1
3 W 1

2 +W 1
3

p′ W 1
2 W 1

2 +W 1
3 W 1

2 +W 2
3

p′ W 2
2 +W 1

3 W 2
2 +W 2

3 W 2
2

p′ W 2
2 +W 2

3 W 2
2 W 2

2 +W 1
3

p′ W 2
2 W 2

2 +W 1
3 W 2

2 +W 2
3

p′ W 1
1 +W 1

2 +W 1
3 W 1

1 +W 1
2 +W 2

3 W 1
1 +W 1

2

p′ W 1
1 +W 1

2 +W 2
3 W 1

1 +W 1
2 W 1

1 +W 1
2 +W 1

3

p′ W 1
1 +W 1

2 W 1
1 +W 1

2 +W 1
3 W 1

1 +W 1
2 +W 2

3

p′ W 2
1 +W 1

2 +W 1
3 W 2

1 +W 1
2 +W 2

3 W 2
1 +W 1

2

p′ W 2
1 +W 1

2 +W 2
3 W 2

1 +W 1
2 W 2

1 +W 1
2 +W 1

3

p′ W 2
1 +W 1

2 W 2
1 +W 1

2 +W 1
3 W 2

1 +W 1
2 +W 2

3

p′ W 1
1 +W 2

2 +W 1
3 W 1

1 +W 2
2 +W 2

3 W 1
1 +W 2

2

p′ W 1
1 +W 2

2 +W 2
3 W 1

1 +W 2
2 W 1

1 +W 2
2 +W 1

3

p′ W 1
1 +W 2

2 W 1
1 +W 2

2 +W 1
3 W 1

1 +W 2
2 +W 2

3

p′ W 2
1 +W 2

2 +W 1
3 W 2

1 +W 2
2 +W 2

3 W 2
1 +W 2

2

p′ W 2
1 +W 2

2 +W 2
3 W 2

1 +W 2
2 W 2

1 +W 2
2 +W 1

3

p′ W 2
1 +W 2

2 W 2
1 +W 2

2 +W 1
3 W 2

1 +W 2
2 +W 2

3

Table 8.11: Real query table – W3.

P (Q|θ = 3, R = 0) DB 1 P (Q|θ = 3, R = 0) DB 2 P (Q|θ = 3, R = 0) DB 3
1
2

W 1
3

1
2

W 1
3

1
2

W 1
3

1
2

W 2
3

1
2

W 2
3

1
2

W 2
3

Table 8.12: Dummy query table – W3.

where (8.56) follows from the fact that the databases’ prediction on a received query

of the form W j
k is file k with probability 1 from Table 8.13, and the probabilities in

(8.59) are obtained from real query tables as they correspond to queries sent at time

Ti. Next, the probability of error corresponding to each of the the other queries,
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query Q̃ P (θ̂Q̃ = 1) P (θ̂Q̃ = 2) P (θ̂Q̃ = 3)

W 1
1 1 0 0

W 2
1 1 0 0

W 1
2 0 1 0

W 2
2 0 1 0

W 1
3 0 0 1

W 2
3 0 0 1

other queries 1
3

1
3

1
3

Table 8.13: Probabilities of each database predicting the user-required file in Ex-
ample 2.

i.e., PIR queries that include the null query and sums of two or three elements, is

given by,

P (θ̂
[Ti]

Q̃
̸= θ[Ti])

= P (θ̂[Ti] ̸= θ[Ti]|Q[Ti]
n = Q̃) (8.60)

=

∑3
j=1

∑3
m=1,m ̸=j P (θ̂[Ti] = m, θ[Ti] = j,Q

[Ti]
n = Q̃)

P (Q
[Ti]
n = Q̃)

(8.61)

=

∑3
j=1

∑3
m=1,m ̸=j P (θ̂[Ti]=m|θ[Ti]=j,Q

[Ti]
n =Q̃)P (Q

[Ti]
n =Q̃|θ[Ti]=j)P (θ[Ti]=j)

P (Q
[Ti]
n =Q̃)

(8.62)

=
1

P (Q
[Ti]
n =Q̃)


2p
3
, if Q̃ = ϕ

2peϵ

3
, if Q̃ if of the form

∑ℓ
s=1W

js
ks

for ℓ ∈ {2, 3}

(8.63)

where (8.63) follows from the fact that θ̂[Ti] is conditionally independent of θ[Ti]

given Qn, from (8.5). The probability of error at each time Ti, i ∈ N, is the same,

as the scheme is identical at each Ti, and across all file requirements. Therefore, the

322



probability of error of each database’s prediction, using (8.6) is given by,

Pe = P (θ̂[Ti] ̸= θ[Ti]) (8.64)

=
∑
Q̃∈Q

P (Qn = Q̃)P (θ̂
[Ti]

Q̃
̸= θ[Ti]) (8.65)

=
3∑

k=1

2∑
j=1

P (Qn = W j
k )

1

P (Q
[Ti]
n = W j

k )

2

3
peϵ + P (Qn = ϕ)

1

P (Qn = ϕ)

2p

3

+ 20P (Qn = Q̂)
1

P (Qn = Q̂)

2peϵ

3
(8.66)

= 4peϵ +
2p

3
+

40peϵ

3
(8.67)

=
52eϵ + 2

9(8eϵ + 1)
. (8.68)

where Q is the set of all queries and Q̂ is a query of the form
∑ℓ

s=1 W
js
ks

for ℓ ∈ {2, 3}.

The resulting amount of deception is,

D = Pe −
(
1− 1

K

)
=

52eϵ + 2

9(8eϵ + 1)
− 2

3
=

4(eϵ − 1)

9(8eϵ + 1)
. (8.69)

Therefore, for a required amount of deception d < 1
18
, ϵ is chosen as ϵ = ln

(
9d+4

4(1−18d)

)
.

Without loss of generality, consider the cost of downloading W1, which is the

same as the expected download cost, as the scheme is symmetric across all file

retrievals,

DL =
1

L

(
L× 3p+

3L

2
× 24peϵ +

3L

2

∞∑
m=0

pmm

)
=

1 + 12eϵ

1 + 8eϵ
+

3

2
E[M ] (8.70)

To find the scheme that achieves the minimum DL we need to find the minimum
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E[M ] that satisfies P (R = 1|θ = i) = α = E[ 1
M+1

] = 3(1+8eϵ)
2e2ϵ+24eϵ+1

, i.e., the following

optimization problem needs to be solved.

min E[M ]

s.t. E
[

1

M + 1

]
=

3e−2ϵ(1 + 8eϵ)

2 + e−2ϵ + 24e−ϵ
. (8.71)

The solution to this problem is given in Lemma 8.1. The resulting minimum down-

load cost for a given value of ϵ, i.e., required level of deception d, is given by,

Dϵ

L
=

1 + 12eϵ

1 + 8eϵ
+

3

2
(2u− u(u+ 1)α), α =

3e−2ϵ(1 + 8eϵ)

2 + e−2ϵ + 24e−ϵ
, (8.72)

where u = ⌊ 1
α
⌋. When d = 0, it follows that ϵ = 0, α = 1 and u = 1, and the

achievable rate is 9
13
, which is equal the PIR capacity for the case N = 3, K = 3.

8.4.3 Generalized DIR Scheme for Arbitrary N and K

In the general DIR scheme proposed in this work, at each time Ti, i ∈ N, when

the user requires to download some file Wk, the user sends a set of real queries to

each of the N databases. These queries are picked based on a certain probability

distribution, defined on all possible sets of real queries. For the same file requirement,

the user sends M dummy queries at future time instances ti,j, j ∈ {1, . . . ,M},

where ti,j > Ti. The dummy queries sent at each time ti,j are randomly selected

from a subset of real queries. We assume that the databases are unaware of being

deceived, and treat both real and dummy queries the same when calculating their
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predictions on the user-required file index at each time they receive a query. The

overall probabilities of a given user sending each query for each file requirement is

known by the databases. However, the decomposition of these probabilities based

on whether each query is used as a real or a dummy query is not known by the

databases. It is also assumed that the databases only store the queries received at

the current time instance.

The main components of the general scheme include 1) NK possible sets of

real queries to be sent to the N databases for each file requirement and their prob-

abilities, 2) N − 1 possible sets of dummy queries and their probabilities, 3) overall

probabilities of sending each query for each of the K file requirements of the user.

Note that 1) and 2) are only known by the user while 3) is known by the databases.

As shown in the examples considered, the set of all possible real queries takes

the form of the queries in the probabilistic PIR scheme in Chapter 2 and [49], with a

non-uniform probability distribution unlike in PIR. The real query table used when

retrieving Wk consists of the following queries:

1. Single blocks: Wk is divided into N−1 parts, and each part is requested from

N−1 databases, while requesting nothing ϕ from the remaining database. All

cyclic shifts of these queries are considered in the real query table.

2. Sums of two blocks/Single block: One database is used to download W l
j ,

l ∈ {1, . . . , N − 1}, j ̸= k and each one in the rest of the N − 1 databases is

used to download W r
k + W l

j for each r ∈ {1, . . . , N − 1}. All cyclic shifts of

these queries are also considered as separate possible sets of queries.
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3. Sums of three/Two blocks: One database is used to download W ℓ1
j1
+W ℓ2

j2
,

ℓ1, ℓ2 ∈ {1, . . . , N − 1} and j1 ̸= j2 ̸= k. Each one in the rest of the N − 1

databases is used to download W l1
j1
+W l2

j2
+W r

k for each r ∈ {1, . . . , N − 1}.

All cyclic shifts of these queries are also considered as separate possible sets

of queries.

4. Sums of K/K − 1 blocks: The above process is repeated for all sums of

blocks until K/K − 1.

Out of the NK different sets of queries described above in the real query table, the

queries except ϕ in single blocks, i.e., queries of the form W ℓ
k , ℓ ∈ {1, . . . , N − 1},

are chosen as ϵ-deceptive ones with respect to file k, for each k ∈ {1, . . . , K}, and

are included in the set of dummy queries sent to databases when the user-required

file index is k. The N −1 ϵ-deceptive queries W r
k , r ∈ {1, . . . , N −1}, corresponding

to the kth file requirement must guarantee the condition in (8.13). For that, we

assign,

P (Qn = W r
k |θ = k,R = 1) = p, r ∈ {1, . . . , N − 1} (8.73)

and

P (Qn = W r
k |θ = j, R = 1) = peϵ, r ∈ {1, . . . , N − 1}, j ̸= k, (8.74)

for each database n, n ∈ {1, . . . , N}. The rest of the queries, i.e., ϕ and sums of ℓ

blocks where ℓ ∈ {2, . . . , K}, are PIR queries in the proposed scheme. Note that
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the query ϕ is always coupled with the ϵ-deceptive queries with respect to file index

k (required file) for correctness (see Tables 8.7, 8.9, 8.11). Thus, ϕ is assigned the

corresponding probability given by,

P (Qn = ϕ|θ = m,R = 1) = p, m ∈ {1, . . . , K}, n ∈ {1, . . . , N}. (8.75)

Similarly, as the rest of the PIR queries are coupled with ϵ-deceptive queries with

respect to file indices j, j ̸= k, or with other PIR queries, they are assigned the

corresponding probability given by,

P (Qn = Q̂|θ = m,R = 1) = peϵ, m ∈ {1, . . . , K}, n ∈ {1, . . . , N}, (8.76)

where Q̂ is any PIR query in the form of ℓ-sums with ℓ ∈ {2, . . . , K}. Since the

probabilities of the real queries sent for each file requirement must add up to one,

i.e.,
∑

Q̃∈Q P (Qn = Q̃|θ = m,R = 1) = 1 for each m ∈ {1, . . . , K}, p is given by,

p =
1

N + (NK −N)eϵ
, (8.77)

as there are N query sets in the real query table with probability p, and NK−N sets

with probability peϵ. Each ϵ-deceptive query with respect to file index k is chosen

with equal probability to be sent to the databases as dummy queries at times ti,j

when the file requirement at the corresponding time Ti is Wk. Since there are N −1
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deceptive queries,

P (Qn = W r
k |θ = k,R = 0) =

1

N − 1
, r ∈ {1, . . . , N − 1}. (8.78)

and

P (Qn = W r
k |θ = j, R = 0) = 0, r ∈ {1, . . . , N − 1}, j ̸= k. (8.79)

for each database n, n ∈ {1, . . . , N}. Therefore, for all ϵ-deceptive queries with

respect to file index k of the form W i
k, the condition in (8.14) can be written as,

α

α + 1
p(N−1)

(1− α)
= e−2ϵ (8.80)

thus,

α =
1

p(N − 1)(e2ϵ − 1) + 1
=

N + (NK −N)eϵ

(N − 1)e2ϵ + (NK −N)eϵ + 1
, (8.81)

which characterizes α = E
[

1
M+1

]
. The information available to database n, n ∈

{1, . . . , N}, is the overall probability of receiving each query for each file requirement

of the user P (Qn = Q̃|θ = k), k ∈ {1, . . . , K}, given by,

P (Qn = Q̃|θ = k) = P (Qn = Q̃|θ = k,R = 1)P (R = 1|θ = k)

+ P (Qn = Q̃|θ = k,R = 0)P (R = 0|θ = k). (8.82)
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For ϵ-deceptive queries with respect to file index k, i.e., W j
k , j ∈ {1, . . . , N − 1}, the

overall probability in (8.82) from the perspective of database n, n ∈ {1, . . . , N}, is

given by,

P (Qn = W j
k |θ = ℓ) =


αp+ 1−α

N−1
= e2ϵ

(N−1)(e2ϵ−1)+N+(NK−N)eϵ
, ℓ = k

αpeϵ = eϵ

(N−1)(e2ϵ−1)+N+(NK−N)eϵ
, ℓ ̸= k.

(8.83)

The probability of sending the null query ϕ to database n, n ∈ {1, . . . , N}, for each

file-requirement k, k ∈ {1, . . . , K}, is,

P (Qn = ϕ|θ = k) = αp =
1

(N − 1)(e2ϵ − 1) +N + (NK −N)eϵ
. (8.84)

For the rest of the PIR queries denoted by Q̂, i.e., queries of the form
∑ℓ

s=1 W
js
is

for ℓ ∈ {2, . . . , K}, the overall probability in (8.82), known by each database n,

n ∈ {1, . . . , N} for each file requirement k, k ∈ {1, . . . , K} is given by,

P (Qn = Q̂|θ = k) = αpeϵ =
eϵ

(N − 1)(e2ϵ − 1) +N + (NK −N)eϵ
. (8.85)

Based on the query received at a given time t, each database n, n ∈ {1, . . . , N},

calculates the aposteriori probability of the user-required file index being k, k ∈

{1, . . . , K}, using,

P (θ = k|Qn = Q̃) =
P (Qn = Q̃|θ = k)P (θ = k)

P (Qn = Q̃)
. (8.86)
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Since we assume uniform priors, i.e., P (θ = k) = 1
K

for all k ∈ {1, . . . , K},

the posteriors are directly proportional to P (Qn = Q̃|θ = k) for each Q̃. Therefore,

the databases predict the user-required file index for each query received using (8.5)

and (8.83)-(8.85). For example, when the query W 1
1 is received, it is clear that the

maximum P (θ = k|Qn = W 1
1 ) in (8.5) is obtained for k = 1 from (8.83) and (8.86).

The prediction corresponding to any query received is given in Table 8.14 along with

the corresponding probability of choosing the given prediction.5

Based on the information in Table 8.14, the probability of error when a

database n, n ∈ {1, . . . , N}, receives the query W ℓ
k at some time Ti is given by,

P (θ̂
[Ti]

W ℓ
k

̸= θ[Ti]) = P (θ[Ti] ̸= k|Q[Ti]
n = W ℓ

k) (8.87)

=
K∑

j=1,j ̸=k

P (θ[Ti] = j|Q[Ti]
n = W ℓ

k) (8.88)

=

∑K
j=1,j ̸=k P (Q

[Ti]
n = W ℓ

k |θ[Ti] = j)P (θ[Ti] = j)

P (Q
[Ti]
n = W ℓ

k)
(8.89)

=
1
K
peϵ(K − 1)

P (Q
[Ti]
n = W ℓ

k)
, (8.90)

where (8.90) follows from the fact that the user sends real queries based on the

probabilities P (Qn = Q̃|θ = k,R = 1) at time Ti.

For all other queries Q̃, the corresponding probability of error is given by,

P (θ̂
[Ti]

Q̃
̸= θ[Ti]) = P (θ̂[Ti] ̸= θ[Ti]|Q[Ti]

n = Q̃) (8.91)

5The superscript j in the first column of Table 8.14 corresponds to any index in the set
{1, . . . .N − 1}.
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query Q̃ P (θ̂Q̃ = 1) P (θ̂Q̃ = 2) P (θ̂Q̃ = 3) . . . P (θ̂Q̃ = K)

W j
1 1 0 0 . . . 0

W j
2 0 1 0 . . . 0

W j
3 0 0 1 . . . 0
...

...
...

...
...

...

W j
K 0 0 0 . . . 1

other queries 1
K

1
K

1
K

. . . 1
K

Table 8.14: Probabilities of each database predicting the user-required file.

=

∑K
j=1

∑K
m=1,m̸=j P (θ̂[Ti] = m, θ[Ti] = j,Q

[Ti]
n = Q̃)

P (Q
[Ti]
n =Q̃)

(8.92)

=

∑K
j=1

∑K
m=1,m ̸=j P (θ̂[Ti]=m|θ[Ti]=j,Q

[Ti]
n =Q̃)P (Q

[Ti]
n =Q̃|θ[Ti]=j)P (θ[Ti]=j)

P (Q
[Ti]
n =Q̃)

(8.93)

=
1

P (Q
[Ti]
n =Q̃)


(K−1)p

K
, if Q̃ = ϕ

(K−1)peϵ

K
, if Q̃ of the form

∑ℓ
s=1 W

js
is
, ℓ ∈ {2, . . . , K}

(8.94)

where (8.94) follows from the fact that θ̂[Ti] is conditionally independent of θ[Ti] given

Q from (8.5). The probability of error of each database’s prediction is given by,

Pe =
∑
Q̃

P (Q[Ti]
n = Q̃)P (θ̂[Ti] ̸= θ[Ti]|Q[Ti] = Q̃) (8.95)

=
K∑
k=1

N−1∑
ℓ=1

P (Q[Ti]
n = W ℓ

k)
1
K
peϵ(K − 1)

P (Q
[Ti]
n = W ℓ

k)
+ P (Q[Ti]

n = ϕ)
1
K
(K − 1)p

P (Q
[Ti]
n = ϕ)

+ (NK − 1−K(N − 1))P (P (Q[Ti]
n = Q̂)

1
K
(K − 1)peϵ

P (Q
[Ti]
n = Q̂)

) (8.96)

= peϵ(K − 1)(N − 1) +
(K − 1)p

K
+

(K − 1)peϵ(NK − 1−K(N − 1))

K
(8.97)

=
(K − 1)(1 + eϵ(NK − 1))

K(N + (NK −N)eϵ)
, (8.98)
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where Q̂ in (8.96) represents the queries of the form
∑ℓ

s=1W
js
is

for ℓ ∈ {2, . . . , K}.

Note that P (Q
[Ti]
n = Q̂) is the same for each Q̂ as P (Q

[Ti]
n = Q̂|θ = j) = peϵ for each

Q̂ and all j ∈ {1, . . . , K} from (8.76). Thus, the amount of deception achieved by

this scheme for a given ϵ is given by,

D = Pe −
(
1− 1

K

)
=

(K − 1)(N − 1)(eϵ − 1)

K(N + (NK −N)eϵ)
. (8.99)

Therefore, for a required amount of deception d, satisfying d < (K−1)(N−1)
K(NK−N)

, the value

of ϵ must be chosen as,

ϵ = ln

(
dKN + (K − 1)(N − 1)

dKN + (K − 1)(N − 1)− dKNK

)
. (8.100)

The download cost of the general scheme is,

DL =
1

L

(
NpL+ (NK −N)peϵ

NL

N − 1
+

NL

N − 1
E[M ]

)
(8.101)

DL = Np+
N(NK −N)

N − 1
peϵ +

(
N

N − 1

)
E[M ] (8.102)

DL =
N

N − 1

(
1− 1

N + (NK −N)eϵ
+ E[M ]

)
. (8.103)

Following optimization problem needs to be solved to minimize the download cost

while satisfying α = N+(NK−N)eϵ

(N−1)e2ϵ+(NK−N)eϵ+1
, from (8.51),

min E[M ]

s.t. E
[

1

M + 1

]
=

N + (NK −N)eϵ

(N − 1)e2ϵ + (NK −N)eϵ + 1
= α. (8.104)
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Lemma 8.1 The solution to the optimization problem in (8.104) is given by,

E[M ] = 2u− u(u+ 1)α, (8.105)

where u = ⌊ 1
α
⌋ for a given value of α, which is specified by the required level of

deception d.

The proof of Lemma 8.1 is given in the Appendix. The minimum download

cost for the general case with N databases, K files and a deception requirement d,

is obtained by (8.103) and (8.105). The corresponding maximum achievable rate is

given in (7.3).

8.5 Conclusions

We introduced the problem of deceptive information retrieval (DIR), in which a user

retrieves a file from a set of independent files stored in multiple databases, while

revealing fake information about the required file to the databases, which makes the

probability of error of the databases’ prediction on the user-required file index high.

The proposed scheme achieves rates lower than the PIR capacity when the required

level of deception is positive, as it sends dummy queries at distinct time instances to

deceive the databases. When the required level of deception is zero, the achievable

DIR rate is the same as the PIR capacity.

The probability of error of the databases’ prediction on the user-required file
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index is calculated at the time of the user’s requirement, as defined in Section 8.2.

In the proposed scheme, the user sends dummy queries at other (future) time in-

stances as well. As the databases are unaware of being deceived, and are unable to

distinguish between the times corresponding to real and dummy queries, they make

predictions on the user-required file indices every time a query is received. Note

that whenever a query of the form W ℓ
k is received, the databases prediction is going

to be θ̂ = k from Table 8.14. Although this is an incorrect prediction with high

probability at times corresponding to user’s real requirements, these predictions are

correct when W ℓ
k is used as a dummy query, as W ℓ

k is only sent as a dummy query

when the user requires to download file k. However, the databases are only able to

obtain these correct predictions at future time instances, after which the user has

already downloaded the required file while also deceiving the databases.

The reason for the requirement of the time dimension is also explained as

follows. An alternative approach to using the time dimension is to select a subset

of databases to send the dummy queries and to send the real queries to rest of the

databases. As explained above, whenever a database receives a query of the formW ℓ
k

as a dummy query, the database predicts the user-required file correctly. Therefore,

this approach leaks information about the required file to a subset of databases,

right at the time of the retrieval, while deceiving the rest. Hence, to deceive all

databases at the time of retrieval, we exploit the time dimension that is naturally

present in information retrieval applications that are time-sensitive.

A potential future direction of this work is an analysis on the time dimension.

Note that in this work we assume that the databases do not keep track of the previous
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queries and only store the information corresponding to the current time instance.

Therefore, as long as the dummy queries are sent at distinct time instances that are

also different from the time of the user’s requirement, the calculations presented in

this chapter are valid. An extension of basic DIR can be formulated by assuming

that the databases keep track of all queries received and their time stamps. This

imposes additional constraints on the problem as the databases now have extra

information along the time dimension, which requires the scheme to choose the time

instances at which the dummy queries are sent, in such a way that they do not leak

any information about the existence of the two types (real and dummy) queries.

Another direction is to incorporate the freshness and age of information into DIR,

where the user may trade the age of the required file for a reduced download cost,

by making use of the previous dummy downloads present in DIR.

8.6 Appendix

8.6.1 Proof of Lemma 8.1

Proof: The solution to the optimization problem in (8.104) for the general case with

N databases and K files is as follows. The optimization problem in (8.104), for a re-

quired amount of deception d and the corresponding ϵ with α = N+(NK−N)eϵ

(N−1)e2ϵ+(NK−N)eϵ+1

is given by,

min E[M ] =
∞∑

m=0

mpm
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s.t. E
[

1

m+ 1

]
=

∞∑
m=0

(
1

m+ 1

)
pm = α

∞∑
m=0

pm = 1

pm ≥ 0, m ∈ {0, 1, . . . }. (8.106)

We need to determine the optimum PMF of M that minimizes E[M ] while

satisfying the given condition. The Lagrangian L of this optimization problem is

given by,

L =
∞∑

m=0

mpm + λ1

(
∞∑

m=0

(
1

m+ 1

)
pm − α

)
+ λ2

(
∞∑

m=0

pm − 1

)
−

∞∑
m=0

µmpm.

(8.107)

Then, the following set of equations need to be solved to find the minimum E[M ],

∂L

∂pm
= m+ λ1

(
1

m+ 1

)
+ λ2 − µm = 0, m ∈ {0, 1, . . . } (8.108)

∞∑
m=0

(
1

m+ 1

)
pm = α (8.109)

∞∑
m=0

pm = 1 (8.110)

µmpm = 0, m ∈ {0, 1, . . . } (8.111)

µm, pm ≥ 0, m ∈ {0, 1, . . . }. (8.112)

Case 1: Assume that the PMF of M contains at most two non-zero probabili-

ties, i.e., p0, p1 ≥ 0 and pi = 0, i ∈ {2, 3, . . . }. Then, the conditions in (8.108)-(8.112)
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are simplified as,

∂L

∂p0
= λ1 + λ2 − µ0 = 0 (8.113)

∂L

∂p1
=

1

2
λ1 + λ2 − µ1 = −1 (8.114)

p0 +
1

2
p1 = α (8.115)

p0 + p1 = 1 (8.116)

µ0p0 = 0 (8.117)

µ1p1 = 0 (8.118)

µ0, µ1, p0, p1 ≥ 0. (8.119)

From (8.115) and (8.116) we obtain,

p0 +
1

2
(1− p0) = α (8.120)

and thus,

p0 = 2α− 1, p1 = 2− 2α, (8.121)

which along with (8.119) implies that this solution is only valid for 1
2
≤ α ≤ 1. The

corresponding optimum value of E[M ] is given by,

E[M ] = 1− p0 = 2− 2α,
1

2
≤ α ≤ 1. (8.122)
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Case 2: Now consider the case where at most three probabilities of the PMF

of M are allowed to be non-zero. i.e., p0, p1, p2 ≥ 0 and pi = 0, i ∈ {3, 4, . . . }. The

set of conditions in (8.108)-(8.112) for this case is,

∂L

∂pm
= m+ λ1

(
1

m+ 1

)
+ λ2 − µm = 0, m ∈ {0, 1, 2} (8.123)

2∑
m=0

(
1

m+ 1

)
pm = α (8.124)

2∑
m=0

pm = 1 (8.125)

µmpm = 0, m ∈ {0, 1, 2} (8.126)

µm, pm ≥ 0, m ∈ {0, 1, 2}. (8.127)

The set of conditions in (8.123)-(8.127) can be written in a matrix form as,



1 1 −1 0 0 0 0 0

1
2

1 0 −1 0 0 0 0

1
3

1 0 0 −1 0 0 0

0 0 0 0 0 1 1
2

1
3

0 0 0 0 0 1 1 1





λ1

λ2

µ0

µ1

µ2

p0

p1

p2



=



0

−1

−2

α

1


. (8.128)

Three of the above eight variables, i.e., either µi or pi for each i, are always zero

according to (8.126). We consider all choices of {µi, pi} pairs such that one element
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of the pair is equal to zero, and the other one is a positive variable, and solve the

system for the non-zero variables. Then we calculate the resulting E[M ], along with

the corresponding regions of u for which the solutions are applicable. For each region

of u, we find the solution to (8.128) that results in the minimum E[M ]. Based on

this process, the optimum values of pi, i ∈ {0, 1, 2}, the corresponding ranges of u

and the minimum values of E[M ] are given in Table 8.15.

range of α p0 p1 p2 E[M ]
1
3
≤ α ≤ 1

2
0 6α− 2 3− 6α 4− 6α

1
2
≤ α ≤ 1 2α− 1 2− 2α 0 2− 2α

Table 8.15: Solution to Case 2: Optimum PMF ofM , valid ranges of α and minimum
E[M ].

As an example, consider the calculations corresponding to the case where

µ0 > 0, µ1 = µ2 = 0 which implies p0 = 0, p1, p2 > 0. Note that for this case,

(8.128) simplifies to,



1 1 −1 0 0

1
2

1 0 0 0

1
3

1 0 0 0

0 0 0 1
2

1
3

0 0 0 1 1





λ1

λ2

µ0

p1

p2


=



0

−1

−2

α

1


. (8.129)

The values of p1 and p2, from the solution of the above system, and the corresponding
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range of α, from (8.127), along with the resulting E[M ] are given by,

p1 = 6α− 2, p2 = 3− 6α,
1

3
≤ α ≤ 1

2
, E[M ] = 4− 6α. (8.130)

Case 3: At most four non-zero elements of the PMF of M are considered

in this case, i.e., p0, p1, p2, p3 ≥ 0 and pi = 0, i ∈ {4, 5, . . . }. The conditions in

(8.108)-(8.112) can be written in a matrix form as,



1 1 −1 0 0 0 0 0 0 0

1
2

1 0 −1 0 0 0 0 0 0

1
3

1 0 0 −1 0 0 0 0 0

1
4

1 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 1 1
2

1
3

1
4

0 0 0 0 0 0 1 1 1 1





λ1

λ2

µ0

µ1

µ2

µ3

p0

p1

p2

p3



=



0

−1

−2

−3

α

1



. (8.131)

Using the same method described in Case 2, the optimum values of pi, i ∈ {0, 1, 2, 3},

corresponding ranges of α and the resulting minimum E[M ] for Case 3 are given in

Table 8.16.

Case 4: At most five non-zero elements of the PMF of M are considered in

this case, i.e., p0, p1, p2, p3, p4 ≥ 0 and pi = 0, i ∈ {5, 6, . . . }. The conditions in
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range of α p0 p1 p2 p3 E[M ]
1
4
≤ α ≤ 1

3
0 0 12α− 3 4− 12α 6− 12α

1
3
≤ α ≤ 1

2
0 6α− 2 3− 6α 0 4− 6α

1
2
≤ α ≤ 1 2α− 1 2− 2α 0 0 2− 2α

Table 8.16: Solution to Case 3: Optimum PMF ofM , valid ranges of α and minimum
E[M ].

(8.108)-(8.112) can be written in a matrix form as,



1 1 −1 0 0 0 0 0 . . . 0

1
2

1 0 −1 0 0 0 0 . . . 0

1
3

1 0 0 −1 0 0 0 . . . 0

1
4

1 0 0 0 −1 0 0 . . . 0

1
5

1 0 0 0 0 −1 0 . . . 0

0 . . . 0 0 0 1 1
2

1
3

1
4

1
5

0 . . . 0 0 0 1 1 1 1 1





λ1

λ2

µ0

µ1

µ2

µ3

µ4

p0

p1

p2

p3

p4



=



0

−1

−2

−3

−4

α

1



. (8.132)

Using the same method as before, the optimum values of pi, i ∈ {0, 1, 2, 3, 4},

the corresponding ranges of α and the resulting minimum E[M ] for Case 4 are given

in Table 8.17.

Note that the PMF of M and the resulting E[M ] are the same for a given
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range of α p0 p1 p2 p3 p4 E[M ]
1
5
≤ α ≤ 1

4
0 0 0 20α− 4 5− 20α 8− 20α

1
4
≤ α ≤ 1

3
0 0 12α− 3 4− 12α 0 6− 12α

1
3
≤ α ≤ 1

2
0 6α− 2 3− 6α 0 0 4− 6α

1
2
≤ α ≤ 1 2α− 1 2− 2α 0 0 0 2− 2α

Table 8.17: Solution to Case 4: Optimum PMF ofM , valid ranges of α and minimum
E[M ].

α in all cases (see Tables 8.15-8.17) irrespective of the support of the PMF of M

considered. Therefore, we observe from the above cases that, for a given α in the

range 1
ℓ+1

≤ α ≤ 1
ℓ
, E[M ] is minimized when the PMF of M is such that,

pℓ, pℓ−1 > 0, and pi = 0 for i ∈ Z+ \ {ℓ, ℓ− 1}, (8.133)

which requires pℓ and pℓ−1 to satisfy,

pℓ + pℓ−1 = 1 (8.134)

E
[

1

M + 1

]
= pℓ

1

ℓ+ 1
+ pℓ−1

1

ℓ
= α. (8.135)

Therefore, for a given α in the range 1
ℓ+1

≤ α ≤ 1
ℓ
, the optimum PMF of M and the

resulting minimum E[M ] are given by,

pℓ = (ℓ+ 1)(1− ℓα), pℓ−1 = ℓ((ℓ+ 1)α− 1), E[M ] = 2ℓ− αℓ(ℓ+ 1). (8.136)

■
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CHAPTER 9

Conclusions

In this dissertation, we used information and coding theoretic tools to achieve user-

privacy in information retrieval and transmission. We first considered the problem

of PIR, extended the concepts to PRUW, which has applications in distributed

learning, and further extended beyond privacy to deception in DIR.

In Chapter 2, we investigated the problem of semantic PIR, where the mes-

sages in the classical PIR setting are allowed to have different semantics such as

different message sizes and arbitrary popularity profiles. The goal of this work was

to investigate how the different semantics in a given practical PIR setting can be

exploited to improve the corresponding classical PIR rate. As the main result of

this work, we characterized the capacity of semantic PIR with achievable schemes

and a converse proof. This result implies that the semantic PIR capacity is equal

to the classical PIR capacity if all messages are equal in size irrespective of the

popularity profile. We derived a necessary and sufficient condition for the semantic

PIR capacity to exceed the classical PIR capacity. In particular, if the longer mes-

sages are retrieved more often, there is a strict retrieval rate gain from exploiting
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the message semantics. Furthermore, the results show that for all message sizes and

priors, the semantic PIR capacity exceeds the achievable rate of classical PIR with

zero-padding, which zero-pads all messages to equalize their sizes. The extensions

of semantic PIR to coded databases and colluding databases were also analyzed

separately, where the complete characterizations of the capacities of the two cases

were presented along with the corresponding optimal schemes.

In Chapters 3-5 we investigated the problem of PRUW in relation to private

FSL. In Chapter 3, we provided a basic PRUW scheme that performs private FSL

by only downloading and uploading twice as many bits as the size of a submodel.

This scheme achieves the lowest known total communication cost thus far for FSL

that guarantees information-theoretic privacy of users. The basic scheme was ex-

tended to private FSL with top r sparsification in Chapter 4, which further reduces

the reading and writing costs to ≈ 2r times the size of a submodel, where r is

the sparsification rate, typically in the range of 10−2 to 10−3, while guaranteeing

information-theoretic privacy of the updating submodel index, the values of the

sparse updates, and the positions of the sparse updates. This is achieved using

a permutation technique which is based on Shannon’s one time pad theorem and

certain properties of Lagrange polynomials.

In Chapter 5, we considered random sparsification in private FSL. The prob-

lem setting was formulated in terms of a rate-distortion characterization, and the

resulting asymptotic normalized reading and writing costs are both equal to ≈ 2r,

where r = 1− D̃, where D̃ is the distortion allowed in the corresponding phase, i.e.,

a linear rate-distortion relation is achievable in PRUW. Random sparsification out-
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performs (or performs equally) top r sparsification in terms of the communication

cost when similar sparsification rates are considered. However, random sparsifica-

tion may not be as effective as top r sparsification since it does not capture the

most significant variations of the gradients in the stochastic gradient descent (SGD)

process of the underlying learning task. This may have an adverse effect on the

accuracy and the convergence time of the model.

The ideas of PRUW were extended to private FL with top r sparsification in

Chapter 6, where the privacy concern is only on the values and the positions of the

sparse updates/parameters. We proposed four schemes with different properties to

perform FL with top r sparsification without revealing the values or the positions

of the sparse updates/parameters to the databases. The schemes follow the same

permutation technique introduced in Chapter 4, which requires a large storage space

in FL due to the large model sizes. To this end, we generalized the schemes to incur

a reduced storage cost at the expense of a certain amount of information leakage,

using a model segmentation mechanism. Furthermore, we introduced single-stage

and two-stage permutation techniques to control the information leakage, based

on the user’s requirements. In general, we characterized the trade-off between the

communication cost, storage complexity and information leakage in private FL with

top r sparsification.

In Chapter 7, we considered the problem of information-theoretically private

FSL with storage constrained databases. In this work, we provided a storage mech-

anism and a PRUW scheme that efficiently utilizes the available storage in the

databases for any given set of arbitrary storage constraints, while achieving the
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minimum total communication cost within the algorithm. The storage mechanism

combines MDS coding and submodel division, which proves to be more effective

in terms of the communication cost compared to what is achieved with MDS cod-

ing and submodel division individually. We provided different achievable schemes

for homogeneous and heterogeneous storage constraints. The scheme proposed for

heterogeneous constraints is based on finding the optimum MDS codes and the

respective fractions of submodels stored using them for a given set of arbitrary

storage constraints, while guaranteeing the information-theoretic privacy of the up-

dating submodel index and the values of the updates. For homogeneous storage

constraints, the proposed scheme characterizes the minimum achievable costs within

the algorithm for any given constraint using the lower convex hull boundary of a set

of achievable (constraint, cost) pairs determined by the scheme itself.

In Chapter 8, we introduced the problem of DIR, in which a user downloads a

required file out of multiple files stored in a system of databases, while deceiving the

databases by revealing fake information (information about a different file) about

the user-required file index. We proposed a scheme that performs DIR for a given

level of deception required, with the goal of minimizing the download cost, which

makes use of the time-dimension present in the problem setting. The proposed

scheme achieves a rate that decreases with increasing amount of deception required,

and achieves the PIR capacity when the required level of deception is zero. In this

work, we assume that the databases only keep track of the current information. A

potential future direction would be to relax this assumption and carry out a privacy

analysis when the databases have access to past data as well. This may open up
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new problems introducing freshness and age of information into DIR.

The contents of Chapter 2 are published in [108–110], Chapter 3 in [111,112],

Chapter 4 in [111, 113], Chapter 5 in [111, 114], Chapter 6 in [115–117], Chapter 7

in [118–120] and Chapter 8 in [121].
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