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Recent developments in communications are driven by the goal of achieving high

data rates for wireless communication devices. To achieve this goal, several new phe-

nomena need to be investigated from an information theoretic perspective. In this

dissertation, we focus on three of these phenomena: feedback, relaying and coopera-

tion. We study these phenomena for various multi-user channels from an information

theoretic point of view.

One of the aims of this dissertation is to study the performance limits of simple

wireless networks, for various forms of feedback and cooperation. Consider an uplink

communication system, where several users wish to transmit independent data to

a base-station. If the base-station can send feedback to the users, one can expect

to achieve higher data-rates since feedback can enable cooperation among the users.

Another way to improve data-rates is to make use of the broadcast nature of the

wireless medium, where the users can overhear each other’s transmitted signals. This

particular phenomenon has garnered much attention lately, where users can help



in increasing each other’s data-rates by utilizing the overheard information. This

overheard information can be interpreted as a generalized form of feedback.

To take these several models of feedback and cooperation into account, we study

the two-user multiple access channel and the two-user interference channel with gen-

eralized feedback. For all these models, we derive new outer bounds on their capacity

regions. We specialize these results for noiseless feedback, additive noisy feedback and

user-cooperation models and show strict improvements over the previously known

bounds.

Next, we study state-dependent channels with rate-limited state information to

the receiver or to the transmitter. This state-dependent channel models a practical

situation of fading, where the fade information is partially available to the receiver

or to the transmitter. We derive new bounds on the capacity of such channels and

obtain capacity results for a special sub-class of such channels.

We study the effect of relaying by considering the parallel relay network, also

known as the diamond channel. The parallel relay network considered in this dis-

sertation comprises of a cascade of a general broadcast channel to the relays and an

orthogonal multiple access channel from the relays to the receiver. We characterize

the capacity of the diamond channel, when the broadcast channel is deterministic.

We also study the diamond channel with partially separated relays, and obtain ca-

pacity results when the broadcast channel is either semi-deterministic or physically

degraded. Our results also demonstrate that feedback to the relays can strictly in-

crease the capacity of the diamond channel.

In several sensor network applications, distributed lossless compression of sources



is of considerable interest. The presence of adversarial nodes makes it important to

design compression schemes which serve the dual purpose of reliable source transmis-

sion to legitimate nodes while minimizing the information leakage to the adversarial

nodes. Taking this constraint into account, we consider information theoretic secrecy,

where our aim is to limit the information leakage to the eavesdropper. For this pur-

pose, we study a secure source coding problem with coded side information from a

helper to the legitimate user. We derive the rate-equivocation region for this prob-

lem. We show that the helper node serves the dual purpose of reducing the source

transmission rate and increasing the uncertainty at the adversarial node. Next, we

considered two different secure source coding models and provide the corresponding

rate-equivocation regions.
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stant support this dissertation would not have been possible. Her avid guidance and

encouragements to work on meaningful research problems have been of immense help.

I am also particularly indebted to her for allowing me ample freedom to work on a

variety of research problems which benefitted my learning.

I would like to thank Professors Prakash Narayan, Alexander Barg, Nuno Martins

and Radu Balan for serving in my Phd dissertation committee and for their valuable

suggestions. I am especially thankful to Professor Prakash Narayan and Professor

Alexander Barg for organizing the information theory and coding research seminars

and allowing me to present my work. I am also thankful to Professor Kannan Ram-

chandran for several insightful discussions during my stay at Berkeley.

I also owe a word of thanks to my friends at Communications and Signal Process-

ing Lab (CSPL), Sirin Nitinawarat, Himanshu Tyagi, Ersen Ekrem, Osman Yaǧan,
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Chapter 1

Introduction

Recent surge in research on multi-user information theory can be attributed to the

need of understanding performance limits of sophisticated wireless communication

systems. As the focus shifts towards deploying ad-hoc and sensor networks, several

new issues arise that need to be addressed from an information theoretic perspec-

tive. Feedback, relaying and cooperation are among the important aspects which

would inevitably arise while characterizing performance limits of such multi-terminal

networks. It is, therefore, imperative to study basic building blocks of such multi-

terminal networks. Unfortunately, the aspects of feedback, relaying and cooperation

are not well understood from an information theory point of view even for three ter-

minal systems. In this dissertation, we study these aspects for simple multi-terminal

systems.

Study of multi-user information theory was initiated by Shannon by introducing

the two-way channel (TWC) [56] in 1961. The TWC models a bidirectional commu-

nication situation where two users wish to communicate to each other. The channel

is assumed to be memoryless and the users can use their previously received outputs

to construct their next channel inputs. Shannon obtained inner and outer bounds for
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the capacity region of a discrete memoryless TWC in [56]. Shannon’s inner and outer

bounds for the TWC do not match in general and determining the capacity region of

the TWC remains an open problem.

One of the objectives of this dissertation is to obtain new outer bounds for multi-

user channels with feedback. A general outer bound on the capacity region of multi-

user channels with feedback is the cut-set outer bound [14, Theorem 14.10.1]. The

cut-set outer bound allows arbitrary correlation between the channel inputs. The

cut-set outer bound is not always expected to be tight since it might not always be

the case that the set of rates yielded by any achievable scheme could match with the

corresponding set of rates of the cut-set outer bound.

For the TWC, Shannon’s outer bound and the cut-set outer bound are the same.

As Shannon himself pointed out, the simplest example of a TWC for which his inner

and outer bounds do not meet is the binary multiplying channel (BMC). The BMC is a

single output, deterministic TWC, where, Y1 = Y2 = Y = X1X2. The channel inputs

X1, X2 and the channel output Y are all binary. For the BMC, Shannon computed

his inner and outer bounds for the symmetric rate point as 0.61695 and 0.69424

bits/transmission, respectively. Shannon’s outer bound for BMC was improved to

0.64891 bits/transmission by Zhang, Berger and Schalkwijk [71].

The idea of dependence balance was introduced by Hekstra and Willems in [30] to

obtain an outer bound for the capacity region of the single-output TWC. The basic

idea behind this outer bound is to restrict the set of allowable input distributions,

consequently restricting arbitrary correlation between channel inputs. A generalized

version of the dependence balance bound resulted in an upper bound of 0.64628
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bits/transmission for the BMC. To the best of our knowledge, this is the best known

symmetric-rate upper bound for the BMC. Determining the capacity region of the

BMC still remains an open problem.

An important class of multi-terminal channels is the multiple access channel

(MAC) channel, where several transmitters wish to communicate with a single re-

ceiver. The classical MAC models the situation where each transmitter is unaware

of the information present at other transmitters. The capacity region of the classical

MAC was obtained by Ahlswede [1] and Liao [41] in 1971. In 1975, Gaarder and Wolf

showed through a simple example [19] that noiseless feedback can strictly increase

the capacity region of MAC. Ozarow showed in [45] that feedback can also increase

the capacity region of a two-user Gaussian MAC. A constructive achievability scheme

based on the classical Schalkwijk-Kailath [51] feedback scheme was shown to be op-

timal for the two-user Gaussian MAC. Moreover, the cut-set outer bound was shown

to be tight in this case.

Subsequently, Cover and Leung obtained an achievable rate region for the general

MAC with feedback (MAC-FB) based on block Markov superposition coding [13].

Even though this region is in general larger than the capacity region of the MAC

without feedback, it is not optimal for the two-user Gaussian MAC-FB, as was shown

in [45]. Kramer [37] used the notion of directed information to obtain an expression for

the capacity region of the discrete memoryless MAC-FB. Unfortunately, this expres-

sion is in an incomputable non-single-letter form. Recently, Bross and Lapidoth [6]

proposed an achievable rate region for the two-user discrete memoryless MAC-FB

and showed that their region includes the Cover-Leung region, the inclusion being

3



strict for some channels.

For a specific class of MAC-FB, Willems [62] developed an outer bound that equals

the Cover-Leung achievable rate region. For this class of MAC-FB, each channel input

(say X1) should be expressible as a deterministic function of the other channel input

(X2) and the channel output (Y ). The binary erasure MAC considered by Gaarder

and Wolf, where Y = X1+X2, falls into this class of channels. Therefore, Cover-Leung

region is the feedback capacity region for the binary erasure MAC.

In Chapter 2, we use the idea of dependence balance to obtain new outer bounds

for the discrete memoryless MAC-FB. We evaluate our outer bounds for a particular

MAC, given as, Y = X1+X2+N , where allX1, X2 andN are binary andN is uniform.

This is a non-deterministic noisy MAC which does not fall into any class of channels

for which the feedback capacity is known. Our outer bounds strictly improve upon

the cut-set bound at all points on the boundary where feedback increases capacity.

In addition, we explicitly evaluate the Cover-Leung achievable rate region [13] for

this channel. The evaluation of these bounds is difficult due to an involved auxiliary

random variable, whose large cardinality prohibits an exhaustive search over all input

probability distributions. We overcome this difficulty by using a composite function

which was first introduced in [63]. As an application of the techniques developed for

these evaluations, we explicitly evaluate the capacity region of the MAC studied by

Gaarder and Wolf in [19]. This result resolves an open problem mentioned in a survey

paper of van der Meulen [58].

In Chapter 3, we study the model of MAC with generalized feedback (MAC-GFB)

and the interference channel with generalized feedback (IC-GFB). To motivate the
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study of these models, consider the model where the feedback link is noisy, i.e., feed-

back at the transmitters is a noisy version of Y . As another example, consider a

wireless setting, where each transmitter can overhear each other’s transmitted infor-

mation and utilize it for achieving higher rates to the receiver. To take these various

forms of feedback into account, we study the model of generalized feedback. In partic-

ular, for MAC-GFB, the channel is given by transition probability p(y, yF1 , yF2 |x1, x2),

where X1, X2 are the channel inputs and Y is the channel output at the receiver, YF1

is the feedback at transmitter 1 and YF2 is the feedback at transmitter 2. We use the

idea of dependence balance to obtain new outer bounds on the capacity regions of

the MAC-GFB and the IC-GFB. To show the usefulness of our outer bounds, we will

consider three different specific channel models.

We first consider a Gaussian MAC with noisy feedback (MAC-NF), where trans-

mitter k, k = 1, 2, receives a feedback YFk
, which is the channel output Y corrupted

with additive white Gaussian noise Zk. As the feedback noise variances σ2Zk
, k = 1, 2,

become large, one would expect the feedback to become useless. This fact is not

reflected by the cut-set outer bound. We demonstrate that our outer bound improves

upon the cut-set bound for all non-zero values of the feedback noise variances. More-

over, in the limit as σ2Zk
→ ∞, k = 1, 2, our outer bound collapses to the capacity

region of the Gaussian MAC without feedback. Secondly, we investigate a Gaussian

MAC with user-cooperation (MAC-UC), where each transmitter receives an additive

white Gaussian noise corrupted version of the channel input of the other transmit-

ter [53]. For this channel model, the cut-set bound is sensitive to the cooperation

noises, but not sensitive enough. For all non-zero values of cooperation noise vari-
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ances, our outer bound strictly improves upon the cut-set outer bound. Moreover, as

the cooperation noises become large, our outer bound collapses to the capacity region

of the Gaussian MAC without cooperation. Thirdly, we investigate a Gaussian IC

with user-cooperation (IC-UC). For this channel model, the cut-set bound is again

sensitive to cooperation noise variances as in the case of MAC-UC channel model,

but not sensitive enough. We demonstrate that our outer bound strictly improves

upon the cut-set bound for all non-zero values of cooperation noise variances.

In order to evaluate our outer bounds for the Gaussian channel models, we develop

a new approach to deal with capacity bounds involving auxiliary random variables.

We appropriately tailor this approach according to the channel model in consideration.

This allows us to obtain explicit expressions for our outer bounds and hence enables

us to compare them with the corresponding cut-set bounds.

In Chapter 4, we consider state dependent channels with rate-limited channel

state information (CSI) at the receiver and at the transmitter, respectively. We

first consider state-dependent channels where the receiver is supplied CSI at a rate

Rd. We note that this model falls in the class of relay channels [12] since the state

encoder can be regarded as a relay. Also note that this problem is one of the simplest

channel coding problems with a source coding constraint. Secondly, we consider

the case when the transmitter is supplied CSI at a rate Re. This model can be

regarded as a generalization of the Gelfand-Pinsker problem of coding for channels

with random parameters [23]. For both of these channel models, we develop new upper

bounds on their capacities, C(Rd) and C(Re), respectively. Although the problems of

characterizing the capacities, C(Rd) and C(Re) still remain open, we show that our
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upper bounds are tight for all the cases where these capacities have been characterized.

Furthermore, we show that our upper bound for C(Rd) yields a new capacity result

for a particular class of state-dependent channels when the receiver is supplied CSI

at a rate Rd. This result validates a conjecture due to Ahlswede and Han [2] for

this class of channels. We also investigate a rate-limited version of the dirty-paper-

coding (DPC) problem and show that a modified version of our upper bound for

C(Re) strictly improves upon Costa’s DPC upper bound [9] for certain values of Re.

In several communication scenarios, it is possible that the source and destination

are not connected through a direct link and the communication must take place

by the help of intermediate relay nodes. This scenario is modelled by the parallel

relay network, which is also commonly referred to as the diamond channel [52]. The

diamond channel comprises of a broadcast channel (BC) followed by a MAC. Even

though the two ingredients of the diamond channel, i.e., the BC and the MAC have

been studied intensively in the information theory literature, little is known about

the resulting channel when these two channels are combined. One of the challenges

in understanding this channel lies in the distributed information processing at the

relays and subsequent coordination to achieve high data-rates at the destination. In

Chapter 5, we consider diamond channels with a general BC p(y, z|x), with outputs

Z and Y at relays 1 and 2, respectively, and where the relays 1 and 2 have noiseless

links of capacities Rz and Ry, respectively, to the decoder. For the case when Y and

Z are deterministic functions of X, we establish the capacity. We next give an upper

bound for the capacity of the class of diamond channels with a physically degraded

broadcast channel, i.e., when X → Y → Z forms a Markov chain. We show that
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this upper bound is tight, if in addition to X → Y → Z, the output of relay 2, i.e.,

Y , is a deterministic function of X. We finally consider the diamond channel with

partially separated relays, i.e., when the output of relay 2 is available at relay 1. We

establish the capacity for this model in two cases, first, when the broadcast channel

is physically degraded, i.e., when X → Y → Z forms a Markov chain, and second,

when the broadcast channel is semi-deterministic, i.e, when Y = f(X). For both

of these cases, we show that the capacity is equal to the cut-set bound. This final

result shows that even partial feedback from the decoder to relays strictly increases

the capacity of the diamond channel.

In Chapter 6, we shift our focus to information theoretic secrecy. We consider a

secure lossless source coding problem with a rate-limited helper. In particular, Alice

observes an i.i.d. source Xn and wishes to transmit this source losslessly to Bob at

a rate Rx. A helper, say Helen, observes a correlated source Y n and transmits at a

rate Ry to Bob. A passive eavesdropper can observe the coded output of Alice. The

equivocation ∆ is measured by the conditional entropy H(Xn|Jx)/n, where Jx is the

coded output of Alice. In this problem, the goal is to losslessly transmit the source

Xn to Bob, while minimizing the information leakage to Eve. We first completely

characterize the rate-equivocation region for this secure source coding model, where

we show that Slepian-Wolf binning of X is optimal.

We next study two generalizations of this model and provide single-letter charac-

terizations for the respective rate-equivocation regions. In particular, we first consider

the case of a two-sided helper where Alice also has access to the coded output of He-

len. We show that for this case, Slepian-Wolf binning of X is suboptimal and one
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can further decrease the information leakage to the eavesdropper by utilizing the

side information at Alice. In this problem, Helen can also be interpreted as a relay

serving a dual purpose. Firstly, due to the presence of correlated side information

at Helen, she helps in reducing the rate of transmission of Alice. Secondly, due to

the secure common link from Helen to Alice and Bob, she also helps in reducing the

information leakage to Eve. We finally generalize this result to the case when there

are both secure and insecure rate-limited links from Helen and additional uncoded

side informations W n and Zn are available at Bob and Eve, respectively. For this

model, we provide a complete characterization of the rate-equivocation region when

Y n → Xn → (W n, Zn) forms a Markov chain.
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Chapter 2

Outer Bounds for Multiple Access Channels with Feedback

using Dependence Balance

2.1 Introduction

Noiseless feedback can increase the capacity region of the discrete memoryless MAC,

unlike for the single-user discrete memoryless channel. This was shown by Gaarder

and Wolf in [19] for the binary erasure MAC, which is defined as Y = X1 + X2.

Ozarow showed in [45] that feedback can also increase the capacity region of a two-

user Gaussian MAC-FB. A constructive achievability scheme based on the classical

Schalkwijk-Kailath [51] feedback scheme was shown to be optimal for the two-user

Gaussian MAC-FB. Moreover, the cut-set outer bound was shown to be tight in this

case.

Subsequently, Cover and Leung obtained an achievable rate region for the general

MAC-FB based on block Markov superposition coding [13]. Even though this region

is in general larger than the capacity region of the MAC without feedback, it is

not optimal for the two-user Gaussian MAC-FB, as was shown in [45]. Kramer [37]

used the notion of directed information to obtain an expression for the capacity
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region of the discrete memoryless MAC-FB. Unfortunately, this expression is in an

incomputable non-single-letter form. Recently, Bross and Lapidoth [6] proposed an

achievable rate region for the two-user discrete memoryless MAC-FB and showed

that their region includes the Cover-Leung region, the inclusion being strict for some

channels.

For a specific class of MAC-FB, Willems [62] developed an outer bound that equals

the Cover-Leung achievable rate region. For this class of MAC-FB, each channel input

(say X1) should be expressible as a deterministic function of the other channel input

(X2) and the channel output (Y ). The binary erasure MAC considered by Gaarder

and Wolf, where Y = X1+X2, falls into this class of channels. Therefore, Cover-Leung

region is the feedback capacity region for the binary erasure MAC.

A general outer bound for MAC-FB is the cut-set bound. Although the cut-set

bound was shown to be tight for the two-user Gaussian MAC-FB, it is in general

loose. An intuitive reason for the cut-set bound to be loose for the general MAC-FB

is its permissibility of arbitrary input distributions, some of which yielding rates which

may not be achievable. For instance, even though Cover-Leung achievability scheme

introduces correlation between X1 and X2, it is a limited form of correlation, as

the channel inputs are conditionally independent given an auxiliary random variable,

whereas the cut-set bound allows all possible correlations.

The idea of dependence balance was introduced by Hekstra and Willems in [30]

to obtain an outer bound on the capacity region of the single-output two-way chan-

nel. The basic idea behind this outer bound is to restrict the set of allowable input

distributions, consequently restricting arbitrary correlation between channel inputs.
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The authors also developed a parallel channel extension for the dependence balance

bound. The parallel channel extension can be interpreted as follows: the parallel

channel output can be considered as a genie aided information which is made avail-

able at both transmitters and the receiver and it also effects the set of allowable input

distributions through the dependence balance bound. Depending on the choice of the

genie information (which is equivalent to choosing a parallel channel), there is an

inherent tradeoff between the set of allowable input distributions and the excessive

mutual information rate terms which appear in the rate expressions as a consequence

of the parallel channel output. We will exploit this tradeoff provided by the parallel

channel extension of the dependence balance bound to obtain a strict improvement

over the cut-set bound for a particular MAC whose feedback capacity is not known.

To motivate the choice of our MAC, consider the binary erasure MAC used by

Gaarder and Wolf given by Y = X1+X2. If we introduce binary additive noise at the

channel output, then the channel becomes Y = X1 +X2 +N , where all X1, X2 and

N are binary and N has a uniform distribution. This is a non-deterministic noisy

MAC which does not fall into any class of channels for which the feedback capacity

is known. We should mention that this particular MAC was extensively studied by

Kramer in [37,39], where the first improvement over the Cover-Leung achievable rate

region was obtained.

We extend the idea of dependence balance to obtain an outer bound for the

entire capacity region of this binary additive noisy MAC-FB. Direct evaluation of the

parallel channel based dependence balance bound is intractable due to an involved

auxiliary random variable whose large cardinality prohibits an exhaustive search. We
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use composite functions and their properties to obtain a simple characterization for

our bound. Our outer bound strictly improves upon the cut-set bound at all points on

the boundary where feedback increases capacity. In addition, we explicitly evaluate

the Cover-Leung achievable rate region for our binary additive noisy MAC-FB.

We particularly focus on the symmetric-rate1 point on the feedback capacity re-

gion of this channel. Cover-Leung’s achievable symmetric-rate for this channel was

obtained in [39] as 0.43621 bits/transmission. In [39], Kramer obtained an improved

symmetric-rate inner bound as 0.43879 bits/transmission by using superposition cod-

ing and binning with code trees. The cut-set upper bound on the symmetric-rate

was obtained in [39] as 0.45915 bits/transmission. We obtain a symmetric-rate upper

bound of 0.45330 bits/transmission which strictly improves upon the cut-set bound.

Furthermore, we also show that a binary and uniform selection of the involved aux-

iliary random variable is sufficient to obtain our symmetric-rate upper bound.

It should be remarked that the channel we consider in this chapter can be thought

of as the discrete counterpart of the channel considered by Ozarow [45]. Although the

cut-set bound was shown to be tight for the two-user Gaussian MAC-FB, our result

shows that the cut-set bound is not tight for the discrete version of the additive noisy

MAC-FB.

As an application of the properties of the composite functions developed in this

chapter, we are able to obtain the entire boundary of the capacity region of the binary

erasure MAC-FB. The evaluation of the asymmetric rate pairs on the boundary of

1By symmetric-rate point, we refer to the maximum rate R such that the rate pair (R,R) lies in
the capacity region of MAC-FB.
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the feedback capacity region of the binary erasure MAC was mentioned as an open

problem in [61]. It was shown in [63] that a binary and uniform auxiliary random

variable T is sufficient to attain the sum-rate point on the capacity region of the binary

erasure MAC-FB. We show here that this is also the case for any asymmetric rate

point on the boundary of the feedback capacity region. This result also complements

the work of Kramer [38], where feedback strategies were developed for the binary

erasure MAC-FB and it was shown that these strategies achieve all rates yielded by a

binary selection of the auxiliary random variable T in the capacity region. Our result

hence shows in effect that the feedback strategies developed in [38] for binary erasure

MAC are optimal and capacity achieving.

2.2 System Model

A discrete memoryless two-user MAC-FB (see Figure 2.1) is defined by the following:

two input alphabets X1 and X2, an output alphabet Y , and the channel defined

by a probability transition function p(y|x1, x2) for all (x1, x2, y) ∈ X1 × X2 × Y . A

(n,M1,M2, Pe) code for the MAC-FB consists of two sets of encoding functions f1i, f2i

for i = 1, . . . , n and a decoding function g

f1i :M1 × Y i−1 → X1, i = 1, . . . , n

f2i :M2 × Y i−1 → X2, i = 1, . . . , n

g : Yn →M1 ×M2
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Figure 2.1: The multiple access channel with noiseless feedback (MAC-FB).

The two transmitters produce independent and uniformly distributed messages W1 ∈

{1, . . . ,M1} and W2 ∈ {1, . . . ,M2}, respectively, and transmit them through n chan-

nel uses. The average error probability is defined as Pe = Pr(g(Y n) 6= (W1,W2)). A

rate pair (R1, R2) is said to be achievable for MAC-FB if for any ε ≥ 0, there exists

a pair of n encoding functions {f1i}ni=1, {f2i}ni=1, and a decoding function g such that

R1 ≤ log(M1)/n, R2 ≤ log(M2)/n and Pe ≤ ε for sufficiently large n. The capacity

region of MAC-FB is the closure of the set of all achievable rate pairs (R1, R2).

2.3 Cut-Set Outer Bound for MAC-FB

By applying Theorem 14.10.1 in [14], the cut-set outer bound on the capacity region

of MAC-FB can be obtained as:

CS =
{

(R1, R2) : R1 ≤ I(X1;Y |X2) (2.1)

R2 ≤ I(X2;Y |X1) (2.2)

R1 +R2 ≤ I(X1, X2;Y )
}

(2.3)
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where the random variables (X1, X2, Y ) have the joint distribution

p(x1, x2, y) = p(x1, x2)p(y|x1, x2) (2.4)

The cut-set outer bound allows all input distributions p(x1, x2), which makes it seem-

ingly loose since an achievable scheme might not achieve arbitrary correlation and

rates given by the cut-set bound. Our aim is to restrict the set of allowable input

distributions by using a dependence balance approach.

2.4 Dependence Balance Outer Bound for MAC-FB

Hekstra and Willems [30] showed that the capacity region of MAC-FB is contained

within DB, where

DB =
{

(R1, R2) : R1 ≤ I(X1;Y |X2, T ) (2.5)

R2 ≤ I(X2;Y |X1, T ) (2.6)

R1 +R2 ≤ I(X1, X2;Y |T )
}

(2.7)

where the random variables (X1, X2, Y, T ) have the joint distribution

p(t, x1, x2, y) = p(t)p(x1, x2|t)p(y|x1, x2) (2.8)
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and also satisfy the following dependence balance bound

I(X1;X2|T ) ≤ I(X1;X2|Y, T ) (2.9)

where T is subject to a cardinality constraint of |T | ≤ |X1||X2|+ 2. The dependence

balance bound restricts the set of input distributions in the sense that it allows only

those input distributions p(t, x1, x2) which satisfy (2.9). It should be noted that by

ignoring the constraint in (2.9), one obtains the cut-set bound.

2.5 Adaptive Parallel Channel Extension of the Dependence Balance

Bound

In [30], Hekstra and Willems also developed an adaptive parallel channel extension

for the dependence balance bound which is given as follows: Let ∆(U) denote the set

of all distributions of U and ∆(U|V) denote the set of all conditional distributions of

U given V . Then for any mapping F : ∆(X1×X2)→ ∆(Z|X1×X2×Y), the capacity
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region of the MAC-FB is contained in

DBPC =
{

(R1, R2) : R1 ≤ I(X1;Y, Z|X2, T ) (2.10)

R2 ≤ I(X2;Y, Z|X1, T ) (2.11)

R1 ≤ I(X1;Y |X2) (2.12)

R2 ≤ I(X2;Y |X1) (2.13)

R1 +R2 ≤ I(X1, X2;Y ) (2.14)

R1 +R2 ≤ I(X1, X2;Y, Z|T )
}

(2.15)

where the random variables (X1, X2, Y, Z, T ) have the joint distribution

p(t, x1, x2, y, z) = p(t)p(x1, x2|t)p(y|x1x2)p+(z|x1, x2, y, t) (2.16)

such that for all t

p+(z|x1, x2, y, t) = F (pX1X2(x1, x2|t)) (2.17)

and such that

I(X1;X2|T ) ≤ I(X1;X2|Y, Z, T ) (2.18)

where T is subject to a cardinality bound of |T | ≤ |X1||X2|+ 3.

We should remark that the parallel channel (defined by p+(z|x1, x2, y, t)) is se-
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lected apriori, and for every choice of the parallel channel, one obtains an outer

bound on the capacity region of MAC-FB, which is in general tighter than the cut-set

bound. The set of allowable input distributions p(t, x1, x2) are those which satisfy

the constraint in (2.18). Also note that only the right hand side of (2.18), i.e., only

I(X1;X2|Y, Z, T ), depends on the choice of the parallel channel. By carefully select-

ing p+(z|x1, x2, y, t), one can reduce I(X1;X2|Y, Z, T ), thereby making the constraint

in (2.18) more stringent, consequently reducing the set of allowable input distribu-

tions. To obtain an improvement over the cut-set bound, we need to select a “good”

parallel channel such that it restricts the input distributions to a small allowable set

and yields small values of I(X1;Z|Y,X2, T ) and I(X2;Z|Y,X1, T ) at the same time.

These two mutual information “leak” terms are the extra terms that appear in (2.10)

and (2.11) relative to the rates appearing in (2.5) and (2.6), respectively.

To motivate the choice of our particular parallel channel, first consider a trivial

choice of Z: Z = φ (a constant). For this choice of Z, (2.18) reduces to (2.9) and

we are not restricting the set of allowable input distributions any more than the DB

bound. Moreover, for a constant selection of Z, (2.10) and (2.11) reduce to (2.5) and

(2.6), respectively. Thus, a constant selection of Z for DBPC is equivalent to DB

itself.

Also note that the smallest value of I(X1;X2|Y, Z, T ) is zero. Thus, it follows

that if we select a parallel channel such that I(X1;X2|Y, Z, T ) = 0 for every input

distribution p(t, x1, x2), then I(X1;X2|T ) = 0 by (2.18). Hence, the smallest set of

input distributions permissable by DBPC consists of those p(t, x1, x2) for which X1

and X2 are conditionally independent given T . Furthermore, for a parallel channel
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such that I(X1;X2|Y, Z, T ) = 0, the bound in (2.15) is redundant. This can be seen

from:

0 = I(X1;X2|T )− I(X1;X2|Y, Z, T )

= I(X1;Y, Z|T )− I(X1;Y, Z|X2, T )

= I(X1, X2;Y, Z|T )− I(X1;Y, Z|X2, T )− I(X2;Y, Z|X1, T ) (2.19)

Using (2.19), it is clear that the sum of constraints (2.10) and (2.11) is at least as

strong as the constraint (2.15). This shows that (2.15) is redundant for the class of

parallel channels where I(X1;X2|Y, Z, T ) = 0.

2.6 Binary Additive Noisy MAC-FB

In this section, we will consider a binary-input additive noisy MAC given by

Y = X1 +X2 +N (2.20)

where N is binary, uniform over {0, 1} and is independent of X1 and X2. The channel

output Y takes values from the set Y = {0, 1, 2, 3}. This channel does not fall into

any class of MAC for which the feedback capacity region is known. This channel

was also considered by Kramer in [37, 39] where it was shown that the Cover-Leung

achievable rate is strictly sub-optimal for the sum-rate.

We select a parallel channel p+(z|x1, x2, y) such that I(X1;X2|Y, Z, T ) = 0. By

(2.18), this will imply I(X1;X2|T ) = 0, and hence only distributions of the type
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p(t, x1, x2) = p(t)p(x1|t)p(x2|t) will be allowed. By doing so, we restrict the set of

allowable input distributions to be the smallest permitted by DBPC , although we pay

a penalty due to the positive “leak” terms I(X1;Z|Y,X2, T ) and I(X2;Z|Y,X1, T ).

Two simple choices of Z which yield I(X1;X2|Y, Z, T ) = 0 are Z = X1 and

Z = X2. For each of these choices, the corresponding outer bounds are,

DB(1)PC =
{

(R1, R2) : R1 ≤ I(X1;Y |X2, T ) +H(X1|Y,X2, T ) (2.21)

R2 ≤ I(X2;Y |X1, T ) (2.22)

R1 ≤ I(X1;Y |X2) (2.23)

R1 +R2 ≤ I(X1, X2;Y )
}

(2.24)

and

DB(2)PC =
{

(R1, R2) : R1 ≤ I(X1;Y |X2, T ) (2.25)

R2 ≤ I(X2;Y |X1, T ) +H(X2|Y,X1, T ) (2.26)

R2 ≤ I(X2;Y |X1) (2.27)

R1 +R2 ≤ I(X1, X2;Y )
}

(2.28)

where both DB(1)PC and DB(2)PC are evaluated over the set of input distributions of

the form p(t, x1, x2) = p(t)p(x1|t)p(x2|t). We should remark here that these two

outer bounds can also be obtained by extending the approach of Zhang, Berger and

Schalkwijk [71] to the multiple access channel with feedback.
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Lemma 2.1 For the binary additive noisy MAC-FB given in (2.20), the following

equalities hold for any distribution of the form p(t, x1, x2) = p(t)p(x1|t)p(x2|t),

H(X1|Y,X2, T ) =
1

2
H(X1|T ) (2.29)

H(X2|Y,X1, T ) =
1

2
H(X2|T ) (2.30)

The proof of Lemma 2.1 is given in the Appendix.

Using Lemma 2.1, we can simplify DB(1)PC and DB(2)PC as,

DB(1)PC =
{

(R1, R2) : R1 ≤ min (I(X1;Y |X2), H(X1|T )) (2.31)

R2 ≤
1

2
H(X2|T ) (2.32)

R1 +R2 ≤ I(X1, X2;Y )
}

(2.33)

and

DB(2)PC =
{

(R1, R2) : R1 ≤
1

2
H(X1|T ) (2.34)

R2 ≤ min (I(X2;Y |X1), H(X2|T )) (2.35)

R1 +R2 ≤ I(X1, X2;Y )
}

(2.36)

where both bounds are evaluated over the set of distributions of the form p(t, x1, x2) =

p(t)p(x1|t)p(x2|t) and the auxiliary random variable T is subject to a cardinality

constraint of |T | ≤ |X1||X2|+ 3. The evaluation of the above outer bounds is rather

cumbersome because for binary inputs, the bound on |T | is |T | ≤ 7. To the best of our
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knowledge, no one has been able to conduct an exhaustive search over an auxiliary

random variable whose cardinality is larger than 4. In Section 2.8, we will obtain

an alternate characterization for our outer bounds using composite functions and

their properties. For that, we will first develop some useful properties of composite

functions in the next section.

A valid outer bound is given by the intersection of DB(1)PC and DB(2)PC ,

DBPC = DB(1)PC
⋂

DB(2)PC (2.37)

We will show that this outer bound is strictly smaller than the cut-set bound at all

points on the capacity region where feedback increases capacity.

2.7 Composite Functions and Their Properties

Before obtaining a characterization of our outer bounds, we will define a composite

function and prove two lemmas regarding its properties. These lemmas will be essen-

tial in obtaining simple characterizations for our outer bounds and the Cover-Leung

achievable rate region. Throughout the dissertation, we will refer to the entropy

function as h(k)(s1, . . . sk) which is defined as,

h(k)(s1, . . . , sk) = −
k
∑

i=1

silog(si) (2.38)

for si ≥ 0, i = 1 . . . , k, and
∑k

i=1 si = 1, where all logarithms are to the base 2. We

will denote h(2)(s, 1 − s) simply as h(s). To characterize our bounds, we will make
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use of the following function

φ(s) =















1−
√
1−2s
2

, for 0 ≤ s ≤ 1/2

1−
√
2s−1
2

, for 1/2 < s ≤ 1

(2.39)

It was shown in [63] that the composite function h(φ(s)) is symmetric around s = 1/2

and concave in s for 0 ≤ s ≤ 1. The functions φ(s) and h(φ(s)) are illustrated in

Figure 2.2. From the definition of φ(s) in (2.39) it is clear that for any s ∈ [0, 1], the

function φ(s) satisfies the following property

φ(2s(1− s)) = min(s, 1− s) (2.40)

As a consequence, the following holds as well

h(φ(2s(1− s))) = h(s) (2.41)

For any s ∈ [0, 1], the following holds from the definition of φ(s),

s =















φ(2s(1− s)), 0 ≤ s ≤ 1
2

1− φ(2s(1− s)), 1
2
< s ≤ 1

(2.42)

For any x ∈ [0, 1
2
] and y ∈ [0, 1

2
], let us define a function

f(x, y) = φ(x) + φ(y)− 2φ(x)φ(y) (2.43)

=
1−

√

(1− 2x)(1− 2y)

2
(2.44)
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Figure 2.2: Functions φ(s) and h(φ(s)).

From the above definition, it is clear that the function f(x, y) lies in the range [0, 1
2
].

We now state two lemmas regarding the function f(x, y).

Lemma 2.2 The variable

v = s1 + s2 − 2s1s2 (2.45)

is always lower bounded by f(2s1(1− s1), 2s2(1− s2)) for any s1 ∈ [0, 1], s2 ∈ [0, 1].

Lemma 2.3 The function f(x, y) is jointly convex in (x, y) for 0 ≤ x ≤ 1
2
, 0 ≤ y ≤ 1

2
.

The proofs of Lemmas 2.2 and 2.3 are given in the Appendix.

2.8 Evaluation of the Dependence Balance Outer Bound

We now present the main result of this section.
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Theorem 2.1 The feedback capacity region of the binary additive noisy MAC given

by (2.20) is contained in the region

DBPC = DB(1)PC
⋂

DB(2)PC (2.46)

where

DB(1)PC =
⋃

(u1,u2,u)∈P

{

(R1, R2) : R1 ≤ min

(

1

2
h(u), h(φ(2u1))

)

R2 ≤
1

2
h(φ(2u2))

R1 +R2 ≤ h

(

1− u

2

)

}

(2.47)

and

DB(2)PC =
⋃

(u1,u2,u)∈P

{

(R1, R2) : R1 ≤
1

2
h(φ(2u1))

R2 ≤ min

(

1

2
h(u), h(φ(2u2))

)

R1 +R2 ≤ h

(

1− u

2

)

}

(2.48)

and the set P is defined as

P =
{

(u1, u2, u) : 0 ≤ u1 ≤
1

4
; 0 ≤ u2 ≤

1

4
; f(2u1, 2u2) ≤ u ≤ 1− (u1 + u2)

}

(2.49)
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Proof: We will explicitly characterize our outer bounds DB(1)PC and DB(2)PC . Let the

cardinality of the auxiliary random variable T be fixed and arbitrary, say |T |. Then,

the joint distribution p(t)p(x1|t)p(x2|t) can be described by the following variables:

q1t = Pr(X1 = 0|T = t), t = 1, . . . , |T |

q2t = Pr(X2 = 0|T = t), t = 1, . . . , |T |

pt = Pr(T = t), t = 1, . . . , |T | (2.50)

We will characterize our outer bounds in terms of three variables u1, u2 and u which

are functions of p(t, x1, x2), and are defined as,

u1 =
∑

t

ptq1t(1− q1t) =
∑

t

ptu1t (2.51)

u2 =
∑

t

ptq2t(1− q2t) =
∑

t

ptu2t (2.52)

u =
∑

t

pt(q1t + q2t − 2q1tq2t) =
∑

t

ptut (2.53)

where we have defined

u1t = q1t(1− q1t) (2.54)

u2t = q2t(1− q2t) (2.55)

ut = q1t + q2t − 2q1tq2t (2.56)
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It should be noted that since 0 ≤ qjt ≤ 1, for j = 1, 2, t = 1, . . . , |T |, the variables

u1, u2, u1t and u2t all lie in the range [0, 1
4
]. Our outer bounds DB(1)PC and DB(2)PC are

comprised of the following information theoretic entities:

1. H(X1|T ), H(X2|T )

2. I(X1;Y |X2), I(X2;Y |X1)

3. I(X1, X2;Y ).

We will first obtain upper bounds for each one of these entities individually in terms

of (u1, u2, u).

We upper bound H(X1|T ) as follows,

H(X1|T ) =
∑

t

pth(q1t) (2.57)

=
∑

t

pth(φ(2q1t(1− q1t))) (2.58)

=
∑

t

pth(φ(2u1t)) (2.59)

≤ h(φ(2u1)) (2.60)

where (2.58) follows due to (2.41), (2.59) follows from (2.54), and (2.60) follows from

the fact that h(φ(s)) is concave in s and the application of Jensen’s inequality [14].

Using a similar set of inequalities for H(X2|T ), we obtain

H(X2|T ) ≤ h(φ(2u2)) (2.61)
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We will now upper bound I(X1;Y |X2) in terms of the variable u. For this purpose,

let us first define

a = PX1X2(0, 0) =
∑

t

ptq1tq2t (2.62)

b = PX1X2(0, 1) =
∑

t

ptq1t(1− q2t) (2.63)

c = PX1X2(1, 0) =
∑

t

pt(1− q1t)q2t (2.64)

d = PX1X2(1, 1) = 1− a− b− c. (2.65)

We now proceed as,

I(X1;Y |X2) = H(Y |X2)−H(Y |X1, X2) (2.66)

= H(Y |X2)− 1 (2.67)

= (a+ c)h(3)
(

a

2(a+ c)
,
1

2
,

c

2(a+ c)

)

+ (b+ d)h(3)
(

b

2(b+ d)
,
1

2
,

d

2(b+ d)

)

− 1 (2.68)

≤ h(3)
(

a+ d

2
,
1

2
,
b+ c

2

)

− 1 (2.69)

=
1

2
h(b+ c) (2.70)

=
1

2
h(u) (2.71)
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where (2.69) follows by the concavity of the entropy function and the application of

Jensen’s inequality [14]. Using a similar set of inequalities, we also have

I(X2;Y |X1) ≤
1

2
h(u) (2.72)

We will now obtain an upper bound on I(X1, X2;Y ). First note that

I(X1, X2;Y ) = H(Y )−H(Y |X1, X2) (2.73)

= h(4)(PY (0), PY (1), PY (2), PY (3))− 1 (2.74)

where

PY (0) =
∑

t

ptq1tq2t/2 (2.75)

PY (1) =
∑

t

pt
(

q1t + q2t − q1tq2t
)

/2 (2.76)

PY (2) =
∑

t

pt
(

1− q1tq2t
)

/2 (2.77)

PY (3) =
∑

t

pt(1− q1t)(1− q2t)/2 (2.78)
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Using the following fact,

h(4)(α, β, γ, θ) =
1

2
h(4)(α, β, γ, θ) +

1

2
h(4)(θ, γ, β, α) (2.79)

≤ h(4)
(

α+ θ

2
,
β + γ

2
,
β + γ

2
,
α + θ

2

)

(2.80)

= h (α+ θ) + h

(

1

2

)

(2.81)

= h (1− (β + γ)) + 1 (2.82)

where (2.80) follows by the concavity of the entropy function and the application of

Jensen’s inequality [14], we now obtain an upper bound on I(X1, X2;Y ) by continuing

from (2.74),

I(X1, X2;Y ) = h(4)(PY (0), PY (1), PY (2), PY (3))− 1 (2.83)

≤ h (1− (PY (1) + PY (2))) + h

(

1

2

)

− 1 (2.84)

= h

(

1− u

2

)

(2.85)

where (2.84) follows by (2.82) and (2.85) follows from the fact that PY (1) + PY (2) =

(1 + u)/2 using (2.76) and (2.77), where u is as defined in (2.53).

We have obtained upper bounds on the information theoretic entities which com-

prise our outer bounds in terms of three variables u1, u2 and u. We will now give a

feasible region for these triples based on the structures of these variables. We claim

that the following set is feasible:
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P =
{

(u1, u2, u) : 0 ≤ u1 ≤
1

4
; 0 ≤ u2 ≤

1

4
; f(2u1, 2u2) ≤ u ≤ 1− (u1 + u2)

}

(2.86)

First, note that for any q1t ∈ [0, 1], the following holds: u1t = q1t(1 − q1t) ≤ 1
4
.

Similarly, u2t = q2t(1− q2t) ≤ 1
4
. Hence, we have

0 ≤ u1 ≤
1

4
(2.87)

0 ≤ u2 ≤
1

4
(2.88)

We now obtain a lower bound on u as

u =
∑

t

ptut (2.89)

≥
∑

t

ptf(2u1t, 2u2t) (2.90)

≥ f

(

2
∑

t

ptu1t, 2
∑

t

ptu2t

)

(2.91)

= f(2u1, 2u2) (2.92)
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where (2.90) follows by Lemma 2.2 and (2.91) follows by Lemma 2.3 and the appli-

cation of Jensen’s inequality [14]. We now obtain another lower bound on u,

u =
∑

t

ptut (2.93)

=
∑

t

pt(q1t + q2t − 2q1tq2t) (2.94)

=
∑

t

pt(q1t − q21t + q2t − q22t + (q1t − q2t)
2) (2.95)

≥
∑

t

pt(q1t − q21t + q2t − q22t) (2.96)

=
∑

t

ptq1t(1− q1t) +
∑

t

ptq2t(1− q2t) (2.97)

= u1 + u2 (2.98)

Finally, we obtain an upper bound on u in terms of u1 and u2,

u =
∑

t

ptut (2.99)

=
∑

t

pt(q1t + q2t − 2q1tq2t) (2.100)

=
∑

t

pt(q1t + q2t − 2q1tq2t + q21t + (1− q2t)
2 − q21t − (1− q2t)

2) (2.101)

≤
∑

t

pt(q1t + q2t − 2q1tq2t + q21t + (1− q2t)
2 − 2q1t(1− q2t)) (2.102)

= 1− (u1 + u2) (2.103)

where (2.102) follows by the inequality q21t + (1− q2t)
2 ≥ 2q1t(1− q2t).
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By noting

f(2u1, 2u2)− (u1 + u2) =
1−

√

(1− 4u1)(1− 4u2)

2
− (u1 + u2) (2.104)

=
(1− 4u1) + (1− 4u2)− 2

√

(1− 4u1)(1− 4u2)

4
(2.105)

=
(
√
1− 4u1 −

√
1− 4u2)

2

4
(2.106)

≥ 0 (2.107)

and using (2.92), we note that the lower bound in (2.98) is redundant.

Therefore, from (2.92) and (2.103), we have the following feasible range for the

variable u in terms of u1 and u2,

f(2u1, 2u2) ≤ u ≤ 1− (u1 + u2) (2.108)

Combining (2.87), (2.88) and (2.108), we obtain the set of feasible (u1, u2, u) given in

(2.86).

From (2.107), observe that f(2u1, 2u2) = u1+u2 only if u1 = u2. The lower bound

u1 + u2 ≤ u was sufficient for characterizing the symmetric feedback capacity of the

binary erasure MAC [63]. Moreover, this characterization was possible by using only

one variable u. On the other hand, our outer bounds are asymmetric in terms of

the expressions appearing in the individual upper bounds for R1 and R2. Therefore,

the bifurcation of information contained in any input distribution p(t)p(x1|t)p(x2|t)

in terms of three variables (u1, u2, u) and an improved lower bound on the variable u

using the non-linear bivariate function f(2u1, 2u2) turn out to be crucial in capturing
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this asymmetry2. This can be considered as a heuristic explanation as to why we are

able to obtain explicit characterizations of our outer bounds and the Cover-Leung

achievable rate region for both channel models considered in this section.

It should be noted that the set of triples P obtained in (2.86) may not necessarily

be the smallest feasible set of all triples (u1, u2, u). Since we are interested in a

maximization over these set of triples, a possibly larger set P suffices.

Using the upper bounds on H(X1|T ), H(X2|T ), I(X1;Y |X2), I(X2;Y |X1) and

I(X1, X2;Y ) in (2.60), (2.61), (2.71), (2.72) and (2.85) in terms of (u1, u2, u) along

with a feasible set of triples P in (2.86), we arrive at the desired characterizations for

DB(1)PC and DB(2)PC given in (2.47) and (2.48), respectively. Finally, the intersection of

two outer bounds is also a valid outer bound. Therefore, the outer bound DBPC given

in (2.46) contains the feedback capacity region of the binary additive noisy MAC. 2

We will plot these outer bounds and their intersection in Figure 2.4. In the next

section, we will explicitly characterize our upper bounds for the symmetric-rate point

on the feedback capacity region of the binary additive noisy MAC.

2.9 Explicit Characterization of the Symmetric-Rate Upper Bound

For the binary additive noisy MAC-FB in consideration, it was shown by Kramer [37]

that the symmetric-rate cut-set bound is 0.45915 bits/transmission. It was also shown

in [37] that the Cover-Leung achievable symmetric-rate is 0.43621 bits/transmission

2Note that from the definition of u in (2.53), we also have u = Pr(X1 6= X2). Therefore, roughly
speaking, 1−u reflects the correlation between X1 and X2. Hence, obtaining a good lower bound on
u is equivalent to limiting the correlation between X1 and X2. This interpretation is in accordance
with the basic idea of dependence balance.
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and it was improved to 0.43879 bits/transmission by using superposition coding and

binning with code trees. For completeness and comparison with existing bounds, we

will first completely characterize our outer bound for the symmetric-rate by providing

the input distribution p(t)p(x1|t)p(x2|t) which achieves it. By symmetric-rate we

mean a rate R such that the rate pair (R,R) lies in the capacity region of MAC-

FB. For the symmetric-rate, both DB(1)PC and DB(2)PC will yield the same upper bound.

Hence, we will focus on DB(1)PC . Using (2.47), we are interested in obtaining the largest

R over all (u1, u2, u) ∈ P such that

R ≤ min

(

1

2
h(u), h(φ(2u1))

)

(2.109)

R ≤ 1

2
h(φ(2u2)) (2.110)

2R ≤ h

(

1− u

2

)

(2.111)

We will show that a seemingly weaker version of the above bound will improve upon

the symmetric-rate cut-set bound. We will also show that the weaker bound is in fact

the same as the above bound, and its sole purpose is the simplicity of evaluation and

insight into the input distribution that attains it. We first obtain a weakened version

of (2.109) as

R ≤ min

(

1

2
h(u), h(φ(2u1))

)

≤ h(φ(2u1)) (2.112)
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Next, consider (2.111)

2R ≤ h

(

1− u

2

)

(2.113)

= h

(

1

2
− u

2

)

(2.114)

≤ h

(

1

2
− f(2u1, 2u2)

2

)

(2.115)

where (2.115) follows from (2.92) and the fact that the binary entropy function h(s)

is monotonically increasing in s for s ∈ [0, 1
2
]. Combining (2.110), (2.112) and (2.115),

we are interested in the largest R such that

R ≤ max
u1,u2∈[0, 14 ]

min

(

h(φ(2u1)),
1

2
h(φ(2u2)),

1

2
h

(

1

2
− f(2u1, 2u2)

2

)

)

(2.116)

We note that this upper bound on the symmetric-rate depends only on u1 and u2,

and therefore, we replace the feasible set P with u1, u2 ∈ [0, 1
4
].

We know that h(φ(s)) is concave in s for s ∈ [0, 1]. Hence, it follows that both

h(φ(2u1)) and 1
2
h(φ(2u2)) are concave in u1 and u2, respectively, and hence concave

in the pair (u1, u2). We also have the following lemma.

Lemma 2.4 The function

g(u1, u2) =
1

2
h

(

1− f(2u1, 2u2)

2

)

(2.117)

is monotonically decreasing and jointly concave in the pair (u1, u2) for u1, u2 ∈ [0, 1
4
].

The proof of Lemma 2.4 is given in the Appendix.
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Using Lemma 2.4, we conclude that all three functions in the min(.) in (2.116)

are concave in (u1, u2). Invoking the fact that the minimum of concave functions

is concave, we conclude that the maximum in (2.116) is unique. We will now show

that the unique pair (u∗1, u
∗
2) that attains this maximum satisfies the property that

h(φ(2u∗1)) = 1
2
h(φ(2u∗2)) = g(u∗1, u

∗
2).

For this purpose, we first characterize those pairs (ũ1, ũ2) such that the following

holds,

h(φ(2ũ1)) =
1

2
h(φ(2ũ2)) = g(ũ1, ũ2) (2.118)

By using (2.118), we obtain two equations for ũ1 and ũ2, as

h(φ(2ũ1)) =
1

2
h

(

1− φ(2ũ1)

3− 2φ(2ũ1)

)

(2.119)

φ(2ũ2) =
1− φ(2ũ1)

3− 2φ(2ũ1)
(2.120)

From (2.119), one can see that 2ũ1 is the unique solution s ∈ [0, 1
2
] of the equation

h(φ(s)) =
1

2
h

(

1− φ(s)

3− 2φ(s)

)

(2.121)

Obtaining the optimal ũ1 from the above equation is illustrated in Figure 2.3. The

unique solutions (ũ1, ũ2) of (2.119) and (2.120) are

ũ1 = 0.086063, ũ2 = 0.218333 (2.122)
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Figure 2.3: Characterization of the optimal u∗1.

We will now show that this pair (ũ1, ũ2) yields the maximum in (2.116).

Returning to the maximization problem (2.116), first denote S as the region of

allowable (u1, u2),

S =
{

(u1, u2) : 0 ≤ u1 ≤
1

4
; 0 ≤ u2 ≤

1

4

}

(2.123)

Also define a subset of this region

S̃ =
{

(u1, u2) : u1 ∈ (ũ1,
1

4
];u2 ∈ (ũ2,

1

4
]
}

(2.124)

where (ũ1, ũ2) is given by (2.122). We will now show that the pair (ũ1, ũ2) yields the

solution of the maximization problem in (2.116). Consider the following two cases,
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1. If (u1, u2) ∈ S̃, then by Lemma 4, we have that g(u1, u2) ≤ g(ũ1, ũ2), using

which we obtain,

min

(

h(φ(2u1)),
1

2
h(φ(2u2)), g(u1, u2)

)

≤ g(u1, u2) ≤ g(ũ1, ũ2) (2.125)

2. If (u1, u2) ∈ S \ S̃, we either have u1 ≤ ũ1 or u2 ≤ ũ2 or both. Using this along

with the fact that h(φ(2s)) is monotonically increasing in s for s ∈ [0, 1
4
], we

obtain

min

(

h(φ(2u1)),
1

2
h(φ(2u2)), g(u1, u2)

)

≤ h(φ(2ũ1)) (2.126)

The above two cases show the following,

max
u1∈[0, 14 ],u2∈[0, 14 ]

min

(

h(φ(2u1)),
1

2
h(φ(2u2)), g(u1, u2)

)

= h(φ(2ũ1)) (2.127)

=
1

2
h(φ(2ũ2)) (2.128)

= g(ũ1, ũ2) (2.129)

Thus, the maximum in (2.116) is obtained at (u∗1, u
∗
2) = (ũ1, ũ2). We now obtain a

distribution p(t)p(x1|t)p(x2|t) which attains this symmetric-rate upper bound. Fix T
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to be binary, and select the involved probabilities as

p0 = p1 =
1

2
(2.130)

q10 = 1− q11 = φ(2u∗1) (2.131)

q20 = 1− q21 = φ(2u∗2) (2.132)

The reason for constructing such an input distribution is that, at this specific distri-

bution, we have the following exact equalities,

H(X1|T ) = h(φ(2u∗1)) (2.133)

1

2
H(X2|T ) =

1

2
h(φ(2u∗2)) (2.134)

1

2
I(X1, X2;Y ) = g(u∗1, u

∗
2) (2.135)

and we achieve the outer bound we developed with equality. Substituting the values

of (u∗1, u
∗
2), we obtain a distribution given by,

p0 = p1 =
1

2
(2.136)

q10 = 1− q11 = 0.095109 (2.137)

q20 = 1− q21 = 0.322050 (2.138)

The above input distribution yields a symmetric-rate of 0.45330 bits/transmission.
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Moreover, the u∗ corresponding to this distribution is given by

u∗ =
∑

t

pt(q1t + q2t − 2q1tq2t) (2.139)

= f(2u∗1, 2u
∗
2) (2.140)

= 0.355899 (2.141)

where (2.140) is by construction of the input distribution p(t, x1, x2) and (2.141)

is obtained by substituting the distribution specified in (2.136)-(2.138). Moreover,

φ(2u∗2) < u∗ < 1
2
, hence we also have that

1

2
h(u∗) ≥ 1

2
h(φ(2u∗2)) = h(φ(2u∗1)) (2.142)

This shows that the weakened version of the upper bound obtained in (2.116) is indeed

tight and a binary auxiliary random variable T with uniform distribution over {0, 1}

is sufficient to attain this symmetric-rate upper bound.

2.10 Evaluation of the Cover-Leung Achievable Rate Region

For completeness we will also obtain a simple characterization of the Cover-Leung

inner bound for our binary additive noisy MAC-FB. For this purpose, we follow a

two-step approach. In the first step, we first obtain an outer bound on the achievable

rate region in terms of two variables (u1, u2). In the second step, we specify an input

distribution, as a function of (u1, u2), which achieves the outer bound. We therefore

arrive at an alternate characterization of the Cover-Leung achievable rate region in
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terms of the variables (u1, u2).

The Cover-Leung achievable rate region [13] is given as,

CL =
{

(R1, R2) : R1 ≤ I(X1;Y |X2, T ) (2.143)

R2 ≤ I(X2;Y |X1, T ) (2.144)

R1 +R2 ≤ I(X1, X2;Y )
}

(2.145)

where the random variables (T,X1, X2, Y ) have the joint distribution,

p(t, x1, x2, y) = p(t)p(x1|t)p(x2|t)p(y|x1, x2) (2.146)

and the random variable T is subject to a cardinality constraint of |T | ≤ min(|X1||X2|+

1, |Y|+ 2).

We now state the main result of this section.

Theorem 2.2 The Cover-Leung achievable rate region for the binary additive noisy

MAC given by (2.20) is given as

CL =
⋃

(u1,u2)∈S

{

(R1, R2) : R1 ≤
1

2
h(φ(2u1))

R2 ≤
1

2
h(φ(2u2))

R1 +R2 ≤ h

(

1− f(2u1, u2)

2

)

}

(2.147)
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where the set S is defined as

S =
{

(u1, u2) : 0 ≤ u1 ≤
1

4
; 0 ≤ u2 ≤

1

4

}

(2.148)

Proof: For the binary additive noisy MAC in consideration, the constraints in (2.143)-

(2.145) simplify as

R1 ≤
1

2
H(X1|T ) (2.149)

R2 ≤
1

2
H(X2|T ) (2.150)

R1 +R2 ≤ I(X1, X2;Y ) (2.151)

We will first obtain an outer bound on the region specified by (2.149)-(2.151) in

terms of two variables (u1, u2). For every pair (u1, u2), we will then specify an input

distribution which will attain this outer bound. Note that the three constraints

(2.149)-(2.151) are of similar form as in the case of DB(1)PC and DB(2)PC , and we proceed

in a similar manner to obtain upper bounds on the three terms above in terms of u1

and u2 as,

R1 ≤
1

2
h(φ(2u1)) (2.152)

R2 ≤
1

2
h(φ(2u2)) (2.153)

R1 +R2 ≤ h

(

1− f(2u1, u2)

2

)

(2.154)

where the variables (u1, u2) belong to the set S defined in (2.123). Hence, an outer
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bound on the rate region specified by (2.149)-(2.151) is given as O, where

O =
⋃

(u1,u2)∈S

{

(R1, R2) :R1 ≤
1

2
h(φ(2u1))

R2 ≤
1

2
h(φ(2u2))

R1 +R2 ≤ h

(

1− f(2u1, u2)

2

)

}

(2.155)

Let (u1, u2) be any arbitrary pair which belongs to S. Consider an input distribution

for which |T | = 2, and T is uniform over {0, 1} and,

p0 = p1 =
1

2
(2.156)

q10 = 1− q11 = φ(2u1) (2.157)

q20 = 1− q21 = φ(2u2) (2.158)

For this input distribution, we obtain the following exact equalities

H(X1|T ) = h(φ(2u1)) (2.159)

H(X2|T ) = h(φ(2u2)) (2.160)

I(X1, X2;Y ) = h

(

1− f(2u1, 2u2)

2

)

(2.161)

We have thus shown that the outer bound we obtained on the achievable rate region in

terms of (u1, u2) can be attained by a set of input distributions for which the involved

auxiliary random variable T is binary and uniform. This in turn implies that a binary

and uniform random variable T is sufficient to characterize the entire Cover-Leung
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achievable rate region for the binary additive noisy MAC-FB. By varying over all

such input distributions, or equivalently, by varying (u1, u2) in the set S, we obtain

the entire Cover-Leung achievable rate region given in (2.147). 2

We should remark here that when evaluating the DBPC bound in the previous

section for Z = X1 and Z = X2, it was not necessary to specify the distribution

which achieves the bound, since it was an outer bound. On the other hand, when

evaluating the Cover-Leung bound, since it is an achievability, it is necessary to give

a distribution which achieves the bound.

The dependence balance bounds corresponding to the parallel channel choices

Z = X1 and Z = X2, along with the cut-set upper bound and the Cover-Leung

achievable rate region are shown in Figures 2.4 and 2.5. It is interesting to note that

our bound improves upon the cut-set bound at all points where the Cover-Leung

achievable rate region is strictly larger than the capacity region without feedback. In

other words, our bound improves upon the cut-set bound at all points where feedback

increases capacity.

We should remark that our choices of parallel channels; namely, Z = X1 and

Z = X2 are the simplest ones which ensure that I(X1;X2|Y, Z, T ) = 0 but they yield

fixed information leaks. We believe that by a more elaborate choice of a parallel

channel, i.e., by carefully selecting a parameterized parallel channel p+(z|x1, x2, y, t)

such that I(X1;X2|Y, Z, T ) = 0, one would still be able to restrict the input dis-

tributions to a conditionally independent form and then optimize the parameters of

the parallel channel to minimize the information leak terms. This approach can po-

tentially improve upon our outer bound. However, for explicitly characterizing such
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Figure 2.4: Illustration of our bounds for the capacity of binary additive noisy MAC-
FB.
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outer bounds, one might require a new approach and possibly a different composite

function than the one used in this chapter.

2.11 The Capacity Region of the Binary Erasure MAC-FB

The capacity region of a class of discrete memoryless MAC-FB was characterized

in [62] by establishing a converse and it was shown to be equal to the Cover-Leung

achievable rate region. This class of channels satisfy the property that at least one

of the channel inputs say X1, can be written as a deterministic function of the other

channel input X2 and the channel output Y . The binary erasure MAC, where Y =

X1 +X2, falls into this class of channels. In addition, the binary erasure MAC-FB is

the noiseless version of the binary additive noisy MAC-FB studied in this chapter.

Willems showed in [63] that a binary selection of auxiliary random variable is

sufficient to obtain the sum-rate point of the capacity region of the binary erasure

MAC-FB. In this section, we will show that by using our results for composite func-

tions which were presented in previous sections, it is possible to obtain all points

on the boundary of this capacity region using a binary auxiliary random variable.

The feedback capacity region of this channel is given by the Cover-Leung achievable

rate region given in (2.143)-(2.145) which can be simplified for the binary erasure

48



MAC-FB as,

R1 ≤ H(X1|T ) (2.162)

R2 ≤ H(X2|T ) (2.163)

R1 +R2 ≤ H(Y ) (2.164)

We now state the main result of this section.

Theorem 2.3 The feedback capacity region of the binary erasure MAC is given as,

C =
⋃

(u1,u2)∈S

{

(R1, R2) : R1 ≤ h(φ(2u1))

R2 ≤ h(φ(2u2))

R1 +R2 ≤ h(f(2u1, 2u2)) + 1− f(2u1, 2u2)
}

(2.165)

where the set S is defined as

S =
{

(u1, u2) : 0 ≤ u1 ≤
1

4
; 0 ≤ u2 ≤

1

4

}

(2.166)

Proof: We start by obtaining three upper bounds on the expressions appearing in

the bounds (2.162)-(2.164). We first have,

H(X1|T ) ≤ h(φ(2u1)) (2.167)
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Similarly, we also have

H(X2|T ) ≤ h(φ(2u2)) (2.168)

We now obtain an upper bound on H(Y ), by first noting that,

H(Y ) = h(3)(PY (0), PY (1), PY (2)) (2.169)

where

PY (0) =
∑

t

ptq1tq2t (2.170)

PY (1) =
∑

t

pt(q1t + q2t − 2q1tq2t) (2.171)

PY (2) =
∑

t

pt(1− q1t)(1− q2t) (2.172)

Now, we use the following inequality established in [63],

h(3)(a, b, c) =
1

2
h(3)(a, b, c) +

1

2
h(3)(c, b, a) (2.173)

≤ h(3)
(

a+ c

2
, b,

a+ c

2

)

(2.174)

= h(b) + 1− b (2.175)

where (2.174) follows by the concavity of the entropy function and by the application
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of Jensen’s inequality [14]. Using (2.175) and continuing from (2.169), we obtain

H(Y ) = h(3)(PY (0), PY (1), PY (2)) (2.176)

≤ h(PY (1)) + 1− PY (1) (2.177)

= h(u) + 1− u (2.178)

where u is defined in (2.53). Using (2.167), (2.168) and (2.178), we can write an outer

bound O1 on the capacity region as follows,

O1 =
⋃

(u1,u2,u)∈P
O1(u1, u2, u) (2.179)

where

O1(u1, u2, u) =
{

(R1, R2) : R1 ≤ h(φ(2u1))

R2 ≤ h(φ(2u2))

R1 +R2 ≤ h(u) + 1− u
}

(2.180)

and the set P is defined in (2.86). We will now obtain a simpler characterization of

O1 in terms of two variables (u1, u2) by showing that O1 ≡ O2, where,

O2 =
⋃

(u1,u2)∈S
O2(u1, u2) (2.181)
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where

O2(u1, u2) =
{

(R1, R2) : R1 ≤ h(φ(2u1))

R2 ≤ h(φ(2u2))

R1 +R2 ≤ h(f(2u1, 2u2)) + 1− f(2u1, 2u2)
}

(2.182)

The proof of the claim O1 ≡ O2 is given in the Appendix. Hence, we have an outer

bound on the capacity region as given by O2.

The outer bound O2 is evaluated over the set of pairs (u1, u2) such that u1, u2 ∈

[0, 1
4
]. For any such arbitrary pair (u1, u2), an input distribution which achieves the

set of rate pairs specified by O2(u1, u2) is obtained by selecting |T | = 2, and

p0 = p1 =
1

2
(2.183)

q10 = 1− q11 = φ(2u1) (2.184)

q20 = 1− q21 = φ(2u2) (2.185)

The set of rates achievable by the distribution specified in (2.183)-(2.185) are obtained

as,

R1 ≤ H(X1|T ) = h(φ(2u1)) (2.186)

R2 ≤ H(X2|T ) = h(φ(2u2)) (2.187)

R1 +R2 ≤ H(Y ) = h(f(2u1, 2u2)) + 1− f(2u1, 2u2) (2.188)

52



This shows that the capacity region of binary erasure MAC-FB can be obtained

by a binary and uniform selection of the auxiliary random variable T . 2

The capacity region of the binary erasure MAC with and without feedback and

the cut-set bound are illustrated in Figures 2.6 and 2.7. It was shown in [63] that the

sum-rate point on the boundary of the capacity region lies strictly below the “total

cooperation” line. This is equivalent to saying that the cut-set bound is not tight for

the sum-rate point. From our result, it is now clear that the cut-set bound is not

tight for asymmetric rate pairs either. In fact, it is not tight at all boundary points

where feedback increases capacity.

Moreover, our result also shows that a simple selection of binary and uniform T is

sufficient to evaluate the boundary of the capacity region of binary erasure MAC-FB.

Simple feedback strategies for a class of two user MAC-FB were developed in [38].

It was shown that for the binary erasure MAC, these feedback strategies yield all

rate points for a binary selection of the auxiliary random variable T . Thus, our

result shows that these feedback strategies are indeed optimal for the binary erasure

MAC-FB and yield all rates on the boundary of its feedback capacity region.

2.12 Conclusions

In this chapter, we obtained a new outer bound on the capacity region of a MAC-

FB by using the idea of dependence balance. We considered a binary additive noisy

MAC-FB for which it is known that feedback increases capacity but the feedback

capacity region is not known. The best known outer bound on the feedback capacity

53



0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

R
1

R
2

 

 
Cut−set bound
Capacity region with FB
Capacity region without FB

Figure 2.6: Illustration of the capacity region of binary erasure MAC-FB.
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region of this channel was the cut-set bound. We used the dependence balance bound

to improve upon the cut-set bound at all points in the capacity region of this channel

where feedback increases capacity. Our result is somewhat surprising once it is realized

that the channel we considered in this chapter is the discrete version of the two-user

Gaussian MAC-FB considered by Ozarow in [45] where the cut-set bound was shown

to be tight.

Our outer bound is difficult to evaluate due to an involved auxiliary random

variable T . For binary inputs, the cardinality bound on T is |T | ≤ 7 which makes it

intractable to evaluate the outer bound. We overcome this difficulty by making use

of composite functions and their properties to obtain a simple characterization of our

bound. As an application of the properties of the composite functions developed in

this chapter, we are also able to completely characterize the Cover-Leung achievable

rate region for this channel.

The capacity region of the binary erasure MAC-FB is known and it coincides with

the Cover-Leung achievable rate region. Although the capacity region is known in

principle, it is not known how to compute the entire region, the difficulty arising again

due to the involved auxiliary random variable. We again make use of the composite

functions to give an alternate characterization of the capacity region of the binary

erasure MAC-FB. In addition, we go on to show that a binary and uniform auxiliary

random variable selection is sufficient to evaluate its feedback capacity region.
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2.13 Appendix

2.13.1 Proof of Lemma 2.1

For a given distribution p(t)p(x1|t)p(x2|t), we have

H(X1|Y,X2, T ) =
∑

(y,x2,t)

Pr(Y = y,X2 = x2, T = t).H(X1|Y = y,X2 = x2, T = t)

(2.189)

=
∑

t

[

Pr(Y = 1, X2 = 0, T = t).H(X1|Y = 1, X2 = 0, T = t)

+ Pr(Y = 2, X2 = 1, T = t).H(X1|Y = 2, X2 = 1, T = t)
]

(2.190)

=
∑

t

1

2

[

Pr(X2 = 0, T = t)H(X1|T = t)

+ Pr(X2 = 1, T = t)H(X1|T = t)
]

(2.191)

=
1

2
H(X1|T ) (2.192)

where (2.190) follows from the fact that X1 is uniquely determined when we have

Y = 0 or Y = 3, or we have (Y,X2) = (1, 1) or (Y,X2) = (2, 0) and (2.191) follows

by noting that,

Pr(Y = 1, X2 = 0, T = t) =
1

2
Pr(X2 = 0, T = t) (2.193)

Pr(Y = 2, X2 = 1, T = t) =
1

2
Pr(X2 = 1, T = t) (2.194)
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and

Pr(X1 = 0|Y = 1, X2 = 0, T = t) = Pr(X1 = 0|T = t) (2.195)

Pr(X1 = 0|Y = 2, X2 = 1, T = t) = Pr(X1 = 0|T = t) (2.196)

We have therefore proved (2.29) and the proof of (2.30) follows similarily. This

completes the proof of Lemma 2.1.

2.13.2 Proof of Lemma 2.2

We prove Lemma 2.2 by considering all four possible cases.

1. If s1 ∈ [0, 1
2
], s2 ∈ [0, 1

2
], then from (2.42), s1 = φ(2s1(1−s1)), s2 = φ(2s2(1−s2))

and hence

v = f(2s1(1− s1), 2s2(1− s2)) (2.197)

2. If s1 ∈ [1
2
, 1], s2 ∈ [1

2
, 1], then from (2.42), s1 = 1 − φ(2s1(1 − s1)), s2 =

1− φ(2s2(1− s2)) and hence

v = f(2s1(1− s1), 2s2(1− s2)) (2.198)

3. If s1 ∈ [0, 1
2
], s2 ∈ [1

2
, 1], then from (2.42), s1 = φ(2s1(1−s1)), s2 = 1−φ(2s2(1−
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s2)) and hence

v = 1− f(2s1(1− s1), 2s2(1− s2))

(a)

≥ f(2s1(1− s1), 2s2(1− s2)) (2.199)

where (a) follows by the fact that f(2s1(1− s1), 2s2(1− s2)) ≤ 1
2
.

4. If s1 ∈ [1
2
, 1], s2 ∈ [0, 1

2
], then from (2.42), s1 = 1 − φ(2s1(1 − s1)), s2 =

φ(2s2(1− s2)) and hence

v = 1− f(2s1(1− s1), 2s2(1− s2))

(b)

≥ f(2s1(1− s1), 2s2(1− s2)) (2.200)

where (b) follows by the fact that f(2s1(1− s1), 2s2(1− s2)) ≤ 1
2
.

Thus, for any pair (s1, s2), where s1 ∈ [0, 1], s2 ∈ [0, 1], we have shown that v ≥

f(2s1(1− s1), 2s2(1− s2)).

2.13.3 Proof of Lemma 2.3

A function f(x, y) is jointly convex [5] in (x, y) if for any two pairs, (x, y) and (x
′

, y
′

),

we have f(αx+(1−α)x′ , αy+(1−α)y′) ≤ αf(x, y)+(1−α)f(x′ , y′), for all α ∈ [0, 1].

Showing that the function f(x, y) is jointly convex in (x, y) is equivalent to showing

that the Hessian matrix, H of f(x, y) is positive semi-definite, which is equivalent to

showing that the eigenvalues ofH are non-negative. The Hessian matrix, H, of f(x, y)
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is

H =









√
1−2y

2(1−2x)3/2
−1

2
√
(1−2x)(1−2y)

−1
2
√
(1−2x)(1−2y)

√
1−2x

2(1−2y)3/2









(2.201)

The two eigenvalues of H are

λ1 = 0

λ2 =
1

2

( √
1− 2y

(1− 2x)3/2
+

√
1− 2x

(1− 2y)3/2

)

(2.202)

which are non-negative for all 0 ≤ x ≤ 1
2
and 0 ≤ y ≤ 1

2
, thus completing the proof.

2.13.4 Proof of Lemma 2.4

It suffices to show that for a fixed u2, the function g(u1, u2) is monotonically decreasing

in u1. Substituting the value of f(2u1, 2u2), we have

g(u1, u2) =
1

2
h

(

1− (φ(2u1) + φ(2u2)− 2φ(2u1)φ(2u2))

2

)

(2.203)

=
1

2
h

(

1

2
− φ(2u2)

2
− φ(2u1)(1− 2φ(2u2))

2

)

(2.204)

Now using the fact that φ(2s) is increasing in s for s ∈ [0, 1
4
], we have that for u

′

1 ≥ u1,

φ(2u
′

1) ≥ φ(2u1). Moreover, the following holds

φ(2u
′

1)(1− 2φ(2u2))

2
≥ φ(2u1)(1− 2φ(2u2))

2
(2.205)
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since φ(2u2) ≤ 1
2
. Now using the above inequality along with the fact that the binary

entropy function h(s) is increasing for 0 ≤ s ≤ 1
2
, we have that for u

′

1 ≥ u1,

1

2
h

(

1

2
− φ(2u2)

2
− φ(2u1)(1− 2φ(2u2))

2

)

≥ 1

2
h

(

1

2
− φ(2u2)

2
− φ(2u

′

1)(1− 2φ(2u2))

2

)

(2.206)

This shows that for a fixed u2, the function g(u1, u2) is monotonically decreasing in

u1. As the function is symmetric in u1 and u2, the monotonicity of g(u1, u2) in (u1, u2)

follows.

To show the concavity of g(u1, u2) in the pair (u1, u2), we first note from Lemma

2.3 that f(2u1, 2u2) is jointly convex in the pair (u1, u2). We define another function

ξ(u1, u2) =
1− f(2u1, 2u2)

2
(2.207)

Note that ξ(u1, u2) is jointly concave in the pair (u1, u2). Furthermore, the binary

entropy function h(s) is concave and nondecreasing for s ∈ [0, 1
2
]. Hence, rewriting

the function g(u1, u2) as a composition of two functions, we obtain

g(u1, u2) =
1

2
h(ξ(u1, u2)) (2.208)

From the theory of composite functions [5], we know that a composite function

f1(f2(s)) is concave in s if f1(.) is concave and nondecreasing and f2(s) is concave in

s. Identifying f1(.) with h(.) and f2(u1, u2) with ξ(u1, u2), the concavity of g(u1, u2)
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in the pair (u1, u2) is established.

2.13.5 Proof of the Claim O1 ≡ O2

The inclusion O2 ⊆ O1 is straightforward by forcing u = f(2u1, 2u2) in O1. We will

now show that O1 ⊆ O2. For this purpose, we will need the following lemma.

Lemma 2.5 The function

µ(s) = h(s) + 1− s (2.209)

is concave in s for s ∈ [0, 1] and takes its maximum value at s = 1
3
. Moreover, the

function µ(s) is increasing in s for s ∈ [0, 1
3
] and decreasing in s for s ∈ [ 1

3
, 1].

The proof of this lemma follows from the fact that both h(s) and −s are concave in

s.

Now consider any arbitrary triple (u1, u2, u) ∈ P . We can classify any such triple

into one of the following cases:

1. If f(2u1, 2u2) ≤ u ≤ 1
2
: for any such (u1, u2, u), there exists a pair (ū1, ū2), such

that

u1 ≤ ū1 ≤
1

4
(2.210)

u2 ≤ ū2 ≤
1

4
(2.211)

u = f(2ū1, 2ū2) (2.212)
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One such pair (ū1, ū2) can be obtained as follows. Using the fact that for a fixed

u1, f(2u1, 2u2) is increasing in u2, we select ū1 = u1 and solve for u2 ≤ ū2 ≤ 1
4

for which f(2ū1, 2ū2) = u. The required ū2 is obtained as,

ū2 =
1

4

(

1− (1− 2u)2

(1− 4u1)

)

(2.213)

For such a pair (ū1, ū2), the following inequalities hold,

h(φ(2u1)) = h(φ(2ū1)) (2.214)

h(φ(2u2)) ≤ h(φ(2ū2)) (2.215)

h(u) + 1− u = h(f(2ū1, 2ū2)) + 1− f(2ū1, 2ū2) (2.216)

2. If f(2u1, 2u2) ≤ 1
2
≤ u ≤ 1− (u1 + u2), then we have by Lemma 2.5,

h(u) + 1− u ≤ h

(

1

2

)

+ 1− 1

2
(2.217)

=
3

2
(2.218)

Now consider the pair (ū1, ū2) = (1
4
, 1
4
), for which we have f(2ū1, 2ū2) = 1

2
.

Hence we have that,

h(φ(2u1)) ≤ h(φ(2ū1)) = 1 (2.219)

h(φ(2u2)) ≤ h(φ(2ū2)) = 1 (2.220)

h(u) + 1− u ≤ h(f(2ū1, 2ū2)) + 1− f(2ū1, 2ū2) =
3

2
(2.221)
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We have thus shown that for any triple (u1, u2, u), there exists a pair (ū1, ū2), such

thatO1(u1, u2, u) ⊆ O2(ū1, ū2), which in turn implies thatO1 ⊆ O2, and consequently

O1 ≡ O2.
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Chapter 3

Dependence Balance Based Outer Bounds for Gaussian

Networks with Cooperation and Feedback

3.1 Introduction

The multiple access channel with generalized feedback (MAC-GF) was first introduced

by Carleial [8]. The model therein allows for different feedback signals at the two

transmitters. For this channel model, Carleial [8] obtained an achievable rate region

using block Markov superposition encoding and windowed decoding. An improvement

over this achievable rate region was obtained by Willems et. al. in [65] by using block

Markov superposition encoding combined with backwards decoding.

Inspired from the uplink MAC-GF channel model, the interference channel with

generalized feedback (IC-GF) was studied in [57], [31], (also see the references therein)

where achievable rate regions were obtained. It was shown in [57] and [31] that for

the Gaussian interference channel with user cooperation (IC-UC), the overheard in-

formation at the transmitters has a dual effect of enabling cooperation and mitigating

interference, thereby providing improved achievable rates compared to the best known

evaluation of the Han-Kobayashi achievable rate region [28], [49].
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In this chapter, we use the idea of dependence balance to obtain new outer bounds

on the capacity regions of the MAC-GF and the IC-GF. To show the usefulness of

our outer bounds, we will consider three different channel models.

We first consider the Gaussian MAC with different noisy feedback signals at the

two transmitters. Specifically, transmitter k, k = 1, 2, receives a feedback YFk
=

Y +Zk, where Y is the received signal and Zk is zero-mean, Gaussian random variable

with variance σ2Zk
. The capacity region is only known when feedback is noiseless, i.e.,

YF1 = YF2 = Y , in which case the feedback capacity region equals the cut-set outer

bound, as was shown by Ozarow [45]. For the case of noisy feedback in consideration,

the cut-set outer bound is insensitive to the noise in feedback links, i.e., it is not

sensitive to the variances of Z1 and Z2. As the feedback becomes more corrupted, or

in other words, as σ2Z1
, σ2Z2

become large, one would expect the feedback to become

useless. This fact is not accounted for by the cut-set bound. We show that our outer

bound strictly improves upon the cut-set bound for all non-zero values of (σ2Z1
, σ2Z2

).

Furthermore, as (σ2Z1
, σ2Z2

) become large, our outer bound collapses to the capacity

region of Gaussian MAC without feedback, thereby establishing the feedback capacity

region. We should mention here that applying the idea of dependence balance to

obtain improved outer bounds for Gaussian MAC with noisy feedback was proposed

by Gastpar and Kramer in [20].

Secondly, we investigate the Gaussian MAC with transmitter cooperation. Sendonaris,

Erkip and Aazhang [53] studied a model where each transmitter receives a version of

the other transmitter’s current channel input corrupted with additive white Gaussian

noise. They named this model as user cooperation model. This model is particularly
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suitable for a wireless setting since the transmitters can potentially overhear each

other. An achievable rate region for the user cooperation model was given in [53]

using the result of [65] and was shown to strictly exceed the rate region if the trans-

mitters ignore the overheard signals.

We evaluate our outer bound for the user cooperation setting described above.

In contrast to the case of noisy feedback, the cut-set bound for the user cooperation

model is sensitive to cooperation noise variances, but not too sensitive. Intuitively

speaking, as the backward noise variances become large, one would expect the cut-set

bound to collapse to the capacity region of the MAC without feedback. Instead, the

cut-set bound converges to the capacity region of the Gaussian MAC with noiseless

output feedback [45]. On the other hand, in the limit when cooperation noise variances

become too large, our bound converges to the capacity region of the Gaussian MAC

with no cooperation, thereby yielding a capacity result. For all non-zero and finite

values of cooperation noise variances, our outer bound strictly improves upon the

cut-set outer bound. Our dependence balance based outer bound coincides with the

cut-set bound only when the backward noise variance is identically zero and both

outer bounds collapse to the total cooperation line.

Thirdly, we evaluate our outer bound for the Gaussian IC with user cooperation

(IC-UC). For all non-zero and finite values of cooperation noise variances, our outer

bound strictly improves upon the cut-set outer bound. We should remark here that

the approach of dependence balance was also used in [21] to obtain an improved

sum-rate upper bound for the Gaussian IC with common, noisy feedback from the

receivers.
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Evaluation of our outer bounds for MAC-NF, MAC-UC and IC-UC is not straight-

forward since our outer bounds are expressed in terms of a union of probability den-

sities of three random variables, one of which is an auxiliary random variable. More-

over, these unions are over all such densities which satisfy a non-trivial dependence

balance constraint. We overcome this difficulty by proving separately for all three

models in consideration, that it is sufficient to consider jointly Gaussian input dis-

tributions, satisfying the dependence balance constraint, when evaluating our outer

bounds. The proof methodology for showing this claim is entirely different for each

of the cases of noisy feedback and user cooperation models. In particular, for the case

of MAC-NF, we make use of a recently discovered multivariate generalization [46]

of Costa’s entropy power inequality (EPI) [10] along with some properties of 3 × 3

covariance matrices to obtain this result. On the other hand, for the case of MAC-UC

and IC-UC, we do not need EPI to show this result and our proof closely follows the

proof of a recent result by Bross, Lapidoth and Wigger [7], [60] for the Gaussian MAC

with conferencing encoders. The structure of dependence balance constraints for the

channel models in consideration are of different form, which explains the different

methodology of proofs.

For the most general setting of MAC-GF and IC-GF, our outer bounds are ex-

pressed in terms of two auxiliary random variables. For the three channel models

in consideration, i.e., MAC-NF, MAC-UC and IC-UC, we suitably modify our outer

bounds to express them in terms of only one auxiliary random variable. These modi-

fications are particularly helpful in their explicit evaluation. We also believe that the

proof methodology developed for evaluating our outer bounds could be helpful for
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other multi-user information theoretic problems.

3.2 System Model

3.2.1 MAC with Generalized Feedback

A discrete memoryless two-user multiple access channel with generalized feedback

(MAC-GF) (see Figure 3.1) is defined by: two input alphabets X1 and X2, an output

alphabet for the receiver Y , feedback output alphabets YF1 and YF2 at transmitters 1

and 2, respectively, and a probability transition function p(y, yF1 , yF2 |x1, x2), defined

for all triples (y, yF1 , yF2) ∈ Y × YF1 × YF2 , for every pair (x1, x2) ∈ X1 ×X2.

A (n,M1,M2, Pe) code for the MAC-GF consists of two sets of encoding functions

f1i :M1×Y i−1
F1
→ X1, f2i :M2×Y i−1

F2
→ X2 for i = 1, . . . , n and a decoding function

g : Yn → M1 × M2. The two transmitters produce independent and uniformly

distributed messages W1 ∈ {1, . . . ,M1} and W2 ∈ {1, . . . ,M2}, respectively, and

transmit them through n channel uses. The average error probability is defined as,

Pe = Pr[(Ŵ1, Ŵ2) 6= (W1,W2)]. A rate pair (R1, R2) is said to be achievable for MAC-

GF if for any ε ≥ 0, there exists a pair of n encoding functions {f1i}ni=1, {f2i}ni=1, and

a decoding function g : Yn →M1×M2 such that R1 ≤ log(M1)/n, R2 ≤ log(M2)/n

and Pe ≤ ε for sufficiently large n. The capacity region of MAC-GF is the closure of

the set of all achievable rate pairs (R1, R2).
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Figure 3.1: The multiple access channel with generalized feedback (MAC-GF).

3.2.2 IC with Generalized Feedback

A discrete memoryless two-user interference channel with generalized feedback (IC-

GF) (see Figure 3.2) is defined by: two input alphabets X1 and X2, two output

alphabets Y1 and Y2 at receivers 1 and 2, respectively, two feedback output alphabets

YF1 and YF2 at transmitters 1 and 2, respectively, and a probability transition function

p(y1, y2, yF1 , yF2 |x1, x2), defined for all quadruples (y1, y2, yF1 , yF2) ∈ Y1 × Y2 × YF1 ×

YF2 , for every pair (x1, x2) ∈ X1 ×X2.

A (n,M1,M2, P
(1)
e , P

(2)
e ) code for IC-GF consists of two sets of encoding functions

f1i : M1 × Y i−1
F1

→ X1, f2i : M2 × Y i−1
F2

→ X2 for i = 1, . . . , n and two decoding

functions g1 : Yn
1 →M1 and g2 : Yn

2 →M2. The two transmitters produce indepen-

dent and uniformly distributed messages W1 ∈ {1, . . . ,M1} and W2 ∈ {1, . . . ,M2},

respectively, and transmit them through n channel uses. The average error probabil-

ity at receivers 1 and 2 are defined as, P
(k)
e = Pr[Ŵk 6= Wk] for k = 1, 2. A rate pair

(R1, R2) is said to be achievable for IC-GF if for any pair ε1 ≥ 0, ε2 ≥ 0, there exists

a pair of n encoding functions {f1i}ni=1, {f2i}ni=1, and a pair of decoding functions
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Figure 3.2: The interference channel with generalized feedback (IC-GF).

(g1, g2) such that R1 ≤ log(M1)/n, R2 ≤ log(M2)/n and P
(k)
e ≤ εk for sufficiently

large n, for k = 1, 2. The capacity region of IC-GF is the closure of the set of all

achievable rate pairs (R1, R2).

3.3 Cut-set Outer Bounds

A general outer bound on the capacity region of a multi-terminal network is the

cut-set outer bound [14]. The cut-set outer bound for MAC-GF is given by

CSMAC =
{

(R1, R2) : R1 ≤ I(X1;Y, YF2 |X2) (3.1)

R2 ≤ I(X2;Y, YF1 |X1) (3.2)

R1 +R2 ≤ I(X1, X2;Y )
}

(3.3)

where the random variables X1, X2 and (Y, YF1 , YF2) have the joint distribution

p(x1, x2, y, yF1 , yF2) = p(x1, x2)p(y, yF1 , yF2 |x1, x2). (3.4)
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The cut-set outer bound for IC-GF is given by

CSIC =
{

(R1, R2) : R1 ≤ I(X1, X2;Y1) (3.5)

R2 ≤ I(X1, X2;Y2) (3.6)

R1 ≤ I(X1;Y1, Y2, YF2 |X2) (3.7)

R2 ≤ I(X2;Y1, Y2, YF1 |X1) (3.8)

R1 +R2 ≤ I(X1, X2;Y1, Y2)
}

(3.9)

where the random variables X1, X2 and (Y1, Y2, YF1 , YF2) have the joint distribution

p(x1, x2, y1, y2, yF1 , yF2) = p(x1, x2)p(y1, y2, yF1 , yF2 |x1, x2). (3.10)

The cut-set bound is seemingly loose since it allows arbitrary correlation among chan-

nel inputs by permitting arbitrary input distributions p(x1, x2). Using the approach

of dependence balance, we will obtain outer bounds for MAC-GF and IC-GF which

restrict the corresponding set of input distributions for both channel models. In

particular, our outer bounds only permit those input distributions which satisfy the

respective non-trivial dependence balance constraints.
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3.4 A New Outer Bound for MAC-GF

Theorem 3.1 The capacity region of MAC-GF is contained in the region

DBMAC =
{

(R1, R2) : R1 ≤ I(X1;Y, YF2 |X2, T2) (3.11)

R2 ≤ I(X2;Y, YF1 |X1, T1) (3.12)

R1 +R2 ≤ I(X1, X2;Y, YF1 , YF2 |T1, T2) (3.13)

R1 +R2 ≤ I(X1, X2;Y )
}

(3.14)

where the random variables (T1, T2, X1, X2, Y, YF1 , YF2) have the joint distribution

p(t1, t2, x1, x2, y, yF1 , yF2) = p(t1, t2, x1, x2)p(y, yF1 , yF2 |x1, x2) (3.15)

and also satisfy the following dependence balance bound

I(X1;X2|T1, T2) ≤ I(X1;X2|YF1 , YF2 , T1, T2) (3.16)

The proof of Theorem 3.1 is given in the Appendix.
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3.5 A New Outer Bound for IC-GF

Theorem 3.2 The capacity region of IC-GF is contained in the region

DBIC =
{

(R1, R2) : R1 ≤ I(X1, X2;Y1) (3.17)

R2 ≤ I(X1, X2;Y2) (3.18)

R1 ≤ I(X1;Y1, Y2, YF2 |X2, T2) (3.19)

R2 ≤ I(X2;Y1, Y2, YF1 |X1, T1) (3.20)

R1 +R2 ≤ I(X1, X2;Y1, Y2, YF1 , YF2 |T1, T2) (3.21)

R1 +R2 ≤ I(X1, X2;Y1, Y2)
}

(3.22)

where the random variables (T1, T2, X1, X2, Y1, Y2, YF1 , YF2) have the joint distribution

p(t1, t2, x1, x2, y1, y2, yF1 , yF2) = p(t1, t2, x1, x2)p(y1, y2, yF1 , yF2 |x1, x2) (3.23)

and also satisfy the following dependence balance bound

I(X1;X2|T1, T2) ≤ I(X1;X2|YF1 , YF2 , T1, T2) (3.24)

The proof of Theorem 3.2 is given in the Appendix.

We note here that one can obtain fixed and adaptive parallel channel extensions

of the dependence balance based bounds in a similar fashion as in [30]. The parallel

channel extensions could potentially improve upon the outer bounds derived in this

chapter. For the scope of this chapter, we will only use Theorems 3.1 and 3.2. In
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the next three sections, we will consider specific channel models of MAC with noisy

feedback, MAC with user cooperation, and IC with user cooperation and specialize

Theorems 3.1 and 3.2 for these channel models. In particular, we will show that

for these three channel models, it is sufficient to employ a single auxiliary random

variable T , as opposed to two auxiliary random variables T1 and T2 appearing in

Theorems 3.1 and 3.2.

We should also remark here that dependence balance approach was first applied

by Gastpar and Kramer for the Gaussian MAC with noisy feedback in [20] and for the

Gaussian IC with noisy feedback (IC-NF) in [21]. An interesting Lagrangian based

approach was proposed in [21] to partially evaluate the dependence balance based

outer bound for the Gaussian IC-NF and it was shown that dependence balance

based bounds strictly improve upon the cut-set outer bound. For this reason, we do

not consider the Gaussian IC-NF in this chapter.

3.6 Gaussian MAC with Noisy Feedback

We first consider the Gaussian MAC with noisy feedback (see Figure 3.3). The channel

model is given as,

Y = X1 +X2 + Z (3.25)

YF1 = Y + Z1 (3.26)

YF2 = Y + Z2 (3.27)
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Figure 3.3: The Gaussian MAC with noisy feedback.

where Z,Z1 and Z2 are independent, zero-mean, Gaussian random variables with

variances σ2Z , σ
2
Z1

and σ2Z2
, respectively. Moreover, the channel inputs are subject

to average power constraints, E[X2
1 ] ≤ P1 and E[X2

2 ] ≤ P2. Note that the channel

model described above has a special probability structure, namely,

p(y, yF1 , yF2 |x1, x2) = p(y|x1, x2)p(yF1 |y)p(yF2|y) (3.28)

For any MAC-GF with a transition probability in the form of (3.28), we have the

following strengthened version of Theorem 3.1.

Theorem 3.3 The capacity region of any MAC-GF, with a transition probability in
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the form of (3.28), is contained in the region

DBMAC
NF =

{

(R1, R2) : R1 ≤ I(X1;Y |X2, T ) (3.29)

R2 ≤ I(X2;Y |X1, T ) (3.30)

R1 +R2 ≤ I(X1, X2;Y |T )
}

(3.31)

where the random variables (T,X1, X2, Y, YF1 , YF2) have the joint distribution

p(t, x1, x2, y, yF1 , yF2) = p(t, x1, x2)p(y|x1, x2)p(yF1 |y)p(yF2|y) (3.32)

and also satisfy the following dependence balance bound

I(X1;X2|T ) ≤ I(X1;X2|YF1 , YF2 , T ) (3.33)

where the random variable T is subject to a cardinality constraint |T | ≤ |X1||X2|+ 3.

The proof of Theorem 3.3 is given in the Appendix.

In Section 3.10, we will show that it suffices to consider jointly Gaussian (T,X1, X2)

satisfying (3.33) when evaluating Theorem 3.3 for the Gaussian MAC with noisy feed-

back described in (3.25)-(3.27).

3.7 Gaussian MAC with User Cooperation

In this section, we consider the Gaussian MAC with user cooperation [53], where

each transmitter receives a noisy version of the other transmitter’s channel input.
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The user cooperation model (see Figure 3.4) is a special instance of a MAC-GF,

where the channel outputs are described as,

Y =
√

h10X1 +
√

h20X2 + Z (3.34)

YF1 =
√

h21X2 + Z1 (3.35)

YF2 =
√

h12X1 + Z2 (3.36)

where Z,Z1 and Z2 are independent, zero-mean, Gaussian random variables with

variances σ2Z , σ
2
Z1

and σ2Z2
, respectively. The channel gains h10, h20, h12 and h21 are

assumed to be fixed and known at all terminals. Moreover, the channel inputs are

subject to average power constraints, E[X2
1 ] ≤ P1 and E[X2

2 ] ≤ P2. Note that the

channel model described above has a special probability structure, namely,

p(y, yF1 , yF2 |x1, x2) = p(y|x1, x2)p(yF1 |x2)p(yF2|x1) (3.37)

For any MAC-GF with a transition probability in the form of (3.37), we have the

following strengthened version of Theorem 3.1.

Theorem 3.4 The capacity region of any MAC-GF with a transition probability in
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Figure 3.4: The Gaussian MAC with user cooperation.

the form of (3.37), is contained in the region

DBMAC
UC =

{

(R1, R2) : R1 ≤ I(X1;Y, YF2 |X2, T ) (3.38)

R2 ≤ I(X2;Y, YF1 |X1, T ) (3.39)

R1 +R2 ≤ I(X1, X2;Y, YF1 , YF2 |T ) (3.40)

R1 +R2 ≤ I(X1, X2;Y )
}

(3.41)

where the random variables (T,X1, X2, Y, YF1 , YF2) have the joint distribution

p(t, x1, x2, y, yF1 , yF2) = p(t, x1, x2)p(y|x1, x2)p(yF1 |x2)p(yF2 |x1) (3.42)

and also satisfy the following dependence balance bound

I(X1;X2|T ) ≤ I(X1;X2|YF1 , YF2 , T ) (3.43)

where the random variable T is subject to a cardinality constraint |T | ≤ |X1||X2|+ 3.

The proof of Theorem 3.4 is given in the Appendix.
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In Section 3.11, we will show that it suffices to consider jointly Gaussian (T,X1, X2)

satisfying (3.43) when evaluating Theorem 3.4 for the Gaussian MAC with user co-

operation described in (3.34)-(3.36).

3.8 Gaussian IC with User Cooperation

In this section, we will evaluate our outer bound for a user cooperation setting [57],

[31], where the transmitters receive noisy versions of the other transmitter’s channel

input. The user cooperation model (see Figure 3.5) is a special instance of an IC-GF,

where the channel outputs are described as,

Y1 = X1 +
√
bX2 +N1 (3.44)

Y2 =
√
aX1 +X2 +N2 (3.45)

YF1 =
√

h21X2 + Z1 (3.46)

YF2 =
√

h12X1 + Z2 (3.47)

where N1, N2, Z1 and Z2 are independent, zero-mean, Gaussian random variables

with variances σ2N1
, σ2N2

, σ2Z1
and σ2Z2

, respectively. The channel gains a, b, h12 and h21

are assumed to be fixed and known at all terminals. Moreover, the channel inputs

are subject to average power constraints, E[X2
1 ] ≤ P1 and E[X2

2 ] ≤ P2. Note that

the channel model described above has a special probability structure, namely,

p(y1, y2, yF1 , yF2 |x1, x2) = p(y1, y2|x1, x2)p(yF1 |x2)p(yF2|x1) (3.48)
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Figure 3.5: The Gaussian IC with user cooperation.

For any IC-GF with a transition probability in the form of (3.48), we have the fol-

lowing strengthened version of Theorem 3.2.

Theorem 3.5 The capacity region of any IC-GF with a transition probability in the

form of (3.48), is contained in the region

DBICUC =
{

(R1, R2) : R1 ≤ I(X1, X2;Y1) (3.49)

R2 ≤ I(X1, X2;Y2) (3.50)

R1 ≤ I(X1;Y1, Y2, YF2 |X2, T ) (3.51)

R2 ≤ I(X2;Y1, Y2, YF1 |X1, T ) (3.52)

R1 +R2 ≤ I(X1, X2;Y1, Y2, YF1 , YF2 |T ) (3.53)

R1 +R2 ≤ I(X1, X2;Y1, Y2)
}

(3.54)

where the random variables (T,X1, X2, Y1, Y2, YF1 , YF2) have the joint distribution

p(t, x1, x2, y1, y2, yF1 , yF2) = p(t, x1, x2)p(y1, y2|x1, x2)p(yF1|x2)p(yF2 |x1) (3.55)
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and also satisfy the following dependence balance bound

I(X1;X2|T ) ≤ I(X1;X2|YF1 , YF2 , T ) (3.56)

where the random variable T is subject to a cardinality constraint |T | ≤ |X1||X2|+ 3.

The proof of Theorem 3.5 is given in the Appendix.

In Section 3.12, we will show that it suffices to consider jointly Gaussian (T,X1, X2)

satisfying (3.56) when evaluating Theorem 3.5 for the Gaussian IC with user cooper-

ation described in (3.44)-(3.47).

3.9 Outline for Evaluating DBMAC
NF , DBMAC

UC and DBIC
UC

In this section, we outline the common approach for evaluation of our outer bounds,

DBMAC
NF for the Gaussian MAC with noisy feedback, DBMAC

UC for the Gaussian MAC

with user-cooperation and DBICUC for the Gaussian IC with user-cooperation. The

main difficulty in evaluating these bounds is to identify the optimal selection of joint

densities of (T,X1, X2). Our aim will be to prove that it is sufficient to consider

jointly Gaussian (T,X1, X2) satisfying (3.33) for MAC with noisy feedback, (3.43) for

MAC with user cooperation, and (3.56) for IC with user cooperation, respectively,

when evaluating the corresponding outer bounds.

First note that the three outer bounds, namely DBMAC
NF , DBMAC

UC and DBICUC have

a similar structure, i.e., all outer bounds involve taking a union over joint densities

of (T,X1, X2) satisfying the constraints (3.33), (3.43) and (3.56), respectively. Let
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us symbolically denote these constraints as a variable (DB), where (DB) = (3.33)

for MAC with noisy feedback, (DB) = (3.43) for MAC with user cooperation, and

(DB) = (3.56) for IC with user cooperation.

We begin by considering the set of all distributions of three random variables

(T,X1, X2) which satisfy the power constraints, E
[

X2
1

]

≤ P1 and E
[

X2
2

]

≤ P2. Let

us formally define this set of input distributions as

P = {p(t, x1, x2) : E
[

X2
1

]

≤ P1, E
[

X2
2

]

≤ P2}

For simplicity, we abbreviate jointly Gaussian distributions as JG and distributions

which are not jointly Gaussian as NG. We first partition P into two disjoint subsets,

PG = {p(t, x1, x2) ∈ P : (T,X1, X2) are JG}

PNG = {p(t, x1, x2) ∈ P : (T,X1, X2) are NG}

We further individually partition the sets PG and PNG, respectively, as

PDB
G = {p(t, x1, x2) ∈ PG : (T,X1, X2) satisfy (DB)}

PDB
G = {p(t, x1, x2) ∈ PG : (T,X1, X2) do not satisfy (DB)}
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and

PDB
NG = {p(t, x1, x2) ∈ PNG : (T,X1, X2) satisfy (DB)}

PDB
NG = {p(t, x1, x2) ∈ PNG : (T,X1, X2) do not satisfy (DB)}

Finally, we partition the set PDB
NG into two disjoint sets PDB(a)

NG and PDB(b)
NG with

PDB
NG = PDB(a)

NG

⋃PDB(b)
NG , as

PDB(a)
NG =

{

p(t, x1, x2) ∈ PDB
NG : covariance matrix of p(t, x1, x2) is Q and there

exists a JG (TG, X1G, X2G) with covariance matrix Q satisfying (DB)
}

PDB(b)
NG =

{

p(t, x1, x2) ∈ PDB
NG : covariance matrix of p(t, x1, x2) is Q and there

does not exist a JG (TG, X1G, X2G) with covariance matrix Q satisfying (DB)
}

So far, we have partitioned the set of input distributions into five disjoint sets:

PDB
G , PDB

G , PDB(a)
NG , PDB(b)

NG and PDB
NG . To visualize this partition of the set of input

distributions, see Figure 3.6. It is clear that the input distributions which fall into

the sets PDB
G and PDB

NG need not be considered since they do not satisfy the constraint

(DB) and do not have any consequence when evaluating our outer bounds. Therefore,

we only need to restrict our attention on the three remaining sets PDB
G , PDB(a)

NG , and

PDB(b)
NG i.e., those input distributions which satisfy the dependence balance bound.

We explicitly evaluate our outer bound in the following three steps:

1. We first explicitly characterize the region of rate pairs provided by our outer

bound for the probability distributions in the set PDB
G .
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PDB

NG

PDB

G

PDB

G

PDB

NG

P
DB(a)
NG

P
DB(b)
NG

P

Figure 3.6: A partition of the set of input distributions P .

2. In the second step, we will show that for any input distribution belonging to

the set PDB(a)
NG , there exists an input distribution in the set PDB

G which yields

a set of larger rate pairs. This leads to the conclusion that we do not need to

consider the input distributions in the set PDB(a)
NG in evaluating our outer bound.

3. We next focus on the set PDB(b)
NG and show that for any non-Gaussian input

distribution p(t, x1, x2) ∈ PDB(b)
NG , we can construct a jointly Gaussian input

distribution satisfying (DB), i.e., we can find a corresponding input distribution

in PDB
G , which yields a set of rates which includes the set of rates of the fixed

non-Gaussian input distribution p(t, x1, x2).

The main step in evaluating our outer bounds is step 3 described above. The

proofs of step 3 for noisy feedback and user cooperation models are entirely different
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and do not follow from each other. The evaluation in step 1 is slightly different

for all three settings, also owing to the channel models. Hence, we will separately

focus on these models in the following three sections. Contrary to steps 1 and 3,

step 2 is common for all channel models. Therefore, we first present the common

result for all channel models here. In step 2, we consider any non-Gaussian input

distribution p(t, x1, x2) in PDB(a)
NG with a covariance matrix Q. For such an input

distribution, we know by the maximum entropy theorem [14], that the rates provided

by a jointly Gaussian triple with the same covariance matrix Q are always at least as

large as the rates provided by the chosen non-Gaussian distribution. Therefore, for

any input distribution in PDB(a)
NG , there always exists an input distribution in PDB

G ,

satisfying (DB), which yields larger rates. This means that we can ignore the set

PDB(a)
NG altogether while evaluating our outer bounds.

To set the stage for our evaluations in steps 1 and 3 for the three channel models,

let us define Q as the set of all valid 3 × 3 covariance matrices of three random

variables (T,X1, X2). A typical element Q in the set Q takes the following form,

Q = E
[

(X1X2 T )(X1X2 T )T
]

=

















P1 ρ12
√
P1P2 ρ1T

√
P1PT

ρ12
√
P1P2 P2 ρ2T

√
P2PT

ρ1T
√
P1PT ρ2T

√
P2PT PT

















(3.57)

A necessary condition for Q to be a valid covariance matrix is that it is positive
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semi-definite, i.e., det(Q) ≥ 0. This is equivalent to saying that,

det(Q) = P1P2PT∆ ≥ 0 (3.58)

where we have defined for simplicity,

∆ = 1− ρ212 − ρ21T − ρ22T + 2ρ1Tρ2Tρ12 (3.59)

3.10 Evaluation of DBMAC
NF

In this section we explicitly evaluate Theorem 3.3 for the Gaussian MAC with noisy

feedback described by (3.25)-(3.27) in Section 3.6. We start with step 1. We consider

an input distribution in PDB
G , i.e., a jointly Gaussian triple (TG, X1G, X2G) with a

covariance matrix Q. Let us first characterize the set of rate constraints for this

triple. It is straightforward to evaluate the three rate constraints appearing in (3.29)-

(3.31) for this input distribution

R1 ≤ I(X1G;Y |X2G, TG) =
1

2
log

(

1 +
f1(Q)

σ2Z

)

(3.60)

R2 ≤ I(X2G;Y |X1G, TG) =
1

2
log

(

1 +
f2(Q)

σ2Z

)

(3.61)

R1 +R2 ≤ I(X1G, X2G;Y |TG) =
1

2
log

(

1 +
f3(Q)

σ2Z

)

(3.62)
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where we have defined

f1(Q) = Var(X1G|X2G, TG) =
∆P1

(1− ρ22T )
(3.63)

f2(Q) = Var(X2G|X1G, TG) =
∆P2

(1− ρ21T )
(3.64)

f3(Q) = Var(X1G|TG) + Var(X2G|TG) + 2Cov(X1G, X2G|TG)

= (1− ρ21T )P1 + (1− ρ22T )P2 + 2(ρ12 − ρ1Tρ2T )
√

P1P2 (3.65)

Finally, evaluating the constraint in (3.33), we conclude that this input distribution

satisfies the constraint in (3.33) iff,

f3(Q) ≤ f1(Q) + f2(Q) +
f1(Q)f2(Q)

(

σ2Z +
σ2
Z1
σ2
Z2

(σ2
Z1
+σ2

Z2
)

) (3.66)

To summarize, the set of rate pairs provided by an input distribution in PDB
G , with a

covariance matrix Q, are given by those in (3.60)-(3.62), where fi(Q), i = 1, 2, 3, in

those inequalities are subject to the constraint in (3.66). As we have discussed earlier,

from evaluation of step 2 in Section 3.9, we know that all rate pairs contributed by

input distributions in PDB(a)
NG are covered by those given in PDB

G .

We now arrive at step 3 of our evaluation. Consider any input distribution

p(t, x1, x2) in PDB(b)
NG with a covariance matrix Q. By the definition of the set PDB(b)

NG ,

we know that Q does not satisfy (3.33), which implies

f3(Q) > f1(Q) + f2(Q) +
f1(Q)f2(Q)

(

σ2Z +
σ2
Z1
σ2
Z2

(σ2
Z1
+σ2

Z2
)

) (3.67)
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We also note that for any (T,X1, X2) with a covariance matrix Q,

R1 ≤ I(X1;Y |X2, T ) ≤ 1

2
log

(

1 +
f1(Q)

σ2Z

)

(3.68)

R2 ≤ I(X2;Y |X1, T ) ≤ 1

2
log

(

1 +
f2(Q)

σ2Z

)

(3.69)

R1 +R2 ≤ I(X1, X2;Y |T ) ≤ 1

2
log

(

1 +
f3(Q)

σ2Z

)

(3.70)

which is a simple consequence of the maximum entropy theorem [14]. Note that so

far, we have not used the fact that the given non-Gaussian input distribution satisfies

the dependence balance constraint in (3.33). We will now make use of this fact by

rewriting (3.33) as follows,

0 ≤ I(X1;X2|YF1 , YF2 , T )− I(X1;X2|T ) (3.71)

= I(X1;YF1 , YF2 |X2, T )− I(X1;YF1 , YF2 |T ) (3.72)

= h(YF1 , YF2 |X1, T ) + h(YF1 , YF2 |X2, T )− h(YF1 , YF2 |T )− h(YF1 , YF2 |X1, X2, T )

(3.73)

We express the above constraint as,

h(YF1 , YF2 |T ) + h(YF1 , YF2 |X1, X2, T ) ≤ h(YF1 , YF2 |X1, T ) + h(YF1 , YF2 |X2, T ) (3.74)

Before proceeding, we state a recently discovered multivariate generalization [46] of

Costa’s EPI [10].

Lemma 3.1 For any arbitrary random vector Y ∈ R
2, independent of V ∈ R

2,
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where V is a zero-mean, Gaussian random vector with each component having unit

variance, the entropy power N(Λ1/2Y +V) is concave in Λ, where the entropy power

is defined as

N(Y) =
1

(2πe)
eh(Y) (3.75)

and Λ is a diagonal matrix with components (λ1, λ2).

We can therefore write for any pair of diagonal matrices Λ1,Λ2 and for any µ ∈

[0, 1],

µN(Λ
1/2
1 Y + V) + (1− µ)N(Λ

1/2
2 Y + V) ≤ N((µΛ1 + (1− µ)Λ2)

1/2Y + V) (3.76)

We start by obtaining a lower bound for the first term h(YF1 , YF2 |T ) in (3.74),

h(YF1 , YF2 |T ) =

∫

fT (t)h(Y + Z1, Y + Z2|T = t)dt (3.77)

≥
∫

fT (t)
1

2
log
(

(2πe)2σ2Z1
σ2Z2

+ 2πe(σ2Z1
+ σ2Z2

)eh(Y |T=t)
)

dt (3.78)

≥ 1

2
log
(

(2πe)2σ2Z1
σ2Z2

+ 2πe(σ2Z1
+ σ2Z2

)eh(Y |T )
)

(3.79)

where (3.78) follows from the conditional version of Lemma 3.1, by selecting the

following Λ1, Λ2 and µ

Λ1 =









κ 0

0 0









, Λ2 =









0 0

0 κ









(3.80)
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where

κ =
(σ2Z1

+ σ2Z2
)

σ2Z1
σ2Z2

(3.81)

and

µ =
σ2Z2

(σ2Z1
+ σ2Z2

)
(3.82)

and by making the following substitutions,

V1 =
Z1
σZ1

, V2 =
Z2
σZ2

(3.83)

where V = [V1 V2]
T and Y = [Y Y ]T . A derivation of (3.78) is given in the

Appendix. Next, (3.79) follows from the fact that log(exc1 + c2) is convex in x for

c1, c2 ≥ 0 and a subsequent application of Jensen’s inequality [14]1.

We next obtain an upper bound for the right hand side of (3.74) by using the

maximum entropy theorem as,

h(YF1 , YF2 |X1, T ) + h(YF1 , YF2 |X2, T )

≤ 1

2
log
(

(2πe)4(f1(Q)(σ2Z1
+ σ2Z2

) + η)(f2(Q)(σ2Z1
+ σ2Z2

) + η)
)

(3.84)

1We should remark here, that an application of the regular form of vector EPI yields the following
trivial lower bound on h(YF1

, YF2
|T ) and therefore, the new EPI is crucial for this step.

h(YF1
, YF2

|T ) ≥ 1

2
log

(

(2πe)2σ2

Z1
σ2

Z2

)
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where we have defined

η = σ2Z1
σ2Z2

+ σ2Z(σ
2
Z1

+ σ2Z2
) (3.85)

Now, using (3.74), (3.79) and (3.84), we obtain an upper bound on h(Y |T ) as follows,

h(Y |T ) ≤ 1

2
log
(

(2πe)(σ2Z + f(Q))
)

(3.86)

where we have defined for simplicity,

f(Q) = f1(Q) + f2(Q) +
f1(Q)f2(Q)

(

σ2Z +
σ2
Z1
σ2
Z2

(σ2
Z1
+σ2

Z2
)

) (3.87)

Using (3.86), we obtain an upper bound on the sum-rate I(X1, X2;Y |T ) for any

non-Gaussian distribution in PDB(b)
NG as,

R1 +R2 ≤ I(X1, X2;Y |T ) ≤ 1

2
log

(

1 +
f(Q)

σ2Z

)

(3.88)

Comparing with (3.70) and using the fact that Q satisfies (3.67), i.e., f(Q) < f3(Q),

we have the following set of inequalities,

R1 +R2 ≤ I(X1, X2;Y |T ) ≤ 1

2
log

(

1 +
f(Q)

σ2Z

)

<
1

2
log

(

1 +
f3(Q)

σ2Z

)

(3.89)

This leads to the observation that a combined application of the EPI and the de-

pendence balance bound yields a strictly smaller upper bound for I(X1, X2;Y |T ) for
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any distribution in PDB(b)
NG than the one provided by the maximum entropy theorem.

Therefore, the rate pairs contributed by an input distribution in PDB(b)
NG with a co-

variance matrix Q are always included in the set of rate pairs expressed by (3.68),

(3.69) and (3.88), where f(Q) is defined in (3.87).

We now arrive at the final step of our evaluation where we will show that for this

input distribution in PDB(b)
NG , we can always find an input distribution in PDB

G , with

a set of rate pairs which include the set of rate pairs expressed by (3.68), (3.69) and

(3.88). In particular, we will show the existence of a valid covariance matrix S for

which the following inequalities hold true,

f1(Q) ≤ f1(S) (3.90)

f2(Q) ≤ f2(S) (3.91)

f(Q) ≤ f3(S) (3.92)

and

f3(S) = f1(S) + f2(S) +
f1(S)f2(S)

(

σ2Z +
σ2
Z1
σ2
Z2

(σ2
Z1
+σ2

Z2
)

) (3.93)

Inequalities in (3.90)-(3.92) will guarantee that a Gaussian input distribution with

covariance matrix S yields a larger set of rate pairs than the set of rate pairs expressed

by (3.68), (3.69) and (3.88) and the equality in (3.93) guarantees that this input

distribution satisfies the dependence balance constraint with equality, hence it is a

member of the set PDB
G .
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Before showing the existence of such an S, we first characterize the set of co-

variance matrices Q which satisfy (3.67). First recall that for any Q to be a valid

covariance matrix, we had the condition det(Q) ≥ 0 which is equivalent to ∆ ≥ 0,

which amounts to

1− ρ212 − ρ21T − ρ22T + 2ρ1Tρ2Tρ12 ≥ 0 (3.94)

In particular, it is easy to verify that for any given fixed pair (ρ1T , ρ2T ) ∈ [−1, 1] ×

[−1, 1], the set of ρ12 which yield a valid Q are such that,

ρ1Tρ2T − λ ≤ ρ12 ≤ ρ1Tρ2T + λ (3.95)

where we have defined

λ =
√

(1− ρ21T )(1− ρ22T ) (3.96)

We now consider two cases which can arise for a given covariance matrix Q.

Case 1. Q is such that ρ12 = ρ1Tρ2T − α, for some α ∈ [0, λ]: This case is rather

trivial and the following simple choice of S works,

ρ
(S)
1T = ρ1T , ρ

(S)
2T = ρ2T (3.97)

ρ
(S)
12 = ρ1Tρ2T (3.98)

Clearly, this S satisfies the dependence balance bound. Moreover, the following in-
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equalities hold as well,

f1(Q) ≤ f1(S) = (1− ρ21T )P1 (3.99)

f2(Q) ≤ f2(S) = (1− ρ22T )P2 (3.100)

f(Q) < f3(Q) (3.101)

= (1− ρ21T )P1 + (1− ρ22T )P2 − 2α
√

P1P2 (3.102)

≤ (1− ρ21T )P1 + (1− ρ22T )P2 (3.103)

= f3(S) (3.104)

Case 2. Q is such that ρ12 = ρ1Tρ2T + α0, for some α0 ∈ (0, λ] and Q satisfies

(3.67): For this case, we will construct a valid covariance matrix S as follows,

ρ
(S)
1T = ρ1T , ρ

(S)
2T = ρ2T (3.105)

ρ
(S)
12 = ρ1Tρ2T + α∗, for some 0 < α∗ < α0 (3.106)

We define a parameterized covariance matrix Q(α) with entries,

ρ1T (α) = ρ1T , ρ2T (α) = ρ2T (3.107)

ρ12(α) = ρ1Tρ2T + α (3.108)

where 0 ≤ α ≤ α0. We now define a function of the parameter α of a valid covariance
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matrix Q(α) as,

g(α) = f1(Q(α)) + f2(Q(α)) +
f1(Q(α))f2(Q(α))
(

σ2Z +
σ2
Z1
σ2
Z2

(σ2
Z1
+σ2

Z2
)

) − f3(Q(α)) (3.109)

Now note the fact that

g(0) =
(1− ρ21T )(1− ρ22T )P1P2
(

σ2Z +
σ2
Z1
σ2
Z2

(σ2
Z1
+σ2

Z2
)

) > 0 (3.110)

We are also given that Q satisfies (3.67) for some α0, which implies that,

g(α0) < 0 (3.111)

Now, we take the first derivative of the function g(α), to obtain,

dg(α)

dα
= −2α

(

P1
(1− ρ22T )

+
P2

(1− ρ21T )

)

− 4αP1P2
(

σ2Z +
σ2
Z1
σ2
Z2

(σ2
Z1
+σ2

Z2
)

)

(

1−
(α

λ

)2
)

− 2
√

P1P2

≤ 0

which implies that g(α) is monotonically decreasing in α. This implies that there

exists an α∗ ∈ (0, α0) such that g(α∗) = 02. We use this α∗ to construct our new

2We should remark here that the existence of an α∗ ∈ (0, α0), with g(α∗) = 0 can also be proved
alternatively by invoking the mean value theorem, since we have g(0) > 0, g(α0) < 0 and g(α) is a
continuous function of α. Monotonicity of g(α) in fact proves a stronger statement that such an α∗

exists and is also unique.
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covariance matrix S as follows,

ρ
(S)
1T = ρ1T , ρ

(S)
2T = ρ2T (3.112)

ρ
(S)
12 = ρ1Tρ2T + α∗ (3.113)

It now remains to check wether S satisfies the four conditions in (3.90)-(3.93). The

condition (3.93) is met with equality, since we have g(α∗) = 0. Moreover, f1(Q) =

f1(Q(α0)) ≤ f1(Q(α∗)) = f1(S) since f1(Q(α)) is monotonically decreasing in α for

α ∈ [0, λ]. Similarly, we also have f2(Q) ≤ f2(S). Finally,

f(Q) = f1(Q) + f2(Q) +
f1(Q)f2(Q)

(

σ2Z +
σ2
Z1
σ2
Z2

(σ2
Z1
+σ2

Z2
)

) (3.114)

≤ f1(S) + f2(S) +
f1(S)f2(S)

(

σ2Z +
σ2
Z1
σ2
Z2

(σ2
Z1
+σ2

Z2
)

) (3.115)

= f3(S) (3.116)

This shows the existence of a valid covariance matrix S which satisfies (3.33) and

yields a set of rates which includes the set of rates of the given non-Gaussian distri-

bution with the covariance matrix Q.

Above two cases show that for any non-Gaussian distribution p(t, x1, x2) in the

set PDB(b)
NG , we can always find a jointly Gaussian triple (TG, X1G, X2G) in PDB

G that

yields a set of rates subsuming the set of rates of the given non-Gaussian distribution.

This consequently completes the proof of the statement that it is sufficient to consider

jointly Gaussian (T,X1, X2) in PDB
G when evaluating our outer bound.
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The dependence balance based outer bound can now be written in an explicit form

as follows,

DBMAC
NF =

⋃

Q∈QDB

{

(R1, R2) : R1 ≤
1

2
log

(

1 +
f1(Q)

σ2Z

)

R2 ≤
1

2
log

(

1 +
f2(Q)

σ2Z

)

R1 +R2 ≤
1

2
log

(

1 +
f3(Q)

σ2Z

)

}

(3.117)

where QDB is the set of 3× 3 covariance matrices of the form (3.57) satisfying,

f3(Q) ≤ f1(Q) + f2(Q) +
f1(Q)f2(Q)

(

σ2Z +
σ2
Z1
σ2
Z2

(σ2
Z1
+σ2

Z2
)

) (3.118)

where

f1(Q) =
∆P1

(1− ρ22T )
(3.119)

f2(Q) =
∆P2

(1− ρ21T )
(3.120)

f3(Q) = (1− ρ21T )P1 + (1− ρ22T )P2 + 2(ρ12 − ρ1Tρ2T )
√

P1P2 (3.121)

and

∆ = 1− ρ21T − ρ22T − ρ212 + 2ρ1Tρ2Tρ12 (3.122)
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where ρ12, ρ1T and ρ2T are all in [−1, 1].

The cut-set outer bound given in (3.1)-(3.4) is evaluated for the Gaussian MAC

with noisy feedback described in (3.25)-(3.27) as

CSMAC
NF =

⋃

ρ∈[0,1]

{

(R1, R2) : R1 ≤
1

2
log

(

1 +
(1− ρ2)P1

σ2Z

)

R2 ≤
1

2
log

(

1 +
(1− ρ2)P2

σ2Z

)

R1 +R2 ≤
1

2
log

(

1 +
P1 + P2 + 2ρ

√
P1P2

σ2Z

)

}

(3.123)

We briefly mention what our outer bound gives for the the two limiting values of

the backward noise variances σ2Z1
and σ2Z2

.

1. σ2Z1
, σ2Z2

→ 0 : this case corresponds to the Gaussian MAC with noiseless feed-

back and the constraint (3.118) simplifies to

f3(Q) ≤ f1(Q) + f2(Q) +
f1(Q)f2(Q)

σ2Z
(3.124)

which is simply stating that the sum-rate constraint should be at most as large

as the sum of the individual rate constraints, i.e., another equivalent way of

writing is

1

2
log

(

1 +
f3(Q)

σ2Z

)

≤ 1

2
log

(

1 +
f1(Q)

σ2Z

)

+
1

2
log

(

1 +
f2(Q)

σ2Z

)

(3.125)

This is the same constraint as obtained by Ozarow in [45], and our outer bound

coincides with the cut-set bound and yields the capacity region of the Gaussian
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MAC with noiseless feedback.

2. σ2Z1
, σ2Z2

→∞: this case corresponds to very noisy feedback and our outer bound

should collapse to the no-feedback capacity region of the Gaussian MAC. For

this case, the constraint (3.118) simplifies to,

f3(Q) ≤ f1(Q) + f2(Q) (3.126)

On substituting the values of f1(Q), f2(Q) and f3(Q) in the above inequality,

we obtain

(ρ12 − ρ1Tρ2T ) ≤
((1− ρ21T )P1 + (1− ρ22T )P2)

2
√
P1P2

(

∆

λ2
− 1

)

(3.127)

≤ 0 (3.128)

where the last inequality comes from the fact that for any valid covariance

matrix, ∆ ≤ λ2. This implies that the dependence balance bound only allows

such covariance matrices Q for which ρ12 ≤ ρ1Tρ2T . But we know already from

(3.97)-(3.98) that we can always find an S for which we can select ρ
(S)
12 = ρ1Tρ2T ,

which satisfies the dependence balance bound and yields larger rates than any

Q with ρ12 < ρ1Tρ2T . Thus, we only need to restrict our attention to those

matrices Q for which ρ12 = ρ1Tρ2T . Such covariance matrices Q correspond to

those jointly Gaussian triples which satisfy the Markov chain X1 → T → X2.

This can be observed by noting that for any jointly Gaussian (T,X1, X2), with

a covariance matrix Q, the condition I(X1;X2|T ) = 0 holds iff Var(X1|T ) =
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Var(X1|X2, T ), which is equivalent to ρ12 = ρ1Tρ2T . Proof of this statement is

immediate by noting that for a jointly Gaussian triple, we have

I(X1;X2|T ) =
1

2
log

(

Var(X1|T )

Var(X1|X2, T )

)

(3.129)

Therefore, T can be interpreted simply as a timesharing random variable and our

outer bound yields the capacity region of the Gaussian MAC without feedback.

Figure 3.7 illustrates DBMAC
NF , the cut-set bound and the capacity region without

feedback for the cases when σ2Z1
= σ2Z2

= 2, 5 and 10, where P1 = P2 = σ2Z = 1.

Figure 3.8 illustratesDBMAC
NF , the cut-set bound, the capacity region without feedback

and an achievable rate region based on superposition coding [65] for the case when

σ2Z1
= σ2Z2

= 0.3 and P1 = P2 = σ2Z = 1.

3.10.1 Remark

For the special case of Gaussian MAC with common, noisy feedback, where

YF1 = YF2 = Y + V (3.130)

the evaluation of DBMAC
NF follows in a similar manner as in the case of different noisy

feedback signals. The only difference arises in the application of the EPI. In particular,

the regular EPI [14] suffices to provide a non-trivial upper bound on I(X1, X2;Y |T )

than the one provided by the maximum entropy theorem [14]. The remainder of the

proof of evaluation of our outer bound for this channel model follows along the same
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Figure 3.7: Illustration of outer bounds for P1 = P2 = σ2Z = 1 and σ2Z1
= σ2Z2

=
2, 5, 10.
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Figure 3.8: Illustration of outer bound and an achievable region based on superposi-
tion coding for P1 = P2 = σ2Z = 1 and σ2Z1

= σ2Z2
= 0.3.
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lines as the proof for different noisy feedback signals. The final expressions of outer

bounds for these two channel models only differ over the constraint (3.118). For the

case of common, noisy feedback, the set QDB comprises of 3× 3 covariance matrices

of the form (3.57) satisfying,

f3(Q) ≤ f1(Q) + f2(Q) +
f1(Q)f2(Q)

(σ2Z + σ2V )
(3.131)

Now consider the Gaussian MAC with different noisy feedback signals YF1 and YF2

at the transmitters 1 and 2, respectively. If the variances of feedback noises Z1 and

Z2 are such that, σ2Z1
= σ2Z2

= σ2V , then the dependence balance constraint (3.118)

simplifies as

f3(Q) ≤ f1(Q) + f2(Q) +
f1(Q)f2(Q)
(

σ2Z +
σ2
V

2

) (3.132)

This implies that if a covariance matrix Q satisfies the constraint (3.131), then it also

satisfies (3.132) but the converse statement may not always be true. This means that

the resulting outer bound for the Gaussian MAC with common noisy feedback, with

feedback noise variance σ2V can be strictly smaller than the resulting outer bound

for Gaussian MAC with different noisy feedback signals, when the feedback noise

variances are σ2Z1
= σ2Z2

= σ2V .
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3.11 Evaluation of DBMAC
UC

In this section we will explicitly evaluate Theorem 3.4 for the Gaussian MAC with

user cooperation described by (3.34)-(3.36) in Section 3.7. We start with step 1

and characterize the set of jointly Gaussian triples (TG, X1G, X2G) in PDB
G . For this

purpose, we rewrite (3.43) as follows,

0 ≤ I(X1;X2|YF1 , YF2 , T )− I(X1;X2|T ) (3.133)

= I(X1;YF1 , YF2 |X2, T )− I(X1;YF1 , YF2 |T ) (3.134)

= h(YF1 , YF2 |X1, T ) + h(YF1 , YF2 |X2, T )− h(YF1 , YF2 |T )− h(YF1 , YF2 |X1, X2, T )

(3.135)

and express the above constraint as follows,

h(YF1 , YF2 |T ) + h(YF1 , YF2 |X1, X2, T ) ≤ h(YF1 , YF2 |X1, T ) + h(YF1 , YF2 |X2, T )

(3.136)

Making use of the following equalities,

h(YF1 , YF2 |X1, X2, T ) =
1

2
log
(

(2πe)2σ2Z1
σ2Z2

)

(3.137)

h(YF1 , YF2 |X1, T ) =
1

2
log
(

(2πe)σ2Z2

)

+ h(YF1 |X1, T ) (3.138)

h(YF1 , YF2 |X2, T ) =
1

2
log
(

(2πe)σ2Z1

)

+ h(YF2 |X2, T ) (3.139)
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we obtain a simplified expression for (3.136) as,

h(YF1 , YF2 |T ) ≤ h(YF1|X1, T ) + h(YF2|X2, T ) (3.140)

We further simplify (3.140) as follows,

0 ≤ h(YF1|X1, T ) + h(YF2|X2, T )− h(YF1 , YF2 |T ) (3.141)

= h(YF1|X1, T ) + h(YF2|X2, T )− h(YF1|T )− h(YF2|YF1 , T ) (3.142)

= −I(YF1 ;X1|T ) + h(YF2|X2, T )− h(YF2|YF1 , T ) (3.143)

= −I(YF1 ;X1|T ) + h(YF2|X2, YF1 , T )− h(YF2|YF1 , T ) (3.144)

= −I(YF1 ;X1|T )− I(YF2 ;X2|YF1 , T ) (3.145)

where (3.144) follows from the Markov chain YF1 → X2 → (T, YF2). Therefore, the

dependence balance constraint in (3.43) is equivalent to following two equalities,

I(YF1 ;X1|T ) = 0 (3.146)

I(YF2 ;X2|YF1 , T ) = 0 (3.147)

Next, we show that if any jointly Gaussian triple (T,X1, X2) satisfies the constraints

(3.146)-(3.147) then it satisfies the Markov chain X1 → T → X2. Conversely, we will

show that if any jointly Gaussian triple (T,X1, X2) satisfies X1 → T → X2, then it

satisfies (3.146)-(3.147).

We start by evaluating (3.146) and (3.147) for a jointly Gaussian (TG, X1G, X2G)
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which is equivalent to,

0 = I(
√

h21X2G + Z1;X1G|TG) (3.148)

0 = I(
√

h12X1G + Z2;X2G|
√

h21X2G + Z1, TG) (3.149)

These equalities are equivalent to

Cov(X1G, X2G|TG) = 0 (3.150)

Using the same argument as in (3.129), we obtain the following condition

ρ12 = ρ1Tρ2T (3.151)

This implies that a jointly Gaussian triple satisfies (3.146)-(3.147) iff ρ12 = ρ1Tρ2T .

On the other hand, consider any jointly Gaussian triple (TG, X1G, X2G), with a

covariance matrix Q which satisfies the Markov chain X1G → TG → X2G. This is

equivalent to I(X1G;X2G|TG) = 0, which is equivalent to

ρ12 = ρ1Tρ2T (3.152)

This implies that if a jointly Gaussian triple (T,X1, X2) satisfies the Markov chain

X1 → T → X2, then it satisfies (3.152) and therefore it also satisfies (3.146)-(3.147)

and vice versa. As a consequence, we have explicitly characterized the set PDB
G , i.e.,

it comprises of only such jointly Gaussian distributions, (TG, X1G, X2G), for which
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X1G → TG → X2G.

We can now write the set of rate pairs provided by our outer bound for a jointly

Gaussian triple (TG, X1G, X2G) in the set PDB
G as

R1 ≤ I(X1G;Y, YF2 |X2G, TG) (3.153)

R2 ≤ I(X2G;Y, YF1 |X1G, TG) (3.154)

R1 +R2 ≤ I(X1G, X2G;Y, YF1 , YF2 |TG) (3.155)

R1 +R2 ≤ I(X1G, X2G;Y ) (3.156)

where (TG, X1G, X2G) satisfies the Markov chain X1G → TG → X2G. Moreover, from

the evaluation of step 2 in Section 3.9, we know that all rate pairs contributed by

input distributions in PDB(a)
NG are covered by those given in PDB

G . Therefore, we do

not need to consider the set PDB(a)
NG in evaluating our outer bound.

We now arrive at step 3 of the evaluation of our outer bound where we will show

that for any non-Gaussian input distribution p(t, x1, x2) ∈ PDB(b)
NG , we can always find

an input distribution in PDB
G , with a set of rate pairs which include the set of rate

pairs of the fixed non-Gaussian input distribution p(t, x1, x2). Consider any triple

(T,X1, X2) with a non-Gaussian input distribution p(t, x1, x2) ∈ PDB(b)
NG , with a valid

covariance matrix Q. By the definition of the set PDB(b)
NG , and as a consequence of

(3.151), this covariance matrix has the property that ρ12 6= ρ1Tρ2T . Moreover, this

non-Gaussian distribution satisfies the dependence balance bound, i.e., it satisfies

(3.146) and (3.147). For our purpose, we only need (3.146). Since I(YF1 ;X1|T ) = 0,
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this implies

E[(
√

h21X2 + Z1)X1|T ] = E[
√

h21X2 + Z1|T ]E[X1|T ] (3.157)

=
√

h21E[X2|T ]E[X1|T ] (3.158)

on the other hand, we also have E[(
√
h21X2 + Z1)X1|T ] =

√
h21E[X1X2|T ], which

implies

E[X1X2|T ] = E[X2|T ]E[X1|T ] (3.159)

We will now construct another triple (T
′

, X1, X2) with a covariance matrix S by

selecting

T
′

= E[X1|T ] (3.160)

This particular selection is closely related to the recent work of Bross, Lapidoth

and Wigger [7] where it was shown that jointly Gaussian distributions are sufficient

to characterize the capacity region of Gaussian MAC with conferencing encoders.

Although, we should also remark that when evaluating our outer bound for user

cooperation, we do not have a conditionally independent structure among (T,X1, X2)

to start with. This structure arises from the dependence balance constraint (3.43),

permiting us to use this approach.

Returning to (3.160), we note that T
′

is a deterministic function of T and therefore,
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following is a valid Markov chain.

T
′ → T → (X1, X2)→ (Y, YF1 , YF2) (3.161)

We will now obtain the off diagonal elements of the covariance matrix S of the triple

(T
′

, X1, X2) as follows,

E[X1T
′

] = ET [E[X1T
′ |T ]] (3.162)

= ET [E[X1|T ]E[X1|T ]] (3.163)

= Var(T
′

) (3.164)

and

E[X2T
′

] = ET [E[X2T
′ |T ]] (3.165)

= ET [E[X2|T ]E[X1|T ]] (3.166)

and finally,

E[X1X2] = ET [E[X1X2|T ]] (3.167)

= ET [E[X1|T ]E[X2|T ]] (3.168)
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where (3.168) follows from (3.159). Therefore, the triple (T
′

, X1, X2) satisfies

E[X1X2] =
E[X1T

′

]E[X2T
′

]

Var(T ′)
(3.169)

Now using the fact that

E[X1X2] = ρ12
√

P1P2 (3.170)

E[X1T
′

] = ρ1T ′
√

P1PT ′ (3.171)

E[X2T
′

] = ρ2T ′
√

P2PT ′ (3.172)

and substituting in (3.169) we obtain that the covariance matrix S satisfies

ρ12 = ρ1T ′ρ2T ′ (3.173)

Therefore, from (3.151) any jointly Gaussian (T
′

G, X1G, X2G) triple with a covariance

matrix S, with entries (ρ12, ρ1T ′ , ρ2T ′ ) satisfies (3.43).

We now arrive at the final step of the evaluation. In particular, we will show

that the rates of this jointly Gaussian triple (T
′

G, X1G, X2G) will include the rates of

the given non-Gaussian triple (T,X1, X2). For the triple (T
′

G, X1G, X2G), we have the

following set of inequalities,

I(X1G;Y, YF2 |X2G, T
′

G) = h(Y, YF2 |X2G, T
′

G)− h(Y, YF2 |X1G, X2G, T
′

G) (3.174)
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= h(
√

h10X1G + Z,
√

h12X1G + Z2|X2G, T
′

G)− h(Y, YF2|X1G, X2G, T
′

G) (3.175)

≥ h(
√

h10X1 + Z,
√

h12X1 + Z2|X2, T
′

)− h(Y, YF2 |X1G, X2G, T
′

G) (3.176)

≥ h(
√

h10X1 + Z,
√

h12X1 + Z2|X2, T
′

, T )− h(Y, YF2 |X1, X2, T ) (3.177)

= h(
√

h10X1 + Z,
√

h12X1 + Z2|X2, T )− h(Y, YF2 |X1, X2, T ) (3.178)

= I(X1;Y, YF2 |X2, T ) (3.179)

where (3.176) follows from the fact that (T
′

, X1, X2) and (T
′

G, X1G, X2G) have the

same covariance matrix S and by using the maximum entropy theorem. Next, (3.177)

follows from the fact that conditioning reduces differential entropy and finally (3.178)

follows from the fact that T
′

is a deterministic function of T and by invoking the

Markov chain in (3.161). Similarly, we also have

I(X2G;Y, YF1 |X1G, T
′

G) ≥ I(X2;Y, YF1 |X1, T ) (3.180)

I(X1G, X2G;Y, YF1 , YF2 |T
′

G) ≥ I(X1, X2;Y, YF1 , YF2 |T ) (3.181)

Finally, we have

I(X1G, X2G;Y ) = h(Y )− h(Y |X1G, X2G) (3.182)

= h(
√

h10X1G +
√

h20X2G + Z)− h(Z) (3.183)

≥ h(
√

h10X1 +
√

h20X2 + Z)− h(Z) (3.184)

= I(X1, X2;Y ) (3.185)

110



Therefore, we conclude that for any non-Gaussian distribution p(t, x1, x2) ∈ PDB(b)
NG ,

there exists a jointly Gaussian distribution p(t, x1, x2) ∈ PDB
G which satisfies the

dependence balance bound (3.43) and yields a set of rates which include the set of

rates given by the fixed non-Gaussian distribution. Hence, it suffices to consider

jointly Gaussian distributions in PDB
G to evaluate our outer bound.

The dependence balance based outer bound can now be written in an explicit form

as follows,

DBMAC
UC =

⋃

(ρ1T ,ρ2T )∈[0,1]×[0,1]

{

(R1, R2) : R1 ≤
1

2
log (1 + f1(ρ1T ))

R2 ≤
1

2
log (1 + f2(ρ2T ))

R1 +R2 ≤
1

2
log (1 + f3(ρ1T , ρ2T ))

R1 +R2 ≤
1

2
log (1 + f4(ρ1T , ρ2T ))

}

(3.186)

where

f1(ρ1T ) = (1− ρ21T )P1

(

h10
σ2Z

+
h12
σ2Z2

)

(3.187)

f2(ρ2T ) = (1− ρ22T )P2

(

h20
σ2Z

+
h21
σ2Z1

)

(3.188)

f3(ρ1T , ρ2T ) = f1(ρ1T ) + f2(ρ2T ) + (1− ρ21T )(1− ρ22T )P1P2β (3.189)

f4(ρ1T , ρ2T ) =
(h10P1 + h20P2 + 2ρ1Tρ2T

√
h10h20P1P2)

σ2Z
(3.190)
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and

β =
(h12h21σ

2
Z + h20h12σ

2
Z1

+ h10h21σ
2
Z2
)

σ2Zσ
2
Z1
σ2Z2

(3.191)

The cut-set outer bound given in (3.1)-(3.4) is evaluated for the Gaussian MAC

with user cooperation described in (3.34)-(3.36) as

CSMAC
UC =

⋃

ρ∈[0,1]

{

(R1, R2) : R1 ≤
1

2
log

(

1 + (1− ρ2)P1

(

h10
σ2Z

+
h12
σ2Z2

))

R2 ≤
1

2
log

(

1 + (1− ρ2)P2

(

h20
σ2Z

+
h21
σ2Z1

))

R1 +R2 ≤
1

2
log

(

1 +
h10P1 + h20P2 + 2ρ

√
h10h20P1P2

σ2Z

)

}

(3.192)

We now mention how our outer bound compares with the cut-set bound for the

limiting cases of cooperation noise variances.

1. σ2Z1
, σ2Z2

→ 0: this case corresponds to total cooperation between transmitters.

In this case, both dependence balance bound and the cut-set bound degenerate

to the total cooperation line,

R1 +R2 ≤
1

2
log

(

1 +
h10P1 + h20P2 + 2

√
h10h20P1P2

σ2Z

)

(3.193)

2. σ2Z1
, σ2Z2

→ ∞: this case corresponds to very noisy cooperation links. In this
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case, we have

f1(ρ1T ) =
(1− ρ21T )h10P1

σ2Z
(3.194)

f2(ρ2T ) =
(1− ρ22T )h20P2

σ2Z
(3.195)

f3(ρ1T , ρ2T ) = f1(ρ1T ) + f2(ρ2T ) (3.196)

<
(h10P1 + h20P2 + 2ρ1Tρ2T

√
h10h20P1P2)

σ2Z
(3.197)

and the dependence balance bound collapses to the capacity region of the Gaus-

sian MAC with no cooperation. On the other hand, the cut-set bound collapses

to the capacity region of the Gaussian MAC with noiseless feedback [45].

Figure 3.9 illustrates the outer bounds and achievable rate region [53] for the case

when P1 = P2 = 5, σ2Z = 2 and σ2Z1
= σ2Z2

= 1 and h10 = h20 = h12 = h21 = 1.

Figure 3.10 illustrates the outer bounds for the case when P1 = P2 = σ2Z = 1 and

σ2Z1
= σ2Z2

= 20 and h10 = h20 = h12 = h21 = 1. For this case, the achievable rate

region does not provide any visual improvement over no-cooperation. Figure 3.11

illustrates these bounds and the achievable rate region for the asymmetric setting

where P1 = P2 = σ2Z = 1 and σ2Z1
= σ2Z2

= 1 and h10 = h20 = 1, h12 = 3, h21 = 2.

Figure 3.12 illustrates these bounds and the achievable rate region for the one sided

cooperation where P1 = P2 = σ2Z = 1 and σ2Z1
= σ2Z2

= 1 and h10 = h20 = 1,

h12 = 2, h21 = 0.
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Figure 3.9: Illustration of bounds for P1 = P2 = 5, σ2Z = 2, σ2Z1
= σ2Z2

= 1 and
h10 = h20 = h12 = h21 = 1.
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Figure 3.10: Illustration of outer bounds for P1 = P2 = σ2Z = 1, σ2Z1
= σ2Z2

= 20 and
h10 = h20 = h12 = h21 = 1.
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Figure 3.11: Illustration of outer bounds for P1 = P2 = σ2Z = 1, σ2Z1
= σ2Z2

= 1 and
h10 = h20 = 1, h12 = 3, h21 = 2.
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Figure 3.12: Illustration of outer bounds for P1 = P2 = σ2Z = 1, σ2Z1
= σ2Z2

= 1 and
h10 = h20 = 1, h12 = 2, h21 = 0.
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3.12 Evaluation of DBIC
UC

In this section we will explicitly evaluate Theorem 3.5 for the Gaussian IC with

user cooperation described by (3.44)-(3.47) in Section 3.8. We start with step 1 and

first characterize the set of jointly Gaussian triples (TG, X1G, X2G) in PDB
G . For this

purpose, we rewrite (3.56) as follows,

h(YF1 , YF2 |T ) + h(YF1 , YF2 |X1, X2, T ) ≤ h(YF1 , YF2 |X1, T ) + h(YF1 , YF2 |X2, T )

(3.198)

Making use of the following equalities,

h(YF1 , YF2 |X1, X2, T ) =
1

2
log
(

(2πe)2σ2Z1
σ2Z2

)

(3.199)

h(YF1 , YF2 |X1, T ) =
1

2
log
(

(2πe)σ2Z2

)

+ h(YF1 |X1, T ) (3.200)

h(YF1 , YF2 |X2, T ) =
1

2
log
(

(2πe)σ2Z1

)

+ h(YF2 |X2, T ) (3.201)

we obtain a simplified expression for (3.198) as,

h(YF1 , YF2 |T ) ≤ h(YF1|X1, T ) + h(YF2|X2, T ) (3.202)

116



which can be further simplified as in the derivation of DBMAC
UC to the following two

equalities,

I(YF1 ;X1|T ) = 0 (3.203)

I(YF2 ;X2|YF1 , T ) = 0 (3.204)

We next follow the same set of arguments used in Section 3.11 to arrive at the fact

that a jointly Gaussian triple (T,X1, X2) satisfies (3.203)-(3.204) iff X1 → T → X2.

We can now write the set of rate pairs provided by our outer bound for a jointly

Gaussian triple (TG, X1G, X2G) in the set PDB
G as

R1 ≤ I(X1G, X2G;Y1) (3.205)

R2 ≤ I(X1G, X2G;Y2) (3.206)

R1 ≤ I(X1G;Y1, Y2, YF2 |X2G, T ) (3.207)

R2 ≤ I(X2G;Y1, Y2, YF1 |X1G, T ) (3.208)

R1 +R2 ≤ I(X1G, X2G;Y1, Y2, YF1 , YF2 |T ) (3.209)

R1 +R2 ≤ I(X1G, X2G;Y1, Y2)
}

(3.210)

where the triple (TG, X1G, X2G) satisfies the Markov chain X1G → TG → X2G. More-

over, from the evaluation of step 2 in Section 3.9, we know that all rate pairs con-

tributed by input distributions in PDB(a)
NG are covered by those given in PDB

G . There-

fore, we do not need to consider the set PDB(a)
NG in evaluating our outer bound.

We now arrive at step 3 of the evaluation of our outer bound for the Gaussian IC
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with user cooperation. Consider any triple (T,X1, X2) with a non-Gaussian distribu-

tion p(t, x1, x2) ∈ PDB(b)
NG , with a valid covariance matrix Q. As in the derivation of

DBMAC
UC , we first construct another triple (T

′

, X1, X2) with a covariance matrix S by

selecting

T
′

= E[X1|T ] (3.211)

Following this step, we next make use of the Markov chain

T
′ → T → (X1, X2)→ (Y1, Y2, YF1 , YF2) (3.212)

to show the existence of a jointly Gaussian (T
′

G, X1G, X2G) with a covariance matrix

S and which satisfies (3.56).

We now arrive at the final step of the evaluation. In particular, we will show

that the rates of this jointly Gaussian triple (T
′

G, X1G, X2G) will include the rates of

the given non-Gaussian triple (T,X1, X2). For the triple (T
′

G, X1G, X2G), we have the

following set of inequalities,

I(X1G;Y1, Y2, YF2 |X2G, T
′

G) = h(Y1, Y2, YF2 |X2G, T
′

G)− h(Y1, Y2, YF2 |X1G, X2G, T
′

G)

(3.213)

= h(X1G +N1,
√
aX1G +N2,

√

h12X1G + Z2|X2G, T
′

G)

− h(Y1, Y2, YF2 |X1G, X2G, T
′

G) (3.214)
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≥ h((X1 +N1,
√
aX1 +N2,

√

h12X1 + Z2|X2, T
′

)− h(Y1, Y2, YF2 |X1G, X2G, T
′

G)

(3.215)

≥ h((X1 +N1,
√
aX1 +N2,

√

h12X1 + Z2|X2, T
′

, T )− h(Y1, Y2, YF2 |X1G, X2G, T
′

G)

(3.216)

= h((X1 +N1,
√
aX1 +N2,

√

h12X1 + Z2|X2, T )− h(Y1, Y2, YF2 |X1, X2, T ) (3.217)

= I(X1;Y1, Y2, YF2 |X2, T ) (3.218)

where (3.215) follows from the fact that (T
′

, X1, X2) and (T
′

G, X1G, X2G) have the

same covariance matrix S and using the maximum entropy theorem. Next, (3.216)

follows from the fact that conditioning reduces differential entropy and finally (3.217)

follows from the fact that T
′

is a deterministic function of T and invoking the Markov

chain in (3.212). Similarly, we also have

I(X2G;Y1, Y2, YF1 |X1G, T
′

G) ≥ I(X2;Y1, Y2, YF1 |X1, T ) (3.219)

I(X1G, X2G;Y1, Y2, YF1 , YF2 |T
′

G) ≥ I(X1, X2;Y1, Y2, YF1 , YF2 |T ) (3.220)

Finally, we have

I(X1G, X2G;Y1) = h(Y1)− h(Y1|X1G, X2G) (3.221)

= h(X1G +
√
bX2G +N1)− h(N1) (3.222)

≥ h(X1 +
√
bX2 +N1)− h(N1) (3.223)

= I(X1, X2;Y1) (3.224)
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and similarly, we also have,

I(X1G, X2G;Y2) ≥ I(X1, X2;Y2) (3.225)

I(X1G, X2G;Y1, Y2) ≥ I(X1, X2;Y1, Y2) (3.226)

Therefore, we conclude that for any non-Gaussian distribution p(t, x1, x2) ∈ PDB(b)
NG ,

there exists a jointly Gaussian distribution p(t, x1, x2) ∈ PDB
G which satisfies the de-

pendence balance bound (3.56) and yields a set of rates which includes the set of

rates given by the fixed non-Gaussian distribution. Hence, it suffices to consider

jointly Gaussian distributions in PDB
G to evaluate our outer bound.

The dependence balance based outer bound can now be written in an explicit form

as,

DBICUC =
⋃

(ρ1T ,ρ2T )∈[0,1]×[0,1]

{

(R1, R2) : R1 ≤
1

2
log (1 + f1(ρ1T , ρ2T ))

R2 ≤
1

2
log (1 + f2(ρ1T , ρ2T ))

R1 ≤
1

2
log (1 + f3(ρ1T ))

R2 ≤
1

2
log (1 + f4(ρ2T ))

R1 +R2 ≤
1

2
log (1 + f5(ρ1T , ρ2T ))

R1 +R2 ≤
1

2
log (1 + f6(ρ1T , ρ2T ))

}

(3.227)
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where

f1(ρ1T , ρ2T ) =
(P1 + bP2 + 2ρ1Tρ2T

√
bP1P2)

σ2N1

(3.228)

f2(ρ1T , ρ2T ) =
(aP1 + P2 + 2ρ1Tρ2T

√
aP1P2)

σ2N2

(3.229)

f3(ρ1T ) = (1− ρ21T )P1

(

1

σ2N1

+
a

σ2N2

+
h12
σ2Z2

)

(3.230)

f4(ρ2T ) = (1− ρ22T )P2

(

b

σ2N1

+
1

σ2N2

+
h21
σ2Z1

)

(3.231)

f5(ρ1T , ρ2T ) = f1(ρ1T , ρ2T ) + f2(ρ1T , ρ2T ) +
(1− ρ21Tρ

2
2T )P1P2(1−

√
ab)2

σ2N1
σ2N2

(3.232)

f6(ρ1T , ρ2T ) = f3(ρ1T ) + f4(ρ2T ) + (1− ρ21T )(1− ρ22T )P1P2β (3.233)

where

β =
h12h21
σ2Z1

σ2Z2

+
(1−

√
ab)2

σ2N1
σ2N2

+
h12
σ2Z2

(

1

σ2N2

+
b

σ2N1

)

+
h21
σ2Z1

(

1

σ2N1

+
a

σ2N2

)

(3.234)

The cut-set outer bound given in (3.5)-(3.10) is evaluated for the Gaussian IC

with user cooperation described in (3.44)-(3.47) as

CSICUC =
⋃

ρ∈[0,1]

{

(R1, R2) : R1 ≤
1

2
log

(

1 +
P1 + bP2 + 2ρ

√
bP1P2

σ2N1

)

R2 ≤
1

2
log

(

1 +
aP1 + P2 + 2ρ

√
aP1P2

σ2N2

)
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R1 ≤
1

2
log

(

1 + (1− ρ2)P1

(

1

σ2N1

+
a

σ2N2

+
h12
σ2Z2

))

R2 ≤
1

2
log

(

1 + (1− ρ2)P2

(

b

σ2N1

+
1

σ2N2

+
h21
σ2Z1

))

R1 +R2 ≤
1

2
log

(

1 + k1(ρ) + k2(ρ) +
(1− ρ2)P1P2(1−

√
ab)2

σ2N1
σ2N2

)}

(3.235)

where

k1(ρ) =
P1 + bP2 + 2ρ

√
bP1P2

σ2N1

(3.236)

k1(ρ) =
aP1 + P2 + 2ρ

√
aP1P2

σ2N2

(3.237)

Figure 3.13 illustrates our outer bound, cut-set bound, an achievable rate region

with cooperation [31], capacity region without cooperation [50] for the case when

P1 = P2 = σ2N1
= σ2N1

= 1 and σ2Z1
= σ2Z2

= 1 and a = b = 1 and h12 = h21 = 2.

Figure 3.14 illustrates the outer bound, cut-set bound and achievable region without

cooperation [49] when P1 = P2 = σ2N1
= σ2N1

= 1 and σ2Z1
= σ2Z2

= 1 and a = b = 0.5

and h12 = h21 = 0.1. Figure 3.15 illustrates our sum rate upper bound and the cut-set

bound as function of h, where h = h12 = h21 and P1 = P2 = σ2N1
= σ2N1

= 1 and

σ2Z1
= σ2Z2

= 1, a = b = 0.5.

3.13 Conclusions

We obtained new outer bounds for the capacity regions of the two-user MAC with

generalized feedback and the two-user IC with generalized feedback. We explicitly

evaluated these outer bounds for three channel models. In particular, we evaluated
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Figure 3.13: Illustration of bounds for P1 = P2 = σ2N1
= σ2N2

= 1, σ2Z1
= σ2Z2

= 1 and
a = b = 1 and h12 = h21 = 2.

our outer bounds for the Gaussian MAC with different noisy feedback signals at the

transmitters, the Gaussian MAC with user cooperation and the Gaussian IC with

user cooperation. Our outer bounds strictly improve upon the cut-set bound for all

three channel models.

For the evaluation of our outer bounds for the Gaussian scenarios of interest,

we proposed a systematic approach to deal with capacity bounds involving auxiliary

random variables. This approach was appropriately tailored according to the channel

model in consideration which permitted us to obtain explicit expressions for our outer

bounds. To evaluate our outer bounds, we have to consider all input distributions

satisfying the dependence balance constraint. The main difficulty in evaluating our

outer bounds arises from the fact that there might exist some non-Gaussian input
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Figure 3.15: Illustration of sum-rate upper bound and the cut-set bound as a function
of h, where h = h12 = h21.
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distribution p(t, x1, x2) with a covariance matrix Q, such that p(t, x1, x2) satisfies the

dependence balance constraint but there does not exist a jointly Gaussian triple with

the covariance matrix Q satisfying the dependence balance constraint. Therefore, the

regular methodology of evaluating outer bounds, i.e., the approach of applying max-

imum entropy theorem [14] fails beyond this particular point. Through our explicit

evaluation for all three channel models, we were able to show the existence of a jointly

Gaussian triple with a covariance matrix S which satisfies the dependence balance

constraint and yields larger rates than the fixed non-Gaussian distribution.

In particular, for the case of Gaussian MAC with noisy feedback, we made use

of a recently discovered multivariate EPI [46], which is a generalization of Costa’s

EPI [10]. It is worth nothing that this result could not be obtained from the classical

vector EPI. For the case of Gaussian MAC with user cooperation and the Gaussian

IC with user cooperation, our proof closely follows a recent result of Bross, Wigger

and Lapidoth [7] and [60] for the Gaussian MAC with conferencing encoders.

3.14 Appendix

3.14.1 Proof of Theorem 3.1

We will prove Theorem 3.1 by first deriving an upper bound for R1 as

nR1 = H(W1) = H(W1|W2) (3.238)

= I(W1;Y
n, Y n

F2
|W2) +H(W1|W2, Y

n, Y n
F2
) (3.239)
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≤ I(W1;Y
n, Y n

F2
|W2) + nε

(n)
1 (3.240)

=
n
∑

i=1

I(W1;Yi, YF2i|W2, Y
i−1, Y i−1

F2
) + nε

(n)
1 (3.241)

=
n
∑

i=1

(H(Yi, YF2i|W2, Y
i−1, Y i−1

F2
)−H(Yi, YF2i|W1,W2, Y

i−1, Y i−1
F2

)) + nε
(n)
1 (3.242)

=
n
∑

i=1

(H(Yi, YF2i|W2, X2i, Y
i−1, Y i−1

F2
)−H(Yi, YF2i|X2i,W1,W2, Y

i−1, Y i−1
F2

)) + nε
(n)
1

(3.243)

≤
n
∑

i=1

(H(Yi, YF2i|X2i, Y
i−1
F2

)−H(Yi, YF2i|X2i,W1,W2, Y
i−1, Y i−1

F2
)) + nε

(n)
1 (3.244)

≤
n
∑

i=1

(H(Yi, YF2i|X2i, Y
i−1
F2

)−H(Yi, YF2i|X1i, X2i,W1,W2, Y
i−1, Y i−1

F2
)) + nε

(n)
1

(3.245)

=
n
∑

i=1

(H(Yi, YF2i|X2i, Y
i−1
F2

)−H(Yi, YF2i|X1i, X2i, Y
i−1
F2

)) + nε
(n)
1 (3.246)

=
n
∑

i=1

I(X1i;Yi, YF2i|X2i, Y
i−1
F2

) + nε
(n)
1 (3.247)

= nI(X1Q;YQ, YF2Q|X2Q, Q, Y
Q−1
F2

) + nε
(n)
1 (3.248)

= nI(X1;Y, YF2 |X2, T2) + nε
(n)
1 (3.249)

where (3.240) follows from Fano’s inequality [14], (3.243) follows from the fact that

X2i is a function of (W2, Y
i−1
F2

) and by introducing X2i in both terms, (3.244) follows

from the fact that conditioning reduces entropy and we drop (W2, Y
i−1) from the

conditioning in the first term, (3.245) follows from the fact that conditioning reduces

entropy and by introducing X1i in the second term and (3.246) follows from the

memoryless property of the channel. Finally, we define X1 = X1Q, X2 = X2Q,

T1 = (Q, Y Q−1
F1

), T2 = (Q, Y Q−1
F2

), Y = YQ, YF1 = YF1Q and YF2 = YF2Q, where Q is a
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random variable which is uniformly distributed over {1, . . . , n} and is independent of

all other random variables. Similarly, we have

R2 ≤ I(X2;Y, YF1 |X1, T1) (3.250)

R1 +R2 ≤ I(X1, X2;Y, YF1 , YF2 |T1, T2) (3.251)

In addition to (3.251), we also have the following sum-rate constraint which also

appears in the cut-set outer bound,

n(R1 +R2) = H(W1,W2) (3.252)

= I(W1,W2;Y
n) +H(W1,W2|Y n) (3.253)

≤ I(W1,W2;Y
n) + nε(n) (3.254)

=
n
∑

i=1

(H(Yi|Y i−1)−H(Yi|W1,W2, Y
i−1)) + nε(n) (3.255)

≤
n
∑

i=1

(H(Yi|Y i−1)−H(Yi|X1i, X2i,W1,W2, Y
i−1)) + nε(n) (3.256)

=
n
∑

i=1

(H(Yi|Y i−1)−H(Yi|X1i, X2i)) + nε(n) (3.257)

≤
n
∑

i=1

(H(Yi)−H(Yi|X1i, X2i)) + nε(n) (3.258)

=
n
∑

i=1

I(X1i, X2i;Yi) + nε(n) (3.259)

= nI(X1Q, X2Q;YQ|Q) + nε(n) (3.260)

≤ nI(X1Q, X2Q;YQ) + nε(n) (3.261)

= nI(X1, X2;Y ) + nε(n) (3.262)
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It is necessary to include this seemingly trivial upper bound on the sum-rate. The rea-

son for including this sum-rate upper bound is that one cannot claim that for any in-

put distribution p(t1, t2, x1, x2), we have I(X1, X2;Y, YF1 , YF2 |T1, T2) ≤ I(X1, X2;Y ).

In other words, we cannot claim that the sum-rate bound in (3.262) will always be

redundant. Therefore, by including it, we can make sure that our outer bound is at

most equal to the cut-set outer bound but never larger than it. Although, as we will

see in the proof of Theorem 3.3 for the case of noisy feedback, the sum-rate upper

bound in (3.262) will turn out to be redundant.

The proof of the dependence balance constraint in (3.16) is along the same lines

as in [30] by starting from the inequality

0 ≤ I(W1;W2|Y n
F1
, Y n

F2
)− I(W1;W2) (3.263)

to arrive at

I(X1;X2|T1, T2) ≤ I(X1;X2|YF1 , YF2 , T1, T2) (3.264)

This completes the proof of Theorem 3.1.

3.14.2 Proof of Theorem 3.2

We will prove Theorem 3.2 by first deriving an upper bound for R1 as

nR1 = H(W1) = H(W1|W2) (3.265)
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= I(W1;Y
n
1 , Y

n
2 , Y

n
F2
|W2) +H(W1|W2, Y

n
1 , Y

n
2 , Y

n
F2
) (3.266)

≤ I(W1;Y
n
1 , Y

n
2 , Y

n
F2
|W2) + nε

(n)
1 (3.267)

=
n
∑

i=1

I(W1;Y1i, Y2i, YF2i|W2, Y
i−1
1 , Y i−1

2 , Y i−1
F2

) + nε
(n)
1 (3.268)

=
n
∑

i=1

(H(Y1i, Y2i, YF2i|W2, Y
i−1
1 , Y i−1

2 , Y i−1
F2

)

−H(Y1i, Y2i, YF2i|W1,W2, Y
i−1
1 , Y i−1

2 , Y i−1
F2

)) + nε
(n)
1 (3.269)

=
n
∑

i=1

(H(Y1i, Y2i, YF2i|W2, X2i, Y
i−1
1 , Y i−1

2 , Y i−1
F2

)

−H(Y1i, Y2i, YF2i|X2i,W1,W2, Y
i−1
1 , Y i−1

2 , Y i−1
F2

)) + nε
(n)
1 (3.270)

≤
n
∑

i=1

(H(Y1i, Y2i, YF2i|X2i, Y
i−1
F2

)

−H(Y1i, Y2i, YF2i|X2i,W1,W2, Y
i−1
1 , Y i−1

2 , Y i−1
F2

)) + nε
(n)
1 (3.271)

≤
n
∑

i=1

(H(Y1i, Y2i, YF2i|X2i, Y
i−1
F2

)

−H(Y1i, Y2i, YF2i|X1i, X2i,W1,W2, Y
i−1
1 , Y i−1

2 , Y i−1
F2

)) + nε
(n)
1 (3.272)

=
n
∑

i=1

(H(Y1i, Y2i, YF2i|X2i, Y
i−1
F2

)−H(Y1i, Y2i, YF2i|X1i, X2i, Y
i−1
F2

)) + nε
(n)
1 (3.273)

=
n
∑

i=1

I(X1i;Y1i, Y2i, YF2i|X2i, Y
i−1
F2

) + nε
(n)
1 (3.274)

= nI(X1;Y1, Y2, YF2 |X2, T2) + nε
(n)
1 (3.275)

where (3.267) follows from Fano’s inequality [14], (3.270) follows from the fact that

X2i is a function of (W2, Y
i−1
F2

) and by introducing X2i in both terms, (3.271) follows

from the fact that conditioning reduces entropy and we drop (W2, Y
i−1
1 , Y i−1

2 ) from the

conditioning in the first term, (3.272) follows from the fact that conditioning reduces
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entropy and by introducing X1i in the conditioning in the second term and (3.273)

follows from the memoryless property of the channel. Finally, we define X1 = X1Q,

X2 = X2Q, T1 = (Q, Y Q−1
F1

), T2 = (Q, Y Q−1
F2

), Y1 = Y1Q, Y2 = Y2Q, YF1 = YF1Q

and YF2 = YF2Q, where Q is a random variable which is uniformly distributed over

{1, . . . , n} and is independent of all other random variables.

Similarly, we have

R2 ≤ I(X2;Y1, Y2, YF1 |X1, T1) (3.276)

R1 +R2 ≤ I(X1, X2;Y1, Y2, YF1 , YF2 |T1, T2) (3.277)

and we also have from the cut-set bound

R1 ≤ I(X1, X2;Y1) (3.278)

R2 ≤ I(X2, X2;Y2) (3.279)

R1 +R2 ≤ I(X1, X2;Y1, Y2) (3.280)

The proof of the dependence balance constraint is along the same lines as in [30] by

starting from the inequality

0 ≤ I(W1;W2|Y n
F1
, Y n

F2
)− I(W1;W2) (3.281)
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to arrive at

I(X1;X2|T1, T2) ≤ I(X1;X2|YF1 , YF2 , T1, T2) (3.282)

This completes the proof of Theorem 3.2.

3.14.3 Proof of Theorem 3.3

For any MAC-GF, with transition probabilities in the form of (3.28), we will obtain

a strengthened version of Theorem 3.1. We start by obtaining an upper bound on R1

as

nR1 = H(W1) = H(W1|W2) (3.283)

= I(W1;Y
n, Y n

F1
, Y n

F2
|W2) +H(W1|W2, Y

n, Y n
F1
, Y n

F2
) (3.284)

≤ I(W1;Y
n, Y n

F1
, Y n

F2
|W2) + nε

(n)
1 (3.285)

=
n
∑

i=1

I(W1;Yi, YF1i, YF2i|W2, Y
i−1, Y i−1

F1
, Y i−1

F2
) + nε

(n)
1 (3.286)

=
n
∑

i=1

I(W1;Yi|W2, Y
i−1, Y i−1

F1
, Y i−1

F2
) + nε

(n)
1 (3.287)

=
n
∑

i=1

(H(Yi|W2, Y
i−1, Y i−1

F1
, Y i−1

F2
)−H(Yi|W1,W2, Y

i−1, Y i−1
F1

, Y i−1
F2

)) + nε
(n)
1

(3.288)

=
n
∑

i=1

(H(Yi|X2i,W2, Y
i−1, Y i−1

F1
, Y i−1

F2
)−H(Yi|X2i,W1,W2, Y

i−1, Y i−1
F1

, Y i−1
F2

))

+ nε
(n)
1 (3.289)
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≤
n
∑

i=1

(H(Yi|X2i,W2, Y
i−1, Y i−1

F1
, Y i−1

F2
)−H(Yi|X1i, X2i,W1,W2, Y

i−1, Y i−1
F1

, Y i−1
F2

))

+ nε
(n)
1 (3.290)

=
n
∑

i=1

(H(Yi|X2i,W2, Y
i−1, Y i−1

F1
, Y i−1

F2
)−H(Yi|X1i, X2i, Y

i−1
F1

, Y i−1
F2

)) + nε
(n)
1 (3.291)

≤
n
∑

i=1

(H(Yi|X2i, Y
i−1
F1

, Y i−1
F2

)−H(Yi|X1i, X2i, Y
i−1
F1

, Y i−1
F2

)) + nε
(n)
1 (3.292)

=
n
∑

i=1

I(X1i;Yi|X2i, Y
i−1
F1

, Y i−1
F2

) + nε
(n)
1 (3.293)

= nI(X1Q;YQ|X2Q, Q, Y
Q−1
F1

, Y Q−1
F2

) + nε
(n)
1 (3.294)

= nI(X1;Y |X2, T ) + nε
(n)
1 (3.295)

where (3.285) follows from Fano’s inequality [14], and (3.287) follows from the follow-

ing Markov chain,

(YF1i, YF2i)→ Yi → (W1,W2, Y
i−1, Y i−1

F1
, Y i−1

F2
) (3.296)

and (3.289) follows from the fact that X2i is a function of (W2, Y
i−1
F2

), (3.290) follows

from the fact that conditioning reduces entropy, (3.291) from the memoryless prop-

erty of the channel and (3.292) follows by dropping (W2, Y
i−1) from the first term

and obtaining an upper bound. We finally arrive at (3.295) by defining the auxiliary

random variable T = (Q, Y Q−1
F1

, Y Q−1
F2

), where Q is a random variable which is uni-

formly distributed over {1, . . . , n} and is independent of all other random variables.
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Similarly, we also have

R2 ≤ I(X2;Y |X1, T ) (3.297)

and

R1 +R2 ≤ I(X1, X2;Y, YF1 , YF2 |T ) (3.298)

= I(X1, X2;Y |T ) (3.299)

where (3.299) follows from the Markov chain (YF1 , YF2) → Y → (X1, X2, T ). More-

over, as a consequence of (3.299), the sum-rate bound

R1 +R2 ≤ I(X1, X2;Y ) (3.300)

obtained in (3.262) is redundant for any MAC-GF with transition probabilities in

the form of (3.28). The proof of the dependence balance constraint is the same as in

Theorem 3.1. This completes the proof of Theorem 3.3.

3.14.4 Proof of Theorem 3.4

The main idea behind the strengthening of Theorem 3.1 for user cooperation is to use

the special conditional probability structure of (3.37). Using this conditional struc-

ture, we will obtain an outer bound involving only one auxiliary random variable. We

first note that without any loss of generality, the conditional distributions p(yF1i|x2i)
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and p(yF2i|x1i) can be alternatively expressed as two deterministic functions [39], [64],

i.e.,

YF1i = g1(X2i, Z1i) (3.301)

YF2i = g2(X1i, Z2i) (3.302)

where the random variables Z1i and Z2i are independent and identically distributed

for all i ∈ {1, . . . , n} and are also independent of the messages (W1,W2). We now

prove Theorem 3.4 by first obtaining an upper bound on R1 as follows,

nR1 = H(W1) = H(W1|W2) (3.303)

= I(W1;Y
n, Y n

F2
, Zn

1 |W2) +H(W1|W2, Y
n, Y n

F2
, Zn

1 ) (3.304)

≤ I(W1;Y
n, Y n

F2
, Zn

1 |W2) + nε
(n)
1 (3.305)

= I(W1;Z
n
1 |W2) + I(W1;Y

n, Y n
F2
|W2, Z

n
1 ) + nε

(n)
1 (3.306)

= I(W1;Y
n, Y n

F2
|W2, Z

n
1 ) + nε

(n)
1 (3.307)

=
n
∑

i=1

I(W1;Yi, YF2i|W2, Y
i−1, Y i−1

F2
, Zn

1 ) + nε
(n)
1 (3.308)

=
n
∑

i=1

(H(Yi, YF2i|W2, Y
i−1, Y i−1

F2
, Zn

1 )−H(Yi, YF2i|W1,W2, Y
i−1, Y i−1

F2
, Zn

1 ))

+ nε
(n)
1 (3.309)

=
n
∑

i=1

(H(Yi, YF2i|W2, X2i, X
i−1
2 , Zn

1 , Y
i−1, Y i−1

F2
)

−H(Yi, YF2i|W1,W2, Y
i−1, Y i−1

F2
, Zn

1 )) + nε
(n)
1 (3.310)
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≤
n
∑

i=1

(H(Yi, YF2i|W2, X2i, X
i−1
2 , Zn

1 , Y
i−1, Y i−1

F2
)

−H(Yi, YF2i|X1i, X2i, Y
i−1
F1

, Y i−1
F2

,W1,W2, Y
i−1, Zn

1 )) + nε
(n)
1 (3.311)

=
n
∑

i=1

(H(Yi, YF2i|W2, X2i, X
i−1
2 , Zn

1 , Y
i−1, Y i−1

F2
)

−H(Yi, YF2i|X1i, X2i, Y
i−1
F1

, Y i−1
F2

)) + nε
(n)
1 (3.312)

=
n
∑

i=1

(H(Yi, YF2i|X2i, X
i−1
2 , Y i−1

F1
, Y i−1

F2
, Y i−1,W2, Z

n
1 )

−H(Yi, YF2i|X1i, X2i, Y
i−1
F1

, Y i−1
F2

)) + nε
(n)
1 (3.313)

≤
n
∑

i=1

(H(Yi, YF2i|X2i, Y
i−1
F1

, Y i−1
F2

)−H(Yi, YF2i|X1i, X2i, Y
i−1
F1

, Y i−1
F2

)) + nε
(n)
1 (3.314)

=
n
∑

i=1

I(X1i;Yi, YF2i|X2i, Y
i−1
F1

, Y i−1
F2

) + nε
(n)
1 (3.315)

= nI(X1Q;YQ, YF2Q|X2Q, Q, Y
Q−1
F1

, Y Q−1
F2

) + nε
(n)
1 (3.316)

= nI(X1;Y, YF2 |X2, T ) + nε
(n)
1 (3.317)

where (3.305) follows from Fano’s inequality [14], (3.307) follows from the indepen-

dence of (W1,W2) and Zn
1 , (3.310) follows by adding (X2i, X

i−1
2 ) in the conditioning

of the first term. This is possible since (X2i, X
i−1
2 ) is a function of (W2, Y

i−1
F2

). We

further upper bound by introducing (X1i, X2i, Y
i−1
F1

) in the conditioning in the second

term to arrive at (3.311). In (3.312), we use the memoryless property of the channel

to drop (W1,W2, Y
i−1, Zn

1 ) from the conditioning in the second term while retaining

(Y i−1
F1

, Y i−1
F2

).

Next, we make use of the special channel structure of (3.37). More specifically,

using (3.301), we observe that Y i−1
F1

is a deterministic function of X i−1
2 and Z i−1

1 and
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therefore, it is introduced in the conditioning in the first term in (3.313). This is

the crucial part of the proof which enables us to obtain an outer bound involving

only one auxiliary random variable as opposed to two auxiliary random variables.

Next, we upper bound (3.313) by dropping (W2, Y
i−1, X i−1

2 , Zn
1 ) from the first term

to arrive at (3.314). Finally, we define T = (Q, Y Q−1
F1

, Y Q−1
F2

), X1 = X1Q, X2 = X2Q,

Y = YQ, YF1 = YF1Q and YF2 = YF2Q, where Q is a random variable which is uniformly

distributed over {1, . . . , n} and is independent of all other random variables. Similarly,

we have

R2 ≤ I(X2;Y, YF1 |X1, T ) (3.318)

R1 +R2 ≤ I(X1, X2;Y, YF1 , YF2 |T ) (3.319)

The derivation of the constraint (3.41) is the same as in Theorem 3.1 and is omitted.

Moreover, from the proof of the dependence balance constraint in (3.16), we observe

that Y i−1
F1

and Y i−1
F2

appear together in the conditioning. Therefore, from our earlier

definition of T = (Q, Y Q−1
F1

, Y Q−1
F2

), we directly have from the proof of (3.16)

I(X1;X2|T ) ≤ I(X1;X2|YF1 , YF2 , T ) (3.320)

This completes the proof of Theorem 3.4.
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3.14.5 Proof of Theorem 3.5

The idea behind obtaining a strengthened version of Theorem 3.2 for IC with user

cooperation is to use the special transition probability structure of (3.48). Using the

same argument as in the proof of Theorem 3.4, we can express YF1i and YF2i as,

YF1i = g1(X2i, Z1i) (3.321)

YF2i = g2(X1i, Z2i) (3.322)

where the random variables Z1i and Z2i are independent and identically distributed

for all i ∈ {1, . . . , n} and are also independent of the messages (W1,W2). We now

prove Theorem 3.5 by first obtaining an upper bound on R1 as follows,

nR1 = H(W1) = H(W1|W2) (3.323)

= I(W1;Y
n
1 , Y

n
2 , Y

n
F2
, Zn

1 |W2) +H(W1|W2, Y
n
1 , Y

n
2 , Y

n
F2
, Zn

1 ) (3.324)

≤ I(W1;Y
n
1 , Y

n
2 , Y

n
F2
, Zn

1 |W2) + nε
(n)
1 (3.325)

= I(W1;Z
n
1 |W2) + I(W1;Y

n
1 , Y

n
2 , Y

n
F2
|W2, Z

n
1 ) + nε

(n)
1 (3.326)

= I(W1;Y
n
1 , Y

n
2 , Y

n
F2
|W2, Z

n
1 ) + nε

(n)
1 (3.327)

=
n
∑

i=1

I(W1;Y1i, Y2i, YF2i|W2, Y
i−1
1 , Y i−1

2 , Y i−1
F2

, Zn
1 ) + nε

(n)
1 (3.328)

=
n
∑

i=1

(H(Y1i, Y2i, YF2i|W2, Y
i−1
1 , Y i−1

2 , Y i−1
F2

, Zn
1 )

−H(Y1i, Y2i, YF2i|W1,W2, Y
i−1
1 , Y i−1

2 , Y i−1
F2

, Zn
1 )) + nε

(n)
1 (3.329)
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=
n
∑

i=1

(H(Y1i, Y2i, YF2i|W2, X2i, X
i−1
2 , Zn

1 , Y
i−1
1 , Y i−1

2 , Y i−1
F2

)

−H(Y1i, Y2i, YF2i|W1,W2, Y
i−1
1 , Y i−1

2 , Y i−1
F2

, Zn
1 )) + nε

(n)
1 (3.330)

≤
n
∑

i=1

(H(Y1i, Y2i, YF2i|W2, X2i, X
i−1
2 , Zn

1 , Y
i−1
1 , Y i−1

2 , Y i−1
F2

)

−H(Y1i, Y2i, YF2i|X1i, X2i, Y
i−1
F1

, Y i−1
F2

,W1,W2, Y
i−1
1 , Y i−1

2 , Zn
1 )) + nε

(n)
1

(3.331)

=
n
∑

i=1

(H(Y1i, Y2i, YF2i|W2, X2i, X
i−1
2 , Zn

1 , Y
i−1
1 , Y i−1

2 , Y i−1
F2

)

−H(Y1i, Y2i, YF2i|X1i, X2i, Y
i−1
F1

, Y i−1
F2

)) + nε
(n)
1 (3.332)

=
n
∑

i=1

(H(Y1i, Y2i, YF2i|X2i, X
i−1
2 , Y i−1

F1
, Y i−1

F2
, Y i−1

1 , Y i−1
2 ,W2, Z

n
1 )

−H(Y1i, Y2i, YF2i|X1i, X2i, Y
i−1
F1

, Y i−1
F2

)) + nε
(n)
1 (3.333)

≤
n
∑

i=1

(H(Y1i, Y2i, YF2i|X2i, Y
i−1
F1

, Y i−1
F2

)−H(Y1i, Y2i, YF2i|X1i, X2i, Y
i−1
F1

, Y i−1
F2

)) + nε
(n)
1

(3.334)

=
n
∑

i=1

I(X1i;Y1i, Y2i, YF2i|X2i, Y
i−1
F1

, Y i−1
F2

) + nε
(n)
1 (3.335)

= nI(X1Q;Y1Q, Y2Q, YF2Q|X2Q, Q, Y
Q−1
F1

, Y Q−1
F2

) + nε
(n)
1 (3.336)

= nI(X1;Y1, Y2, YF2 |X2, T ) + nε
(n)
1 (3.337)

where (3.325) follows from Fano’s inequality [14], (3.327) follows from the indepen-

dence of (W1,W2) and Zn
1 , (3.330) follows by adding (X2i, X

i−1
2 ) in the conditioning

of the first term. This is possible since (X2i, X
i−1
2 ) is a function of (W2, Y

i−1
F2

). We

further upper bound by introducing (X1i, X2i, Y
i−1
F1

) in the conditioning in the second

term to arrive at (3.331). In (3.332), we use the memoryless property of the chan-
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nel to drop (W1,W2, Y
i−1
1 , Y i−1

2 , Zn
1 ) from the conditioning in the second term while

retaining (Y i−1
F1

, Y i−1
F2

).

Next, we make use of the special channel structure of (3.48). More specifically,

using (3.321), we observe that Y i−1
F1

is a deterministic function of X i−1
2 and Z i−1

1 and

therefore, it is introduced in the conditioning in the first term in (3.333). Next, we

upper bound (3.333) by dropping (W2, X
i−1
2 , Y i−1

1 , Y i−1
2 , Zn

1 ) from the first term to

arrive at (3.334). Finally, we define T = (Q, Y Q−1
F1

, Y Q−1
F2

), X1 = X1Q, X2 = X2Q,

Y1 = Y1Q, Y2 = Y2Q, YF1 = YF1Q and YF2 = YF2Q, where Q is a random variable

which is uniformly distributed over {1, . . . , n} and is independent of all other random

variables. Similarly, we have

R2 ≤ I(X2;Y1, Y2, YF1 |X1, T ) (3.338)

The derivations of the remaining constraints are similar to the proof of Theorem 2

since both Y i−1
F1

and Y i−1
F2

appear together in the conditioning and T can be defined

appropriately without any difficulty. The proof of dependence balance constraint in

(3.56) is the same as in Theorem 3.2. This completes the proof of Theorem 3.5.
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3.14.6 Proof of (3.78)

In the following derivation of (3.78), we have dropped conditioning on T = t, for the

purpose of simplicity. Substituting (3.80), (3.81), (3.82) and (3.83) in (3.76), we have

N(Λ
1/2
1 Y + V) = N(

√
κY + V1, V2) (3.339)

=
1

(2πe)
eh(

√
κY+V1,V2) (3.340)

=
1

√

(2πe)
eh(

√
κY+V1) (3.341)

We also note the following inequality,

h(
√
κY + V1) ≥

1

2
log(e2h(

√
κY ) + 2πe) (3.342)

=
1

2
log(κe2h(Y ) + 2πe) (3.343)

where (3.342) follows from the scalar EPI [14] and (3.343) follows from the fact that

for any scalar c, h(cY ) = h(Y ) + log(|c|) [14]. Substituting (3.343) in (3.341), we

obtain

N(Λ
1/2
1 Y + V) ≥

(

κe2h(Y ) + 2πe

(2πe)

)1/2

(3.344)

Similarly, we also have

N(Λ
1/2
2 Y + V) ≥

(

κe2h(Y ) + 2πe

(2πe)

)1/2

(3.345)
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Therefore, we have

µN(Λ
1/2
1 Y + V) + (1− µ)N(Λ

1/2
2 Y + V) ≥

(

κe2h(Y ) + 2πe

(2πe)

)1/2

(3.346)

Moreover, the right hand side of (3.76) simplifies to,

N((µΛ1 + (1− µ)Λ2)
1/2Y + V) =

1

(2πe)
eh(

√
µκY+V1,

√
(1−µ)κY+V2) (3.347)

=
1

(2πe)
eh((µΛ1+(1−µ)Λ2)1/2[YF1

YF2
]T ) (3.348)

=
1

(2πe)
√

σ2Z1
σ2Z2

eh(YF1
,YF2

) (3.349)

Using (3.345)-(3.349) and substituting in (3.76), we obtain

(

κe2h(Y ) + 2πe

(2πe)

)1/2

≤ 1

(2πe)
√

σ2Z1
σ2Z2

eh(YF1
,YF2

) (3.350)

Simplifying (3.350) by substituting the value of κ and reintroducing the conditioning

on T = t, we have the proof of (3.78),

h(YF1 , YF2 |T = t) ≥ 1

2
log
(

(2πe)2σ2Z1
σ2Z2

+ 2πe(σ2Z1
+ σ2Z2

)eh(Y |T=t)
)

(3.351)
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Chapter 4

On the Capacity of State-Dependent Channels with

Rate-Limited State Information at Receiver and Transmitter

4.1 Introduction

The study of state-dependent channels was initiated by Shannon in [55] where the

channel state information (CSI) is assumed to be available at the transmitter in a

causal fashion. Shannon derived the capacity of this channel by showing that it is

equal to the capacity of another discrete memoryless channel with the same output

alphabet and an enlarged input alphabet of size |X ||T |, where |T | is the size of the

state alphabet.

The case of non-causal CSI at the transmitter was first considered by Kuznetsov

and Tsybakov [40] where achievable rates were provided, although capacity was not

found. Gelfand and Pinsker derived the capacity of the state-dependent channel with

non-causal CSI at the transmitter in their landmark paper [23]. The result of [23] was

used by Costa [9] to evaluate the capacity of a channel with input power constraint and

when the channel is an additive Gaussian state channel corrupted with independent

additive Gaussian noise. This problem is commonly referred to as the dirty paper
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coding (DPC) problem and has received much attention recently.

Heegard and El Gamal [29] studied state-dependent channels with various modi-

fications regarding the rate-limited knowledge of the state at the transmitter and the

receiver. For the general case when the transmitter is supplied the state information

at a rate Re and the receiver is supplied the state information at a rate Rd, an achiev-

able rate was obtained in [29] as a function of (Re, Rd). So far, for all the cases where

the capacity has been established, the achievable rate proposed by Heegard and El

Gamal has turned out to be optimal [34]. The two seemingly simple cases are still

open:

1) When Re = 0 and we wish to determine the capacity as a function of Rd.

This situation corresponds to rate-limited CSI at the receiver (CSIR) and no CSI

at the transmitter (CSIT). Such channels can also be interpreted as a special type

of primitive relay channel [36]. A primitive relay channel is defined by a channel

input X, a channel output Y and a relay output T , and a set of probability functions

p(y, t|x) for all x ∈ X . In this setting, the relay does not have an explicit coded input

to the channel. Moreover, it is also assumed that there is an orthogonal link of finite

capacity Rd, from the relay to the receiver. Zhang [70] considered this relay channel

and obtained a partial converse for a degraded case. For a comprehensive survey on

related work on primitive relay channels, see [35]. Recently, Kim [36] established the

capacity of a class of semi-deterministic primitive relay channels, for which the relay

output T can be expressed as a deterministic function of the channel input X and the

channel output Y , i.e., if T = g(Y,X). The cut-set upper bound [14] was shown to

be the capacity through an algebraic reduction of the compress-and-forward (CAF)

143



achievable rate [12] to the cut-set upper bound. This was the first instance where the

CAF achievability scheme was shown to be capacity achieving for any relay channel.

Ahlswede and Han [2] obtained an achievable rate for the state-dependent channel

with rate-limited CSIR and conjectured it to be the capacity. It follows from the result

of [36] that this conjecture is true for a sub-class of such channels where the state

T can be expressed as a deterministic function of X and Y , i.e., T = g(X,Y ). An

example of this class is a case when X, T and Y are all binary, T ∼ Ber(δ) and

independent of X, and the channel is given by Y = X⊕T , where ⊕ denotes modulo-

2 addition. Note that, in this case, T is a deterministic function of X and Y , since

T = X ⊕ Y . A capacity result following up on the aforementioned modulo additive

noise channel was obtained in [4], where it was assumed that the receiver observes

Y = X⊕Z and the relay observes a noisy version of the forward noise, i.e., T = Z⊕Z̃.

Clearly, if Z̃ = 0, then this channel reduces to the class studied in [36]. However, when

Z̃ 6= 0, T cannot be written as a deterministic function of X and Y , and this modulo

additive class lies outside of the class of channels considered in [36]. By proving a

converse, it was shown in [4] that CAF scheme is capacity achieving for this modulo

additive case. The remarkable fact was that the capacity was shown to be strictly less

than the cut-set upper bound for certain values of Rd. However, it is worth noting

that the converse proved in [4] relied on the modulo additive nature of the forward

channel. We obtain a new upper bound on the capacity of state-dependent channels

with rate-limited CSIR. Our upper bound serves a dual purpose. Firstly, using our

upper bound, we recover the capacity results obtained in [36] for the case where

T = g(X,Y ) and the capacity result obtained in [4] for the modulo additive noise
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case. Secondly, we confirm the validity of the conjecture due to Ahlswede-Han [2] for

another class of channels which does not fall into any of the classes considered in [36]

and [4].

2) Secondly, we investigate the case when Rd = 0 and we wish to characterize the

capacity as a function of Re. This situation corresponds to rate-limited CSI at the

transmitter and no CSIR. This problem can be interpreted as the rate-limited version

of the Gelfand-Pinsker problem [23]. An achievable rate for this channel model can be

obtained via [29]. We provide a new upper bound on the capacity of state-dependent

channels with rate-limited CSIT and no CSIR.

Using our upper bound, we explicitly characterize the rate-limited CSIT capacity

of a sub-class of the state-dependent channels for which we prove the validity of

Ahlswede-Han conjecture mentioned in case 1). We show that for this sub-class of

state-dependent channels, capacity expressions for both rate-limited CSIT and rate-

limited CSIR channel models are the same. In other words, as far as the rate-limited

CSIT and rate-limited CSIR capacities are concerned, it does not matter whether the

transmitter or the receiver has access to rate-limited knowledge about the channel

state T . Secondly, we obtain a new upper bound for the capacity of the rate-limited

DPC channel model. We show that for a certain range of values of Re, our upper

bound strictly improves upon the upper bound of DPC capacity obtained by Costa [9].

We also provide an evaluation of the achievable rates for this channel model using

the result of [29]. We show that this achievable rate is optimal for limiting values of

Re, i.e., it matches our upper bound as Re → 0 and as Re →∞.
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4.2 State-Dependent Channel Model

A discrete memoryless state-dependent channel is defined by a channel input alphabet

X , a state alphabet T , a channel output alphabet Y and a transition probability

function p(y|x, t) defined for every pair (x, t) ∈ X × T . The state sequence T n is

assumed to be i.i.d. and is generated according to a fixed distribution p(t).

4.2.1 Rate-Limited CSI at the Receiver

We first consider a state-dependent channel where the receiver is supplied with the

state information at a rate Rd. An (n,M,Rd, Pe) code for this channel is defined by a

state encoding function, fs : T n → {1, 2, . . . , K}, whereK ≤ 2nRd , a channel encoding

function, fe : {1, 2, . . . ,M} → X n and a decoding function, g : Yn × {1, 2, . . . , K} →

{1, 2, . . . ,M}. The transmitter produces a message W which is uniformly distributed

on the set {1, . . . ,M} and transmits it in n channel uses. The average probability

of error is defined as Pe = Pr[Ŵ 6= W ]. A rate R is said to be achievable for this

channel if for any ε > 0, there exists an (n,M,Rd, Pe) code such that R ≤ log(M)/n,

K ≤ 2nRd and Pe < ε for sufficiently large n. The capacity of this channel, C(Rd),

is the supremum of all achievable rates R. This channel can also be interpreted as a

special type of relay channel, with the state-encoder acting as a relay and supplying

state information to the decoder via an orthogonal link of capacity Rd.
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4.2.2 Rate-Limited CSI at the Transmitter

We will next consider a state-dependent channel where the transmitter is supplied

with the state information at a rate Re. An (n,M,Re, Pe) code for this channel is

defined by a state encoding function, fs : T n → {1, 2, . . . , K}, where K ≤ 2nRe , a

channel encoding function, fe : {1, 2, . . . ,M} × {1, 2, . . . , K} → X n and a decoding

function, g : Yn → {1, 2, . . . ,M}. The transmitter produces a message W which is

uniformly distributed on the set {1, . . . ,M} and transmits it in n channel uses. The

average probability of error is defined as Pe = Pr[Ŵ 6= W ]. A rate R is said to be

achievable for this channel if for any ε > 0, there exists an (n,M,Re, Pe) code such

that R ≤ log(M)/n, K ≤ 2nRe and Pe < ε for sufficiently large n. The capacity of

this channel, C(Re), is the supremum of all achievable rates R.

4.3 The State-Dependent Channel with Rate-Limited CSIR

We will provide a new upper bound on the capacity of state-dependent channels with

rate-limited CSIR and no CSIT (see Figure 4.1).

Theorem 4.1 The capacity of state-dependent channel with rate-limited CSIR, C(Rd),

is upper bounded by UB(Rd), where

UB(Rd) = supmin{I(X,V ;Y ), I(X;Y |T )}

s.t. I(T ;V ) ≤ Rd

over p(x)p(t)p(v|t) (4.1)
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Figure 4.1: The state-dependent channel with rate-limited state information at the
receiver.

where the supremum can be restricted over those joint distributions for which |V| ≤

|T |+ 2.

The proof of Theorem 4.1 is given in the Appendix.

Achievable rates for this channel model were obtained by Ahlswede and Han [2]

and can also be obtained via the results of [12, 29]. These achievable rates can be

expressed as,

LB(Rd) = sup I(X;Y |V )

s.t. I(T ;V |Y ) ≤ Rd

over p(x)p(t)p(v|t) (4.2)

4.3.1 Comparison with the Cut-Set Upper Bound

Note that the state-dependent channel with rate-limited CSIR and no CSIT can also

be interpreted as a relay channel [12]. The best known upper bound for the relay

channel is the cut-set bound [14], which reduces for the relay channel in consideration
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to [35,36]

CS(Rd) = max
p(x)

min{I(X;Y ) +Rd, I(X;Y |T )} (4.3)

On comparing (4.1) with the cut-set bound in (4.3), it can be observed that our

bound differs from the cut-set bound in the multiple access cut. We will now show

that our upper bound is in general smaller than the cut-set bound. We start by upper

bounding the expression I(X,V ;Y ) as follows,

I(X,V ;Y ) = I(X;Y ) + I(V ;Y |X) (4.4)

= I(X;Y ) +H(V |X)−H(V |Y,X) (4.5)

= I(X;Y ) +H(V )−H(V |Y,X) (4.6)

≤ I(X;Y ) +H(V )−H(V |T, Y,X) (4.7)

= I(X;Y ) +H(V )−H(V |T ) (4.8)

= I(X;Y ) + I(T ;V ) (4.9)

≤ I(X;Y ) +Rd (4.10)

where (4.6) follows from the fact that V is independent of X, (4.7) follows from the

fact that conditioning reduces entropy, (4.8) follows from the Markov chain (X,Y )→

T → V and (4.10) follows by using the fact that I(T ;V ) ≤ Rd. Using (4.1) and
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(4.10), we have the following

UB(Rd) ≤ max
p(x)

min{I(X;Y ) +Rd, I(X;Y |T )} (4.11)

Thus, our upper bound obtained in (4.1) is in general smaller than the cut-set bound

given in (4.3). It was shown in [36] that the cut-set bound is tight for the case when

T = g(X,Y ) and is achieved by the CAF achievability scheme. Note the fact that

for this special class of channels, the inequality in (4.7) is in fact an equality and our

upper bound equals the cut-set bound.

4.3.2 The Modulo Additive State-Dependent Channel

A specific modulo additive state-dependent channel with rate-limited CSIR and no

CSIT was considered in [4] for which the channel is given as,

Y = X ⊕ Z (4.12)

T = Z ⊕ Z̃ (4.13)

where X, Y , T , Z and Z̃ are all binary and Z ∼ Ber(δ), Z̃ ∼ Ber(δ̃). Clearly this

channel does not fall into the class of channels studied in [36], where T can be written

as a deterministic function of X and Y . It was shown that the capacity of this channel

is given by [4, Theorem 1]

C(Rd) = max
p(v|t):I(T ;V )≤Rd

1−H(Z|V ) (4.14)
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We will show that our bound is equal to the capacity for this class of channels. First,

note that

I(X,V ;Y ) = H(Y )−H(Y |X,V ) (4.15)

= H(Y )−H(Z|V ) (4.16)

≤ 1−H(Z|V ) (4.17)

where (4.17) follows by the fact that the entropy of a binary random variable is upper

bounded by 1. Next, consider the other cut,

I(X;Y |T ) = H(Y |T )−H(Y |X,T ) (4.18)

= H(Y |T )−H(Z|T ) (4.19)

≤ 1−H(Z|T ) (4.20)

Moreover, from (4.17) and (4.20), it can be observed that the bound I(X;Y |T ) is

redundant since V → T → Z implies H(Z|T ) ≤ H(Z|V ). Hence, our upper bound

reduces to

UB(Rd) = max
p(v|t):I(T ;V )≤Rd

1−H(Z|V ) (4.21)

We should remark that the converse obtained in [4] for this channel utilized the mod-

ulo additive nature of the channel. For such a channel, a uniform distribution on X

makes the channel output Y independent of noise Z, thereby making the proceedings
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in the converse easier. Our upper bound does not rely on the specific nature of the

channel and holds for all state-dependent channels.

We have shown that for all the classes for which the capacity, C(Rd), is known,

our upper bound is tight. To illustrate the usefulness of our bound, we will consider

a state-dependent channel which does not fall into any of these classes and establish

its capacity.

4.3.3 Capacity Result for a Symmetric Binary Erasure Channel with

Two States

We will show that for a particular binary input state-dependent channel with two

states, our upper bound yields the capacity which turns out to be strictly less than

the cut-set bound. The state T is binary with Pr(T = 0) = α. The channel input X

is binary and channel output Y is ternary. For channel states T = 0, 1, the transition

probabilities, p(y|x, t), are given as follows (see Figure 4.2),

B0 =









0 1− ε ε

ε 1− ε 0









B1 =









ε 1− ε 0

0 1− ε ε









It should be noted that this class of channels does not fall into the class of channels

considered in [36] since T cannot be obtained as a deterministic function of X and

Y . Moreover, the channel output Y cannot be expressed in the form as Y = X ⊕ Z,

for some p(t|z), where ⊕ is modulo-2 addition, since the cardinality of Y is different
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Figure 4.2: A symmetric binary erasure channel with two states.

from the cardinality of X. Hence, the converse technique developed in [4] for modulo

additive relay channels does not apply to this channel. However, our upper bound

holds for any p(y|x, t). We begin by evaluating the achievable rates given by the CAF

scheme in (4.2),

C(Rd) ≥ sup I(X;Y |V )

s.t. I(T ;V |Y ) ≤ Rd

for some p(x, t, v) = p(x)p(t)p(v|t) (4.22)

We first define Pr(X = 0) = p and obtain the involved probabilities,

Pr(Y = 0) = ε(α ∗ p) (4.23)

Pr(Y = 1) = 1− ε (4.24)

Pr(Y = 2) = ε(1− α ∗ p) (4.25)
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and

Pr(Y = 0|T = 0) = ε(1− p) (4.26)

Pr(Y = 1|T = 0) = 1− ε (4.27)

Pr(Y = 2|T = 0) = εp (4.28)

and

Pr(Y = 0|T = 1) = εp (4.29)

Pr(Y = 1|T = 1) = 1− ε (4.30)

Pr(Y = 2|T = 1) = ε(1− p) (4.31)

where we have defined a ∗ b = a(1 − b) + b(1 − a). Furthermore, we also note the

following inequality,

h(3)(a, b, c) =
1

2
h(3)(a, b, c) +

1

2
h(3)(c, b, a) (4.32)

≤ h(3)
(

a+ c

2
, b,

a+ c

2

)

(4.33)

= h(b) + 1− b (4.34)

Using this fact, we have

H(Y ) = h(3) (ε(α ∗ p), 1− ε, ε(1− α ∗ p)) (4.35)

≤ h(ε) + ε (4.36)
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Also, a uniform distribution on X, yields the maximum entropy for Y , and makes

Y and T independent. Note that the maximum entropy of Y in this case is h(ε) + ε

which is strictly less than log(3) for all ε ∈ [0, 1]. Hence, for a uniform X, we have

H(Y |V ) = H(Y ) (4.37)

= h(ε) + ε (4.38)

We also define,

ηv = Pr(T = 1|V = v), v = 1, . . . , |V| (4.39)

Using this definition, we can write H(Y |X,V ) for any distribution p(x) on X as

follows,

H(Y |X,V ) =
∑

v

p(v)
∑

x

p(x)H(Y |X = x, V = v) (4.40)

=
∑

v

p(v)h(3) (ηvε, 1− ε, (1− ηv)ε) (4.41)

= H(U |V ) (4.42)

where we have defined a random variable U with |U| = 3 and p(u|t), expressed as a

stochastic matrix B which is given as

B =









ε 1− ε 0

0 1− ε ε









(4.43)
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Thus, H(Y |X,V ) is invariant to the distribution of X. Moreover, by construction,

the random variables (T, U, V ) satisfy the Markov chain V → T → U .

We now return to the evaluation of the rates given by the CAF scheme given in

(4.22). Using (4.38) and (4.42), we have for a uniform distribution on X,

I(X;Y |V ) = H(Y |V )−H(Y |X,V ) (4.44)

= h(ε) + ε−H(U |V ) (4.45)

Furthermore, for uniform X, we have I(T ;V |Y ) = I(T ;V ), thus the constraint in

(4.22) simplifies to I(T ;V ) ≤ Rd. For simplicity, define the set

L(γ) = {p(v|t) : H(T |V ) ≥ γ; V → T → U} (4.46)

Using (4.45) and (4.46), we obtain a lower bound on the capacity as

C(Rd) ≥ h(ε) + ε− inf
p(v|t)∈L(h(α)−Rd)

H(U |V ) (4.47)

We now evaluate our upper bound. Using the fact that min(I(X,V ;Y ), I(X;Y |T )) ≤
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I(X,V ;Y ), we obtain a weaker version of our upper bound in (4.1) as

C(Rd) ≤ sup I(X,V ;Y ) (4.48)

= sup(H(Y )−H(Y |X,V )) (4.49)

≤ sup(h(ε) + ε−H(Y |X,V )) (4.50)

= h(ε) + ε− infH(Y |X,V ) (4.51)

= h(ε) + ε− inf
p(v|t)∈L(h(α)−Rd)

H(U |V ) (4.52)

where (4.50) follows from (4.36), and the sup in (4.48)-(4.50) is taken over all p(x)

and those p(v|t) which satisfy I(T ;V ) ≤ Rd.

Hence, from (4.47) and (4.52), the capacity is given by

C(Rd) = h(ε) + ε− inf
p(v|t)∈L(h(α)−Rd)

H(U |V ) (4.53)

We will now explicitly evaluate the capacity expression obtained in (4.53) and compare

it with the cut-set bound. For this purpose, we need a result on the conditional

entropy of dependent random variables [66]. Let T, U be a pair of dependent random

variables with a joint distribution p(t, u). For 0 ≤ γ ≤ H(T ), define the function

G(γ) as the infimum of H(U |V ), with respect to all discrete random variables V such

that H(T |V ) = γ and the random variables V and U are conditionally independent

given T . For the case when T is binary and p(u|t), expressed as a stochastic matrix
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B, takes the form in (4.43), we have from [66],

G(γ) = inf
p(v|t)∈L(γ)

H(U |V ) (4.54)

= h(ε) + εγ (4.55)

We will use this result from [66] in explicitly evaluating the capacity in (4.53).

First note that, if Rd ≥ h(α), then

G(h(α)−Rd) = G(0) = h(ε) (4.56)

whereas, if Rd < h(α), then

G(h(α)−Rd) = h(ε) + ε(h(α)−Rd) (4.57)

Using (4.56) and (4.57), the capacity expression in (4.53) evaluates to,

C(Rd) =















ε, Rd ≥ h(α)

ε(1− h(α)) + εRd, Rd < h(α)

(4.58)

which can be written in a compact form as,

C(Rd) = min(ε(1− h(α)) + εRd, ε) (4.59)

The cut-set bound is obtained by evaluating (4.3) for the channel in considera-

tion. Evaluation of the cut-set bound is straightforward by noting that I(X;Y ) and
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I(X;Y |T ) are both maximized by a uniform p(x). For a uniform distribution on X,

we have I(X;Y ) = ε(1−h(α)) and I(X;Y |T ) = ε. Hence, the cut-set bound is given

as,

CS(Rd) = min(ε(1− h(α)) +Rd, ε) (4.60)

The difference between the capacity and the cut-set bound is evident from the first

term in the min operation, i.e., the capacity expression in (4.59) has an εRd appearing

in the minimum, as opposed toRd appearing in the cut-set bound at the corresponding

place in (4.60). The cut-set bound and the capacity are shown in Figure 4.3 as

functions of Rd for α = 0.3 and ε = 0.4.

In conclusion, for this channel which does not fall into the classes of channels

studied in [36] and [4], our upper bound equals the CAF achievable rate, thus yielding

the capacity, which is strictly less than the cut-set bound for Rd < h(α).

4.3.4 A Channel with Binary Multiplicative State and Binary Addi-

tive Noise

We will evaluate our upper bound and compare it with the cut-set bound for the case

when X, T and N are binary and the channel is given as,

Y = TX +N (4.61)
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Figure 4.3: Capacity of the binary symmetric erasure channel for α = 0.3 and ε = 0.4.

The channel output Y takes values in the set {0, 1, 2}. The random variables T and

N are distributed as T ∼ Ber(α) and N ∼ Ber(δ). This state-dependent channel

does not fall into the sub-class of channels considered in [36]. Moreover, the converse

obtained in [4] does not apply for this channel since the output cannot be written as

a modulo addition.

To evaluate our upper bound, let us define

Pr(X = 1) = p, Pr(T = 1) = α, Pr(N = 1) = δ (4.62)

We then obtain H(Y ) as follows

H(Y ) = h(3)(PY (0), PY (1), PY (2)) (4.63)
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where

PY (0) = p(1− α)(1− δ) + (1− p)(1− δ) (4.64)

PY (1) = (1− p)δ + p[(1− α)δ + α(1− δ)] (4.65)

PY (2) = pαδ (4.66)

and H(Y |X) is obtained as,

H(Y |X) = (1− p)H(N) + pH(T +N) (4.67)

= (1− p)h(δ) + ph(3)((1− α)(1− δ), α ∗ δ, αδ) (4.68)

The broadcast cut is obtained as,

I(X;Y |T ) = H(Y |T )−H(Y |X,T ) (4.69)

= (1− α)h(δ) + αh(3)((1− p)(1− δ), p ∗ δ, pδ)− h(δ) (4.70)

The cut-set bound is given by,

CS(Rd) = max
p

min {I(X;Y ) +Rd, I(X;Y |T )} (4.71)

We now evaluate our bound by first considering,

I(X,V ;Y ) = H(Y )−H(Y |X,V ) (4.72)
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We have already evaluated H(Y ) in (4.63). Consider H(Y |X,V ):

H(Y |X,V ) =
∑

(x,v)

PX(x)PV (v)H(Y |X = x, V = v) (4.73)

=
∑

v

PV (v)
[

(1− p)H(Y |X = 0, V = v) + pH(Y |X = 1, V = v)
]

(4.74)

=
∑

v

PV (v)
[

(1− p)H(N) + pH(T +N |V = v)
]

(4.75)

=
∑

v

PV (v)
[

(1− p)h(δ) + pH(T +N |V = v)
]

(4.76)

=
∑

v

PV (v)
[

(1− p)h(δ) + pH(B|V = v)
]

(4.77)

= (1− p)h(δ) + pH(B|V ) (4.78)

where we have defined another random variable B = T + N . We are interested in

lower bounding H(B|V ). We also know that any permissible conditional distribution

p(v|t) satisfies the constraint I(T ;V ) ≤ Rd. Using this, we also have the following,

H(T |V ) ≥ h(α)−Rd (4.79)

Let us also define,

PT |V (T = 1|V = v) = ηv, v ∈ 1, . . . , |V| (4.80)
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We now return to calculating H(B|V )

Pr(B = b|V = v) =
∑

t

PT |V (t|v)PB|T,V (b|t, v) (4.81)

= (1− ηv)Pr(b|T = 0, V = v) + ηvPr(b|T = 1, V = v) (4.82)

Since the random variable B takes values in the set {0, 1, 2}, we obtain,

Pr(B = 0|V = v) = (1− ηv)(1− δ) (4.83)

Pr(B = 1|V = v) = ηv ∗ δ (4.84)

Pr(B = 2|V = v) = ηvδ (4.85)

We finally obtain,

H(B|V ) =
∑

v

PV (v)h
(3)((1− ηv)(1− δ), ηv ∗ δ, ηvδ) (4.86)

For the special case when the additive noise is N ∼ Ber(1/2), the above expression

simplifies to

H(B|V ) =
∑

v

PV (v)h
(3)

(

(1− ηv)

2
,
1

2
,
ηv
2

)

(4.87)

=
∑

v

PV (v)

(

1

2
h(ηv) + 1

)

(4.88)

=
1

2
H(T |V ) + 1 (4.89)

≥ 1

2
(h(α)−Rd) + 1 (4.90)
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where (4.90) follows from (4.79). Substituting (4.90) in (4.78) we obtain

H(Y |X,V ) = (1− p)h(δ) + pH(B|V ) (4.91)

≥ (1− p)h(δ) + p

(

1

2
(h(α)−Rd) + 1

)

(4.92)

Continuing from (4.72), we obtain an upper bound on I(X,V ;Y ) as follows,

I(X,V ;Y ) = H(Y )−H(Y |X,V ) (4.93)

≤ H(Y )− 1− p

2
(h(α)−Rd) (4.94)

Moreover, the first term appearing in the cut-set bound simplifies to

I(X;Y ) +Rd = H(Y )−H(Y |X) +Rd (4.95)

= H(Y )− 1− p

2
h(α) +Rd (4.96)

We thus obtain our upper bound as,

UB(Rd) = max
p∈[0,1]

min
[

H(Y )− 1− p

2
h(α) +

p

2
Rd, I(X;Y |T )

]

(4.97)

whereas the cut-set bound is,

CS(Rd) = max
p∈[0,1]

min
[

H(Y )− 1− p

2
h(α) +Rd, I(X;Y |T )

]

(4.98)

The difference between the cut-set bound and our upper bound is evident from the
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first term in the min operation, i.e., our upper bound has a pRd/2 term in (4.97), as

opposed to Rd at the corresponding place in (4.98).

Both these bounds along with the CAF rate are illustrated in Figure 4.4 as a

function of Rd for the case when α = 1/2 and δ = 1/2. We should remark here that

although our bound is strictly smaller than the cut-set bound for certain values of

Rd, it is strictly larger than the rates given by the CAF scheme.

4.3.5 Discussion

Using the fact that min(I(X,V ;Y ), I(X;Y |T )) ≤ I(X,V ;Y ), and observing that

I(X,V ;Y ) = I(V ;Y ) + I(X;Y |V ), it can be noted that our upper bound in (4.1)

can be further upper bounded as

C(Rd) ≤ sup I(V ;Y ) + I(X;Y |V ) (4.99)

s.t. I(T ;V ) ≤ Rd (4.100)

for some p(x)p(v|t) (4.101)

On the other hand, the capacity is always lower bounded by the CAF rate,

C(Rd) ≥ sup I(X;Y |V ) (4.102)

s.t. I(T ;V |Y ) ≤ Rd (4.103)

for some p(x)p(v|t) (4.104)
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Figure 4.4: Comparison of upper bound with cut-set bound when T,N ∼ Ber(1/2).

Now using the following fact,

I(T ;V |Y ) = H(V |Y )−H(V |T ) (4.105)

= I(T ;V )− I(V ;Y ) (4.106)

we can rewrite the CAF lower bound on the capacity as

C(Rd) ≥ sup I(X;Y |V ) (4.107)

s.t. I(T ;V )− I(V ;Y ) ≤ Rd (4.108)

for some p(x)p(v|t) (4.109)
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We can see that the CAF lower bound on the capacity involves taking a supremum

of I(X;Y |V ) subject to the constraint I(T ;V ) − I(V ;Y ) ≤ Rd whereas our upper

bound involves taking a supremum of a larger quantity I(V ;Y ) + I(X;Y |V ) subject

to a stricter constraint I(T ;V ) ≤ Rd.

Although these two maximization problems are different, for the class of channels

for which capacity was obtained, at the capacity achieving distribution p(x), we had

I(V ;Y ) = 0. Thus, for the class of channels considered in Sections 4.3.2 and 4.3.3,

these two maximization problems are equivalent. This observation yields a heuristic

explanation as to why we were able to obtain the capacity for this class of state-

dependent channels.

4.3.6 A New Lower Bound on Critical Rd

In [11], Cover posed a slightly different problem regarding the primitive relay channel.

Considering the capacity as a function of Rd, i.e., C(Rd), first observe the following

facts,

C(0) = sup
p(x)

I(X;Y ) (4.110)

C(∞) = sup
p(x)

I(X;Y |T ) (4.111)

Moreover, C(Rd) is a nondecreasing function of Rd. Cover posed the following question

in [11]: What is the smallest value of Rd, say R∗d, for which C(R∗d) = C(∞)? As an

application of our upper bound, we implicitly provide a new lower bound on R∗d.

For the class of channels considered in Section 4.3.3, we obtained the capacity. As
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a consequence, we can explicitly characterize R∗d for this class of channels as h(α).

Furthermore, for the class of channels considered in Section 4.3.4, our upper bound

on the capacity yields an improved lower bound on R∗d than the one provided by the

cut-set bound, which is clearly evident in Figure 4.4.

4.4 The State-Dependent Channel with Rate-Limited CSIT

We will provide a new upper bound on the capacity of state-dependent channels with

rate-limited CSIT and no CSIR (see Figure 4.5).

Theorem 4.2 The capacity of state-dependent channel with rate-limited CSIT, C(Re),

is upper bounded by UB(Re), where

UB(Re) = sup
T→V→(U,X):I(T ;V )≤Re

I(U ;Y ) (4.112)

The proof of Theorem 4.2 is given in the Appendix.

Heegard and El Gamal proposed the following achievable rates for this channel,

which can be obtained from [29] by substituting S0 = c, Sd = c and Se = V , where c

is a constant,

LB(Re) = max
p(v|t),p(u,x|v):I(T ;V )≤Re

I(U ;Y )− I(U ;V ) (4.113)
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Figure 4.5: The state-dependent channel with rate-limited state information at the
transmitter.

4.4.1 No CSI at the Transmitter

We now mention what our upper bound implies for the case when Re = 0, which

corresponds to no channel state information at the transmitter. In this case, it is

straightforward to check from LB(Re), by substituting V = φ, U = X that the

following rates are achievable

LB(0) ≥ max
p(x)

I(X;Y ) (4.114)

Whereas, from our outer bound, we note the following identities. Since Re = 0, we

have I(T ;V ) = 0. From the Markov chain T → V → (U,X), we have I(T ;U,X) ≤

I(T ;V ) = 0, which implies that T is independent of (U,X). Finally, we also observe
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that

UB(0) ≤ max
p(u,x)

I(U ;Y ) (4.115)

≤ max
p(u,x)

I(U,X;Y ) (4.116)

= max
p(u,x)

I(X;Y ) + I(U ;Y |X) (4.117)

= max
p(x)

I(X;Y ) (4.118)

where I(U ;Y |X) = 0 from the following

I(U ;Y |X) ≤ I(U ;Y, T |X) (4.119)

= I(U ;T |X) + I(U ;Y |X,T ) (4.120)

= 0 (4.121)

Moreover, this upper bound is tight and is obtained by the selection U = X. This

establishes the capacity when Re = 0.

4.4.2 The Modulo Additive State-Dependent Channel

For the case when Y = X ⊕ Z, and T = Z ⊕ Z̃, and |X | = |Y| = K, we can further

upper bound our upper bound to obtain an upper bound for this class of channels
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which was also obtained in [4], as follows,

C(Re) ≤ max I(U ;Y ) (4.122)

= maxH(Y )−H(Y |U) (4.123)

≤ max log(K)−H(Y |U) (4.124)

≤ max log(K)−H(Y |X,U) (4.125)

= max log(K)−H(Z|X,U) (4.126)

≤ max log(K)−H(Z|V ) (4.127)

= log(K)− min
p(v|t):I(T ;V )≤Re

H(Z|V ) (4.128)

where (4.127) follows from the Markov chain Z → T → V → (U,X) which implies

I(Z;U,X) ≤ I(Z;V ), which in turn implies H(Z|X,U) ≥ H(Z|V ).

For the case when X,Y and T are binary, this bound becomes

C(Re) ≤ 1− min
p(v|t):I(T ;V )≤Re

H(Z|V ) (4.129)

where Z → T → V forms a Markov chain. It was shown in [4] that the above upper

bound is tight and matches the achievable rate of [29] for the case when T ∼ Ber(1/2).
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4.4.3 Capacity Result for a Symmetric Binary Erasure Channel with

Two States

We will now consider the class of state-dependent channels considered in Section

4.3.3. For a sub-class of such channels, we will explicitly characterize the capacity

with rate-limited CSIT. We start by further upper bounding UB(Re) as follows,

UB(Re) = max I(U ;Y ) (4.130)

= maxH(Y )−H(Y |U) (4.131)

≤ maxh(ε) + ε−H(Y |U) (4.132)

≤ maxh(ε) + ε−H(Y |V, U,X) (4.133)

= maxh(ε) + ε−H(Ũ |V ) (4.134)

= h(ε) + ε− infH(Ũ |V ) (4.135)

where (4.132) follows from the fact that H(Y ) ≤ h(ε)+ ε which was proved in (4.36),

(4.133) follows from the fact that conditioning reduces entropy and (4.134) follows

from easily verifying the following,

H(Y |X,V, U) = H(Ũ |V ) (4.136)
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where Ũ is a random variable with |Ũ | = 3 and p(ũ|t), expressed as a stochastic

matrix B as,

B =









ε 1− ε 0

0 1− ε ε









(4.137)

and the random variables (Ũ , T, V ) satisfy the Markov chain Ũ → T → V by con-

struction. Following similar steps as in Section 4.3.3, we continue from (4.135) to

arrive at the following upper bound for C(Re),

C(Re) ≤ min(ε(1− h(α)) + εRe, ε) (4.138)

We will now show that the upper bound obtained in (4.138) is tight for the case when

α = 1/2 by providing an explicit evaluation of LB(Re) which matches our upper

bound. We revisit the achievable rate stated in (4.113)

LB(Re) = max
p(v|t),p(u,x|v):I(T ;V )≤Re

I(U ;Y )− I(U ;V ) (4.139)

Given the triple (ε, α,Re), we will provide a set of random variables (T, V, U,X)

satisfying the three conditions,

T → V → (U,X) (4.140)

(V, U)→ (X,T )→ Y (4.141)

I(T ;V ) ≤ Re (4.142)
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We first select |V| = 2 and choose the conditional distribution p(v|t) as follows,

Pr(V = 0|T = 1) = Pr(V = 1|T = 0) = µ (4.143)

In other words, V is connected to the channel state T through a binary symmetric

channel with crossover probability µ. For such p(v|t), we have

I(T ;V ) = h(α ∗ µ)− h(µ) (4.144)

= 1− h(µ) (4.145)

The crossover probability µ is chosen such that

1− h(µ) = Re (4.146)

so that the condition (4.142) is met with equality. We next select |U| = 2, with U

uniformly distributed on {0, 1} and independent of V , i.e., I(U ;V ) = 0. We finally

select X as a deterministic function of (U, V ) as follows,

X = U ⊕ V (4.147)
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For this selection of (T, V, U,X), we have

I(U ;Y )− I(U ;V ) = I(U ;Y ) (4.148)

= H(Y )−H(Y |U) (4.149)

= h(ε) + ε−H(Y |U) (4.150)

= h(ε) + ε− h(3)(µε, 1− ε, (1− µ)ε) (4.151)

= ε(1− h(µ)) (4.152)

where (4.148) follows from the fact that V and U are independent. The case when

Re ≥ h(α) = 1 corresponds to the classical Gelfand-Pinsker setting [23] and we select

µ = 0 and the resulting lower bound is

LB(Re) = ε, for Re ≥ 1 (4.153)

For the case when Re < 1, we choose µ according to (4.146), i.e., µ = h−1(1 − Re)

and obtain an achievable rate as follows,

LB(Re) ≥ ε(1− h(µ)) (4.154)

= εRe (4.155)
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where (4.155) follows from (4.146). Combining (4.153) and (4.155), we can now write

a lower bound on the capacity as,

C(Re) ≥ min(εRe, ε) (4.156)

whereas from (4.138), we have for α = 1/2,

C(Re) ≤ min(εRe, ε) (4.157)

and therefore

C(Re) = min(εRe, ε) (4.158)

We should remark here that the capacity of such state dependent channels with rate-

limited CSIR and no CSIT was characterized in Section 4.3.3 as

C(Rd) = min(εRd, ε) (4.159)

This implies that if the state information is supplied at a fixed rate, then it does not

matter whether this information is available at the transmitter or at the receiver and

the capacity is the same for both channel models.
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4.4.4 Rate-Limited Dirty Paper Coding

We will now provide an upper bound for the case when the forward channel is an

additive Gaussian noise channel and the channel states are also additive and Gaussian

(see Figure 4.6). In particular, the channel is described as

Y = X + T + Z (4.160)

where the channel input X is subject to an average power constraint P , the channel

state T and the channel input X are independent of Z, where Z is a zero-mean,

Gaussian random variable with variance σ2Z . Moreover, the state random variable

T is a zero-mean Gaussian random variable with variance σ2T . The capacity of this

channel is known when the state sequence is non-causally known at the transmitter.

This result was obtained by Costa in [9] and the capacity was found to be

CDPC =
1

2
log

(

1 +
P

σ2Z

)

(4.161)

We will provide an upper bound for the case when the transmitter is supplied

information about the channel state T at a rate of Re. It is clear that when Re →∞,

this situation corresponds to the setting of [9] and we have

C(∞) = CDPC =
1

2
log

(

1 +
P

σ2Z

)

(4.162)
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Figure 4.6: The rate-limited DPC channel model.

On the other hand, when Re = 0, we know that

C(0) =
1

2
log

(

1 +
P

σ2Z + σ2T

)

(4.163)

which is the capacity of a channel with total Gaussian noise T + Z, i.e., when there

is no state information at the transmitter and the state random variable T acts as

additional additive Gaussian noise besides Z.

Capacity of the rate-limited dirty paper channel, i.e., C(Re) is not known for

0 < Re <∞. Trivial lower/upper bounds for any 0 < Re <∞ are

1

2
log

(

1 +
P

σ2Z + σ2T

)

≤ C(Re) ≤
1

2
log

(

1 +
P

σ2Z

)

(4.164)

We will show that a strengthened version of our upper bound is strictly less than

CDPC for certain values of Re. The main result of this section is stated in the following

theorem,

Theorem 4.3 The capacity of rate-limited DPC channel model, C(Re), is upper
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bounded by UB(Re), where,

UB(Re) =















1
2
log
(

P+σ2
T+σ

2
Z

σ2
Z+σ

2
T e
−2Re

)

, 0 ≤ Re < Rc
e

1
2
log
(

1 + P
σ2
Z

)

, Rc
e ≤ Re <∞

(4.165)

The proof of Theorem 4.3 is given in the Appendix.

We now obtain achievable rates for rate-limited DPC. In particular, we will obtain

a potentially sub-optimal evaluation of the following achievable rate given in [29]

LB(Re) = max
p(v|t),p(u,x|v):I(T ;V )≤Re

I(U ;Y )− I(U ;V ) (4.166)

The main idea behind this achievable scheme is a combination of rate-distortion type

coding [14] along with Gelfand-Pinsker type binning [23]. We select the following

auxiliary random variable,

V = T + Ñ (4.167)

where Ñ is a zero-mean Gaussian random variable with variance σ2
Ñ

and is indepen-

dent of T . Here, Ñ can be interpreted as the compression noise. From the constraint

I(T ;V ) ≤ Re, we have

I(T ;V ) = I(T ;T + Ñ) (4.168)

=
1

2
log

(

1 +
σ2T
σ2
Ñ

)

≤ Re (4.169)
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From (4.169), we obtain a constraint on the permissible variance σ2
Ñ

of the compres-

sion noise Ñ as,

σ2
Ñ
≥ σ2T
e2Re − 1

(4.170)

Next, we select X as a zero-mean Gaussian random variable with variance P , which

is independent of V . We select the random variable U as

U = X + αV (4.171)

We are now ready to evaluate the achievable rates for this selection of random vari-

ables (V,X, U). So far, we have not specified α. We will later optimize α, as a function

of Re, to obtain the best possible achievable rate for this selection of auxiliary random

variables.

We start by simplifying the expression in (4.166),

I(U ;Y )− I(U ;V ) = h(U |V )− h(U |Y ) (4.172)
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We first consider

h(U |V ) = h(X + αV |V ) (4.173)

= h(X|V ) (4.174)

= h(X) (4.175)

=
1

2
log(2πeP ) (4.176)

where (4.175) follows since X and V are selected to be independent. Now consider

h(U |Y ) = h(X + αV |X + T + Z) (4.177)

= h(X + α(T + Ñ)|X + T + Z) (4.178)

=
1

2
log

(

(2πe)
Pσ2Z + µ(α,Re)

P + σ2T + σ2Z

)

(4.179)

where

µ(α,Re) = α2σ2Zσ
2
T + (1− α)2Pσ2T +

α2σ2T (P + σ2T + σ2Z)

e2Re − 1
(4.180)

Combining (4.176) and (4.179) and substituting in (4.172) we obtain an achievable

rate as a function of α, for any Re as,

LB(Re, α) =
1

2
log

(

P (P + σ2T + σ2Z)

Pσ2Z + µ(α,Re)

)

(4.181)

Next, we optimize the above achievable rate with respect to α. This is equivalent

181



to minimizing µ(α,Re). We first note that µ(α,Re) is convex in α and therefore, the

minimum of µ(α,Re) is obtainded at α∗(Re) where dµ(α∗, Re)/dα = 0. We therefore

have the following

α∗(Re) =
P

P + σ2Z +
P+σ2

T+σ
2
Z

e2Re−1

(4.182)

We substitute (4.182) in (4.181) to obtain a closed form expression for the achievable

rate as follows

LB(Re) =
1

2
log

(

P + σ2T e
−2Re + σ2Z

σ2Z + σ2T e
−2Re

)

(4.183)

We now consider the two extreme cases for the values of Re. If Re = 0, then from

(4.182), the optimal selection of α is

α∗(0) = 0 (4.184)

and the achievable rate is

LB(0) =
1

2
log

(

1 +
P

σ2T + σ2Z

)

(4.185)

which yields the capacity C(0). If Re =∞, then the optimal selection of α is

α∗(∞) =
P

P + σ2Z
(4.186)
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and the achievable rate is

LB(∞) =
1

2
log

(

1 +
P

σ2Z

)

(4.187)

which yields the DPC capacity CDPC . We should remark here that this α∗(∞) is the

same selection used by Costa in [9] to obtain the DPC capacity.

Figure 4.7 shows our upper bound in (4.165), the achievable rate in (4.183), the

DPC upper bound (4.161) and the capacity when Re = 0 in (4.163) for the case when

P = 10, σ2Z = σ2T = 1.

4.5 Conclusions

We obtained a new upper bound on the capacity of state-dependent channels with

rate-limited CSI at the transmitter and rate-limited CSI at the receiver. For the

case of rate-limited CSIR and no CSIT, our upper bound recovers all previous known

capacity results. Using our upper bound, we obtained the capacity of a new sub-class

of such channels and we also showed that it is strictly smaller than the cut-set upper

bound. This result validates a conjecture by Ahlswede and Han [2] for these channels.

For the case of rate-limited CSIT and no CSIR, we showed that our upper bound

matches the upper bound obtained in [4] for modulo additive state channels. For a

particular class of state-dependent channels, we explicitly characterized both rate-

limited CSIR and rate-limited CSIT capacities, C(Rd) and C(Re), in Sections 4.3.3

and 4.4.4, respectively. We showed that for this class of state-dependent channels, it

does not matter whether the rate-limited CSI is supplied at the transmitter or the
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Figure 4.7: Illustration of bounds when P = 10, σ2T = σ2Z = 1.

receiver and the respective capacity expressions are the same.

Furthermore, we evaluated our upper bound for the rate-limited DPC problem.

We showed that for all finite values of (P, σ2Z , σ
2
T ), our upper bound is strictly smaller

than the DPC upper bound for a certain range of Re. We also provided a potentially

sub-optimal evaluation of the achievable rates [29] for the rate-limited DPC problem.

4.6 Appendix

4.6.1 Proof of Theorem 4.1

Let us denote the random variable J as the output of the finite capacity link with

capacity Rd, i.e., J = fs(T
n). We will now obtain an upper bound on the rate as
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follows,

nR = H(W ) (4.188)

= I(W ;Y n, J) +H(W |Y n, J) (4.189)

≤ I(W ;Y n, J) + nεn (4.190)

≤ I(Xn;Y n, J) + nεn (4.191)

= I(Xn;Y n|J) + nεn (4.192)

=
n
∑

i=1

I(Xn;Yi|J, Y i−1) + nεn (4.193)

=
n
∑

i=1

[

H(Yi|J, Y i−1)−H(Yi|J, Y i−1, Xn)
]

+ nεn (4.194)

≤
n
∑

i=1

[

H(Yi)−H(Yi|J, Y i−1, Xn)
]

+ nεn (4.195)

≤
n
∑

i=1

[

H(Yi)−H(Yi|J, T i−1, Y i−1, Xn)
]

+ nεn (4.196)

=
n
∑

i=1

[

H(Yi)−H(Yi|J, T i−1, Xn)
]

+ nεn (4.197)

=
n
∑

i=1

[

H(Yi)−H(Yi|J, T i−1, Xi)
]

+ nεn (4.198)

=
n
∑

i=1

I(Xi, J, T
i−1;Yi) + nεn (4.199)

=
n
∑

i=1

I(Xi, Vi;Yi) + nεn (4.200)

= nI(X,V ;Y ) + nεn (4.201)

where (4.190) follows by Fano’s inequality [14], (4.191) follows from the data pro-

cessing inequality, (4.192) follows from the fact that Xn is independent of T n and

185



is hence independent of J , (4.195) follows from the fact that conditioning reduces

entropy and hence we upper bound by dropping (J, Y i−1) from the first term. Next,

(4.196) follows by adding T i−1 in the conditional entropy in the second term and

obtaining an upper bound, (4.197) follows from the memoryless property of the chan-

nel, i.e., given (X i−1, T i−1), the channel output Y i−1 is independent of everything

else and (4.198) follows from the following Markov chain, X−i → (Xi, J, T
i−1)→ Yi,

where X−i = (X i−1, Xn
i+1). Finally, (4.200) follows by defining Vi = (J, T i−1), and

we introduce a random variable Q, uniform on {1, 2, . . . , n} to define X = (Xi, Q),

Y = (Yi, Q) and V = (Vi, Q) to arrive at (4.201). The proof of the Markov chain used

to arrive at (4.198) is given as follows.

Pr(Yi, X
−i|Xi, J, T

i−1) =
Pr(Yi, X

−i, Xi, J, T
i−1)

Pr(Xi, J, T i−1)
(4.202)

=

∑

ti
P(ti)Pr(Yi, X

−i, Xi, J, T
i−1|ti)

Pr(Xi, J, T i−1)
(4.203)

=

∑

ti
P(ti)Pr(Xi, J, T

i−1|ti)Pr(Yi, X
−i|Xi, ti, J, T

i−1)

Pr(Xi, J, T i−1)

(4.204)
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=

∑

ti
P(ti)Pr(Xi, J, T

i−1|ti)Pr(X−i|Xi, ti, J, T
i−1)Pr(Yi|Xi, ti, J, T

i−1, X−i)

Pr(Xi, J, T i−1)

(4.205)

=

∑

ti
P(ti)Pr(Xi, J, T

i−1|ti)Pr(X−i|Xi)Pr(Yi|Xi, ti, J, T
i−1)

Pr(Xi, J, T i−1)
(4.206)

= Pr(X−i|Xi)

∑

ti
P(ti)Pr(Xi, J, T

i−1|ti)Pr(Yi|Xi, ti, J, T
i−1)

Pr(Xi, J, T i−1)
(4.207)

= Pr(X−i|Xi)
∑

ti

P(ti|Xi, J, T
i−1)Pr(Yi|Xi, J, T

i−1, ti) (4.208)

= Pr(X−i|Xi)Pr(Yi|Xi, J, T
i−1) (4.209)

In addition to (4.201), we also need the following trivial upper bound on the rate,

nR ≤ I(Xn;Y n, T n) + nεn (4.210)

= I(Xn;Y n|T n) + nεn (4.211)

=
n
∑

i=1

I(Xn;Yi|T n, Y i−1) + nεn (4.212)

=
n
∑

i=1

[

H(Yi|T n, Y i−1)−H(Yi|T n, Y i−1, Xn)
]

+ nεn (4.213)

=
n
∑

i=1

[

H(Yi|Ti)−H(Yi|T n, Y i−1, Xn)
]

+ nεn (4.214)

=
n
∑

i=1

[

H(Yi|Ti)−H(Yi|Ti, Xi)
]

+ nεn (4.215)

=
n
∑

i=1

I(Xi;Yi|Ti) + nεn (4.216)

= nI(X;Y |T ) + nεn (4.217)

where (4.210) follows by Fano’s inequality, (4.211) follows because Xn is independent

187



of T n, (4.214) follows by dropping (Y i−1, T−i) from the conditioning in the first term,

(4.215) follows from the memoryless property of the channel, i.e., given (Xi, Ti), the

channel output Yi is independent of everything else.

We now obtain a bound on the allowable distributions of the involved random

variables. Using the fact that the CSIR is available at a rate not exceeding Rd, we

have that

nRd ≥ I(T n; J) (4.218)

=
n
∑

i=1

I(Ti; J |T i−1) (4.219)

=
n
∑

i=1

I(Ti; J, T
i−1) (4.220)

= nI(T ;V ) (4.221)

where (4.220) follows from the fact that Ti are i.i.d.

Combining (4.201), (4.217) and (4.221), we have an upper bound on the capacity,

C(Rd), as

UB(Rd) = supmin{I(X,V ;Y ), I(X;Y |T )}

s.t. I(T ;V ) ≤ Rd

over p(x)p(t)p(v|t) (4.222)

where it follows from support lemma [16] that the supremum can be restricted over

those joint distributions for which |V| ≤ |T |+ 2 .

188



4.6.2 Proof of Theorem 4.2

We denote J as the output of the state encoder, i.e., J = fs(T
n). We start by

obtaining an upper bound on R as,

nR = H(W ) (4.223)

= I(W ;Y n) +H(W |Y n) (4.224)

≤ I(W ;Y n) + nεn (4.225)

=
n
∑

i=1

I(W ;Yi|Y i−1) + nεn (4.226)

=
n
∑

i=1

I(W,Y i−1;Yi)−
n
∑

i=1

I(Yi;Y
i−1) + nεn (4.227)

where (4.225) follows from Fano’s inequality [14]. Moreover, we also have the following

condition from the fact that the state information is available to the encoder at a rate

Re,

nRe ≥ H(J) (4.228)

≥ I(J ;T n) (4.229)

=
n
∑

i=1

I(J ;Ti|T i−1) (4.230)

=
n
∑

i=1

I(J, T i−1;Ti) (4.231)
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where (4.231) follows from the fact that Tis are i.i.d. Finally, we note the following

Markov chain,

Ti → (J, T i−1)→ (W,Y i−1, Xi) (4.232)

This Markov chain is proved as follows,

I(Ti;W,Y i−1, Xi|J, T i−1) = I(Ti;W |J, T i−1) + I(Ti;Y
i−1, Xi|W,J, T i−1) (4.233)

= I(Ti;Y
i−1, Xi|W,J, T i−1) (4.234)

= I(Ti;Y
i−1|W,J, T i−1) (4.235)

= I(Ti;Y
i−1|W,J,X i−1, T i−1) (4.236)

= 0 (4.237)

where (4.234) follows from the fact that the message W is independent of (J, T n),

(4.235) and (4.236) follow since Xn is a function of (W,J), and (4.237) follows from

the memoryless property of the channel, i.e., the following is a Markov chain Y i−1 →

(X i−1, T i−1)→ (Ti,W, J).

We now define

Ui = (W,Y i−1) (4.238)

Vi = (J, T i−1) (4.239)
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Returning to (4.227), we have

nR ≤
n
∑

i=1

I(W,Y i−1;Yi)−
n
∑

i=1

I(Yi;Y
i−1) + nεn (4.240)

≤
n
∑

i=1

I(W,Y i−1;Yi) + nεn (4.241)

= nI(UQ;YQ|Q) + nεn (4.242)

≤ nI(UQ, Q;YQ) + nεn (4.243)

= nI(U ;Y ) + nεn (4.244)

and returning to (4.231), we have

nRe ≥
n
∑

i=1

I(J, T i−1;Ti) (4.245)

= nI(VQ;TQ|Q) (4.246)

= nI(VQ, Q;TQ) (4.247)

= nI(V ;T ) (4.248)

where (4.248) follows from the fact that Tis are i.i.d. and therefore TQ is independent

of Q, where Q is uniformly distributed over {1, . . . , n} and is independent of all other

random variables, and we have defined U = (Q,UQ), V = (Q, VQ), Y = YQ, X = XQ

and T = TQ. Finally, we prove the following Markov chain

T → V → (U,X) (4.249)
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We prove this Markov chain as follows,

I(T ;U,X|V ) = I(TQ;UQ, Q,XQ|VQ, Q) (4.250)

= I(TQ;UQ, XQ|VQ, Q) (4.251)

=
n
∑

q=1

Pr(Q = q)I(Tq;Uq, Xq|Vq, Q = q) (4.252)

= 0 (4.253)

where (4.253) follows by using the Markov chain in (4.232) for every q = 1, . . . , n.

We now combine (4.244), (4.248) and (4.249) to express our upper bound on the

capacity of the state-dependent channel with rate-limited state information at the

transmitter as,

UB(Re) = max
p(v|t),p(u,x|v):I(T ;V )≤Re

I(U ;Y ) (4.254)

4.6.3 Proof of Theorem 4.3

We start by obtaining an upper bound on R as,

nR = H(W ) (4.255)

= I(W ;Y n, J) +H(W |Y n, J) (4.256)

≤ I(W ;Y n, J) + nεn (4.257)

= I(W ;Y n|J) + nεn (4.258)

= h(Y n|J)− h(Y n|W,J) + nεn (4.259)
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where (4.257) follows from Fano’s inequality [14] and (4.258) follows from the fact

that the message W and the random variable J are independent. The main idea

behind this strengthened upper bound is to consider a larger quantity I(W ;Y n, J) in

(4.257) as opposed to I(W ;Y n) in (4.225). This approach will permit us to invoke

the Markov chain Xn → J → T n which will subsequently yield an improved upper

bound.

Returning to (4.259), we will separately obtain an upper bound on h(Y n|J) and

a lower bound on h(Y n|W,J). We start by considering the first term in (4.259),

h(Y n|J) =
n
∑

i=1

h(Yi|J, Y i−1) (4.260)

≤
n
∑

i=1

h(Yi|J) (4.261)

≤ n

2
log
(

(2πe)(P + σ2T + σ2Z)
)

(4.262)

where (4.261) follows from the fact that conditioning reduces entropy and by drop-

ping Y i−1 from the conditioning, and (4.262) follows from the following sequence of

inequalities,

n
∑

i=1

h(Yi|J) ≤
n
∑

i=1

1

2
log(2πeVar(Yi|J)) (4.263)

=
n
∑

i=1

1

2
log(2πe(Var(Xi|J) + Var(Ti|J) + Var(Zi|J))) (4.264)

≤
n
∑

i=1

1

2
log(2πe(Var(Xi) + Var(Ti) + Var(Zi))) (4.265)
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=
n
∑

i=1

1

2
log(2πe(Var(Xi) + σ2T + σ2Z)) (4.266)

≤ n

2
log
(

(2πe)(P + σ2T + σ2Z)
)

(4.267)

where (4.263) follows from the maximum entropy theorem [14], (4.264) follows from

the fact that Zn is independent of (Xn, T n, J) and the Markov chain Xi → J → Ti,

which also implies that Cov(Xi, Ti|J) = 0 for all i = 1, . . . , n, (4.265) follows from the

fact that expected conditional variance is upper bounded by unconditional variance,

(4.266) follows from the fact that Var(Ti) = σ2T and Var(Zi) = σ2Z for all i = 1, . . . , n

and (4.267) follows from the concavity of log function and the average input power

constraint P .

We now consider the second term in (4.259) and obtain a lower bound as,

h(Y n|W,J) ≥ h(Y n|Xn,W, J) (4.268)

= h(T n + Zn|Xn,W, J) (4.269)

= h(T n + Zn|J) (4.270)

≥ n

2
log
(

e
2
n
h(Tn|J) + 2πeσ2Z

)

(4.271)

≥ n

2
log
(

(2πe)(σ2T e
−2Re + σ2Z)

)

(4.272)

where (4.268) follows from the fact that conditioning reduces entropy, (4.270) follows

from the Markov chain T n → J → (Xn,W ) and (4.271) follows from the vector
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entropy power inequality (EPI) [14]. Finally, (4.272) follows from the following,

nRe ≥ H(J) (4.273)

≥ I(J ;T n) (4.274)

= h(T n)− h(T n|J) (4.275)

which yields

h(T n|J) ≥ n

2

(

log(2πeσ2T )− 2Re

)

(4.276)

and we substitute (4.276) in (4.271) to arrive at (4.272).

We now substitute (4.262) and (4.272) in (4.259) to finally arrive at our upper

bound,

UB(Re) =
1

2
log

(

P + σ2T + σ2Z
σ2Z + σ2T e

−2Re

)

(4.277)

When Re = 0, our upper bound is clearly optimal,

UB(0) =
1

2
log

(

P + σ2T + σ2Z
σ2Z + σ2T

)

(4.278)

= C(0) (4.279)

On the other hand, our upper bound is strictly smaller than the DPC upper bound,
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C(∞), for 0 < Re < Rc
e, where

Rc
e =

1

2
log

(

1 +
P

σ2Z

)

(4.280)

For Re ≥ Rc
e, the DPC upper bound is strictly smaller than our upper bound. There-

fore, we take the smaller of these two bounds and obtain a compact expression for

the upper bound as,

UB(Re) =















1
2
log
(

P+σ2
T+σ

2
Z

σ2
Z+σ

2
T e
−2Re

)

, 0 ≤ Re < Rc
e

1
2
log
(

1 + P
σ2
Z

)

, Rc
e ≤ Re <∞

(4.281)
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Chapter 5

Diamond Channel with Partially Separated Relays

5.1 Introduction

The parallel relay network or the diamond channel consists of a transmitter connected

to two relays through a broadcast channel p(y, z|x), where Z is the output of relay

1 and Y is the output of relay 2. The relays are connected to the receiver through a

multiple access channel. The diamond channel differs from the classical relay channel

[12] in the sense that there is no direct link between the transmitter and the receiver.

The diamond channel was introduced by Schein and Gallager in [52], where several

cases of the diamond channel were studied.

In [32], a special class of diamond channel was considered where relay 2 receives

the input X and relay 1 receives Z through a noisy channel p(z|x). Moreover, the

relays are connected to the receiver through an orthogonal multiple access channel.

In other words, relays 1 and 2 have finite capacity, orthogonal links of capacities Rz

and Ry, respectively, to the receiver. The capacity of this class of diamond channels

was characterized in [32] and was shown to be strictly less than the cut-set upper

bound [14].
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In this chapter, we consider the diamond channel with a general broadcast chan-

nel and an orthogonal multiple access channel as in [32] (see Figure 5.1). For this

class of diamond channels, we establish the capacity when the broadcast channel is

deterministic, i.e., when Y and Z are deterministic functions of X. We show that the

capacity is given by the cut-set bound and is achieved by Gelfand-Pinsker-Marton

coding to the relays. We next consider the case when the broadcast channel is physi-

cally degraded, i.e., when X → Y → Z forms a Markov chain. We provide an upper

bound on the capacity of this class of diamond channels and show that this bound

yields the capacity when in addition to X → Y → Z, the channel model is such that,

Y = f(X) for any deterministic function f . Note that when Y = X, we recover the

result obtained in [32].

We finally consider this class of diamond channel with partially separated relays,

i.e., when the output of relay 2 is available to relay 1. This channel model is equivalent

to the model when there is feedback from the receiver to relay 2. One of the main

contributions of this chapter is to establish the capacity of this model, when a) the

broadcast channel is physically degraded, i.e, when X → Y → Z forms a Markov

chain, and b) the broadcast channel is semi deterministic, i.e., when Y = f(X). For

both these cases, we show that the capacity is given by the cut-set bound. These two

results also show the fact that even feedback to one of the relays strictly increases the

capacity of the diamond channel.
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Y

Rz

Ry

M̂M

Z Relay 1

Relay 2

Encoder X p(y, z|x) Decoder

Figure 5.1: The diamond channel.

5.2 Diamond Channel

A diamond channel with a general broadcast channel and an orthogonal multiple

access channel is described by an input alphabet X , two output alphabets Y ,Z, and

transition probabilities p(y, z|x).

A (n, f, f1, f2, g) code for this diamond channel is described by,

f : {1, . . . ,M} → X n (5.1)

f1 : Zn → {1, . . . , |f1|} (5.2)

f2 : Yn → {1, . . . , |f2|} (5.3)

g : {1, . . . , |f1|} × {1, . . . , |f2|} → {1, . . . ,M} (5.4)

where f is the encoding function at the transmitter, f1 is the encoding function at

relay 1, f2 is the encoding function at relay 2, and g is the decoding function at the

receiver.

The transmitter sends Xn = f(M) as the input to the broadcast channel, where

M ∈ {1, . . . ,M} and the message M is decoded as M̂ = g(f1(Z
n), f2(Y

n)). The

199



probability of error is defined as Pe = Pr(M 6= M̂). A rate triple (R,Ry, Rz) is

achievable if for every 0 < ε < 1, η > 0, and sufficiently large n, there exists a

(n, f, f1, f2, g) code such that Pe ≤ ε, and,

1

n
logM≥ R− η (5.5)

1

n
log|f1| ≤ Rz + η (5.6)

1

n
log|f2| ≤ Ry + η (5.7)

The capacity C(Ry, Rz) is defined as the largest R such that (R,Ry, Rz) is achievable.

5.2.1 Deterministic Broadcast

In this section, we consider diamond channels with deterministic broadcast chan-

nel, i.e., when the channel outputs Y and Z are deterministic functions of X. We

characterize the capacity of this class of diamond channels in the following theorem.

Theorem 5.1 The capacity of the diamond channel, C(Ry, Rz), with deterministic

broadcast channel is given as,

C(Ry, Rz) = max
p(x)

min(H(Y, Z), Ry +Rz, Ry +H(Z), Rz +H(Y )) (5.8)

The converse follows from the cut-set upper bound [14]. To prove the achievability,

we will make use of the capacity region of the deterministic broadcast channel without

common messages [22, 44]. The capacity region of a deterministic broadcast channel
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without common messages is given as the set of rate pairs (R1, R2) satisfying,

R1 ≤ H(Z) (5.9)

R2 ≤ H(Y ) (5.10)

R1 +R2 ≤ H(Y, Z) (5.11)

Now, for any input distribution p(x), consider the expression,

G(p(x)) = min(H(Y, Z), Ry +Rz, Ry +H(Z), Rz +H(Y )) (5.12)

Depending on the value of (Ry, Rz), we have four cases (see Figure 5.2):

Case A: If (Ry, Rz) are such that,

Ry ≤ H(Y ) (5.13)

Rz ≤ H(Z) (5.14)

Ry +Rz ≤ H(Y, Z) (5.15)

then, we have G(p(x)) = Ry + Rz and we can achieve a rate of Ry + Rz for the

diamond channel by using a broadcast channel code with the rates,

R1 = Rz, R2 = Ry (5.16)
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Region A

Ry

Rz

H(Y, Z)

Rz + H(Y )

H(Y, Z)

H(Z)

H(Z|Y )

H(Y |Z) H(Y ) H(Y, Z)

Ry + H(Z)
Region C

Region D

Region B

Ry + Rz

Figure 5.2: Achievability for the diamond channel with deterministic broadcast.

Case B: If (Ry, Rz) are such that,

Ry ≥ H(Y |Z) (5.17)

Rz ≥ H(Z|Y ) (5.18)

Ry +Rz ≥ H(Y, Z) (5.19)

then, we have G(p(x)) = H(Y, Z) and we can achieve a rate of H(Y, Z) for the

diamond channel by using a broadcast channel code with the rates,

R1 = H(Z), R2 = H(Y |Z) (5.20)
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or alternatively,

R1 = H(Z|Y ), R2 = H(Y ) (5.21)

Case C: If (Ry, Rz) are such that,

Ry ≤ H(Y |Z) (5.22)

Ry +Rz ≤ H(Y, Z) (5.23)

then, we have G(p(x)) = Ry +H(Z) and we can achieve a rate of Ry +H(Z) for the

diamond channel by using a broadcast channel code with the rates,

R1 = H(Z), R2 = Ry (5.24)

Case D: If (Ry, Rz) are such that, G(p(x)) = Rz + H(Y ), then, similar to Case

C, we can achieve a rate of Rz +H(Y ) for the diamond channel by using a broadcast

channel code with the rates,

R1 = Rz, R2 = H(Y ) (5.25)

We remark here that the achievability is counterintuitive since one might have

expected to use the general broadcast channel code with common messages [22], [27],

but as our result shows this is not necessary. We also note here that the cut-set

bound continues to hold when relays are partially separated, i.e., the encoded output
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of relay 2 is available to both relay 1 and the decoder. Our result also shows that

the capacity of this diamond channel remains the same even if the relays are partially

separated.

5.2.2 Physically Degraded Broadcast

In this section, we consider diamond channels with physically degraded broadcast

channel, i.e., when the channel p(y, z|x) is such that

p(y, z|x) = p(y|x)p(z|y) (5.26)

In the following theorem, we provide a new upper bound on the capacity C(Ry, Rz).

Theorem 5.2 The capacity of the diamond channel, C(Ry, Rz), with physically de-

graded broadcast channel is upper bounded by the maximum R such that,

R ≤ I(U ;Z) + I(X;Y |U) (5.27)

Ry ≥ H(Y |U, V )−H(Y |X) (5.28)

Rz ≥ I(Z;V |U, Y ) (5.29)

Ry +Rz ≥ R + I(Z;V |U, Y ) (5.30)

for joint distributions of the form,

p(x, u, y, z, v) = p(u, x)p(y|x)p(z|y)p(v|z, u) (5.31)
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where |U| ≤ |X |+ 4, |V| ≤ |X ||Z|+ 4|X |+ 3.

Alternatively, the capacity of the diamond channel is upper bounded as,

C(Ry, Rz) ≤maxmin(I(U ;Z) + I(X;Y |U), Ry +Rz − I(Z;V |U, Y )) (5.32)

such that Ry ≥ H(Y |U, V )−H(Y |X), Rz ≥ I(Z;V |U, Y )

The proof of Theorem 5.2 is given in the Appendix. We next have the following

theorem.

Theorem 5.3 The capacity of the diamond channel, C(Ry, Rz), with degraded broad-

cast channel, when Y = f(X), is given by the maximum R such that,

R ≤ I(U ;Z) + I(X;Y |U) (5.33)

Ry ≥ H(Y |U, V ) (5.34)

Rz ≥ I(Z;V |U, Y ) (5.35)

Ry +Rz ≥ R + I(Z;V |U, Y ) (5.36)

for joint distributions of the form,

p(x, u, y, z, v) = p(u, x)p(y|x)p(z|y)p(v|z, u) (5.37)

As a corollary, by setting Y = X in Theorem 5.3, we recover the capacity result

obtained in [32].
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The converse for Theorem 5.3 follows from Theorem 5.2. We will directly show

the achievability of I(U ;Z) + I(X;Y |U), when,

Ry ≥ H(Y |U, V ) (5.38)

Rz ≥ I(Z;V |U, Y ) (5.39)

Ry +Rz ≥ I(U ;Z) + I(X;Y |U) + I(Z;V |U, Y ) (5.40)

Figure 5.3 shows that this region corresponds to an inverse pentagon, with corner

points (a) and (b), given as,

R(a)z = I(Z;V |U, Y ) (5.41)

R(a)y = I(U ;Z) + I(X;Y |U) (5.42)

and

R(b)z = I(U ;Z) + I(Z;V |U) (5.43)

R(b)y = I(X;Y |U)− I(Y ;V |U) (5.44)

= I(X;Y |U)− I(X;V |U) (5.45)
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I(U ; Z) + I(Z; V |U)

Rz

b

Ry

a

H(Y |U, V ) I(U ; Z) + I(X; Y |U)

I(Z; V |Y, U)

Figure 5.3: Achievability for the diamond channel with degraded broadcast.

where in (5.45), we have used the following,

I(X;V |U) = I(X,Y ;V |U)− I(Y ;V |X,U) (5.46)

= I(X,Y ;V |U) (5.47)

= I(Y ;V |U) + I(X;V |Y, U) (5.48)

= I(Y ;V |U) (5.49)

where (5.46) follows from the fact that Y = f(X) and (5.49) follows from the Markov

chain, X → Y → (V, U).
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Reliable transmission is possible at a rate I(U ;Z)+I(X;Y |U) at the corner point

(a) only by using relay 2 and using a single-user channel code since

I(U ;Z) + I(X;Y |U) ≤ I(U ;Y ) + I(X;Y |U) (5.50)

= I(X,U ;Y ) (5.51)

= I(X;Y ) (5.52)

We will now show that reliable transmission is possible at a rate I(U ;Z) +

I(X;Y |U) at the corner point (a).

Codebook generation: The encoder generates 2nI(U ;Z) u(w1) sequences using

p(u), where w1 = 1, . . . , 2nI(U ;Z) and for every u sequence, it generates 2nI(X;Y |U)

x(w1, w2) sequences, where w2 = 1, . . . , 2nI(X;Y |U). The encoder bins the x sequences

in 2nI(X;Y |U)−I(X;V |U) bins, and the bin index of x(w1, w2) is denoted as bX(x(w1, w2)).

Relay 1 creates 2nI(Z;V |U) v(j) sequences using p(v|z, u), where j = 1, . . . , 2nI(Z;V |U).

To transmit the message (w1, w2), the encoder puts x(w1, w2) as the input to the

channel.

Encoding at relay 1: Upon receiving z, relay 1 decodes w1 by decoding the u

sequence. It next searches for a v sequence which is jointly typical with (z, û). Relay

1 transmits the decoded codeword ŵ1 and the v sequence. Total rate needed by relay

1 is I(U ;Z) + I(Z;V |U).

Encoding at relay 2: Upon receiving y sequence, relay 2 decodes w1 by decoding

the u sequence and proceeds to decode w2 by decoding x. Relay 2 transmits the

bin-index of the correctly decoded x sequence, bX(x(ŵ1, ŵ2)). Total rate needed by
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relay 2 is I(X;Y |U)− I(X;V |U) = H(Y |U, V ).

Decoding: Upon receiving ŵ1 and v sequence from relay 1 and the bin index

bX(x(ŵ1, ŵ2)) from relay 2, decoder tries to find a unique ŵ2 in the bin bX(x(ŵ1, ŵ2))

such that (x(ŵ1, ŵ2), u(ŵ1), v) are jointly typical. The decoder can correctly decode

w2 with high probability since the number of x sequences in each bin is approximately

2nI(X;V |U).

5.3 Diamond Channel with Partially Separated Relays

We will now consider a variation of the diamond channel, where the relays are partially

separated. In other words, the output of relay 2 is available to relay 1 (see Figure

5.4).

A (n, f, f1, f2, g) code for the diamond channel with partially separated relays is

described by,

f : {1, . . . ,M} → X n (5.53)

f2 : Yn → {1, . . . , |f2|} (5.54)

f1 : Zn × {1, . . . , |f2|} → {1, . . . , |f1|} (5.55)

g : {1, . . . , |f1|} × {1, . . . , |f2|} → {1, . . . ,M} (5.56)

where f is the encoding function at the transmitter, f1 is the encoding function at

relay 1, f2 is the encoding function at relay 2, and g is the decoding function at the

receiver.
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Rz
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Figure 5.4: The diamond channel with partially separated relays.

The transmitter sends Xn = f(M) as the input to the broadcast channel, where

M ∈ {1, . . . ,M} and the message M is decoded as M̂ = g(f1(Z
n, f2(Y

n)), f2(Y
n)).

The probability of error is defined as Pe = Pr(M 6= M̂). A rate triple (R,Ry, Rz)

is achievable if for every 0 < ε < 1, η > 0, and sufficiently large n, there exists a

(n, f, f1, f2, g) code such that Pe ≤ ε, and,

1

n
logM≥ R− η (5.57)

1

n
log|f1| ≤ Rz + η (5.58)

1

n
log|f2| ≤ Ry + η (5.59)

The capacity CPS(Ry, Rz) is defined as the largest R such that (R,Ry, Rz) is achiev-

able.

5.3.1 Physically Degraded Broadcast

In this section, we consider the case when the broadcast channel of the diamond

channel is physically degraded, i.e., when, p(y, z|x) = p(y|x)p(z|y). In the following
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theorem, we characterize the capacity of this class of channels.

Theorem 5.4 The capacity of the diamond channel, CPS(Ry, Rz), with physically

degraded broadcast channel and partially separated relays is given as,

CPS(Ry, Rz) = max
p(x)

min(I(X;Y ), Ry +Rz, Ry + I(X;Z)) (5.60)

The converse follows from the cut-set upper bound [14]. We will prove the achiev-

ability as follows. Fix an input distribution p(x) and consider the function,

G(p(x)) = min(I(X;Y ), Ry +Rz, Ry + I(X;Z)) (5.61)

Figure 5.5 shows all possible cases for the pair (Ry, Rz). It suffices to show that

reliable transmission is possible at the rate min(I(X;Y ), Ry + Rz, Ry + I(X;Z)) at

the three corner points P1, P2 and P3.

Reliable transmission is possible at a rate I(X;Y ) at the corner point P1, when

Ry = I(X;Y ) and Rz = 0 by using a single-user channel code for relay 2 at a rate

I(X;Y ). Reliable transmission is possible at a rate I(X;Z) at the corner point P3,

when Ry = 0 and Rz = I(X;Z), by using a single-user channel code for relay 1 at a

rate I(X;Z).
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Figure 5.5: Achievability for the diamond channel with degraded broadcast.

Therefore, to complete the achievability, we need to show that reliable transmission

is possible at the rate I(X;Y ) when,

Ry = I(X;Y |Z) (5.62)

= I(X;Y )− I(X;Z) (5.63)

Rz = I(X;Z) (5.64)

The encoder generates 2nI(X;Y ) x sequences, x(w), according to
∏n

i=1 p(xi(w)), where,

w = 1, . . . , 2nI(X;Y ) and bins these sequences in 2n(I(X;Y )−I(X;Z)) bins uniformly and

independently. Denote the bin index of x(w) as bj(x(w)), where j = 1, . . . , 2nI(X;Y |Z)

and the sub-index number of x(w) as ls(x(w)), where s = 1, . . . , 2nI(X;Z). To transmit

the message w, the encoder puts x(w) as the input to the channel.
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Relay 2 can reliably decode the message w with high probability. Relay 2 transmits

the bin index, bj(x(ŵ)) of the decoded codeword. Relay 1 uses the channel output

sequence z and the bin index bj(x(ŵ)) to decode the message w. Relay 1 can decode

the correct message w with high probability since the number of x sequences in each

bin is at most 2nI(X;Z). Relay 1 transmits the sub-index number ls(x(ŵ)) of the

decoded message.

Decoder receives the bin index bj(ŵ) from relay 2 and the sub-index number

ls(x(ŵ)) from relay 1. The decoder decodes the sub-index ls(x(ŵ)) in the received

bin bj(ŵ) as the correct message.

We remark here that this achievability scheme is closely related to the scheme for

successive encoding of correlated sources [18]. It was shown in [18] for the case of

lossless source coding with partially connected encoders, that the rate-region can be

strictly improved upon the case of separated encoders [3, 67]. It is also evident that

due to the fact that relays are partially separated, we can achieve the cut-set upper

bound which is not always achievable when the relays are separated.

5.3.2 Semi-Deterministic Broadcast

We will now consider the case when the broadcast channel of the diamond channel is

such that Y = f(X) for any deterministic function f . In the following theorem, we

characterize the capacity of this class of diamond channels.

Theorem 5.5 The capacity of the diamond channel, CPS(Ry, Rz) with semi-deterministic
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broadcast channel and partially separated relays is given as,

CPS(Ry, Rz) = max
p(x)

min(I(X;Z) +H(Y |Z), Ry +Rz, Ry + I(X;Z), Rz +H(Y ))

(5.65)

The converse follows from the cut-set upper bound [14]. We will prove the achiev-

ability as follows.

Figure 5.6 shows all possible cases for the pair (Ry, Rz). It suffices to show that

reliable transmission is possible at the rate

min(I(X;Z) +H(Y |Z), Ry +Rz, Ry + I(X;Z), Rz +H(Y )) (5.66)

at the four corner points P1, P2, P3 and P4.

Reliable transmission is possible at a rate I(X;Z) at the corner point P1, when

Rz = I(X;Z) and Ry = 0 by using a single-user channel code for relay 1 at a rate

I(X;Z). Reliable transmission is possible at a rate H(Y ) at the corner point P2,

when Rz = 0 and Ry = I(X;Y ) = H(Y ), by using a single-user channel code for

relay 2 at a rate I(X;Y ).
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Figure 5.6: Achievability for the diamond channel with semi-deterministic broadcast.

Now, consider the corner point P3, where we have,

Ry = H(Y |Z) (5.67)

Rz = I(X;Z) (5.68)

= I(X;Z|Y ) + I(Z;Y ) (5.69)

= [I(X;Z, Y )− I(X;Y )] + I(Z;Y ) (5.70)

where (5.69) follows from the fact that Y = f(X).

The encoder generates 2nI(X;Y,Z) x(w) sequences, where w = 1, . . . , 2nI(X;Y,Z). The

encoder also bins the x(w) sequences in 2nI(X;Z|Y ) bins, where the bin index of the

sequence x(w) is denoted as bj(x(w)), where j = 1, . . . , 2nI(X;Z|Y ). To transmit the

message w, the encoder puts x(w) as the input to the channel.
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Upon observing the channel output y, relay 2 compresses the y sequences at a

rate H(Y |Z) with Z as side-information and transmits the compression bin-index,

where the bin index of y sequence is denoted as bY (y). The rate needed by relay 2 is

H(Y |Z).

Upon observing the z sequence from the channel and the bin index bY (y) from relay

2, relay 1 first estimates the y sequence. It can estimate the correct y sequence with

high probability since the number of y sequences in each bin is at most 2nI(Z;Y ). Let

the sub-index of the estimated sequence y in the bin bY (y) be denoted as lY (bY (y), z).

Relay 1 then proceeds to decode the message by decoding x by using z and the

estimated y sequence. Relay 1 transmits the bin index of the decoded x sequence,

bj(x(ŵ)) and the sub-index of the decoded y sequence, lY (bY (y), z). The total rate

needed by relay 1 is I(X;Z|Y ) + I(Z;Y ) = I(X;Z).

Upon observing bY (y) from relay 2 and the pair (lY (bY (y), z), bj(x(ŵ))) from relay

1, the decoder first finds the correct y sequence as the lY (bY (y), z)th sub-index in the

bin bY (y). It next decodes the message by searching for a unique x(w) in the bin

bj(x(ŵ)) such that (x(w), y) are jointly typical. This is possible since the number of x

sequences in each x-bin is approximately 2nI(X;Y,Z)/2nI(X;Z|Y ) = 2nI(X;Y ). Therefore,

the decoder can decode the message and reliable transmission is possible at a rate

I(X;Z) +H(Y |Z).
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Now, consider the corner point P4, where we have,

Ry = H(Y ) (5.71)

Rz = I(X;Z|Y ) = I(X;Z, Y )− I(X;Y ) (5.72)

For this case, relay 2 can describe the y sequence to both relay 1 and the decoder.

Relay 2 uses z and y to correctly decode the message and transmits the bin-index,

bj(x(ŵ)) of the decoded x sequence. The total rate needed by relay 1 is I(X;Z|Y ).

Upon receiving y sequence from relay 2 and bj(x(ŵ)) from relay 1, the decoder decodes

the message by searching for a unique x(w) in the bin bj(x(ŵ)) such that (x(w), y)

are jointly typical. This is possible since the number of x sequences in each x-bin

is approximately 2nI(X;Y,Z)/2nI(X;Z|Y ) = 2nI(X;Y ). Therefore, the decoder can decode

the message and reliable transmission is possible at a rate I(X;Z) +H(Y |Z).

We remark here, that the main idea behind achievability of the rate I(X;Z) +

H(Y |Z) at the corner point P3 is to use compress-and-forward at relay 2, where relay

2 compresses its output by using relay 1 output as the side information [36]. This

approach of compress-and-forward to achieve the cut-set bound is different than that

we have seen for the case of physically degraded relay channel, where both relay 1

and relay 2 are able to decode the message.

The capacity of the diamond channel with separated relays when Y = X and

Z is a noisy function of X was obtained in [32]. We note that this channel falls in

the class of diamond channels with semi-deterministic broadcast component, since

Y = f(X). Moreover, this channel also falls in the class of diamond channels with
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Figure 5.7: Illustration of some classes of diamond channels.

physically degraded broadcast component, since X → Y → Z forms a Markov chain.

To observe these inclusions, see Figure 5.7. Now, note that for this channel, it was

shown in [32] that the cut-set upper bound is strictly sub-optimal when the relays are

separated. On the other hand, when the relays are partially separated, we have from

Theorems 5.4 and 5.5, that the cut-set upper bound is optimal. Since the case of

partially separated relays is equivalent to having feedback from the decoder to relay

2, our results therefore show that feedback to even one of the relays strictly improves

the capacity of the diamond channel.

5.4 Conclusions

We considered several variations of the diamond channel with an orthogonal multiple

access component. We established the capacity for the case when the broadcast

channel is deterministic. We next provided an upper bound on the capacity when

the broadcast channel is physically degraded. This upper bound was shown to be
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tight for a sub-class of such channels. We next considered the variation of diamond

channel where the relays are partially separated and established the capacity when

the broadcast channel is a) physically degraded and b) semi-deterministic. For both

of these cases, we showed that the cut-set bound is tight.

5.5 Appendix

5.5.1 Proof of Theorem 5.2

We denote the outputs of relay 1 and relay 2 as,

Jy = fy(Y
n), Jz = fz(Z

n) (5.73)

We have by Fano’s inequality,

H(W |Jy, Jz) ≤ nεn (5.74)

We start by bounding the rates Ry and Rz,

nRy ≥ H(Jy) (5.75)

≥ H(Jy|Jz) (5.76)

≥ I(Jy;Y
n|Jz) (5.77)

= H(Y n|Jz)−H(Y n|Jy, Jz) (5.78)
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=
n
∑

i=1

H(Yi|Jz, Y i−1)−H(Y n|Jy, Jz) (5.79)

≥
n
∑

i=1

H(Yi|Jz, Y i−1, Zn
i+1)−H(Y n|Jy, Jz) (5.80)

≥
n
∑

i=1

H(Yi|Jz, Y i−1, Zn
i+1)−

n
∑

i=1

H(Yi|Xi)− nεn (5.81)

where (5.81) follows from,

H(Y n|Jy, Jz) ≤ H(Y n,W |Jy, Jz) (5.82)

= H(W |Jy, Jz) +H(Y n|W,Jy, Jz) (5.83)

= H(W |Jy, Jz) +H(Y n|Xn,W, Jy, Jz) (5.84)

≤ nεn +H(Y n|Xn, Jy, Jz) (5.85)

= nεn +
n
∑

i=1

H(Yi|Xn, Jy, Jz, Y
i−1) (5.86)

≤ nεn +
n
∑

i=1

H(Yi|Xi) (5.87)

where (5.84) follows from the fact that Xn is a deterministic function of the message

W and (5.85) follows from (5.74) and the memoryless property of the broadcast

channel.

The second rate constraint is obtained as,

nRz ≥ H(Jz) (5.88)

≥ H(Jz|Y n) (5.89)

≥ I(Jz;Z
n|Y n) (5.90)
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= H(Zn|Y n)−H(Zn|Jz, Y n) (5.91)

=
n
∑

i=1

H(Zi|Yi)−H(Zn|Jz, Y n) (5.92)

=
n
∑

i=1

H(Zi|Yi, Y i−1, Zn
i+1)−H(Zn|Jz, Y n) (5.93)

=
n
∑

i=1

H(Zi|Yi, Y i−1, Zn
i+1)−

n
∑

i=1

H(Zi|Jz, Y n, Zn
i+1) (5.94)

=
n
∑

i=1

H(Zi|Yi, Y i−1, Zn
i+1)−

n
∑

i=1

H(Zi|Jz, Yi, Y i−1, Zn
i+1, Y

n
i+1) (5.95)

≥
n
∑

i=1

H(Zi|Yi, Y i−1, Zn
i+1)−

n
∑

i=1

H(Zi|Jz, Yi, Y i−1, Zn
i+1) (5.96)

=
n
∑

i=1

I(Jz;Zi|Yi, Y i−1, Zn
i+1) (5.97)

where (5.93) follows from the memoryless property of the channel and (5.96) follows

from the fact that conditioning reduces entropy. We next bound the sum rate Ry+Rz

as follows

n(Ry +Rz) = H(Jy, Jz) (5.98)

≥ I(Jy, Jz;Y
n, Zn) (5.99)

= I(Jy, Jz;Y
n) + I(Zn; Jy, Jz|Y n) (5.100)

≥ nR− nεn + I(Zn; Jy, Jz|Y n) (5.101)

≥ nR− nεn + I(Zn; Jz|Y n) (5.102)

≥ nR− nεn +
n
∑

i=1

I(Zi; Jz|Yi, Y i−1, Zn
i+1) (5.103)
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where (5.101) follows from the following sequence of inequalities,

I(Jy, Jz;Y
n) = I(Jy, Jz;W,Y n)− I(Jy, Jz;W |Y n) (5.104)

= I(Jy, Jz;W,Y n) (5.105)

= I(Jy, Jz;W ) + I(Jy, Jz;Y
n|W ) (5.106)

≥ I(Jy, Jz;W ) (5.107)

= H(W )−H(W |Jy, Jz) (5.108)

≥ nR− nεn (5.109)

where (5.105) follows from the following Markov chain,

W → Y n → (Jy, Jz) (5.110)

We will now bound the rate of the code as follows,

nR = H(W ) (5.111)

= I(W ;Y n) +H(W |Y n) (5.112)

= I(W ;Y n) +H(W |Y n, Jy, Jz) (5.113)

≤ I(W ;Y n) +H(W |Jy, Jz) (5.114)

≤ H(Y n)−H(Y n|W ) + nεn (5.115)

≤ H(Y n)−H(Y n|Xn,W ) + nεn (5.116)

= H(Y n)−
n
∑

i=1

H(Yi|Xi) + nεn (5.117)
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= H(Y n)−
n
∑

i=1

H(Yi|Xi, Y
i−1, Zn

i+1) + nεn (5.118)

=
n
∑

i=1

H(Yi|Y i−1)−
n
∑

i=1

H(Yi|Xi, Y
i−1, Zn

i+1) + nεn (5.119)

≤
n
∑

i=1

I(Zn
i+1;Zi) +

n
∑

i=1

H(Yi|Y i−1)−
n
∑

i=1

H(Yi|Xi, Y
i−1, Zn

i+1) + nεn (5.120)

=
n
∑

i=1

I(Y i−1, Zn
i+1;Zi) +

n
∑

i=1

H(Yi|Y i−1, Zn
i+1)−

n
∑

i=1

H(Yi|Xi, Y
i−1, Zn

i+1) + nεn

(5.121)

=
n
∑

i=1

I(Y i−1, Zn
i+1;Zi) +

n
∑

i=1

I(Xi;Yi|Y i−1, Zn
i+1) + nεn (5.122)

where (5.113) follows from (5.110) and (5.121) follows from Csiszar’s sum lemma [16].

Now defining,

Ui = (Y i−1, Zn
i+1) (5.123)

Vi = Jz (5.124)

We therefore have from (5.81), (5.97), (5.103) and (5.122),

nR ≤
n
∑

i=1

I(Ui;Zi) + I(Xi;Yi|Ui) + nεn (5.125)

nRy ≥
n
∑

i=1

H(Yi|Ui, Vi)−
n
∑

i=1

H(Yi|Xi)− nεn (5.126)

nRz ≥
n
∑

i=1

I(Vi;Zi|Ui, Yi) (5.127)

n(Ry +Rz) ≥ nR +
n
∑

i=1

I(Zi;Vi|Ui, Yi)− nεn (5.128)
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and defining

X = XQ, Y = YQ, Z = ZQ (5.129)

U = (UQ, Q), V = VQ (5.130)

where Q is uniformly distributed on {1, . . . , n} and independent of all other random

variables, we arrive at,

R ≤ I(U ;Z) + I(X;Y |U) (5.131)

Ry ≥ H(Y |U, V )−H(Y |X) (5.132)

Rz ≥ I(Z;V |U, Y ) (5.133)

Ry +Rz ≥ R + I(Z;V |U, Y ) (5.134)

where the joint distribution of the random variables is as follows,

p(x, u, y, z, v) = p(x, u)p(y|x)p(z|y)p(v|z, u) (5.135)
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Chapter 6

Secure Source Coding with a Helper

6.1 Introduction

The study of information theoretic secrecy was initiated by Shannon in [54]. Following

Shannon’s work, significant contributions were made by Wyner [68] who established

the rate-equivocation region of a degraded broadcast channel. Wyner’s result was

generalized to the case of a general broadcast channel by Csiszar and Korner [15].

Recently, there has been a resurgence of activity in studying multi-terminal and vector

extensions of [68], [15].

In this chapter, we investigate a secure transmission problem from a source coding

perspective. In particular, we first consider a simple setup consisting of four termi-

nals. Terminal 1 (say Alice) observes an i.i.d. source Xn which it intends to transmit

losslessly to terminal 2 (say Bob). A malicious but passive user (say Eve) gets to

observe the coded output of Alice. In other words, the communication link between

Alice and Bob is public, i.e., insecure. It is clear that since the malicious user gets

the same information as the legitimate user, there cannot be any positive secret rate

of transmission. On the other hand, if there is a helper, say Helen, who observes an
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i.i.d. source Y n which is correlated with the source Xn and transmits information

over a secure rate-limited link to Bob, then one can aim for creating uncertainty at

the eavesdropper (see Figure 6.11). For the model shown in Figure 6.1, we completely

characterize the rate-equivocation region. From our result, we observe that the classi-

cal achievablity scheme of Ahlswede and Korner [3] and Wyner [67] for source coding

with rate-limited side information is robust in the presence of a passive eavesdropper.

Secondly, we consider the model where Alice also has access to the coded output

of Helen and completely characterize the rate-equivocation region. We will call this

model the two-sided helper model (see Figure 6.2). From our result, we observe that

the availability of additional coded side information at Alice allows her to increase

uncertainty of the source at Eve even though the rate needed by Alice to transmit

the source losslessly to Bob remains the same. This observation is in contrast with

the case of insecure source coding with side information where providing coded side

information to Alice is of no value [3].

We next generalize the setup of Figure 6.2 to the case when there are both secure

and insecure rate-limited links from Helen and there is additional side information

W n at Bob and additional side information Zn at Eve. In particular, there is a secure

link of capacity Rsec, whose output is available at Alice and Bob and an insecure link,

of capacity Rins, whose output is available at all three terminals, i.e., at Alice, Bob

and Eve (see Figure 6.3). The presence of both secure and insecure links from Helen

can be interpreted as a source-coding analogue of a degraded broadcast channel from

Helen where Alice and Bob receive both secure and insecure streams Jsec and Jins,

1In Figures 6.1, 6.2 and 6.3, secure links are shown by bold lines.
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whereas, Eve only receives the insecure stream Jins. We completely characterize the

rate-equivocation region for this model when Y n → Xn → (W n, Zn) forms a Markov

chain.

We explicitly compute the rate-equivocation region for the cases of one-sided

helper and two-sided helper for a pair of binary symmetric sources. We show that

having access to Helen’s coded output at Alice yields a strictly larger equivocation

than the case of one-sided helper.

6.2 Related Work

The secure source coding setup shown in Figure 6.1 was considered in [26] where

it was also assumed that Eve has access to additional correlated side information

Zn. Inner and outer bounds for the rate-equivocation region were provided for this

setup, which do not match in general. The rate-equivocation region was completely

characterized in [26] for the case when Bob has complete uncoded side information Y n

and Eve has additional side information Zn. This result also follows from [48] where

a similar three terminal setup was studied and the maximum uncertainty at Eve was
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characterized under the assumption of no rate constraint in the lossless transmission

of the source to Bob. A similar model was also studied in [43] where Bob intends

to reconstruct both Xn and Y n losslessly. It was shown that Slepian-Wolf binning

suffices for characterizing the rate-equivocation region when the eavesdropper does

not have additional correlated side information. This setup was generalized in [25]

to the case when the eavesdropper has additional side information Zn, and inner and

outer bounds were provided, which do not match in general.

In [24], a multi-receiver secure broadcasting problem was studied, where Alice

intends to transmit a source Xn to K legitimate users. The kth user has access to a

correlated source Y n
k , where Y n

k = Xn ⊕ Bn
k , for k = 1, . . . K, and the eavesdropper

has access to Zn, where Zn = Xn⊕En, and the noise sequences (Bn
1 , . . . , B

n
K , E

n) are

mutually independent and also independent of the source Xn. Furthermore, it was

assumed that Alice also has access to (Y n
1 , . . . Y

n
K). For sources with such modulo-

additive structure, it was shown that to maximize the uncertainty at the eavesdropper,

Alice cannot do any better than describing the error sequences (Bn
1 , . . . , B

n
K) to the

legitimate users. This model is related to the two-sided helper model shown in Figure

6.2; see Section 6.5 for details.

For the model shown in Figure 6.3, when we set Rsec = Rins = 0, i.e., in the

absence of Helen, we recover the result obtained in [48]. Therefore, our result can

also be viewed as a generalization of the result obtained in [48].

By setting Rsec = 0, i.e., in the absence of the secure rate-limited link, the resulting

model is related to the model considered in [17] where the aim is to generate a secret

key between two terminals via an insecure rate-limited two-sided helper. In the model
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studied in this work, the aim is to securely transmit the source Xn to Bob. Note that,

when Rsec = 0 and W = φ, both the secret key generation capacity [17] and secure

transmission rate are zero since Eve has access to both Jins and Jx along with Zn.

On the other hand, in the presence of a secure link, i.e., when Rsec > 0, even when

W = φ, we can still create uncertainty at the eavesdropper. This is possible since

Helen can choose not to transmit any information on the insecure link and transmit

only a coded description of Y n by using the secure link at the rate Rsec, which plays

the role of a correlated key. Furthermore, being correlated with the source Xn, the

coded description of Y n also permits Alice to lower the rate of transmission when

compared to the case of using an uncorrelated secret key, where Alice transmits at a

rate H(X).

6.3 Summary of Main Results

In Section 6.4, we present the rate-equivocation region for the case of one-sided helper.

We show that Slepian-Wolf binning alone at Alice is optimal for this case. We present
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the rate-equivocation region for the case of two-sided helper in Section 6.5. For the

case of two-sided helper, Alice uses a conditional rate-distortion code to create an

auxiliary U from the sourceX and the coded output V received from Helen. This code

construction is reminiscent of lossy-source coding with two-sided helper [33], [59], [47].

For the case of lossy source coding, a conditional rate-distortion code is used where

U is selected to satisfy the distortion criterion. On the other hand, the purpose of U

in secure lossless source coding is to confuse the eavesdropper. From this result, we

demonstrate the insufficiency of Slepian-Wolf binning at Alice by explicitly utilizing

the side information at Alice. This observation is further highlighted in Section 6.6

where we compare the rate-equivocation regions of two-sided helper and one-sided

helper cases for a pair of binary symmetric sources. For this example, we show that

for all Ry > 0, the information leakage to the eavesdropper for the two-sided helper

is strictly less than the case of one-sided helper. We finally generalize the result of

two-sided helper to the case when there are both secure and insecure rate-limited

links from the two-sided helper and additional side informations W and Z, at Bob

and Eve, respectively. The presence of secure and insecure rate-limited links from

Helen can be viewed as a source-coding analogue of a degraded broadcast channel

from Helen to (Alice, Bob) and Eve. We characterize the rate-equivocation region for

this model when the sources satisfy the condition Y → X → (W,Z).
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6.4 One-Sided Helper

6.4.1 System model

We consider the following source coding problem. Alice observes an n-length source

sequence Xn, which is intended to be transmitted losslessly to Bob. The coded

output of Alice can be observed by the malicious user Eve. Moreover, Helen observes

a correlated source Y n and there exists a noiseless rate-limited channel from Helen

to Bob. We assume that the link from Helen to Bob is a secure link and the coded

output of Helen is not observed by Eve (see Figure 6.1). The sources (Xn, Y n) are

generated i.i.d. according to p(x, y) where p(x, y) is defined over the finite product

alphabet X ×Y . The aim of Alice is to create maximum uncertainty at Eve regarding

the source Xn while losslessly transmitting the source to Bob.

An (n, 2nRx , 2nRy) code for this model consists of an encoding function at Alice,

fx : Xn → {1, . . . , 2nRx}, an encoding function at Helen, fy : Y n → {1, . . . , 2nRy}, and

a decoding function at Bob, g : {1, . . . , 2nRx}×{1, . . . , 2nRy} → Xn. The uncertainty

about the sourceXn at Eve is measured byH(Xn|fx(Xn))/n. The probability of error

in the reconstruction of Xn at Bob is defined as P n
e = Pr(g(fx(X

n), fy(Y
n)) 6= Xn).

A triple (Rx, Ry,∆) is achievable if for any ε > 0, there exists a (n, 2nRx , 2nRy) code

such that P n
e ≤ ε and H(Xn|fx(Xn))/n ≥ ∆. We denote the set of all achievable

(Rx, Ry,∆) rate triples as R1−sided.

6.4.2 Result

The main result is given in the following theorem.
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Theorem 6.1 The set of achievable rate triples R1−sided for secure source coding with

one-sided helper is given as

R1−sided =
{

(Rx, Ry,∆) : Rx ≥ H(X|V ) (6.1)

Ry ≥ I(Y ;V ) (6.2)

∆ ≤ I(X;V )
}

(6.3)

where the joint distribution of the involved random variables is as follows,

p(x, y, v) = p(x, y)p(v|y) (6.4)

and it suffices to consider such distributions for which |V| ≤ |Y|+ 2.

The proof of Theorem 6.1 is given in the Appendix.

We note that the inner and outer bounds for source coding model considered in

this section can be obtained from the results presented in [26, Theorem 3.1] although

these bounds do not match in general. These bounds match when Bob has complete

uncoded side information Y n, i.e., when Ry ≥ H(Y ).

The achievability scheme which yields the rate region described in Theorem 6.1 is

summarized as follows:

1. Helen describes the source Y to Bob through a coded output V .

2. Alice performs Slepian-Wolf binning of the source X with respect to the coded

side information, V , available at Bob.
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Therefore, our result shows that the achievable scheme of Ahlswede, Korner [3] and

Wyner [67] is optimal in the presence of an eavesdropper. Moreover, on dropping the

security constraint, Theorem 1 yields the result of [3], [67].

6.5 Two-Sided Helper

6.5.1 System model

We next consider the following generalization of the model considered in Section 6.4.

In this model, Alice also has access to the coded output of Helen besides the source

sequence Xn (see Figure 6.2). An (n, 2nRx , 2nRy) code for this model consists of an

encoding function at Alice, fx : Xn × {1, . . . , 2nRy} → {1, . . . , 2nRx}, an encoding

function at Helen, fy : Y n → {1, . . . , 2nRy}, and a decoding function at Bob, g :

{1, . . . , 2nRx} × {1, . . . , 2nRy} → Xn. The uncertainty about the source Xn at Eve is

measured by H(Xn|fx(Xn))/n. The probability of error in the reconstruction of Xn

at Bob is defined as P n
e = Pr(g(fx(X

n, fy(Y
n)), fy(Y

n)) 6= Xn). A triple (Rx, Ry,∆)

is achievable if for any ε > 0, there exists a (n, 2nRx , 2nRy) code such that P n
e ≤ ε and

H(Xn|fx(Xn))/n ≥ ∆. We denote the set of all achievable (Rx, Ry,∆) rate triples as

R2−sided.

6.5.2 Result

The main result is given in the following theorem.

Theorem 6.2 The set of achievable rate triples R2−sided for secure source coding with
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two-sided helper is given as

R2−sided =
{

(Rx, Ry,∆) : Rx ≥ H(X|V ) (6.5)

Ry ≥ I(Y ;V ) (6.6)

∆ ≤ min(I(X;V |U), Ry)
}

(6.7)

where the joint distribution of the involved random variables is as follows,

p(x, y, v, u) = p(x, y)p(v|y)p(u|x, v) (6.8)

and it suffices to consider distributions such that |V| ≤ |Y|+2 and |U| ≤ |X ||Y|+2|X |.

The proof of Theorem 6.2 is given in the Appendix. We remark here that the proof

of converse for Theorem 6.2 is closely related to the proof of the converse of the

rate-distortion function with a two-sided helper [33], [59], [47].

The achievability scheme which yields the rate region described in Theorem 6.2 is

summarized as follows:

1. Helen describes the source Y to both Bob and Alice through a coded output V .

2. Using the coded output V and the source X, Alice jointly quantizes (X,V ) to

an auxiliary random variable U . She subsequently bins the U sequences at the

rate I(X;U |V ) such that Bob can decode U by using the side information V

from Helen.

3. Alice also bins the source X at a rate H(X|U, V ) so that having access to
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(U, V ), Bob can correctly decode the source X. The total rate used by Alice is

I(X;U |V ) +H(X|U, V ) = H(X|V ).

Therefore, the main difference between the achievability schemes for Theorems 6.1

and 6.2 is at the encoding at Alice and decoding at Bob. Also note that selecting a

constant U in Theorem 6.2 corresponds to Slepian-Wolf binning of X at Alice which

resulted in an equivocation of I(X;V ) in Theorem 6.1. We will show in the next

section through an example that the uncertainty about the source at Eve for the

case of two-sided helper can be strictly larger than the case of one-sided helper and

selecting U as a constant is clearly suboptimal.

Besides reflecting the fact that the uncertainty at Eve can be strictly larger than

the case of a one-sided helper, Theorem 6.2 has another interesting interpretation. If

Alice and Helen can use sufficiently large rates to securely transmit the source Xn

to Bob, then the helper can simply transmit a secret key of entropy H(X) to both

Alice and Bob. Alice can then use this secret key to losslessly transmit the source to

Bob in perfect secrecy by using a one-time pad [54]. In other words, when Rx and Ry

are larger than H(X), one can immediately obtain this result from Theorem 6.2 by

selecting V to be independent of (X,Y ) and uniformly distributed on {1, . . . , |X |}.

Finally, selecting U = X⊕V , we observe that min (Ry, I(X;V |U)) = H(X), yielding

perfect secrecy. We note that, here, V plays the role of a secret key.

Now consider the model where the side information Y n is of the form Y n =

Xn⊕Bn, where |B| = |X |, and Bn is independent of Xn. Moreover, assume that the

side information Y n is available to both Alice and Bob in an uncoded manner. For
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this model, it follows from [24] that, to maximize the uncertainty at the eavesdropper,

Alice cannot do any better than describing the error sequence Bn to Bob. Note that

our two-sided helper model differs from this model in two aspects: first, in our case,

the common side information available to Alice and Bob is coded and rate-limited,

secondly, the sources in our model do not have to be in modulo-additive form.

Our encoding scheme at Alice for the case of two-sided helper comprises of two

steps: (a) using the coded side information V and the source X, Alice creates U and

transmits the bin index of U at a rate I(X;U |V ) so that Bob can estimate U using

V , and, (b) Alice bins the source X at a rate H(X|U, V ) and transmits the bin index

of the source X. Note that if for a pair of sources (X,Y ), the optimal V is of the form

V = X ⊕ B, where |B| = |X | and B is independent of X, then it suffices to choose

U = B, so that I(X;V |U) = H(X) and H(X|U, V ) = 0. In other words, for such

sources, step (b) in our achievability scheme is not necessary, which is similar to the

achievability for the case of modulo-additive sources in [24]. On the other hand, for

a general pair of sources (X,Y ), the optimal V may not be of the form V = X ⊕ B

and the optimal U may not always satisfy H(X|U, V ) = 0. Therefore, we need the

step (b) for our achievability scheme. This differentiates our achievable scheme from

that of [24], which holds for modulo-additive sources with uncoded side information.

Also note that if Y n is not of the form Xn ⊕ Bn, and if Ry ≥ H(X), then Helen

can transmit a secret key which will enable perfectly secure transmission of Xn by

using a one-time pad [54]. This phenomenon does not always occur when the side

information Y n is available to both Alice and Bob in an uncoded fashion [24].
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6.6 An Example: Binary Symmetric Sources

Before proceeding to further generalizations of Theorems 6.1 and 6.2, we explicitly

evaluate Theorems 6.1 and 6.2 for a pair of binary sources.

Let X and Y be binary sources with X ∼ Ber(1/2), Y ∼ Ber(1/2) and X = Y ⊕E,

where E ∼ Ber(δ). For this pair of sources, the region described in Theorem 6.1 can

be completely characterized as,

R1−sided(Ry) =
{

(Rx,∆) : Rx ≥ h(δ ∗ h−1(1−Ry))

∆ ≤ 1− h(δ ∗ h−1(1−Ry))
}

(6.9)

and the region in Theorem 6.2 can be completely characterized as,

R2−sided(Ry) =
{

(Rx,∆) : Rx ≥ h(δ ∗ h−1(1−Ry))

∆ ≤ min(Ry, 1)
}

(6.10)

where h(.) is the binary entropy function, and a ∗ b = a(1− b) + b(1− a).

We start with the derivation of (6.9). Without loss of generality, we assume that

Ry ≤ H(Y ). Achievability follows by selecting V = Y ⊕N , where N ∼ Ber(α), where

α = h−1(1−Ry) (6.11)
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Substituting, we obtain

H(X|V ) = h(δ ∗ h−1(1−Ry)) (6.12)

I(X;V ) = 1− h(δ ∗ h−1(1−Ry)) (6.13)

which completes the achievability. Note that Y is independent of E, and the random

variables X, Y , and V form a Markov chain, i.e., X → Y → V . Using this Markov

chain, the converse follows by simple application of Mrs. Gerber’s lemma [69] as

follows. Let us be given Ry ∈ (0, 1). We have

Ry ≥ I(Y ;V ) (6.14)

= H(Y )−H(Y |V ) (6.15)

= 1−H(Y |V ) (6.16)

which implies H(Y |V ) ≥ 1 − Ry. Mrs. Gerber’s lemma states that for X = Y ⊕ E,

with E ∼ Ber(δ), if H(Y |V ) ≥ β, then H(X|V ) ≥ h(δ ∗ h−1(β)). We therefore have,

Rx ≥ H(X|V ) (6.17)

≥ h(δ ∗ h−1(1−Ry)) (6.18)
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and

∆ ≤ I(X;V ) (6.19)

= H(X)−H(X|V ) (6.20)

= 1−H(X|V ) (6.21)

≤ 1− h(δ ∗ h−1(1−Ry)) (6.22)

This completes the converse.

For the case of two-sided helper, we compute the equivocation ∆ as follows. We

choose V as V = Y ⊕ N where N ∼ Ber(α) as in the case of one-sided helper. We

choose U as,

U = X ⊕ V (6.23)

= Y ⊕ E ⊕ Y ⊕N (6.24)

= E ⊕N (6.25)

Since X ∼ Ber(1/2), E is independent of X, and therefore U = E ⊕ N is also

independent of X. We next compute the term I(X;V |U) as follows,

I(X;V |U) = H(X|U) (6.26)

= H(X) (6.27)

= 1 (6.28)
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and therefore

min(Ry, I(X;V |U)) = min(Ry, 1) (6.29)

For the converse part, we also have that

∆ ≤ min(Ry, I(X;V |U)) (6.30)

≤ min(Ry, H(X)) (6.31)

= min(Ry, 1) (6.32)

The rate from Alice, Rx and the equivocation ∆ for the cases of one-sided and

two-sided helper are shown in Figure 6.4 for the case when δ = 0.05. For the one-

sided helper, we can observe a trade-off in the amount of information Alice needs to

send versus the uncertainty at Eve. For small values of Ry, Alice needs to send more

information thereby leaking out more information to Eve. The amount of information

leaked is exactly the information sent by Alice. On the other hand, for the case of

two-sided helper, the uncertainty at the eavesdropper is always strictly larger than

the uncertainty in the one-sided case. Also note that for this pair of sources, perfect

secrecy is possible for the case of two-sided helper when Ry ≥ H(Y ) which is not

possible for the case of one-sided helper.
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Figure 6.4: The rate-equivocation region for a pair of binary symmetric sources.

6.7 Secure and Insecure Links from Two-Sided Helper

6.7.1 System model

In this section, we consider a generalization of the model considered in Section 6.5.

We consider the case when there are two links from Helen (see Figure 6.3). One

link of rate Rsec is secure, i.e., the output of this link is available to only Alice and

Bob. The second link of rate Rins is public and the output of this link is available

to Alice, Bob and Eve. The sources (Xn, Y n,W n, Zn) are generated i.i.d. according

to p(x, y, w, z) = p(x, y)p(w, z|x) where p(x, y, w, z) is defined over the finite product

alphabet X × Y ×W ×Z.

A (n, 2nRx , 2nRsec , 2nRins) code for this model consists of an encoding function at
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Helen, fy : Y n → Jsec × Jins, where |Jsec| ≤ 2nRsec , |Jins| ≤ 2nRins , an encoding func-

tion at Alice, fx : Xn × Jsec × Jins → {1, . . . , 2nRx}, and a decoding function at Bob,

g : {1, . . . , 2nRx}×Jsec×Jins×W n → Xn. The uncertainty about the sourceXn at Eve

is measured byH(Xn|fx(Xn, Jsec, Jins), Jins, Z
n)/n. The probability of error in the re-

construction of Xn at Bob is defined as P n
e = Pr(g(fx(X

n, Jsec, Jins), Jsec, Jins,W
n) 6=

Xn). A quadruple (Rx, Rsec, Rins,∆) is achievable if for any ε > 0, there exists a

(n, 2nRx , 2nRsec , 2nRins) code such that P n
e ≤ ε

and H(Xn|fx(Xn, Jsec, Jins), Jins, Z
n)/n ≥ ∆. We denote the set of all achievable

(Rx, Rsec, Rins,∆) rate quadruples as RW,Z
sec−ins.

6.7.2 Result

The main result is given in the following theorem.

Theorem 6.3 The set of achievable rate quadruples RW,Z
sec−ins for secure source coding

with secure and insecure links from a two-sided helper, additional side information W

at Bob and Z at Eve is given as

RW,Z
sec−ins =

{

(Rx, Rsec, Rins,∆) : Rx ≥ H(X|V1, V2,W ) (6.33)

Rsec ≥ I(Y ;V1|W ) (6.34)

Rins ≥ I(Y ;V2|W,V1) (6.35)

∆ ≤ min(Rsec, I(X;V1|U, V2,W ))

+ I(X;W |U, V2)− I(X;Z|U, V2)
}

(6.36)
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where the joint distribution of the involved random variables is as follows,

p(x, y, w, z, v1, v2, u) = p(x, y)p(w, z|x)p(v1, v2|y)p(u|x, v1, v2) (6.37)

and it suffices to consider such distributions for which |V1| ≤ |Y| + 3, |V2| ≤ |Y| + 4

and |U| ≤ |X ||Y|2 + 7|X ||Y|+ 12|X |+ 2.

The proof of Theorem 6.3 is given in the Appendix.

The achievability scheme which yields the rate region described in Theorem 6.3 is

summarized as follows:

1. Helen first uses the secure link to describe the source Y to both Alice and Bob

at a rate I(Y ;V1|W ), where W plays the role of side information. Subsequently,

the insecure link is used to provide another description of the correlated source

Y at a rate I(Y ;V2|W,V1), where (W,V1) plays the role of side information.

Therefore, the key idea is to first use the secure link to build common random-

ness at Alice and Bob and subsequently use this common randomness to send

information over the insecure link at a lower rate.

2. Having access to the coded outputs (V1, V2) from Helen and the source X, Alice

jointly quantizes (X,V1, V2) to an auxiliary random variable U . She subse-

quently bins the U sequences at the rate I(X;U |V1, V2,W ) such that Bob can

decode U by using W and the coded outputs (V1, V2) from the helper.

3. She also bins the source X at a rate H(X|U, V1, V2,W ) so that having access to

(U, V1, V2,W ), Bob can correctly decode the source X. The total rate used by
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Alice is I(X;U |V1, V2,W ) +H(X|U, V1, V2,W ) = H(X|V1, V2,W ).

We note here that using Theorem 6.3, we can recover Theorem 6.2 by setting

Rins = 0, and selecting W = Z = V2 = φ.

On setting Rsec = 0, the resulting model is similar to the one considered in [17]

although the aim in [17] is to generate a secret key to be shared by Alice and Bob,

while we are interested in the secure transmission of the source X.

If Rsec = Rins = 0, then we recover the result of [48] as a special case by setting

V1 = V2 = φ. Therefore, Theorem 6.3 can also be viewed as a generalization of the

result of [48] where no rate constraint is imposed on the transmission of Alice and the

goal is to maximize the uncertainty at Eve while losslessly transmitting the source to

Bob.

6.8 Conclusions

In this chapter, we considered several secure source coding problems. We first pro-

vided the characterization of the rate-equivocation region for a secure source coding

problem with coded side information at the legitimate user. We next generalized this

result for two different models with increasing complexity. We characterized the rate-

equivocation region for the case of two-sided helper. The value of two-sided coded

side information is emphasized by comparing the respective equivocations for a pair

of binary sources. It is shown for this example that Slepian-Wolf binning alone is

insufficient and using our achievable scheme, one attains strictly larger uncertainty at

the eavesdropper than the case of one-sided helper. We next considered the case when
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there are both secure and insecure rate-limited links from the helper and characterized

the rate-equivocation region.

6.9 Appendix

6.9.1 Proof of Theorem 6.1

Achievability

Fix the distribution p(x, y, v) = p(x, y)p(v|y).

1. Codebook generation at Helen: From the conditional probability distribution

p(v|y) compute p(v) =
∑

y p(y)p(v|y). Generate 2nRy codewords v(l) indepen-

dently according to
∏n

i=1 p(vi), where l = 1, . . . , 2nRy .

2. Codebook generation at Alice: Randomly bin the xn sequences into 2nH(X|V )

bins and index these bins as m = 1, . . . ,M , where M = 2nH(X|V ).

3. Encoding at Helen: On observing the sequence yn, Helen tries to find a sequence

v(l) such that (v(l), yn) are jointly typical. From rate-distortion theory, we know

that there exists one such sequence as long as Ry ≥ I(V ;Y ). Helen sends the

index l of the sequence v(l).

4. Encoding at Alice: On observing the sequence xn, Alice finds the bin index mX

in which the sequence xn falls and transmits the bin index mX .

5. Decoding at Bob: On receiving l and the bin index mX , Bob tries to find a

unique xn sequence in bin mX such that (v(l), xn) are jointly typical. This is
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possible since the number of xn sequences in each bin is roughly 2nH(X)/2nH(X|V )

which is 2nI(X;V ). The existence of an xn such that (v(l), xn) are jointly typical

is guaranteed by the Markov lemma [14] and the uniqueness is guaranteed by

the properties of jointly typical sequences [14].

6. Equivocation:

H(Xn|mX) = H(Xn,mX)−H(mX) (6.38)

= H(Xn) +H(mX |Xn)−H(mX) (6.39)

= H(Xn)−H(mX) (6.40)

≥ H(Xn)− log(M) (6.41)

= H(Xn)− nH(X|V ) (6.42)

= nI(X;V ) (6.43)

Therefore,

∆ ≤ I(X;V ) (6.44)

is achievable. This completes the achievability part.
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Converse

Let the output of the helper be Jy, and the output of Alice be Jx, i.e.,

Jy = fy(Y
n) (6.45)

Jx = fx(X
n) (6.46)

First note that, for noiseless reconstruction of the sequence Xn at the legitimate

decoder, we have by Fano’s inequality

H(Xn|Jx, Jy) ≤ nεn (6.47)

We start by obtaining a lower bound on Rx, the rate of Alice, as follows

nRx ≥ H(Jx) (6.48)

≥ H(Jx|Jy) (6.49)

= H(Xn, Jx|Jy)−H(Xn|Jx, Jy) (6.50)

≥ H(Xn, Jx|Jy)− nεn (6.51)

≥ H(Xn|Jy)− nεn (6.52)

=
n
∑

i=1

H(Xi|X i−1, Jy)− nεn (6.53)

=
n
∑

i=1

H(Xi|Vi)− nεn (6.54)
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= nH(XQ|VQ, Q)− nεn (6.55)

= nH(X|V )− nεn (6.56)

where (6.51) follows by (6.47). In (6.54), we have defined

Vi = (Jy, X
i−1) (6.57)

In (6.56), we have defined,

X = XQ, V = (Q, VQ) (6.58)

where Q is uniformly distributed on {1, . . . , n} and is independent of all other random

variables.

Next, we obtain a lower bound on Ry, the rate of the helper,

nRy ≥ H(Jy) (6.59)

≥ I(Jy;Y
n) (6.60)

=
n
∑

i=1

I(Jy, Y
i−1;Yi) (6.61)

=
n
∑

i=1

I(Jy, Y
i−1, X i−1;Yi) (6.62)

≥
n
∑

i=1

I(Jy, X
i−1;Yi) (6.63)

=
n
∑

i=1

I(Vi;Yi) (6.64)
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= nI(VQ;YQ|Q) (6.65)

= nI(V ;Y ) (6.66)

where (6.62) follows from the Markov chain

X i−1 → (Jy, Y
i−1)→ Yi (6.67)

and in (6.66), we have defined Y = YQ.

We now have the main step, i.e., an upper bound on the equivocation rate of the

eavesdropper,

H(Xn|Jx) = H(Xn, Jy|Jx)−H(Jy|Xn, Jx) (6.68)

= H(Jy|Jx)−H(Jy|Xn, Jx) +H(Xn|Jx, Jy) (6.69)

= H(Jy|Jx)−H(Jy|Xn) +H(Xn|Jx, Jy) (6.70)

≤ H(Jy)−H(Jy|Xn) +H(Xn|Jx, Jy) (6.71)

≤ I(Jy;X
n) + nεn (6.72)

=
n
∑

i=1

I(Jy;Xi|X i−1) + nεn (6.73)

=
n
∑

i=1

I(Jy, X
i−1;Xi) + nεn (6.74)

=
n
∑

i=1

I(Xi;Vi) + nεn (6.75)

= nI(XQ;VQ|Q) + nεn (6.76)

= nI(X;V ) + nεn (6.77)
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where (6.70) follows from the Markov chain

Jx → Xn → Jy (6.78)

and (6.72) follows from (6.47). This implies

∆ ≤ I(X;V ) (6.79)

Also note that the following is a Markov chain,

V → Y → X (6.80)

Therefore, the joint distribution of the involved random variables is

p(x, y, v) = p(x, y)p(v|y) (6.81)

From support lemma [16], it can be shown that it suffices to consider such joint

distributions for which |V| ≤ |Y|+ 2.

In (6.57), we have defined the auxiliary random variable as Vi = (Jy, X
i−1). We

remark here that the converse for Theorem 1 can also be proved by defining, Vi =

(Jy, Y
i−1) as in [14, Section 14.8]. Note that due to the fact that the sources (Xn, Y n)

are generated in an i.i.d. manner, the following is a Markov chain,

(Jy, Y
i−1, X i−1)→ Yi → Xi (6.82)

250



This is due to the fact that Xi does not carry any extra information about

(Jy = fy(Y
n), Y i−1, X i−1) that is not there in Yi. Therefore, (6.82) implies that

the following are also valid Markov chains,

(Jy, X
i−1)→ Yi → Xi (6.83)

(Jy, Y
i−1)→ Yi → Xi (6.84)

and the converse for Theorem 6.1 can be proved by defining Vi = (Jy, X
i−1) or

Vi = (Jy, Y
i−1).

6.9.2 Proof of Theorem 6.2

Achievability

Fix the distribution p(x, y, v) = p(x, y)p(v|y)p(u|x, v).

1. Codebook generation at Helen: From the conditional probability distribution

p(v|y) compute p(v) =
∑

y p(y)p(v|y). Generate 2nRy codewords v(l) indepen-

dently according to
∏n

i=1 p(vi), where l = 1, . . . , 2nRy .

2. Codebook generation at Alice: From the distribution p(u|x, v), compute p(u).

Generate 2nI(X,V ;U) sequences u(s) independently according to
∏n

i=1 p(ui), where

s = 1, . . . , 2nI(X,V ;U). Next, bin these sequences uniformly into 2nI(X;U |V ) bins.

Also, randomly bin the xn sequences into 2nH(X|U,V ) bins and index these bins

as m = 1, . . . , 2nH(X|U,V ).
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3. Encoding at Helen: On observing the sequence yn, Helen tries to find a sequence

v(l) such that (v(l), yn) are jointly typical. From rate-distortion theory, we know

that there exists one such sequence as long as Ry ≥ I(V ;Y ). Helen sends the

index l of the sequence v(l).

4. Encoding at Alice: The key difference from the one-sided helper case is in the

encoding at Alice. On observing the sequence xn, Alice first finds the bin index

mX in which the sequence xn falls. Alice also has the sequence v(l) received

from Helen. Alice next finds a sequence u such that (u, v(l), xn) are jointly

typical. Let the bin index of this resulting u sequence be sU .

Alice transmits the pair (sU ,mX) which is received by Bob and Eve. The total

rate used by Alice is I(X;U |V ) +H(X|U, V ) = H(X|V ).

5. Decoding at Bob: On receiving the pair (sU ,mX) from Alice and the index l

from Helen, Bob first searches the bin sU for a sequence û such that (û, v(l)) are

jointly typical. This is possible since the number of u sequences in each auxiliary

bin is approximately 2nI(X,V ;U)/2nI(X;U |V ) which is 2nI(U ;V ) and therefore with

high probability, Bob will be able to obtain the correct u sequence.

Using the estimate û and v(l), Bob searches for a unique xn sequence in the

bin mX such that (û, v(l), xn) are jointly typical. This is possible since the

number of xn sequences in each bin is approximately 2nH(X)/2nH(X|U,V ) which

is 2nI(U,V ;X).
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6. Equivocation:

H(Xn|sU ,mX) = H(Xn,mX , sU)−H(mX , sU) (6.85)

= H(Xn) +H(mX , sU |Xn)−H(mX , sU) (6.86)

= H(Xn) +H(sU |Xn)−H(mX , sU) (6.87)

≥ H(Xn) +H(sU |Xn)−H(sU)−H(mX) (6.88)

= H(Xn)−H(mX)− I(Xn; sU) (6.89)

≥ H(Xn)− nH(X|U, V )− I(Xn; sU) (6.90)

= nI(X;U, V )− I(Xn; sU) (6.91)

≥ nI(X;U, V )− I(Xn;Un) (6.92)

≥ nI(X;U, V )− nI(X;U)− nε
′

n (6.93)

= n(I(X;V |U)− ε
′

n) (6.94)

where (6.87) follows from the fact that mX is the bin index of the sequence Xn,

(6.88) follows from the fact that conditioning reduces entropy, (6.90) follows

from the fact that H(mX) ≤ log(2nH(X|U,V )), (6.92) follows from the fact that

sU is the bin index of the sequence Un, i.e., sU → Un → Xn forms a Markov

chain and subsequently using the data processing inequality. To prove (6.93),

we define a random variable µ(Xn, Un), as follows,

µ(xn, un) =















1, if (xn, un) ∈ A
(n)
ε (p(x, u));

0, otherwise.

(6.95)
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where A
(n)
ε (p(x, u)) is the set of typical (xn, un) sequences with respect to p(x, u)

[14]. We now prove (6.93) as follows,

I(Xn;Un) ≤ I(Xn;Un, µ(Xn, Un)) (6.96)

= I(Xn;µ(Xn, Un)) + I(Xn;Un|µ(Xn, Un)) (6.97)

≤ H(µ(Xn, Un)) + I(Xn;Un|µ(Xn, Un)) (6.98)

≤ 1 + I(Xn;Un|µ(Xn, Un)) (6.99)

= 1 + Pr(µ(Xn, Un) = 0)I(Xn;Un|µ(Xn, Un) = 0)+

Pr(µ(Xn, Un) = 1)I(Xn;Un|µ(Xn, Un) = 1) (6.100)

≤ 1 + Pr(µ(Xn, Un) = 0)H(Xn)+

Pr(µ(Xn, Un) = 1)I(Xn;Un|µ(Xn, Un) = 1) (6.101)

≤ 1 + nεH(X) + Pr(µ(Xn, Un) = 1)I(Xn;Un|µ(Xn, Un) = 1)

(6.102)

≤ 1 + nεH(X) + I(Xn;Un|µ(Xn, Un) = 1) (6.103)

= 1 + nεH(X)+

∑

(xn,un)∈A(n)
ε (p(x,u))

p(xn, un)
[

log(p(xn, un))− log(p(xn))− log(p(un))
]

(6.104)

≤ 1 + nεH(X)+

∑

(xn,un)∈A(n)
ε (p(x,u))

np(xn, un)
[

H(X) +H(U)−H(X,U) + 3ε
]

(6.105)
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= 1 + nεH(X) + n(I(X;U) + 3ε)Pr(A(n)ε (p(x, u))) (6.106)

≤ 1 + nεH(X) + n(I(X;U) + 3ε) (6.107)

= 1 + n(I(X;U) + ε(3 +H(X))) (6.108)

where (6.102) follows from the fact that Xn is i.i.d. and (6.105) follows from

the property of jointly typical sequences. This implies that,

1

n
I(Xn;Un) ≤ I(X;U) +

1

n
+ ε(3 +H(X)) (6.109)

= I(X;U) + ε
′

n (6.110)

where

ε
′

n ,
1

n
+ ε(3 +H(X)) (6.111)

We therefore have the proof of (6.93). We remark here that this proof is simi-

lar to a technique used in equivocation computation for the degraded wiretap

channel [68, Lemma 8], and for the interference and broadcast channels with

confidential messages [42, Lemma 3].
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Continuing from (6.94),

lim
n→∞

1

n
H(Xn|sU ,mX) ≥ I(X;V |U)− lim

n→∞
ε
′

n (6.112)

= I(X;V |U) (6.113)

≥ min(I(X;V |U), Ry) (6.114)

where in (6.113), we have used the fact that ε
′

n → 0 as n → ∞, and (6.114)

follows from the fact that min(I(X;V |U), Ry) ≤ I(X;V |U). We therefore have

∆ ≤ min(I(X;V |U), Ry) (6.115)

is achievable. This completes the achievability part for the case of two-sided

helper.

Converse

The only difference in the converse part for the case of two-sided helper is when

deriving an upper bound on the equivocation rate of the eavesdropper:

H(Xn|Jx) = H(Xn, Jy|Jx)−H(Jy|Xn, Jx) (6.116)

= H(Jy|Jx)−H(Jy|Xn, Jx) +H(Xn|Jx, Jy) (6.117)

≤ I(Xn; Jy|Jx) + nεn (6.118)

=
n
∑

i=1

I(Xi; Jy|Jx, X i−1) + nεn (6.119)
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=
n
∑

i=1

I(Xi; Jy, X
i−1|Jx, X i−1) + nεn (6.120)

= nI(X;V |U) + nεn (6.121)

where we have defined

Vi = (Jy, X
i−1) (6.122)

Ui = (Jx, X
i−1) (6.123)

and

X = XQ, Y = YQ, V = (Q, VQ), U = (Q,UQ) (6.124)

We also have,

H(Xn|Jx) = H(Xn, Jy|Jx)−H(Jy|Xn, Jx) (6.125)

= H(Jy|Jx)−H(Jy|Xn, Jx) +H(Xn|Jx, Jy) (6.126)

≤ H(Jy|Jx) + nεn (6.127)

≤ H(Jy) + nεn (6.128)

≤ nRy + nεn (6.129)
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This implies

∆ ≤ min(I(X;V |U), Ry) (6.130)

The joint distribution of the involved random variables is as follows,

pout(x, y, v, u) = p(x, y)p(v|y)pout(u|x, v, y) (6.131)

Note that in the achievability proof of Theorem 6.2, joint distributions of the following

form are permitted,

pach(x, y, v, u) = p(x, y)p(v|y)pach(u|x, v) (6.132)

i.e, we have the Markov chain, Y → (X,V ) → U . With the definition of V and U

as in (6.122)-(6.123), these random variables do not satisfy this Markov chain. This

implies that what we have shown so far is the following,

R2−sided ⊆ Rout (6.133)

where

Rout =
{

(Rx, Ry,∆) : Rx ≥ H(X|V ) (6.134)

Ry ≥ I(Y ;V ) (6.135)

∆ ≤ min(I(X;V |U), Ry)
}

(6.136)
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where the joint distribution of the involved random variables is as given in (6.131).

However, we observe that the term I(X;V |U) depends only on the marginal

pout(u|x, v). Similarly, the terms H(X|V ) and I(X;V ) depend only on the marginal

p(x, v). We use these observations to show that the region Rout is the same when it

is evaluated using the joint distributions of the form given in (6.132). This is clear

by noting that once we are given a distribution of the form given in (6.131), we can

construct a new distribution of the form given in (6.132) with the same rate expres-

sions. Consider any distribution pout(x, y, v, u) of the form given in (6.131). Using

pout(x, y, v, u), compute the marginal pout(u|x, v) as,

pout(u|x, v) =

∑

y p
out(x, y, u, v)

p(x, v)
(6.137)

We now construct a distribution pach(x, y, v, u) ∈ Pach as,

pach(x, y, v, u) = p(x, y)p(v|y)pout(u|x, v) (6.138)

such that the terms I(X;V |U), H(X|V ) and I(X;V ) are the same whether they are

evaluated according to pout(x, y, v, u) or according to pach(x, y, v, u). Therefore, we

conclude that it suffices to consider input distributions satisfying the Markov chain

Y → (X,V )→ U when evaluating Rout and hence Rout = Rach. This completes the

converse part.

Returning to the remark at the end of Section 6.9.1, we observed that the converse

for Theorem 6.1 can be proved by defining Vi as (Jy, X
i−1) or as (Jy, Y

i−1). On the
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other hand, we are only able to prove the converse for Theorem 6.2 by defining

Vi = (Jy, X
i−1). This is same as the definition of Vi as in [59], [47].

We therefore have two similarities with the converse for the rate-distortion function

with common coded side information [33], [59], [47]: the first being the definition of

Vi, and the second being the equivalence of Rout when evaluated according to (6.131)

or according to (6.132).

6.9.3 Proof of Theorem 6.3

Achievability

Fix the distribution p(x, y, w, z, v1, v2, u) = p(x, y)p(w, z|x)p(v1, v2|y)p(u|x, v1, v2).

1. Codebook generation at Helen: From the conditional probability distribution

p(v1, v2|y) compute p(v1) =
∑

(y,v2)
p(y)p(v1, v2|y) and

p(v2) =
∑

(y,v1)
p(y)p(v1, v2|y). Generate 2nI(V1;Y ) sequences v1(l) independently

according to
∏n

i=1 p(v1i), where l = 1, . . . , 2nI(V1;Y ). Bin these sequences uni-

formly and independently in 2n(I(V1;Y )−I(V1;W )) bins. Denote the bin index of the

sequence v1(l) as bV1(v1(l)).

Next generate 2nI(V2;Y,V1) sequences v2(j) independently according to
∏n

i=1 p(v2i),

where j = 1, . . . , 2nI(V2;Y,V1). Bin these sequences uniformly and independently

in 2n(I(V2;Y,V1)−I(V2;W,V1)) bins. Denote the bin index of the sequence v2(j) as

bV2(v2(j)).

2. Codebook generation at Alice: From the distribution p(u|x, v1, v2), compute
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p(u). Generate 2nI(X,V1,V2;U) sequences u(s) independently according to
∏n

i=1 p(ui),

where s = 1, . . . , 2nI(X,V1,V2;U). Next, bin these sequences uniformly into

2n(I(X,V1,V2;U)−I(W,V1,V2;U)) bins.

Also, randomly bin the xn sequences into 2nH(X|U,V1,V2,W ) bins and index these

bins as m = 1, . . . , 2nH(X|U,V1,V2,W ).

3. Encoding at Helen: On observing the sequence yn, Helen tries to find a sequence

v1(l) such that (v1(l), y
n) are jointly typical. From rate-distortion theory, we

know that there exists one such sequence. Helen sends the bin index bV1(v1(l))

of the sequence v1(l) on the secure link which is received by Alice and Bob.

Helen also finds a sequence v2(j) such that (v1(l), v2(j), y
n) are jointly typical.

From rate-distortion theory, we know that there exists one such sequence. Helen

sends the bin index bV2(v2(j)) of the sequence v2(j) on the insecure link which

is received by Alice, Bob and Eve.

4. Encoding at Alice: On observing the sequence xn, Alice first finds the bin

index mX in which the sequence xn falls. Alice also receives the bin indices

bV1(v1(l)) and bV2(v2(j)) from Helen. She first looks for a unique v̂1(l) in the bin

bV1(v1(l)) such that (xn, v̂1(l)) are jointly typical. Alice can estimate the correct

sequence v1(l) as long as the number of sequences in each bin is less than

2nI(X;V1). Note from the codebook generation step at Helen, that the number of

v1 sequences in each bin is approximately 2nI(V1;Y )/2n(I(V1;Y )−I(V1;W )) = 2nI(V1;W ).

Since V1 → X → W forms a Markov chain, we have I(V1;W ) ≤ I(V1;X) and

therefore the number of v1 sequences in each bin is less than 2nI(X;V1) and
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consequently Alice can estimate the correct sequence v1(l).

Using xn and v̂1(l), Alice looks for a unique v̂2(j) in the bin bV2(v2(j)) such that

(xn, v̂1(l), v̂2(j)) are jointly typical. Alice can estimate the correct sequence

v2(j) as long as the number of sequences in each bin is less than 2nI(X,V1;V2).

The number of v2(j) sequences in each bin is 2nI(W,V1;V2). From the Markov

chain W → X → (V1, V2), we have I(W,V1;V2) ≤ I(X,V1;V2) and therefore

Alice can correctly estimate the sequence v2(j).

She next finds a sequence u such that (u, v̂1(l), v̂2(j), x
n) are jointly typical. Let

the bin index of this resulting u sequence be sU .

Alice transmits the pair (sU ,mX) which is received by Bob and Eve. The total

rate used by Alice is I(X;U |V1, V2,W ) +H(X|U, V1, V2,W ) = H(X|V1, V2,W ).

5. Decoding at Bob: On receiving the pair (sU ,mX) from Alice and the bin indices

bV1(v1(l)) and bV2(v2(j)) from Helen, Bob looks for a unique v̂1(l) in the bin

bV (v1(l)) such that (wn, v̂1(l)) are jointly typical. He can estimate the correct

sequence v1(l) with high probability since the number of v1 sequences in each

bin is approximately 2nI(V1;W ). Using the estimate v̂1(l) and wn, he looks for a

unique v̂2(j) in the bin bV2(v2(j)) such that (wn, v̂1(l)), v̂2(j)) are jointly typical.

With high probability, the correct sequence v2(j) can be decoded by Bob since

the number of v2 sequences in each bin is approximately 2nI(V2;W |V1).

He next searches the bin sU for a sequence û such that (û, v̂1(l), v̂2(j), w
n) are

jointly typical. Since the number of u sequences in each auxiliary bin is approx-

imately 2nI(X,V1,V2;U)/2n(I(X,V1,V2;U)−I(W,V1,V2;U)) which is 2nI(W,V1,V2;U), with high
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probability, Bob will be able to obtain the correct u sequence.

Using the estimates û, v̂1(l), and v̂2(j), Bob searches for a unique xn se-

quence in the bin mX such that (û, v̂1(l), v̂2(j), w
n, xn) are jointly typical. This

is possible since the number of xn sequences in each bin is approximately

2nH(X)/2nH(X|U,V1,V2,W ), i.e., 2nI(U,V1,V2,W ;X). Therefore, Bob can correctly de-

code the xn sequence with high probability.

6. Equivocation:

H(Xn|sU ,mX , bV2 , Z
n) = H(Xn,mX , sU , bV2 |Zn)−H(mX , sU , bV2 |Zn) (6.139)

= H(Xn|Zn) +H(mX , sU , bV2 |Xn, Zn)−H(mX , sU , bV2 |Zn)

(6.140)

= H(Xn|Zn) +H(sU , bV2 |Xn, Zn)−H(mX , sU , bV2 |Zn)

(6.141)

≥ H(Xn|Zn) +H(sU , bV2 |Xn, Zn)−H(mX |Zn)

−H(sU , bV2 |Zn) (6.142)

≥ H(Xn|Zn) +H(sU , bV2 |Xn, Zn)−H(mX)

−H(sU , bV2 |Zn) (6.143)

≥ H(Xn|Zn) +H(sU , bV2 |Xn, Zn)− nH(X|U, V1, V2,W )

−H(sU , bV2 |Zn) (6.144)
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= H(Xn|Zn)− I(sU , bV2 ;X
n|Zn)− nH(X|U, V1, V2,W ) (6.145)

≥ H(Xn|Zn)− I(Un, V n
2 ;Xn|Zn)− nH(X|U, V1, V2,W ) (6.146)

≥ H(Xn|Zn)− nI(U, V2;X|Z)− nH(X|U, V1, V2,W )− nε
′

n (6.147)

= nH(X|Z)− nI(U, V2;X|Z)− nH(X|U, V1, V2,W )− nε
′

n (6.148)

= n(H(X|U, V2, Z)−H(X|U, V1, V2,W ))− nε
′

n (6.149)

= n(I(X;V1|U, V2,W ) + I(X;W |U, V2)− I(X;Z|U, V2))− nε
′

n (6.150)

where (6.141) follows from the fact that mX is the bin index of the sequence

Xn, (6.142) and (6.143) follow from the fact that conditioning reduces entropy,

(6.144) follows from the fact that H(mX) ≤ log(2nH(X|U,V1,V2,W )), (6.146) follows

from the fact that sU is the bin index of the sequence Un and bV2 is the bin

index of the sequence V n
2 . We will prove (6.147) as follows. Let us define a

random variable µ(Xn, Zn, Un, V n
2 ), as follows,

µ(xn, zn, un, vn2 ) =















1, if (xn, zn, un, vn2 ) ∈ A
(n)
ε (p(x, z, u, v2));

0, otherwise.

(6.151)

where A
(n)
ε (p(x, z, u, v2)) is the set of typical (xn, zn, un, vn2 ) sequences with re-

spect to p(x, z, u, v2) [14]. We now prove (6.147) as follows,

I(Xn;Un, V n
2 |Zn) ≤ I(Xn;Un, V n

2 , µ(X
n, Zn, Un, V n

2 )|Zn) (6.152)

264



= I(Xn;µ(Xn, Zn, Un, V n
2 )|Zn)+

I(Xn;Un, V n
2 |Zn, µ(Xn, Zn, Un, V n

2 )) (6.153)

≤ H(µ(Xn, Zn, Un, V n
2 )) + I(Xn;Un, V n

2 |Zn, µ(Xn, Zn, Un, V n
2 )) (6.154)

≤ 1 + I(Xn;Un, V n
2 |Zn, µ(Xn, Zn, Un, V n

2 )) (6.155)

= 1 + Pr(µ = 0)I(Xn;Un, V n
2 |Zn, µ = 0)+

Pr(µ = 1)I(Xn;Un, V n
2 |Zn, µ = 1) (6.156)

≤ 1 + Pr(µ = 0)H(Xn|Zn)+

Pr(µ = 1)I(Xn;Un, V n
2 |Zn, µ = 1) (6.157)

≤ 1 + nεH(X|Z) + Pr(µ = 1)I(Xn;Un, V n
2 |Zn, µ = 1) (6.158)

≤ 1 + nεH(X|Z) + I(Xn;Un, V n
2 |Zn, µ = 1) (6.159)

= 1 + nεH(X|Z)+

∑

(xn,zn,un,vn2 )∈A
(n)
ε (p(x,u,v2|z))

p(xn, un, vn2 , z
n)
[

log(p(xn, un, vn2 |zn))−

log(p(xn|zn))− log(p(un, vn2 |zn))
]

(6.160)

≤ 1 + nεH(X|Z)+

∑

(xn,zn,un,vn2 )∈A
(n)
ε (p(x,u,v2|z))

np(xn, un, vn2 , z
n)
[

H(X|Z)+

H(U, V2|Z)−H(X,U, V2|Z) + 3ε
]

(6.161)

= 1 + nεH(X|Z) + n(I(X;U, V2|Z) + 3ε)Pr(A(n)ε (p(x, z, u, v2))) (6.162)

≤ 1 + nεH(X|Z) + n(I(X;U, V2|Z) + 3ε) (6.163)

= 1 + n(I(X;U, V2|Z) + ε(3 +H(X|Z))) (6.164)
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where (6.158) follows from the fact that the pair (Xn, Zn) is i.i.d. and (6.161)

follows from the property of jointly typical sequences. This implies that,

1

n
I(Xn; sU , bV2 |Zn) ≤ I(X;U, V2|Z) +

1

n
+ ε(3 +H(X|Z)) (6.165)

= I(X;U, V2|Z) + ε
′

n (6.166)

where

ε
′

n ,
1

n
+ ε(3 +H(X|Z)) (6.167)

This completes the proof of (6.147).

Continuing from (6.150), we have,

lim
n→∞

1

n
H(Xn|sU ,mX , bV2 , Z

n) ≥ I(X;V1|U, V2,W )+

I(X;W |U, V2)− I(X;Z|U, V2)− lim
n→∞

ε
′

n

(6.168)

= I(X;V1|U, V2,W )+

I(X;W |U, V2)− I(X;Z|U, V2) (6.169)

≥ min(Rsec, I(X;V1|U, V2,W ))+

I(X;W |U, V2)− I(X;Z|U, V2) (6.170)

This completes the achievability part.
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Converse

Let the coded outputs of the helper be denoted as (Jsec, Jins), where Jsec denotes the

coded output of the secure link, Jins denotes the coded output of the insecure link,

and the output of Alice be denoted as Jx, i.e.,

(Jsec, Jins) = fy(Y
n) and Jx = fx(X

n, Jsec, Jins) (6.171)

First note that, for noiseless reconstruction of the sequence Xn at Bob, we have by

Fano’s inequality

H(Xn|Jx, Jsec, Jins,W n) ≤ nεn (6.172)

We start by obtaining a lower bound on Rx, the rate of Alice, as follows,

nRx ≥ H(Jx) (6.173)

≥ H(Jx|Jsec, Jins,W n) (6.174)

= H(Xn, Jx|Jsec, Jins,W n)−H(Xn|Jx, Jsec, Jins,W n) (6.175)

≥ H(Xn, Jx|Jsec, Jins,W n)− nεn (6.176)

≥ H(Xn|Jsec, Jins,W n)− nεn (6.177)

=
n
∑

i=1

H(Xi|X i−1, Jsec, Jins,W
n)− nεn (6.178)

=
n
∑

i=1

H(Xi|Jsec, Jins, X i−1,W n
i+1,Wi)− nεn (6.179)
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≥
n
∑

i=1

H(Xi|Jsec, Jins, Y i−1, X i−1,W n
i+1,Wi)− nεn (6.180)

=
n
∑

i=1

H(Xi|V1i, V2i,Wi)− nεn (6.181)

= nH(X|V1, V2,W )− nεn (6.182)

where (6.176) follows by (6.172) and (6.179) follows from the following Markov chain,

W i−1 → (Jsec, Jins, X
i−1,W n

i+1,Wi)→ Xi (6.183)

In (6.181), we have defined

V1i = (Jsec, Y
i−1, X i−1,W n

i+1) (6.184)

V2i = Jins (6.185)

We next obtain a lower bound on Rsec, the rate of the secure link,

nRsec ≥ H(Jsec) (6.186)

≥ H(Jsec|W n) (6.187)

≥ I(Jsec;Y
n|W n) (6.188)

=
n
∑

i=1

I(Jsec, Y
i−1,W i−1,W n

i+1;Yi|Wi) (6.189)

=
n
∑

i=1

I(Jsec, Y
i−1,W n

i+1;Yi|Wi) (6.190)

=
n
∑

i=1

I(Jsec, Y
i−1, X i−1,W n

i+1;Yi|Wi) (6.191)
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=
n
∑

i=1

I(V1i;Yi|Wi) (6.192)

= nI(V1;Y |W ) (6.193)

where (6.190) and (6.191) follow from the Markov chain

(X i−1,W i−1)→ (Jsec, Y
i−1,W n

i+1)→ Yi (6.194)

Next, we provide a lower bound on Rins, the rate of the insecure link,

nRins ≥ H(Jins) (6.195)

≥ H(Jins|Jsec,W n) (6.196)

≥ H(Jins|Jsec,W n)−H(Jins|Jsec, Y n) (6.197)

= I(Jins;Y
n|Jsec)− I(Jins;W

n|Jsec) (6.198)

=
n
∑

i=1

I(Jins;Yi|Jsec, Y i−1,W n
i+1)− I(Jins;Wi|Jsec, Y i−1,W n

i+1) (6.199)

=
n
∑

i=1

I(Jins;Yi|Jsec, Y i−1, X i−1W n
i+1)− I(Jins;Wi|Jsec, Y i−1, X i−1,W n

i+1)

(6.200)

=
n
∑

i=1

I(V2i;Yi|V1i)− I(V2i;Wi|V1i) (6.201)

=
n
∑

i=1

I(V2i;Yi|Wi, V1i) (6.202)

= nI(V2;Y |W,V1) (6.203)

where (6.199) follows from the Csiszar’s sum lemma [16], and (6.200) follows from
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the following Markov chain,

X i−1 → (Jsec, Y
i−1,W n

i+1)→ (Jins, Yi,Wi) (6.204)

We now have the main step, i.e., an upper bound on the equivocation rate of the

eavesdropper,

H(Xn|Jx, Jins, Zn) = H(Xn, Zn|Jx, Jins)−H(Zn|Jx, Jins) (6.205)

= H(Xn,W n, Jsec, Z
n|Jx, Jins)−H(Zn|Jx, Jins)

−H(W n, Jsec|Xn, Zn, Jx, Jins) (6.206)

= H(W n, Jsec|Jx, Jins) +H(Xn|W n, Jx, Jsec, Jins) +H(Zn|Xn,W n)

−H(Zn|Jx, Jins)−H(W n|Xn, Zn)−H(Jsec|Xn, Jx, Jins,W
n)

(6.207)

= (H(W n|Jx, Jins)−H(Zn|Jx, Jins))− (H(W n|Xn, Zn)

−H(Zn|Xn,W n)) + I(Jsec;X
n|Jx, Jins,W n)

+H(Xn|W n, Jx, Jsec, Jins) (6.208)

≤ (H(W n|Jx, Jins)−H(Zn|Jx, Jins))− (H(W n|Xn, Zn)

−H(Zn|Xn,W n)) + I(Jsec;X
n|Jx, Jins,W n) + nεn (6.209)

where (6.207) follows from the Markov chain Y n → Xn → (W n, Zn) and (6.209)
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follows by (6.172). Now, using Csiszar’s sum lemma [16], we have

H(W n|Jx, Jins)−H(Zn|Jx, Jins) =
n
∑

i=1

H(Wi|Z i−1,W n
i+1, Jx, Jins)

−
n
∑

i=1

H(Zi|Z i−1,W n
i+1, Jx, Jins) (6.210)

and we also have,

H(W n|Xn, Zn)−H(Zn|Xn,W n) = H(W n|Xn)−H(Zn|Xn) (6.211)

=
n
∑

i=1

H(Wi|Xi)−
n
∑

i=1

H(Zi|Xi) (6.212)

=
n
∑

i=1

H(Wi|Xi, Z
i−1,W n

i+1, Jx, Jins)

−
n
∑

i=1

H(Zi|Xi, Z
i−1,W n

i+1, Jx, Jins) (6.213)

where (6.212) follows from the memorylessness of the sources and (6.213) follows from

the Markov chain Y n → Xn → (W n, Zn). Now, defining,

Ui = (Jx, Z
i−1,W n

i+1) (6.214)

and

X = XQ, Y = YQ, Z = ZQ, W = WQ (6.215)

V1 = (Q, V1Q), V2 = (Q, V2Q), U = (Q,UQ) (6.216)
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we have from (6.210) and (6.213),

H(W n|Jx, Jins)−H(Zn|Jx, Jins) = n(H(W |U, V2)−H(Z|U, V2)) (6.217)

H(W n|Xn, Zn)−H(Zn|Xn,W n) = n(H(W |X,U, V2)−H(Z|X,U, V2)) (6.218)

Now consider,

I(Jsec;X
n|Jx, Jins,W n) =

n
∑

i=1

I(Jsec;Xi|Jx, Jins,W n, X i−1) (6.219)

=
n
∑

i=1

H(Xi|Jx, Jins,W n, X i−1)

−
n
∑

i=1

H(Xi|Jx, Jins, Jsec,W n, X i−1) (6.220)

=
n
∑

i=1

H(Xi|Jx, Jins,Wi, X
i−1,W n

i+1)

−
n
∑

i=1

H(Xi|Jx, Jins, Jsec,Wi, X
i−1,W n

i+1) (6.221)

=
n
∑

i=1

H(Xi|Jx, Jins,Wi, X
i−1, Z i−1,W n

i+1)

−
n
∑

i=1

H(Xi|Jx, Jins, Jsec,Wi, X
i−1, Z i−1,W n

i+1) (6.222)

≤
n
∑

i=1

H(Xi|Jx, Jins,Wi, Z
i−1,W n

i+1)

−
n
∑

i=1

H(Xi|Jx, Jins, Jsec,Wi, X
i−1, Z i−1,W n

i+1) (6.223)

≤
n
∑

i=1

H(Xi|Jx, Jins,Wi, Z
i−1,W n

i+1)

−
n
∑

i=1

H(Xi|Jx, Jins, Jsec,Wi, X
i−1, Y i−1, Z i−1,W n

i+1)

(6.224)
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=
n
∑

i=1

H(Xi|Ui,Wi, V2i)−
n
∑

i=1

H(Xi|Ui,Wi, V2i, V1i) (6.225)

=
n
∑

i=1

I(Xi;V1i|Wi, Ui, V2i) (6.226)

= nI(X;V1|W,U, V2) (6.227)

We also have

I(Jsec;X
n|Jx, Jins,W n) ≤ H(Jsec) (6.228)

≤ nRsec (6.229)

Therefore, we have

I(Jsec;X
n|Jx, Jins,W n) ≤ nmin(Rsec, I(X;V1|W,U, V2)) (6.230)

Finally, on substituting (6.217), (6.218) and (6.230) in (6.209), we arrive at

H(Xn|Jx, Jins, Zn) ≤ n(min(Rsec, I(X;V1|W,U, V2)) + I(X;W |U, V2)

− I(X;Z|U, V2) + εn) (6.231)

This implies

∆ ≤ min(Rsec, I(X;V1|W,U, V2)) + I(X;W |U, V2)− I(X;Z|U, V2) (6.232)
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Also note that the following is a Markov chain,

(V1, V2)→ Y → X → (W,Z) (6.233)

Therefore, the joint distribution of the involved random variables is

pout(x, y, w, z, v1, v2, u) = p(x, y)p(w, z|x)p(v1, v2|y)p(u|x, v1, v2, y) (6.234)

On the other hand, the joint distribution of the involved random variables in the

achievability proof of Theorem 6.3 is in the following form,

pach(x, y, w, z, v1, v2, u) = p(x, y)p(w, z|x)p(v1, v2|y)p(u|x, v1, v2) (6.235)

i.e., they satisfy the Markov chain Y → (X,V1, V2)→ U . Now using the observation

that I(X;W |U, V1, V2) depends on the marginal p(x,w, u, v1, v2) and I(X;Z|U, V1, V2)

depends on the marginal p(x, z, u, v1, v2) and using similar arguments used in the

converse proof of Theorem 6.2, it can be shown that it suffices to consider distributions

of the form given in (6.235) when evaluating our outer bound. This completes the

proof of the converse part.
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Chapter 7

Conclusions

In this dissertation, we studied three important aspects of wireless networks, namely

feedback, relaying and cooperation. Feedback and user cooperation are two important

phenomena which need to be investigated to obtain performance limits for wireless

networks. For this purpose, we studied the multiple access channel and the inter-

ference channel with generalized feedback and developed new outer bounds on the

respective capacity regions. We focused on several forms of feedback, namely, noise-

less feedback, noisy feedback and user cooperation. For the Gaussian multi-user

channels with feedback and cooperation, we proposed a new approach to deal with

auxiliary random variables. Our approach sheds light on the shortcomings of the

maximum entropy theorem when dealing with noisy feedback and user cooperation

models. Furthermore, we believe that this approach can be useful for other problems

in multi-user information theory.

We studied the effects of relaying by first considering a special class of primitive

relay channels. We focused on the state-dependent channel, where a relay can observe

the channel state and help in data transmission by communicating the channel state

through an orthogonal finite-capacity link to the receiver. We obtained a new outer
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bound on the capacity of this channel and showed that this bound also yields a new

capacity result. We studied another variation of this problem, where the channel

state information is available to the transmitter in a rate-limited manner.

In several communication scenarios, it might be the case that there is no direct

link between the transmitter and the receiver. Therefore, any communication between

them is possible only through the help of intermediate relay nodes. This scenario is

modelled by the parallel relay network or the diamond channel. We studied the class

of diamond channels, where the source is connected to the relays through an arbitrary

memoryless broadcast channel and the relays communicate to the destination through

an orthogonal multiple access channel. For this model, we established the capacity

when the broadcast channel is deterministic. We also studied the model where the

relays are partially separated from each other and established the capacity for two

sub-classes of such channels. Using this result, we showed that feedback from the

destination to the relays can strictly increase the capacity of the diamond channel.

In several sensor network scenarios, involving distributed compression of sources,

there might be adversarial nodes. The goal is to transmit the source reliably to the

legitimate nodes but leak as little information as possible to the adversarial nodes.

To take this into account, we considered information theoretic secrecy, where we aim

to limit the information leakage to the eavesdropper. For this purpose, we considered

a secure source coding problem with coded side information from a helper to the le-

gitimate user. We first provided the characterization of the rate-equivocation region

for this problem. We generalized this result for two different models with increasing

complexity. We characterized the rate-equivocation region for the case of two-sided
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helper. For this model, we showed that Slepian-Wolf binning alone is insufficient and

using our achievable scheme, one attains strictly larger equivocation at the eavesdrop-

per than the case of one-sided helper. We also considered the situation when there

are both secure and insecure rate-limited links from the helper and characterized the

rate-equivocation region.
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