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Multiple antenna wireless communications systems are known to provide very

large data rates, when perfect channel state information (CSI) is available at the

receiver and the transmitter. Availability of perfect CSI at the receiver requires the

receiver to perform a noise-free, multi-dimensional channel estimation, without using

communication resources. Similarly, availability of perfect and instantaneous CSI

at the transmitter requires a feedback scheme that sends the estimated CSI to the

transmitter in its entirety and error-free. However, in practice, any channel estimation

is noisy and uses system resources, and any feedback scheme is limited.

This thesis is devoted to the study of the effects of noisy channel estimation at the

receiver and partial CSI at the transmitters on the optimum transmit strategies for

Gaussian multi-input multi-output (MIMO) systems. The main focus of the thesis

is on achievable rate maximization problems, solutions of which give the optimum

resource allocation and channel estimation schemes for single-user and multi-user

MIMO systems.



In the first part of the thesis, we focus on the effects of having non-perfect CSI at

the transmitter side when the receiver is assumed to estimate the channel perfectly.

We consider the capacity of a point-to-point channel and the sum-capacity of a MIMO

multiple access channel (MAC). We analyze both the single-user and the multi-user

MIMO systems from three different viewpoints. First, we consider a finite-sized sys-

tem, and find the optimum transmit directions, and optimum power allocations along

these directions, as well as beamforming optimality conditions. Second, we analyze

the effects of increasing the number of users in the system, and show that the region

where beamforming is optimal gets larger with the increasing number of users. Third,

we consider the asymptotic case where the number of users is large, and show that

beamforming is always optimal.

In the second part of the thesis, we consider the effects of channel estimation error

at the receiver when partial CSI, in the form of covariance feedback, is available at the

transmitter side. We solve the trade-off between estimating the channel better and

increasing the achievable data rate. We consider a block fading MIMO channel, where

each block is divided into training and data transmission phases. The receiver has a

noisy CSI that it obtains through a channel estimation process. In both single-user

and multi-user cases, we optimize the achievable rate jointly over the parameters of

the training and data transmission phases. In particular, we first choose the training

signal to minimize the channel estimation error, and then, we develop an iterative

algorithm to solve for the optimum training duration, the optimum allocation of

power between training and data transmission phases, and the optimum allocation of

power over the antennas during the data transmission phase.
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Chapter 1

Introduction

Over the last decade, the popularity of wireless applications has risen tremen-

dously, and there is an ever increasing demand for higher data transmission rates.

This demand stimulated a significant amount of research on wireless communications.

Wireless communications is particularly challenging due to its unique characteristics

such as random fluctuations in the channel and multi-user interference. In addition,

in most of the future wireless systems, for example in the next generation cellular

networks and wireless local area networks, the use of multiple antennas at both the

transmitters and the receivers is proposed in order to achieve higher data rates. This

adds another dimension to the already challenging problem of designing wireless sys-

tems with high data rates.

Achievable rates in a wireless communication system depend on how random fluc-

tuations in the channel, which is called fading, and multi-user interference are handled.

When fading is considered, achievable rates depend crucially on how well the channel

state is estimated at the receiver and how much of the channel state knowledge is
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available at the transmitters. The channel state information (CSI) is observed only

by the receiver, which can estimate it and feed the estimated CSI back to the trans-

mitter. Theoretically, by using the perfect channel knowledge for signal detection at

the receiver and for channel adaptive transmission at the transmitter, one can obtain

the highest possible data rates.

Single-antenna systems, with perfect CSI available at both the receiver and the

transmitter, have been very well studied. In a single-user system, the optimum chan-

nel adaptive transmission scheme that achieves the infromation theoretic capacity is

found to be water-filling in time by Goldsmith and Varaiya [7]. In a multiple access

channel (MAC), Knopp and Humblet [21] found the sum-capacity achieving scheme,

and the entire capacity region was found by Tse and Hanly [43]. For single-user

multi-input multi-output (MIMO) systems with perfect CSI available at both the

receiver and the transmitter, Telatar reported the first capacity results [42], which

can be identified as spatial water-filling, i.e., allocating power over the spatial chan-

nel dimensions that are created by the use of multiple antennas. In a MIMO-MAC,

sum-capacity achieving iterative water-filling algorithm is proposed by Yu et. al. [49].

In additive white Gaussian noise channels, when perfect CSI is available at the

receiver, the aforementioned capacity results are all achieved with Gaussian input

signaling. In single-antenna systems, when the channel is fading, the variance of the

Gaussian input signal is adapted to the realization of the channel. In Gaussian MIMO

channels, the optimum signaling that achieves the capacity is Gaussian as well, but

this time, the optimum covariance matrix of the transmit vector needs to be chosen.
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Finding the transmit covariance matrix, in turn, involves two components: finding the

optimum transmit directions, which are the eigenvectors of the transmit covariance

matrix and the optimum power allocation policies, which are the eigenvalues of the

transmit covariance matrix.

In [7], Goldsmith and Varaiya showed that for single-antenna systems, the result-

ing capacity does not decrease significantly when perfect CSI is not available at the

transmitter. However, the solution to the capacity maximization problem in a MIMO

system differs depending on the amount of information available at the transmitter

side. Therefore, a significant amount of research has been conducted for MIMO sys-

tems with different CSI models. There are four basic CSI models for the transmitter

side: i) the transmitter side does not know the state of the fading channel, i.e., no

CSI [5], [10], [42], ii) the transmitter side perfectly knows the state of the fading

channel, i.e., perfect CSI [42], [49], iii) the transmitter side knows the statistics of the

fading channel, i.e., partial CSI [3], [14], [46], and iv) the transmitter side knows the

quantized version of the realization of the channel, i.e., limited CSI [16], [29].

Although with perfect CSI at the receiver, one can obtain very high rates, when the

channel knowledge is not perfect, achievable rates decrease significantly. This decrease

is especially pronounced when there are multiple channels to estimate and feedback,

as in the case with multiple antennas. Moreover, measuring the CSI and feeding

it back to the transmitter uses communication resources, which could otherwise be

used for useful information transmission. One way of measuring the CSI is that the

transmitters send known training sequences, from which the receivers measure the
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channels. The receivers, then, extract the information (according to the feedback

model) from the estimated channel, and feed the extracted information back to the

transmitters. This overall process of estimating and feeding back CSI uses up time,

bandwidth and power.

Recently, motivated mostly by practical issues, systems with non-perfect CSI at

the receiver received more attention, but the research in this area mostly focused

on single-user communication systems. For systems with no CSI at the receiver,

[1] considered a single-antenna scenario, and [27], [51] considered a multi-antenna

scenario. When the CSI is estimated but noisy, the capacity and the corresponding

optimum signaling scheme are not known. However, lower and upper bounds for the

capacity are obtained in [20, 28, 47].

In spite of recent progress, multi-antenna systems with partial CSI at the trans-

mitter side and noisy CSI at the receiver side are not yet well-understood. In this

thesis, we focus on such problems in both single-user and multi-user MIMO fading

wireless communication systems. In particular, we analyze the effects of partial CSI

at the transmitter side, and noisy channel estimation at the receiver side on the opti-

mum transmit strategies that maximize the achievable data rates in wireless MIMO

communications.

In Chapter 2, we focus our attention to the effects of partial and no CSI at the

transmitters by assuming that the receiver has perfect CSI. In the partial CSI model,

the receiver collects the long term statistics of the channel, and feeds this information
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back to the transmitter. We assume that the statistics of the channel do not change.

When the fading in the channel is assumed to be a Gaussian process, statistics of the

channel reduce to the mean and covariance information of the channel. Therefore, in

Chapter 2, we consider three different CSI models, namely, no CSI model, partial CSI

with covariance feedback model, and partial CSI with mean feedback model. Since it

is already known that the capacity achieving input distribution is Gaussian, our goal

here is to find the optimum transmit covariance matrices that achieve the capacity in

a single-user system, and the sum-capacity in a MAC system.

For the no CSI model, [42] showed that the optimum transmit covariance matrix

is proportional to the identity matrix, which is full-rank. However, for the partial

CSI model, the rank of the transmit covariance matrix is determined by the structure

of the channel feedback matrix. For a single-user case, when the partial CSI is in

the form of either the covariance or the mean matrix of the channel, [3], [14], [46]

first found the eigenvectors of the optimum transmit covariance matrix, and then

the conditions on the covariance or mean matrix eigenvalues that guarantee that the

transmit covariance matrix is unit-rank, and therefore beamforming is optimal. In

the first part of Chapter 2, we extend these results to a MAC system. We first find

the eigenvectors of the optimum transmit covariance matrices of all users. Then, we

identify the necessary and sufficient conditions for the optimality of beamforming for

all users.

In the second part of Chapter 2, we consider the effects of increasing the number

of users on the region of channel parameters where beamforming is optimal. Here,

5



in the covariance feedback case, we prove that this region gets larger as new users

are added to the system. In the mean feedback case, this result does not necessarily

hold. Nevertheless, we see through simulations that as the number of users gets

large enough, the region where beamforming is optimal grows with the addition of

new users, in the mean feedback case as well. Motivated by these results and the

result of [31] which says that beamforming is optimal asymptotically (with respect

to the number of users) in a deterministic MIMO-MAC, we ask the question whether

beamforming is unconditionally optimal asymptotically in our case as well, where

the receiver has perfect CSI, but the transmitters have no or partial CSI. In the

remaining part of Chapter 2, we show that, in an asymptotically large system, unit-

rank transmit covariance matrices are optimal for all users for no CSI and partial CSI

models.

In Chapter 2, we mainly focus on the optimality of beamforming in a MIMO-MAC

system with partial CSI at the transmitters. When beamforming is optimal, i.e.,

the transmit covariance matrix is unit-rank, the optimum power allocation problem

is automatically solved. Since, when there is only one non-zero eigenvalue of the

transmit covariance matrix, it is optimum to allocate all of the available power to the

eigen-direction corresponding to that sole non-zero eigenvalue. However, for some

channel realizations, in a single-user MIMO or in a MIMO-MAC with finite number

of users, the channel statistics might be such that beamforming may never be optimal.

For such scenarios, the optimum power allocation policies, i.e., the eigenvalues of the

transmit covariance matrix, need to be solved.
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In a single-user MIMO system, when both the receiver and the transmitter have

perfect CSI and the channel is fixed, [42] showed that the optimum power allocation

policy is to water-fill over the singular values of the deterministic channel matrix. In

a multi-user MIMO-MAC system, when both the receiver and the transmitters have

perfect CSI and the channel is fixed, [49] showed that the the power allocation policy

can be found using an iterative algorithm that updates the power allocation policy

of one user at a time. When the channel is changing over time due to fading, and

perfect and instantaneous CSI is known both at the receiver and at the transmitter

side, these solutions extend to water-filling over both the antennas and the channel

states in single-user [42], and multi-user [50] MIMO systems.

However, for the covariance feedback case, there is no closed form solution for the

power allocation problem, and therefore efficient and globally convergent algorithms

are needed in order to solve for the optimum eigenvalues of the transmit covariance

matrices. References [17], [44, 45] proposed algorithms that solve this problem for a

single-user MISO system, and for a single-user MIMO system, respectively. However,

in both cases, the convergence proofs for these algorithms were not provided. In a

MIMO-MAC scenario with partial CSI available at the transmitters, no algorithm

was available to find the optimum eigenvalues in a multi-user setting.

In Chapter 3, first, we give an alternative derivation for the algorithm proposed in

[44,45] for a single-user MIMO system by enforcing the Karush-Kuhn-Tucker (KKT)

optimality conditions at each iteration. We prove that the convergence point of this

algorithm is unique and is equal to the optimum eigenvalue allocation. The proposed
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algorithm converges to this unique point starting from any point on the space of

feasible eigenvalues. Next, we consider the multi-user version of the problem. In

this case, the problem is to find the optimum eigenvalues of the transmit covariance

matrices of all users that maximize the sum-rate of the MIMO-MAC system. We

apply the single-user algorithm iteratively to reach the global optimum point. At any

given iteration, the multi-user algorithm updates the eigenvalues of one user, using

the algorithm proposed for the single-user case, assuming that the eigenvalues of the

remaining users are fixed. The algorithm iterates over all users in a round-robin

fashion. We prove that this algorithm converges to the unique global optimum power

allocation for all users.

For the case where the transmitters have partial CSI and the receiver has perfect

and instantaneous CSI, Chapters 2 and 3 provide a complete extension from single-

user to multi-user systems with finite and infinite numbers of users, including the

transient behavior of the system with increasing number of users. Although having

completely analyzed the effects of partial CSI at the transmitter side, Chapters 2 and

3 do not consider the problem of having non-perfect CSI at the receiver side; this will

be the focus of Chapter 4.

When we consider the effects of having noisy CSI at the receiver, how we obtain the

noisy CSI becomes part of the problem. One way of obtaining the channel estimate is

to use a training based channel estimation mechanism. In this case, the transmitter

sends a known training signal to the receiver, and the receiver estimates the CSI

using the output of the channel and the known training signal. The variance of the
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channel estimation error inversely affects the average signal-to-noise ratio (SNR), and

therefore, decreases the achievable rate.

In a training based estimation process, a block fading scenario is generally as-

sumed, where the channel remains constant for a block (T symbols), and changes

to an independent and identically distributed (i.i.d.) realization at the end of the

block. In order to estimate the channel, the receiver performs a linear minimum

mean square error (MMSE) estimation using training symbols over Tt symbols. Dur-

ing the remaining Td = T − Tt symbols, data transmission occurs. Intuitively, a

longer training phase will result in a better channel estimate and therefore a larger

achievable rate during the data transmission phase, since the channel estimation error

contributes to the effective noise. However, we use channel resources such as time

and power during the channel estimation process, which could otherwise be used for

data transmission. A longer training phase implies a shorter data transmission phase,

as the block length (coherence time) is fixed. A shorter data transmission phase, in

turn, implies a smaller achievable rate. Similarly, the more the training power, the

better the channel estimate will be. However, since the total power is fixed, a larger

training power will imply a smaller data transmission power, which will decrease the

achievable rate. In Chapter 4, we solve these trade-offs.

When the CSI at the receiver is not perfect, most of the research focuses on

single-user systems. The capacity and the corresponding optimum signaling scheme

for this case is not known. However, lower and upper bounds for the capacity can

be obtained [20, 28, 47]. It is important to note that [20, 28, 47] do not consider
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optimizing the channel estimation process, because of the assumption of the existence

of a separate channel that does not consume system resources for channel estimation.

For a single-user multiple-antenna system with no CSI available at the transmitter, [9]

considers optimizing the achievable rate as a function of both the training and the

data transmission phases.

In Chapter 4, we first consider a single-user, block-fading, correlated MIMO chan-

nel with noisy channel estimation at the receiver, and partial CSI available at the

transmitter. The partial CSI feedback that we consider is covariance feedback which

we also considered in Chapters 2 and 3. We consider the fact that the training phase

uses communication resources, and we optimize the achievable rate of the data trans-

mission phase over the parameters of the training and data transmission processes.

Our model differs from [9] in that we consider a correlated channel, which requires a

power allocation over the antennas, and we do not have a constraint on the training

signal duration, which might result in shorter training signals.

The training phase is characterized by three parameters, namely, the training

signal, the training sequence length and the training sequence power. Similarly, the

data transmission phase is characterized by the data carrying input signal, data trans-

mission length, and the data transmission power. Assuming that the receiver uses

linear MMSE detection to estimate the channel during the training phase, we first

choose the training signal that minimizes the MMSE. Then, we move to the data

transmission phase, and maximize the achievable rate of the data transmission phase

jointly over the rest of the training phase parameters, and the data transmission phase
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parameters.

In a multi-user setting, the amount of resources required to measure the channel

and to feed the estimated channel back to the transmitter increases substantially.

Therefore, it is especially important to find the optimum transmit strategies in a

MIMO-MAC with channel estimation error. In the second part of Chapter 4, we

extend our results for the single-user MIMO case to the MIMO-MAC case. Inter-

estingly, we find that the training signals of the users should be orthogonal in time.

At the end of Chapter 4, we also provide detailed simulation results that investigate

the effects of the power constraint, coherence interval (block length), and channel

covariance matrix on our results.

1.1 Contributions of the Thesis

In Chapter 2, for MIMO systems with partial CSI at the transmitters in the

form of covariance and mean information, our contribution is to provide a complete

extension from single-user to multi-user systems with finite and infinite numbers of

users, including the transient behavior of the system with increasing number of users.

In particular, we first find that the optimum transmit directions of each user are

the eigenvectors of its own channel covariance or mean matrix. Then, we find the

conditions under which beamforming is optimal for all users for both the covariance

and mean feedback models. We show in the covariance feedback model that the region

that is formed by these conditions gets larger when a new user is added to the system.
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At the end of Chapter 2, we show that beamforming is always optimal asymptotically

in the number of users for all three feedback models we consider. The results in this

chapter are published in [35], [36], [40].

Beamforming can be regarded as a special case of a power allocation policy. In

Chapter 3, we focus on the general case, and propose provably convergent iterative

algorithms that find the optimum power allocation policies, i.e., the eigenvalues of the

transmit covariance matrices, for both point-to-point and multiple access channels.

These algorithms are based on enforcing the KKT conditions at each iteration. Our

main contribution in Chapter 3 is the convergence proof of the proposed single-user

algorithm. Convergence is shown using the monotonicity property of the update func-

tion and the instability of the solution points that do not satisfy the KKT conditions.

The results in this chapter are published in [37], [38].

In Chapter 4, we investigate the effects of channel estimation error on the achiev-

able rate of a single-user and the achievable sum-rate of a multi-user MIMO channel,

when the transmitter side has partial CSI in the form of covariance feedback. In this

chapter, we consider a block fading channel, where a transmission block is divided

into training and data transmission phases. Our contributions provide a solution to

the data-rate optimization problem jointly over the training and data transmission

phases. In a single-user case, we first find the optimum training signal that minimizes

the mean square error of the channel estimation. Then, we develop an algorithm

that maximizes the achievable rate of the data transmission phase jointly in terms

the training and data transmission parameters. In the second part of Chapter 4, we
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extend our contributions to a multi-user scenario and study the effects of the power

constraint, coherence interval (block length), and channel covariance matrices, numer-

ically. The results in this chapter are submitted for publication in [33], [34], [39], [41].
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Chapter 2

Transmit Directions and the Optimality of Beamforming

The use of multiple antennas at both the transmitters and the receivers in wireless

communications promises very large information rates. In Gaussian MIMO systems,

when the receiver side has perfect CSI, the calculation of the information theoretic

capacity boils down to finding the transmit covariance matrices. In this chapter, for

a system with perfect CSI at the receiver and partial or no CSI at the transmitters,

we analyze the optimum transmit covariance matrix structures both in point-to-point

and multiple access channels.

In [42], Telatar showed that in a single-user system, when the transmitter does

not know the state of the fading channel, the optimum transmit covariance matrix

is proportional to the identity matrix, which is full-rank. In order to achieve the ca-

pacity, either vector coding or parallel processing of scalar codes is needed. As stated

in [42], vector coding will result in lower probability of error but higher complexity

as compared to parallel scalar coding, which already is very complex [5].

Beamforming is a scalar coding strategy in which the transmit covariance matrix
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is unit-rank. In beamforming, the symbol stream is coded and multiplied by different

coefficients at each antenna before transmission. Since the available mature scalar

codec technology can be used, beamforming is highly desirable. However, in the

setting of [42], where there is no CSI at the transmitters and the aim is to achieve the

ergodic capacity, the optimum transmit covariance matrix is full-rank, and therefore

beamforming is not optimal.

Although beamforming is not optimal for the no CSI case, it is shown by [3], [14],

[46] for single-sided correlation structure, and by [18] for double-sided correlation

structure that beamforming is conditionally optimal, in a single-user setting, when

the transmitter has the partial knowledge of the channel. For the covariance feedback

case, the fact that the optimal transmit covariance matrix and the channel covariance

matrix have the same eigenvectors was shown in [46] for a multi-input single-output

(MISO) system, and in [14] for a MIMO system. The conditions on the channel co-

variance matrix that guarantee that the transmit covariance matrix is unit-rank, and

therefore beamforming is optimal, are identified in [3], [14]. This result is analogous

to identifying the conditions on the channel state space and the average power in clas-

sical water-filling that guarantee that only one channel is filled as a result of having

either a low power constraint or one very strong channel. In [18], these conditions are

generalized to the case where the receive antennas are also correlated. For the mean

feedback case, the eigenvectors of the optimal transmit covariance matrix were shown

to be the same as the eigenvectors of the channel mean matrix for a MISO system

in [46] and for a MIMO system in [14]. Using this, the conditions on the channel
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mean matrix that guarantee that the transmit covariance matrix is unit-rank, and

therefore beamforming is optimal, are identified in [14].

In this chapter, we consider the sum-capacity point of a multi-user MIMO multi-

ple access capacity region with various assumptions on the CSI. In the first part of the

chapter, we concentrate on a finite-sized system. We show that, if there is covariance

or mean feedback information at the transmitters, all users should transmit in the

direction of the eigenvectors of their own covariance or mean feedback matrices. Con-

sequently, we show that the transmit directions of the users are independent of the

presence of other users, and therefore that the users maintain their single-user trans-

mit direction strategies even in a multi-user scenario. Then, we identify the necessary

and sufficient conditions for the optimality of beamforming for all users. This result

generalizes the single-user conditions of [3], [14] to a multi-user setting. In the case

of covariance feedback, these conditions depend only on the first and second largest

eigenvalues of the channel covariance matrix of each user, and they form a region in a

space whose dimension is twice the number of users. If these conditions are satisfied,

beamforming is optimal for all users. In the case of mean feedback, these conditions

depend only on the sole non-zero eigenvalue of the unit-rank channel mean matrix of

each user, and they form a region in a space whose dimension is equal to the number

of users. Similarly, if these conditions are satisfied, beamforming is optimal for all

users.

We, then, consider the effects of increasing the number of users on the region of

channel parameters where beamforming is optimal. In the covariance feedback case,
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we prove that this region gets larger as new users are added to the system. Although

adding users increases the overall complexity of the system, being able to beamform

for a greater range of channel values decreases the complexity. In the mean feedback

case, this result does not necessarily hold. Nevertheless, we see through simulations

that as the number of users gets large enough, the region where beamforming is

optimal grows with the addition of new users, in the mean feedback case as well.

These results raise the question of whether the region where beamforming is optimal

spans the entire parameter space as the number of users grows to infinity. Therefore,

next, we analyze our problem from an asymptotically large system viewpoint.

The optimality of beamforming in a MIMO-MAC system where the channel is

deterministic and fully known to the transmitters is investigated in [31], where it was

shown that if the number of users is much larger than the number of receive antennas,

then unit-rank transmission is optimal for almost all users. Motivated by our result

described above and the result of [31] that beamforming is optimal asymptotically

(with respect to the number of users) in a deterministic multi-user MIMO-MAC, we

ask the question whether beamforming is unconditionally optimal asymptotically in

our case as well, where the receiver has perfect CSI, but the transmitters have no or

partial CSI. When there is no CSI at the transmitters, it is counter-intuitive to think

that beamforming would be optimal. Confirming this intuition, [42] already showed

that in a finite-sized multi-user system with no CSI at the transmitters, the optimum

transmit covariance matrices are full-rank for all users. However, we show that, in an

asymptotically large system, unit-rank transmit covariance matrices are optimal for
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all users. The beamforming scheme we use in this case is simpler than usual; it may

be characterized as an arbitrary antenna selection scheme, where for each user, only

one antenna is used for transmission and that antenna is chosen arbitrarily.

When the transmitters have partial CSI in the form of either covariance or mean

feedback, we show that the asymptotic optimality of beamforming still holds. In

these cases however, arbitrary antenna selection scheme is no longer optimal. In the

covariance feedback setting, each user beamforms in the direction of the strongest

eigenvector of its channel feedback covariance matrix. As opposed to a finite-sized

system, where beamforming may or may not be optimal depending on the eigenvalues

of the channel covariance matrices, we show here that for an asymptotically large

system, beamforming is always optimal. In the mean feedback setting, each user

beamforms in the direction of the eigenvector corresponding to the sole non-zero

eigenvalue of its channel feedback mean matrix. Similar to the covariance feedback

case, beamforming is optimal asymptotically irrespective of the values of the mean

feedback information. Asymptotic analysis has been used in the literature before,

e.g., by [8], [10], [25], where it yielded simple characterizations to complex systems.

In our model, with multiple users, with multiple transmit and receive antennas, and

with fading in the channel, the optimal transmit strategy turns out to be simple

beamforming, when only the number of users goes to infinity.

In this chapter, our contributions are three-fold: the analysis of a system with

a finite number of users, determining the effects of increasing the number of users,

and the analysis of a large system. Considering all three points of view, this chapter
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provides a complete extension from single-user to multi-user systems with finite and

infinite numbers of users, including the transient behavior of the system with increas-

ing number of users, for MIMO systems with partial CSI at the transmitters in the

form of covariance and mean information.

2.1 System Model

We consider a multiple access channel with multiple transmit antennas at every

user and multiple receive antennas at the receiver. The channel between user k and

the receiver is represented by a random matrix Hk with dimensions of nR×nT , where

nR and nT are the number of antennas at the receiver and at the transmitter, respec-

tively1. The receiver has the perfect knowledge of the channel, while the transmitters

have only the statistical model of the channel. Each transmitter sends a vector xk,

and the received vector is

r =

K
∑

k=1

Hkxk + n (2.1)

where K is the number of users, n is a zero-mean, identity-covariance complex Gaus-

sian vector, and the entries of Hk are complex Gaussian random variables. Let

Qk = E[xkx
†
k] be the transmit covariance matrix of user k, which has an average

power constraint of Pk, tr(Qk) ≤ Pk.

We investigate three different statistical models. The first one is the “no CSI”

1Although we consider the case where all transmitters have the same number of antennas, our
results immediately extend to the cases where the transmitters have different number of antennas.
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model in which the transmitters only know the distribution of the channel state while

the parameters of the distribution are not known. In this case, the entries of Hk are

i.i.d., zero-mean, unit-variance complex Gaussian random variables. This model is

used in [5], [10], [42].

The second model is the “partial CSI with covariance feedback” model where each

transmitter knows the channel covariance information of all transmitters, in addition

to the distribution of the channel. In this model, there exists correlation between the

signals transmitted by or received at different antenna elements. For each user, the

channel is modeled as [4],

Hk = Φ
1/2
k ZkΣ

1/2
k (2.2)

where the receive antenna correlation matrix, Φk, is the correlation between the sig-

nals transmitted by user k, and received at the nR receive antennas of the receiver, and

the transmit antenna correlation matrix, Σk, is the correlation between the signals

transmitted from the nT transmit antennas of user k. While writing (2.2), we sepa-

rately apply the single-user model in [4] to every single transmitter-receiver link. In

this main part of this chapter, we will assume that the receiver (e.g., base station) does

not have physical restrictions and therefore, there is sufficient spacing between the an-

tenna elements on the receiver. If the minimum antenna spacing is sufficiently large,

the correlation introduced by antenna element spacing is low enough that the fades

associated with two different antenna elements can be considered independent2 [15].

2We refer the reader to the Appendix, Section 2.6.2, for the extension of our results to the case
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As a result, the receive antenna correlation matrix becomes the identity matrix, i.e.,

Φk = I. We also assume that the signals transmitted by different antenna elements

are correlated, because of the lack of scatterers around the transmitters. Now, the

channel of user k is written as

Hk = ZkΣ
1/2
k (2.3)

where the entries of Zk are i.i.d., zero-mean, unit-variance complex Gaussian random

variables. Similar covariance feedback models are used in [3], [14], [17], [46] in the

single-user setting. From this point on, we will refer to matrix Σk as the channel

covariance feedback matrix of user k.

The third model we investigate is the “partial CSI with mean feedback” model

where each transmitter knows the channel mean information of all transmitters, in

addition to the distribution of the channel. This model is used in [11], [13], [14], [23],

[46]. In this model, the transmitters have line-of-sight component with the receiver.

As a result, the entries of the channel matrix are independent with a non-zero mean.

In this case, the channel of user k can be written as

Hk = Hµk
+ Zk (2.4)

where the entries of Zk are i.i.d., zero-mean, unit-variance complex Gaussian random

variables, and Hµk
is the mean information representing the line-of-sight component

where the channel has double-sided correlation structure, i.e., to the case where the signals arriving
at the receiver are correlated as well.
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of the channel. This Ricean channel is modeled to be of unit-rank [23], and therefore,

the mean matrix takes the form

Hµk
= aRk

a†
Tk

(2.5)

where aRk
and aTk

are the array response vectors at the receiver and the transmitter,

respectively. In this most general case of the mean feedback model, the optimization

problem that arises in the sum-capacity calculation seems intractable. In order to

simplify the mathematics and obtain a tractable optimization problem, we assume

that the user signals arrive at the base station in-phase, i.e., aRk
= aR, for all k.

This mathematical simplification models a physical system where the transmitters

are far away from the receiver and are close to each other. This can occur if a set of

closely located transmitters have a line-of-sight “openning” with the receiver. From

this point on, we will refer to matrix Hµk
as the channel mean matrix of user k.

2.2 Finite System Analysis

The sum-capacity of a multi-user MIMO-MAC is given as,

Csum = max
tr(Qk)≤Pk,Qk�0

k=1...K

E

[

log
∣

∣

∣
InR

+
K
∑

k=1

HkQkH
†
k

∣

∣

∣

]

(2.6)

where E[·] is the expectation operator with respect to the channel matrices of all users

conditioned on the covariance or mean feedback, | · | is the determinant operator, tr(·)
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denotes the trace of a matrix, and Qk � 0 denotes positive semi-definite Qk. In this

section, we will find the optimum transmit directions of the users, and the region

where beamforming is optimal for all users, under various assumptions on the CSI

available at the transmitters, for a multi-user MIMO-MAC with a finite number of

users.

For a single-user system with no CSI at the transmitter and identity channel co-

variance matrix, i.e., Σ = I, Telatar [42] showed that the capacity is achieved when

the transmitter divides its power equally over its antennas, i.e., the optimal transmit-

ter covariance matrix, Q, is equal to (P/nT )I. Clearly, in this setting, beamforming

is not optimal, as the transmit covariance matrix is full-rank. For the multi-user

case, [42] defines a stacked channel matrix as Ĥ = [H1, · · · ,HK ] and writes the

sum-capacity as

Csum = E

[

log
∣

∣

∣
InR

+
KP

KnT
ĤĤ†

∣

∣

∣

]

= E

[

log
∣

∣

∣InR
+

P

nT

K
∑

k=1

HkH
†
k

∣

∣

∣

]

(2.7)

This means that in the multi-user setting as well, the sum-capacity maximizing trans-

mit covariance matrix for each user is proportional to identity, i.e., Qk = (P/nT )I,

for all k. Therefore, it is clear that beamforming is not optimal for any user in a

finite-sized multi-user system when the transmitters do not have any CSI.

23



2.2.1 Covariance Feedback at the Transmitters

Transmit Directions

In a single-user system with partial CSI in the form of channel covariance matrix at

the transmitter, the capacity is no longer achieved by an identity transmit covariance

matrix. In this case, the problem becomes that of choosing a transmit covariance

matrix Q, which is subject to a trace constraint representing the average transmit

power constraint,

C = max
tr(Q)≤P,Q�0

E
[

log | InR
+ HQH†|

]

(2.8)

The channel covariance matrix Σ, which is known at the transmitter, and the trans-

mit covariance matrix Q have the eigenvalue decompositions Σ = UΣΛΣU†
Σ, and

Q = UQΛQU†
Q, respectively. Here, ΛΣ and ΛQ are the diagonal matrices of ordered

eigenvalues of Σ, and Q, and UΣ, and UQ are unitary matrices.

References [14] and [30] showed that the eigenvectors of the transmit covariance

matrix must be equal to the eigenvectors of the channel covariance matrix, i.e., UQ =

UΣ. References [3] and [14] showed that under certain conditions on the covariance

feedback matrix Σ, the power matrix ΛQ has only one non-zero diagonal element, i.e.,

the optimal transmit covariance matrix is unit-rank, and therefore beamforming in

the direction of the eigenvector corresponding to this non-zero eigenvalue, is optimal.

In this chapter, for a multi-user setting with a finite number of users, where there

is covariance feedback at the transmitters, we prove that all users should transmit
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along the eigenvectors of their own channel covariance matrices, regardless of the

power allocation scheme. This is stated in the following theorem.

Theorem 1 Let Σk = UΣk
ΛΣk

U†
Σk

be the spectral decomposition of the channel co-

variance matrix of user k. Then, the optimum transmit covariance matrix Qk of user

k has the form Qk = UΣk
ΛQk

U†
Σk

, for all users.

Proof: From (2.3), we have the following zero-mean, identity-covariance random

channel matrix representation Zk for user k,

ZkUΣk
Λ

1/2
Σk

U†
Σk

= Hk (2.9)

Then, inserting (2.9) into (2.6), we obtain

Csum = max
tr(Qk)≤Pk
k=1,...,K

E

[

log
∣

∣

∣
InR

+
K
∑

k=1

ZkUΣk
Λ

1/2
Σk

U†
Σk

QkUΣk
Λ

1/2
Σk

U†
Σk

Z†
k

∣

∣

∣

]

(2.10)

= max
tr(Qk)≤Pk
k=1,...,K

E

[

log
∣

∣

∣
InR

+

K
∑

k=1

ZkΛ
1/2
Σk

U†
Σk

QkUΣk
Λ

1/2
Σk

Z†
k

∣

∣

∣

]

(2.11)

where we used the fact that the random matrices {ZkUΣk
}K

k=1 and {Zk}K
k=1 have the

same joint distribution for zero-mean identity-covariance Gaussian {Zk}K
k=1 and uni-

tary {UΣk
}K

k=1. This is true, since we can write the joint distribution of {ZkUΣk
}K

k=1

as a multiplication of their marginal distributions due to their independence, and the

marginal distribution of ZkUΣk
is the same as the marginal distribution of Zk [42]. We

may spectrally decompose the expression sandwiched between Zk and its conjugate
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transpose in (2.11) as

Λ
1/2
Σk

U†
Σk

QkUΣk
Λ

1/2
Σk

= UkΛkU
†
k (2.12)

where Λk is a diagonal matrix with ordered components such that λk1 ≥ λk2 ≥ · · · ≥

λknT
. The optimization problem in (2.11) may now be written as

Csum = max
tr(Qk)≤Pk
k=1,...,K

E

[

log
∣

∣

∣
InR

+

K
∑

k=1

ZkUkΛk(ZkUk)
†
∣

∣

∣

]

(2.13)

= max
tr(Qk)≤Pk
k=1,...,K

E

[

log
∣

∣

∣
InR

+

K
∑

k=1

ZkΛkZ
†
k

∣

∣

∣

]

(2.14)

where we again used the fact that the random matrices {ZkUk}K
k=1 and {Zk}K

k=1 have

the same joint distribution. Using (2.12), the trace constraint on Qk can be expressed

as

tr(Qk) = tr(UΣk
Λ

−1/2
Σk

UkΛkU
†
kΛ

−1/2
Σk

U†
Σk

) (2.15)

= tr(U†
kΛ

−1
Σk

UkΛk) (2.16)

where the second equality follows from the identity tr(AB) = tr(BA). Note that

the optimization in (2.14), (2.16) is over Uk and Λk, and the objective function

does not involve Uk. Therefore, we can insert any feasible Uk from the constraint

set, and perform the optimization only over Λk. In order to find a feasible Uk,

we examine the trace constraint in (2.16). From [26, Theorem 9.H.1.h, page 249],

tr(Λ−1
Σk

Λk) ≤ tr(U†
kΛ

−1
Σk

UkΛk) ≤ Pk, for all unitary Uk. This means that, Uk = I
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choice is feasible. Then, using Uk = I, from (2.12), we have the desired result:

Qk = UΣk
Λ−1

Σk
ΛkU

†
Σk

(2.17)

with ΛQk
= Λ−1

Σk
Λk. 2

Using Theorem 1, we can write the optimization problem in (2.10) as,

Csum = max
tr(ΛQk

)≤Pk,ΛQk
�0

k=1,...,K

E

[

log
∣

∣

∣
InR

+
K
∑

k=1

ZkΛQk
ΛΣk

Z†
k

∣

∣

∣

]

(2.18)

= max
PnT

i=1
λ

Q
ki

≤Pk,λ
Q
ki

≥0

k=1,...,K

E

[

log
∣

∣

∣
InR

+
K
∑

k=1

nT
∑

i=1

λQ
kiλ

Σ
kizkiz

†
ki

∣

∣

∣

]

(2.19)

where zki is the ith column of Zk, i.e., {zki, k = 1, . . . , K, i = 1, . . . , nT} is a set of

nR × 1 dimensional i.i.d., zero-mean, identity-covariance Gaussian random vectors.

In a MIMO system, a transmit strategy is a combination of a transmit direction

strategy and a transmit power allocation strategy. A result of Theorem 1 is that the

optimal multi-user transmit direction strategies are decoupled into a set of single-user

transmit direction strategies. However, in general, this is not true for the optimal

transmit power allocation strategies. The amount of power each user allocates in

each direction depends on both the transmit directions and the power allocations of

other users, which we show in Chapter 3. Because of this, finding the conditions

under which beamforming is optimal becomes even more critical in the multi-user

case. When beamforming is optimal, the optimal transmit power allocation strategy

for each user reduces to allocating all of its power to its strongest eigen-direction, and
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this strategy does not require the user to know the channel covariance matrices of the

other users.

Conditions for the Optimality of Beamforming

In this section, we identify the conditions for the optimality of beamforming in

a multi-user system with a finite number of users. References [3] and [14] found

these conditions in a single-user system. For a single-user system, let λΣ
1 and λΣ

2

denote the largest and second largest eigenvalues of the channel covariance matrix

Σ, respectively. Then, the necessary and sufficient condition for the optimality of

beamforming is [14]:

PλΣ
2 <

1 − E
[

1
1+PλΣ

1 zT z

]

nR − 1 + E
[

1
1+PλΣ

1 zT z

] (2.20)

where z is an nR×1 dimensional Gaussian random vector with zero-mean and identity-

covariance. In this chapter, we find the necessary and sufficient conditions for the

optimality of beamforming for all users in a multi-user setting. Inserting K = 1 in

our results would reduce them to (2.20). In our results, the number of conditions

equals the number of users. The condition corresponding to user k depends on the

two largest eigenvalues of the channel covariance matrix of that user, and the largest

eigenvalues of the channel covariance matrices of all other users. Before stating our

theorem in this section, we need the following lemma.

Lemma 1 When A and Ak are defined as in Theorem 2, the following identities hold
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for i 6= 1

Ek1 = λΣ
k1E

[

z†k1A
−1zk1

]

=
1

Pk

(

1 − E

[

1

1 + PkλΣ
k1z

T
k1A

−1
k zk1

])

(2.21)

Eki = λΣ
kiE

[

z†kiA
−1zki

]

= λΣ
ki

(

nR − K +

K
∑

l=1

E

[

1

1 + PlλΣ
l1z

T
l1A

−1
l zl1

]

)

(2.22)

A proof of Lemma 1 is given in Section 2.6.1 in the Appendix.

Theorem 2 In a MIMO-MAC system where the transmitters have partial CSI in

the form of covariance feedback, the transmit covariance matrices of all users that

maximize (2.19) have unit-rank (i.e., beamforming is optimal for all users) if and

only if

Pkλ
Σ
k2 <

1 − E
[

1
1+PkλΣ

k1zk1A
−1
k zk1

]

nR − K +
∑K

l=1 E
[

1
1+Plλ

Σ
l1zl1A

−1
l zl1

] , k = 1, . . . , K (2.23)

where A = InR
+
∑K

l=1 Plλ
Σ
l1zl1z

†
l1, Ak = A − Pkλ

Σ
k1zk1z

†
k1, λΣ

ki is the ith largest

eigenvalue of the channel covariance matrix of user k, and zl1 are nR×1 dimensional

i.i.d., Gaussian random vectors with zero-mean and identity-covariance.

Proof: The Lagrangian for the optimization problem in (2.19), with µk as the La-

grange multiplier of user k corresponding to its power constraint, is

L = E

[

log
∣

∣

∣
InR

+
K
∑

k=1

nT
∑

i=1

λQ
kiλ

Σ
kizkiz

†
ki

∣

∣

∣

]

−
K
∑

k=1

µk

(

nT
∑

i=1

λQ
ki − Pk

)

(2.24)
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In order to derive the Karush-Kuhn-Tucker (KKT) conditions, we need the following

identity which is proved in [14],

∂

∂x
log |A + xB| = tr

[

(A + xB)−1B
]

(2.25)

Using this identity, the KKT conditions for user k are

λΣ
kiE



z†ki

(

I +

K
∑

l=1

nT
∑

i=1

λQ
li λ

Σ
lizliz

†
li

)−1

zki



 ≤ µk, i = 1, . . . , nT (2.26)

where the conditions are satisfied with equality if the corresponding eigenvalue of the

transmit covariance matrix is non-zero. Beamforming is optimal for all users, if the

inequalities corresponding to i = 1 for k = 1, . . . , K are satisfied with equality, and

the rest of the inequalities remain as strict inequalities. In this case, λQ
k1 = Pk, for

k = 1, . . . , K, and all other eigenvalues of the transmit covariance matrices are zero.

We have the following for user k,

Ek1 = λΣ
k1E

[

z†k1A
−1zk1

]

= µk (2.27)

Eki = λΣ
kiE

[

z†kiA
−1zki

]

< µk, ∀i 6= 1 (2.28)

Equivalently, the conditions for the optimality of beamforming for all users are

Ek1

Eki

> 1, ∀i 6= 1, k = 1, . . . , K (2.29)

30



Due to the symmetry in these conditions, we will derive the condition for user k only.

Using Lemma 1 and (2.29) for user k, we have

Pkλ
Σ
ki <

1 − E
[

1
1+PkλΣ

k1z
T
k1A

−1
k zk1

]

nR − K +
∑K

l=1 E
[

1
1+Plλ

Σ
l1z

T
l1A

−1
l zl1

] , i = 2, . . . , nT (2.30)

Note that the left hand side is maximized for i = 2, that is, if the condition for i = 2

holds, then it holds for all other i, as well. Therefore, inserting i = 2 in (2.30) gives

the condition in (2.23) for user k. 2

Note that inserting K = 1 in (2.23), we obtain the condition in (2.20), which is

derived in [14]. In our case, the right hand side of (2.23) depends only on the largest

eigenvalues of all users. Therefore, in order to have the optimality of beamforming,

a combination of the largest eigenvalues of all users induce an upper bound on the

second largest eigenvalues of all users. If the second largest eigenvalues of all users

satisfy (2.23), then beamforming is optimal for all users.

One important issue in the analysis of the region where beamforming is optimal,

is the change in the region with varying numbers of users. In the next theorem, we

show that the region where beamforming is optimal grows with the addition of new

users into the system.

Theorem 3 In a MIMO-MAC system where the transmitters have partial CSI in the

form of covariance feedback, the region where beamforming is optimal gets larger by

the addition of new users.
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Proof: From (2.29), beamforming is optimal for all users if and only if

λΣ
k2 <

λΣ
k1E

[

z†k1A
−1zk1

]

E
[

z†k2A
−1zk2

] , k = 1, . . . , K (2.31)

Note that zk2 is independent of A, and has identity covariance. Therefore, the de-

nominator of the right hand side of (2.31) becomes E[tr(A−1)]. Let us define the

“boundary function” fk(λ) as

fk(λ) =
λΣ

k1E[z†k1A
−1zk1]

E[tr(A−1)]
, k = 1, . . . , K (2.32)

where λ = [λΣ
11, λ

Σ
21, . . . , λ

Σ
K1]

T contains the largest eigenvalues of the covariance feed-

back matrices of all users. Then, beamforming is optimal for all users if and only

if

λΣ
k2 < fk(λ), k = 1, . . . , K (2.33)

We will show that, fk(λ) increases in every component of the vector λ, for all

k. This will prove that, when a user is added to the system, i.e., the eigenvalue of

the corresponding user is increased to a positive number from zero, the region in

which beamforming is optimal for all users increases as long as the the condition

for the new user is also satisfied. In order to prove that each fk(λ) increases in λ,

we will prove that every component of the vector of boundary functions, f(λ) =

[f1(λ), . . . , fK(λ)]T , increases in λ. Let us define Z̄ = [z11, z21, . . . , zK1], and Λ̄ and

P̄ as diagonal matrices having {λΣ
11, λ

Σ
21, . . . , λ

Σ
K1} and {P1, P2, . . . , PK} along their
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diagonals, respectively. Then,

f(λ) =
diag

{

E
[

Λ̄1/2Z̄†A−1Z̄Λ̄1/2
]}

E [tr(A−1)]
(2.34)

where diag{·} is the vector composed of the diagonal elements of its argument, and A

can be expressed in terms of Z̄, P̄, and Λ̄ as A = I+ Z̄P̄Λ̄Z̄†. Note that the expecta-

tion of the (k, l)th off-diagonal element of the random matrix Λ̄1/2Z̄†A−1Z̄Λ̄1/2 is zero.

The reason for this is that when the expectation is expressed as an integral, the con-

tribution to the integral at zl1 is cancelled by the contribution at −zl1, due to the odd

function property of λΣ
k1z

†
k1A

−1zl1. Note also that, since λΣ
l1zl1z

†
l1 = λΣ

l1(−zl1)(−zl1)
†,

the matrix A and the value of the probability density function are the same for zl1

and −zl1. Hence, we conclude that E[Λ̄1/2Z̄†A−1Z̄Λ̄1/2] is diagonal, and therefore its

diagonal elements are the same as its eigenvalues.

Now, we will show that the eigenvalues of E[Λ̄1/2Z̄†A−1Z̄Λ̄1/2] increase in λ, in

two steps. First, we will show that the eigenvalues of P̄Λ̄1/2Z̄†A−1Z̄Λ̄1/2, for any

given realization of Z̄, increase in λ, and then we will show that the eigenvalues of

E[P̄Λ̄1/2Z̄†A−1Z̄Λ̄1/2] increase in λ. This immediately implies that the eigenvalues

of E[Λ̄1/2Z̄†A−1Z̄Λ̄1/2] increase in λ. First consider a fixed realization of the random

matrix Z̄. Note that,

Z̄P̄Λ̄Z̄† =
K
∑

k=1

Pkλ
Σ
k1zk1z

†
k1 (2.35)

33



If we increase any one of λΣ
k1, k = 1, . . . , K, to (λΣ

k1)
′

, this can be seen as an addition of

the positive semidefinite matrix Pk

(

(λΣ
k1)

′ − λΣ
k1

)

zk1z
†
k1 to the summation in (2.35).

Using the corollary to Weyl’s monotonicity theorem [12, page 181-182] which states

that all eigenvalues of a Hermitian matrix increase if a positive semidefinite matrix is

added to it, we can conclude that the eigenvalues of Z̄P̄Λ̄Z̄† increase in λ for any fixed

Z̄. Now, note that, if we denote the eigenvalues of Z̄P̄Λ̄Z̄† as αi, then the eigenvalues

of A−1Z̄P̄Λ̄Z̄† are given by αi

1+αi
. Further, the eigenvalues of P̄Λ̄1/2Z̄†A−1Z̄Λ̄1/2 are

either αi

1+αi
or 0, depending on the dimensions of Z̄. Therefore, we conclude that when

λ increases, all αi increase as shown above, and therefore all αi

1+αi
increase as well.

Until now, we have shown that the eigenvalues of the random P̄Λ̄1/2Z̄†A−1Z̄Λ̄1/2

increase in λ. Next, we will show that the eigenvalues of E[P̄Λ̄1/2Z̄†A−1Z̄Λ̄1/2]

increase in λ as well. We note that this expectation can be written as a positive

weighted sum of positive semidefinite Hermitian matrices P̄Λ̄1/2Z̄†A−1Z̄Λ̄1/2 for all

realizations of the random matrix Z̄. An increase in λ, can again be seen as an

addition of a positive semidefinite matrix to the expectation. Therefore, invoking the

corollary to Weyl’s monotonicity theorem [12, page 181-182] once again, we conclude

that the eigenvalues of E[P̄Λ̄1/2Z̄†A−1Z̄Λ̄1/2], and consequently the eigenvalues of

E[Λ̄1/2Z̄†A−1Z̄Λ̄1/2] increase in λ. We also note that E [tr(A−1)] decreases in λ,

since the eigenvalues of A−1, i.e., 1
1+αi

, decrease as λ increases. Therefore, the ratios

on the right hand side of (2.34), and therefore, f(λ), increase in λ. 2

Theorem 3 shows that with the addition of more and more users into the sys-

tem, beamforming becomes optimal for more and more channel covariance matrices.
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Whether the growth in the region where beamforming is optimal is bounded, or

whether beamforming is unconditionally optimal for very large numbers of users in a

fading environment will be addressed in Section 2.3.

2.2.2 Mean Feedback at the Transmitters

Transmit Directions

As in the case of covariance feedback, for a single-user system with partial CSI

in the form of the channel mean matrix at the transmitter, the capacity is no longer

achieved by an identity transmit covariance matrix. The optimization problem in

this case is the same as (2.8), with the difference that, in this setting, the channel

covariance matrix is identity, i.e., Σ = I, and the channel mean matrix Hµ is fedback

to the transmitter. With the assumption that Hµ is unit-rank, [14], [46] showed that

the optimal transmit covariance matrix Q that solves (2.8) can be written as

Q = UµΛQU†
µ (2.36)

where the first column of the unitary matrix Uµ is the eigenvector corresponding to

the non-zero eigenvalue of Hµ, and the remaining columns are arbitrary, with the

restriction that the columns of Uµ are orthonormal.

In this section, we show that, in a multi-user setting, every user should transmit

along the eigenvectors of its own channel mean matrix. In the multi-user setting, let

35



the singular value decomposition of the channel mean matrix of user k be

Hµk
= Uµk

Λµk
V†

µk
(2.37)

Since Hµk
is a unit-rank matrix as in (2.5), the first column of Uµk

can be chosen

as aR

|aR|
; and the rest of the columns can be chosen arbitrarily as long as Uµk

has

orthonormal columns. Also, note that Uµk
= Uµ, for k = 1, . . . , K. Similarly, the

first column of Vµk
can be chosen as

aTk

|aTk
|
and the rest of the columns can be chosen

arbitrarily as long as Vµk
has orthonormal columns. Unlike Uµk

, Vµk
is different for

different users. The diagonal matrix Λµk
has only one non-zero element, which is

|aR||aTk
|.

The following theorem identifies the optimum transmit directions for all users.

The single-user version of this theorem was proved in [11], [13].

Theorem 4 Let Hµk
= UµΛµk

V†
µk

be the singular value decomposition of the channel

mean matrix of user k. Then, the optimum transmit covariance matrix Qk of user k

may be expressed as Qk = Vµk
ΛkV

†
µk

, for all users.

Proof: We prove the theorem in two steps. In the first step, we show that the sum-

capacity resulting from {Hµk
}K

k=1 as the channel mean matrices and the sum-capacity

resulting from {Λµk
}K

k=1 as the channel mean matrices are the same.

The optimization problem in (2.6) with channel mean matrices {Hµk
}K

k=1 can be
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written as

Csum({Hµk
}K

k=1) = max
tr(Qk)≤Pk
k=1,...,K

E

[

log
∣

∣

∣
InR

+

K
∑

k=1

(Hµk
+ Zk)Qk(Hµk

+ Zk)
†
∣

∣

∣

]

(2.38)

using (2.4). Using the singular value decomposition of the channel mean matrix of

user k and the invariance of the joint distribution of zero-mean, identity-covariance

matrices Zk under unitary transformations, i.e., that {Zk}K
k=1 and {UkZkVk}K

k=1 have

the same joint distribution, we have

Csum({Hµk
}K

k=1) = max
tr(Qk)≤Pk
k=1,...,K

E

[

log
∣

∣

∣
I +

K
∑

k=1

(UµΛµk
V†

µk
+ Zk)Qk(UµΛµk

V†
µk

+ Zk)
†
∣

∣

∣

]

(2.39)

= max
tr(Qk)≤P

k=1...K

E

[

log
∣

∣

∣
I +

K
∑

k=1

Uµ(Λµk
+ Zk)V

†
µk

QkVµk
(Λµk

+ Zk)
†U†

µ

∣

∣

∣

]

(2.40)

= max
tr(Q̃k)≤Pk
k=1,...,K

E

[

log
∣

∣

∣
I +

K
∑

k=1

(Λµk
+ Zk)Q̃k(Λµk

+ Zk)
†
∣

∣

∣

]

(2.41)

= Csum({Λµk
}K

k=1) (2.42)

where we used |I + AB| = |I + BA| to cancel Uµ. Note that tr(Qk) = tr(Q̃k),

since Q̃k = V†
µk

QkVµk
. By comparing (2.38) and (2.41), we see that the diagonal

eigenvalue matrices of the channel mean matrices result in the same sum-capacity as

the channel mean matrices themselves except that we changed the transmit covariance

matrices accordingly.
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In the second step, our goal is to show that the optimal Q̃k in (2.41) is diagonal.

In order to prove this, we use the technique presented in [13]. Let Ξ be an nT × nT

diagonal matrix, whose ith diagonal entry is −1, and all other diagonal entries are 1.

Let Ξ̃ be an nR × nR diagonal matrix such that if nR < nT , then Ξ̃ = InR
and if

nR > nT , then the ith diagonal entry of Ξ̃ is −1, and all other diagonal entries are 1.

Then, we have

Ξ̃Λµk
Ξ = Λµk

, k = 1, . . . , K (2.43)

Let us consider now a set of arbitrary transmit covariance matrices {Q̃k}K
k=1, and

define another set of transmit covariance matrices as Q̂k = Ξ†Q̃kΞ, for k = 1, . . . , K.

Note that the entries of Q̂k are equal to the entries of Q̃k except that the off-diagonal

entries in the ith row and column are negated. We can rewrite the optimization

problem in (2.41) as

Csum({Q̃k}K
k=1) = E

[

log
∣

∣

∣
InR

+

K
∑

k=1

(Λµk
+ Zk)ΞQ̂kΞ

†(Λµk
+ Zk)

†
∣

∣

∣

]

(2.44)

= E

[

log
∣

∣

∣
InR

+
K
∑

k=1

(Ξ̃Λµk
Ξ + Zk)Q̂k(Ξ̃Λµk

Ξ + Zk)
†
∣

∣

∣

]

(2.45)

= E

[

log
∣

∣

∣
InR

+

K
∑

k=1

(Λµk
+ Zk)Q̂k(Λµk

+ Zk)
†
∣

∣

∣

]

(2.46)

= Csum({Q̂k}K
k=1) (2.47)

where we again used the fact that {Zk}K
k=1 and {Ξ̃ZkΞ}K

k=1 have the same joint

distribution, and inserted (2.43) into (2.44) to obtain (2.46).

Now, let us define the set of transmit covariance matrices as Q∗
k = 1

2
Q̃k + 1

2
Q̂k,

38



for k = 1, . . . , K. The entries of Q∗
k are equal to the entries of Q̃k except that the off-

diagonal entries in the ith row and column are zero. By the concavity of the mutual

information, it follows that the mutual information achieved by {Q∗
k}K

k=1 is greater

than or equal to the mutual information achieved by {Q̃k}K
k=1,

Csum({Q∗
k}K

k=1) ≥ 1

2

(

Csum({Q̃k}K
k=1) + Csum({Q̂k}K

k=1)
)

(2.48)

= Csum({Q̃k}K
k=1) (2.49)

Applying this procedure to every i for 1 ≤ i ≤ nT , we have shown that nulling the

off-diagonal elements of the transmit covariance matrices increases the capacity. This

proves that the optimal Q̃k is diagonal, and is equal to Λk, for all k. This also proves

the theorem since we have Qk = Vµk
Q̃kV

†
µk

= Vµk
ΛkV

†
µk

2

Using Theorem 4, we can write the optimization problem in (2.38) as

Csum = max
tr(Λk)≤Pk,Λk�0

k=1,...,K

E

[

log
∣

∣

∣
InR

+
K
∑

k=1

ẐkΛkẐ
†
k

∣

∣

∣

]

(2.50)

= max
PnT

i=1
λ

Q
ki

≤Pk,λ
Q
ki

≥0

k=1,...,K

E

[

log
∣

∣

∣
InR

+

K
∑

k=1

nT
∑

i=1

λQ
kiẑkiẑ

†
ki

∣

∣

∣

]

(2.51)

where Ẑk = Λµk
+ Zk. Note that while the first column of this matrix is a non-zero

mean Gaussian vector, all of the remaining columns are zero-mean Gaussian vectors.

Similar to the covariance feedback case, in a MIMO system, a transmit strategy

is a combination of a transmit direction strategy and a transmit power allocation

strategy. A result of Theorem 4 is that the optimal multi-user transmit direction
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strategies are decoupled into single-user transmit direction strategies. However, in

general, this is not true for the optimal transmit power allocation strategies. On the

other hand, we know that when beamforming is optimal, the optimal transmit power

allocation strategy for each user is to allocate all of its power to its strongest eigen-

direction. Therefore, for the range of parameters where beamforming is optimal, both

the optimal transmit direction and the optimal transmit power allocation strategies

are decoupled among users.

Conditions for the Optimality of Beamforming

In this section, we determine the conditions for the optimality of beamforming

in a multi-user system with a finite number of users, when partial CSI available at

the transmitters is in the form of mean feedback. Reference [14] identified these

conditions for a single-user system. For a single-user system, let λµ denote the non-

zero eigenvalue of the channel mean matrix Hµ. Then, the necessary and sufficient

condition for the optimality of beamforming is [14]:

P <
1 − E

[

1
1+P ẑ†ẑ

]

nR − 1 + E
[

1
1+P ẑ†ẑ

] (2.52)

where ẑ is an nR × 1 dimensional Gaussian random vector with identity-covariance.

The first entry of ẑ has a mean of λµ, while all other entries have zero-mean.

Similar to the covariance feedback case, we find the conditions for the optimality

of beamforming for all users in a multi-user setting. Inserting K = 1 in our results
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would reduce them to (2.52). In our results, the number of conditions equals the

number of users. The condition corresponding to user k depends on the non-zero

eigenvalues of the channel mean matrices of all users. We have the following theorem.

Theorem 5 In a MIMO-MAC system where the transmitters have partial CSI in the

form of mean feedback, the transmit covariance matrices of all users that maximize

(2.51) have unit-rank (i.e., beamforming is optimal for all users) if and only if

Pk <
1 − E

[

1

1+Pkẑ
†
k1B

−1
k ẑk1

]

nR − K +
∑K

l=1 E
[

1

1+Plẑ
†
l1B

−1
l ẑl1

] , k = 1, . . . , K (2.53)

where B = InR
+
∑K

l=1 Plẑl1ẑ
†
l1, Bk = B − Pkẑk1ẑ

†
k1, and ẑk1 = λµ

ke1 + zk1 is the first

column of the matrix Ẑk.

Proof: The Lagrangian for the optimization problem in (2.51), with νk as the La-

grange multiplier of user k corresponding to its power constraint, is

L = E

[

log
∣

∣

∣
InR

+
K
∑

k=1

nT
∑

i=1

λQ
kiẑkiẑ

†
ki

∣

∣

∣

]

−
K
∑

k=1

νk

(

nT
∑

i=1

λQ
ki − Pk

)

(2.54)

This Lagrangian for the mean feedback case is similar to the Lagrangian for the

covariance feedback case in (2.24) with the difference that there are no second largest

eigenvalues of the channel mean matrices. The following KKT conditions for user k
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can be derived using (2.25),

E



ẑ†ki

(

I +

K
∑

k=1

nT
∑

i=1

λQ
kiẑkiẑ

†
ki

)−1

ẑki



 ≤ νk, i = 1, . . . , nT (2.55)

Similar to the covariance feedback case, in order for beamforming to be optimal, we

should have λQ
k1 = Pk, and all other eigenvalues of the transmit covariance matrices

to be zero. We have the following for user k,

Ek1 = E
[

ẑ†k1B
−1ẑk1

]

= νk (2.56)

Eki = E
[

ẑ†kiB
−1ẑki

]

< νk, ∀i 6= 1 (2.57)

Equivalently, the conditions for the optimality of beamforming for all users are

Ek1

Eki
> 1, ∀i 6= 1, k = 1, . . . , K (2.58)

Finally, using Lemma 1, we have (2.53). 2

Note that inserting K = 1 in (2.53), we obtain the condition in (2.52), which is

derived in [14]. In our case, the condition in (2.53) depends only on the sole non-zero

channel mean eigenvalues of all users. Therefore, if the powers and the eigenvalues of

the feedback mean matrices of all users are such that they satisfy the inequalities in

(2.53), then beamforming is optimal for all users.

Contrary to the covariance feedback case, in the mean feedback case, the region

where beamforming is optimal does not necessarily grow with the addition of new
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users into the system. The reason that the proof of Theorem 3 does not follow in the

mean feedback case is the following. Note that, in the covariance feedback case, the

off-diagonal entries of the matrix in the numerator of (2.34) were zero. However, in

the mean feedback case, the off-diagonal entries of the corresponding matrix are not

zero. Therefore, proving that the eigenvalues of that matrix increase, does not prove

that the diagonal entries of the same matrix increase as well. However, for relatively

large numbers of users, we see through simulations that it is harder to violate the

beamforming condition. We discuss this issue in more detail in Section 2.4.

We have proved for the covariance feedback case and observed through simulations

for the mean feedback case with relatively large numbers of users that the region where

beamforming is optimal for all users grows, as new users are added to the system.

These results and the asymptotic results of [31] with deterministic channel assumption

motivate us to investigate whether the growth of the region where beamforming is

optimal is bounded, or whether beamforming is unconditionally optimal for very large

numbers of users in a fading environment. We address this issue in the next section.

2.3 Asymptotic Analysis

It is not immediate from the previous section that the region where beamforming

is optimal covers the entire channel parameter space for all users when the number of

users grows to infinity. In this section, we show that for very large numbers of users,

even with the assumption that the transmitters have no knowledge of the channel,
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beamforming achieves a sum-rate which approaches the sum-capacity. For asymptotic

analysis, we need the following lemma.

Lemma 2 Let xi, i = 1, 2, . . . be a sequence of i.i.d. random vectors of length M,

which have zero-mean and identity-covariance matrix, and let αi, i = 1, 2, . . . be a

sequence of bounded real numbers. Then,

E

[

log
∣

∣

∣
IM +

N
∑

i=1

αixix
†
i

∣

∣

∣

]

.
= M log

(

1 +
N
∑

i=1

αi

)

(2.59)

where the symbol
.
= denotes “equal for asymptotically large N”.

This is a version of the Strong Law of Large Numbers (SLLN), which states that

the sum of independent, non-identically distributed random variables, converges to

the sum of the means of the random variables. In particular, this version of SLLN

is applied to independent random vectors
√

αixi in (2.59) which are non-identically

distributed. A formal proof of Lemma 2 is given in Section 2.6.1 in the Appendix.

Lemma 2 will be used to state a form of channel “hardening” in the next three

sub-sections. We will use Lemma 2 to say that, when the number of users grows to in-

finity, a form of channel hardening will occur, i.e., roughly speaking
∑K

k=1

∑nT

i=1 hkih
†
ki

in (2.7),
∑K

k=1

∑nT

i=1 λQ
kiλ

Σ
kizkiz

†
ki in (2.19), and

∑K
k=1

∑nT

i=1 λQ
kiẑkiẑ

†
ki in (2.51) will con-

verge to deterministic quantities almost surely, and that those deterministic quantities

can be approached if simple beamforming is used. When beamforming is used, the

sum
∑nT

i=1 drops in all three sums, however the sum over k, i.e.,
∑K

k=1 suffices to
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create the effect of SLLN.

The concept of channel hardening has been observed in [10] also, where instead

of a SLLN approach, a Central Limit Theorem (CLT) approach is used to conclude

that the mutual information converges to a Gaussian random variable whose variance

vanishes. In [10], the number(s) of transmit and receive antennas grow(s) large for a

single-user system, while here, the number of transmit and receive antennas are fixed,

but the number of users goes to infinity in a MAC. Nevertheless, we observe similar

mathematical phenomena as in [10].

2.3.1 No CSI at the Transmitters

When there is no CSI at the transmitters, the optimal transmit strategy is to use

an identity transmit covariance matrix for all users [42]. In this section, we show

that when there is no CSI at the transmitters, for an asymptotically large system, an

arbitrary antenna selection scheme is sufficient to achieve the sum-capacity. This is

stated in the following theorem.

Theorem 6 In a system where there is no CSI at the transmitters, if the number

of users grows to infinity, then the sum-rate achieved by unit-rank transmit covari-

ance matrices approaches the sum capacity. In particular, this unit-rank transmission

scheme takes the form of a simple antenna selection.
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Proof: The sum-capacity in this case is given in (2.6) with Qk = Pk

nT
I, for all k.

We define Caas
sum as the achievable sum-rate by performing arbitrary antenna selection

(aas) at all transmitters:

Caas
sum = E

[

log
∣

∣

∣
InR

+
K
∑

k=1

Pkhkak
h†

kak

∣

∣

∣

]

(2.60)

where hkak
is the ath

k column of the channel matrix of user k, and ak is the antenna

chosen by user k, 1 ≤ ak ≤ nT . The choice of the columns does not affect our result.

All users may select their first antenna, i.e., ak = 1, for all k, or they may select

an antenna arbitrarily. Since SLLN averages out the randomness in the channel

regardless of the realizations, so long as the columns of the channel matrices are

independent, the transmit antenna each user selects is immaterial.

By noting that Pk are a series of bounded numbers, we apply Lemma 2 to (2.6)

by inserting Qk = Pk

nT
I, for all k, and to (2.60). We have

Csum
.
= Caas

sum
.
= nR log

(

1 +
K
∑

k=1

Pk

)

(2.61)

Therefore, we see that the sum-rates achievable by the optimal power allocation and

the arbitrary antenna selection scheme converge to the same quantity asymptotically.

2

We note that this result does not contradict with the result of [42] which is stated

in Section 2.2. For a multi-user system, full-rank transmit covariance matrices are

46



optimum in the sense of maximizing the sum-rate [42]. Theorem 6 states that ar-

bitrary antenna selection scheme is also sufficient to achieve the optimum when the

number of users grows to infinity. In other words, the performance of the arbitrary

antenna selection scheme converges to the optimum when the number of users goes

to infinity.

2.3.2 Covariance Feedback at the Transmitters

When the transmitters have partial CSI in the form of covariance feedback, The-

orem 1 shows that for any number of users, the transmit directions of a user are

the eigenvectors of its own channel covariance feedback matrix. For sufficiently large

numbers of users, the asymptotic optimality of beamforming in achieving the sum-

capacity is proved in the following theorem.

Theorem 7 In a system where there is partial CSI at the transmitters in the form

of covariance feedback, if the number of users grows to infinity, then the sum-rate

achieved by unit-rank transmit covariance matrices (i.e., beamforming) approaches

the sum-capacity. In particular, this beamforming, for each user, is in the direction

of the strongest eigenvector of the channel covariance matrix of that user.

Proof: Note that λQ
ki is bounded for all (k, i), since power constraints for all users are

finite, and λΣ
ki is bounded for all (k, i), since the covariance matrix, Σk, of the channel
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has finite trace. Now, we can apply Lemma 2 to (2.19) with αki = λQ
kiλ

Σ
ki. We have

Csum
.
= max

PnT
i=1

λ
Q
ki

≤Pk

k=1...K

nR log

(

1 +

K
∑

k=1

nT
∑

i=1

λQ
kiλ

Σ
ki

)

(2.62)

In order to solve the above optimization problem, we form the Lagrangian with µk’s

as the Lagrange multipliers,

L = nR log

(

1 +

K
∑

k=1

nT
∑

i=1

λQ
kiλ

Σ
ki

)

−
K
∑

k=1

µk

(

nT
∑

i=1

λQ
ki − Pk

)

(2.63)

The KKT optimality conditions are,

nRλΣ
ki

1 +
∑K

k=1

∑nT

i=1 λQ
kiλ

Σ
ki

≤ µk, i = 1, . . . , nT , k = 1, . . . , K (2.64)

where (2.64) is satisfied with equality if λQ
ki > 0. Note that the denominators on the

left hand side of all the KKT conditions are the same. Without loss of generality,

let λΣ
knT

< · · · < λΣ
k1 for user k. Assume that λQ

kj > 0 and λQ
ki > 0. Then, we

must have λΣ
kj = λΣ

ki, which is a contradiction. Therefore, for user k, only one λQ
kj,

j = 1, · · · , nT can be non-zero. From the objective function in (2.62), we observe that

the non-zero λQ
kj must correspond to the largest eigenvalue of the channel covariance

feedback matrix. Hence, the only non-zero power component in ΛQk
is the first

diagonal element. Finally, from the trace constraint, we have λQ
k1 = Pk, for all k. The
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asymptotic sum capacity becomes

Csum
.
= nR log

(

1 +

K
∑

k=1

Pkλ
Σ
k1

)

(2.65)

2

2.3.3 Mean Feedback at the Transmitters

When the transmitters have partial CSI in the form of mean feedback, Theorem 4

shows that for any number of users, the transmit directions of a user are the eigenvec-

tors of its own channel mean feedback matrix. For sufficiently large numbers of users,

the asymptotic optimality of beamforming in achieving the sum-capacity is proved in

the following theorem.

Theorem 8 In a system where there is partial CSI at the transmitters in the form

of mean feedback, if the number of users grows to infinity, then the sum-rate achieved

by unit-rank transmit covariance matrices (i.e., beamforming) approaches the sum-

capacity. In particular, this beamforming, for each user, is in the direction of the

eigenvector corresponding to the sole non-zero eigenvalue of the channel mean matrix

of that user.

Proof: First, note that λµ
ki for all (k, i) is bounded, since the channel has finite mean

information. Applying Lemma 2 to (2.51), while noting that λµ
ki is non-zero for only
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i = 1, and therefore using different αki (all of which are bounded) for diagonal and

off-diagonal entries, we get

Csum
.
= max

PnT
i=1

λ
Q
ki

≤Pk

k=1...K

(nR − 1) log

(

1 +

K
∑

k=1

Pk

)

+ log

(

1 +

K
∑

k=1

(

(λµ
k1)

2λQ
k1 + Pk

)

)

(2.66)

Since only one eigenvalue from the transmit covariance matrix of each user appears in

(2.66), the optimum choice is to allocate all of the power of each user to the eigenvector

of its own channel mean matrix corresponding to the only non-zero eigenvalue, i.e.,

λQ
k1 = Pk, for all k. The resulting sum-capacity becomes,

Csum
.
= (nR − 1) log

(

1 +

K
∑

k=1

Pk

)

+ log

(

1 +

K
∑

k=1

(

(λµ
k1)

2Pk + Pk

)

)

(2.67)

2

2.4 Numerical Results

The region where beamforming is optimal is multi-dimensional. In order to illus-

trate the effects of having more than two users, we plot two dimensional slices from

the region where beamforming is optimal for all users. We first consider the covari-

ance feedback case, and plot these slices for K = 1, 2, 3, 5, 10 users in Figure 2.1.

These slices give the maximum possible λΣ
12 for a range of λΣ

11. The largest eigenval-

ues of the remaining users are kept constant. The number of transmit and receive

antennas is nT = nR = 2. We see that the region where beamforming is optimal gets
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Figure 2.1: The region where beamforming is optimal for various numbers of users in
the covariance feedback model.

larger with increasing number of users. Note that these curves have to lie below the

λΣ
12 = λΣ

11 line, because λΣ
11 is the largest eigenvalue. The top-most line in Figure 2.1

is the λΣ
12 = λΣ

11 line. We observe that the curves get closer to the λΣ
12 = λΣ

11 line as

K increases. This figure shows that with the addition of more and more users into

the system, a larger range of (λΣ
11, λ

Σ
12) pairs becomes optimal.

For the mean feedback model, we will demonstrate two different cases. In the

first case, the region where beamforming is optimal gets larger by addition of new

users into the system. In Figure 2.2, we plot one dimensional slices from the region

corresponding to K = 1, 2, 3, 5, 10. These lines give λµ
1 values for beamforming to be

optimal for a given power constraint, Pk = 1 for all k. The largest eigenvalues of
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Figure 2.2: The region where beamforming is optimal for various numbers of users in
the mean feedback model. This is an example where the region gets larger as more
users are added into the system.

all other users, which are kept constant, are comparable in value to each other. The

number of transmit and receive antennas is nT = nR = 2. The curves in Figure 2.2

correspond to the left hand side of (2.58) for k = 1. Beamforming is optimal for the

range of λµ
1 , where the curves stay above the horizontal line at Pk = 1. For example,

in the single user case, beamforming is optimal for λµ
1 values to the left of point A and

to the right of point B, while beamforming is not optimal for all λµ
1 values between

points A and B. In the second case, the region where beamforming is optimal first

gets smaller by the addition of new users into the system, however it then starts to

get larger as the number of users is increased further. In Figure 2.3, we plot one

dimensional slices from the region corresponding to K = 1, 2, 5, 10, 20, 30. These
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Figure 2.3: The region where beamforming is optimal for various numbers of users in
the mean feedback model. This is an example where the region does not get larger
as more users are added into the system.

curves give λµ
1 values for beamforming to be optimal for a given power constraint,

Pk = 1 for all k. The largest eigenvalues of all other users are kept constant, and

each new user that is added to the system has a larger mean channel value than those

of the users that are already in the system. The number of transmit and receive

antennas is nT = nR = 2. In Figure 2.4, we zoom into the center of Figure 2.3 in

order to show the details.

In light of these two examples, we conclude that, for the mean feedback model, the

region where beamforming is optimal does not necessarily get larger with increasing

number of users. However, we observe that as the number of users grows, the region

starts to get larger regardless of the mean channel values of the users. The situation
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Figure 2.4: This is the same as Figure 2.3 where we zoom into the center of the figure
to show details.

in Figures 2.3 and 2.4 is a worst case scenario. Even in this worst case, only the region

corresponding to the first user does not get larger, while the corresponding regions

for all other users in the system get larger. This possibly follows from the fact that

the first user has the lowest mean channel value.

In Figure 2.5, we illustrate the change in the region where beamforming is optimal

with the number of receive antennas for the covariance feedback model, while the

number of transmit antennas is kept at nT = 2. We observe that the region gets

smaller as the number of receive antennas is increased. However, for a fixed number

of receive antennas, the region grows with the number of users, and eventually equals

the entire parameter region asymptotically as the number of users goes to infinity.
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Figure 2.5: The region where beamforming is optimal for various numbers of receive
antennas in the covariance feedback model.

For the asymptotic analysis, in Figure 2.6, we show three simple examples for

different numbers of receive and transmit antennas. We plot the sum-rates resulting

from optimal power allocation and arbitrary antenna selection schemes for the no CSI

model. We observe that, for this instance, even for a small number of users, arbitrary

antenna selection performs very close to the optimum power allocation scheme.

2.5 Conclusions

We determined the optimal transmit directions and the region where beamforming

is optimal for all users under covariance and mean feedback CSI models for a multi-
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Figure 2.6: Sum-rates for the optimal and arbitrary antenna selection schemes, as a
function of the number of users in the no CSI model.

user MIMO-MAC. We proved that the region where beamforming is optimal gets

larger by the addition of new users into the system in the covariance feedback case.

In the mean feedback case, we observed through simulations that the region where

beamforming is optimal gets larger for relatively large numbers of users. We showed

that in an asymptotically large system, beamforming is always optimal for all users

not only for the covariance and the mean feedback cases, but also for the no CSI case

as well. Combining our results with those of [31], we conclude that in a large multi-

user MIMO-MAC system, beamforming is optimal under full, partial (covariance and

mean), and no CSI cases.

The results in this chapter are published in [35], [36], [40].
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2.6 Appendix

2.6.1 Proofs of Lemmas 1 and 2

Proof (Lemma 1): Using the matrix inversion lemma [12, page 19]

A−1 = A−1
k −A−1

k zk1

(

1

PkλΣ
k1

+ z†k1A
−1
k zk1

)−1

z†k1A
−1
k (2.68)

Multiplying this with z†k1 from left, and zk1 from right yields

z†k1A
−1zk1 =

1

PkλΣ
k1

(

1 − 1

1 + Pkλ
Σ
k1z

†
k1A

−1
k zk1

)

(2.69)

By taking the expectation of both sides, (2.21) follows. In order to derive the identity

in (2.22), note that

λΣ
kiE

[

z†kiA
−1zki

]

= λΣ
kiE

[

tr(A−1)
]

(2.70)

since zk2 is independent of A, and has identity-covariance. Applying the matrix

inversion lemma [12, page 19] to A = InR
+ Z̄Λ̃Z̄†, with Λ̃ = P̄Λ̄

A−1 = InR
− Z̄Λ̃1/2(IK + Λ̃1/2Z̄†Z̄Λ̃1/2)−1Λ̃1/2Z̄† (2.71)
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Calculating the traces of both sides, we obtain

tr(A−1) = nR − tr
(

(IK + Λ̃1/2Z̄†Z̄Λ̃1/2)−1(IK + Λ̃1/2Z̄†Z̄Λ̃1/2 − IK)
)

(2.72)

= nR − K + tr
(

(IK + Λ̃1/2Z̄†Z̄Λ̃1/2)−1
)

(2.73)

= nR − K +

∑K
k=1 |Ak|
|A| (2.74)

where in the last equation, we used the definition of an inverse of a matrix [12, page

21] and |I + AB| = |I + BA|. Noting that |Ak|
|A|

= 1

1+PkλΣ
k1z

†
k1A

−1
k zk1

, and taking the

expectations of both sides, we have (2.22). 2

Proof (Lemma 2): We will apply a version of the SLLN from [32, page 27, Theorem

D]. In this version of the SLLN, the sum of a sequence of independent random

variables with different means and variances converges to the sum of the sequence

of means of the random variables, subject to the condition that
∑N

i
σ2

i

i2
converges,

where σ2
i are the variances of the random variables. We will apply this theorem

to every element of the matrix at hand, that is, to
∑N

i=1 αixikx
∗
ij , for all (k, j). In

order to invoke the theorem, we let αixikx
∗
ij , for all i, be the sequence of independent

but not identically distributed random variables. Note that the expectations of the

diagonal elements are αi, and the expectations of the off-diagonal elements are zero.

Since αi are assumed to be bounded and xi have zero-mean and identity covariance,

∑N
i

α2
i E[x2

ikx2
ij ]

i2
converges, for all (k, j). As a result, we have

∑N
i=1 αixix

†
i →

∑N
i=1 αiIM .

Due to [32, page 24], if a random variable converges to a deterministic number, a,
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then a function, f , of that random variable converges to f(a). Therefore,

log
∣

∣

∣
IM +

N
∑

i=1

αixix
†
i

∣

∣

∣
→ M log

(

1 +

N
∑

i=1

αi

)

, a.s. (2.75)

If a random variable converges to a number almost surely, then the expectation of

that random variable will be equal to the same number (for large N). That is,

E

[

log
∣

∣

∣
IM +

N
∑

i=1

αixix
†
i

∣

∣

∣

]

.
= M log

(

1 +

N
∑

i=1

αi

)

. (2.76)

2

2.6.2 General Receive Antenna Correlation Matrix

In the model that we considered in the main part of this chapter, the receiver side

correlation matrix is the identity matrix as a result of the assumption that the receiver

(e.g., a base station) is not physically limited and one can place the antenna elements

sufficiently far away from each other. In a different physical model with receiver side

correlation present in the system, similar results can be found. For the single-user

scenario, it is already known that the transmit directions are still the eigenvectors

of the transmitter side channel correlation matrix, even when there is receiver side

channel correlation in the system [18]. Beamforming optimality condition for this case

is also found previously [18]. For the multi-user scenario, our approach generalizes

to the case where there is receiver side channel correlation in the system, when the
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receiver side channel correlation matrices of all users are the same. In this case, the

channel is modeled as,

Hk = Φ1/2ZkΣ
1/2
k (2.77)

where the receive antenna correlation matrix, Φ, is the correlation between the signals

received at the nR receive antennas of the receiver. This correlation matrix does not

depend on the specific transmit antenna from which the signal is transmitted [4]. In

a MAC, since we have a single receiver and the correlation matrix does not depend on

the transmitters, we have the same Φ for all users. The transmit antenna correlation

matrix, Σk, is the correlation between the signals transmitted from the nT transmit

antennas of user k.

The result of Theorem 1, which states that the optimal transmit directions are the

eigenvectors of the transmit antenna correlation matrix, remains exactly the same.

The result of Theorem 2, which states the conditions under which beamforming is

optimal for all users, changes slightly. The refined conditions involve the eigenvalues

of the receive correlation matrix. The region formed by these refined conditions still

grows with the addition of a new user, and therefore, Theorem 3 also remains exactly

the same. Finally, the asymptotic sum-capacity expression in Theorem 7 changes

slightly and involves the eigenvalues of the receive correlation matrix. Below, we

outline the reasons that Theorems 1 and 3 remain the same, and state the refined

conditions for the optimality of beamforming and the new asymptotic sum-capacity
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expression.

Proof (Theorem 1): Let Φ = UΦΛ
1/2
Φ U†

Φ be the spectral decomposition of the

receive antenna correlation matrix. Inserting this into (2.2), we have

Hk = UΦΛ
1/2
Φ U†

ΦZkUΣk
Λ

1/2
Σk

U†
Σk

(2.78)

Then, inserting (2.78) into (2.6) and following similar lines to [18], we obtain

Csum = max
tr(Qk)≤Pk,Qk�0

k=1,...,K

E

[

log
∣

∣

∣
InR

+ ΛΦ

K
∑

k=1

ZkΛQk
ΛΣk

Z†
k

∣

∣

∣

]

(2.79)

The only difference between the proofs of Theorem 1 in uncorrelated and correlated

receiver structures is that, here, we have the matrix ΛΦ in front of the summation

term inside the logarithm compared to (2.18), which does not affect the derivations.

Therefore, we observe that, even when the receive antenna correlation matrix is not

equal to identity, the transmit directions of all users continue to depend only on their

own transmit antenna correlation matrices. However, the resulting sum-capacity is

different, and the optimal power allocation will depend on the eigenvalues of the

receive antenna correlation matrix. 2

The sum-capacity expression in this case can be written, similar to (2.19), as

Csum = max
PnT

i=1
λ

Q
ki

≤Pk,λ
Q
ki

≥0

k=1,...,K

E

[

log
∣

∣

∣
InR

+
K
∑

k=1

nT
∑

i=1

λQ
kiλ

Σ
kiz̃kiz̃

†
ki

∣

∣

∣

]

(2.80)
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where {z̃ki = Λ
1/2
Φ zki, k = 1, . . . , K, i = 1, . . . , nT} is a set of i.i.d. Gaussian random

vectors with zero-mean and covariance matrix ΛΦ.

Proof (Theorem 2): After taking the derivative of the Lagrangian for the optimiza-

tion problem in (2.80), the conditions for the optimality of beamforming for all users

become

Ẽk1

Ẽki

=
λΣ

k1E
[

z̃†k1Ã
−1z̃k1

]

λΣ
kiE

[

z̃†kiÃ
−1z̃ki

] > 1, ∀i 6= 1, k = 1, . . . , K (2.81)

where Ã = InR
+
∑K

l=1 Plλ
Σ
l1z̃l1z̃

†
l1. The identities in Lemma 1 change slightly for the

general Φ case. The details of the derivations only require matrix algebra and are

omitted here due to space limitations. Inserting the new identities from Lemma 1

into (2.81), we have

PλΣ
k2 <

1 − E
[

1
1+PkλΣ

k1z̃
T
k1Ã

−1
k z̃k1

]

∑nR

i=1 λΦ
i −

∑K
l=1 E

[

Plλ
Σ
l1z̃

†
l1Λ

1/2
Φ Ã

−1
l Λ

1/2
Φ z̃l1

1+Plλ
Σ
l1z̃

T
l1Ã

−1
l z̃l1

] , k = 1, . . . , K (2.82)

where Ãk = Ã − Pkλ
Σ
k1z̃k1z̃

†
k1, for all k. 2

Inserting Φ = I, and adding and subtracting “1” from the numerator of the

expectation term in the denominator of (2.82), we get (2.23). And, inserting K = 1,

and Ãk = I, for all k, in (2.82), we get the single-user condition derived in [18].

Proof (Theorem 3): The proof exactly follows the original proof. We only use the

fact that {z̃ki} are independent and zero-mean random vectors. 2

Proof (Theorem 7): Applying Lemma 2 to (2.80), the objective function in (2.62)
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changes to a summation of log functions, instead of nR log (·). Using the Lagrangian

method, (2.65) becomes

Csum
.
=

nR
∑

i=1

log

(

1 + λΦ
i

K
∑

k=1

Pkλ
Σ
k1

)

(2.83)

2
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Chapter 3

Optimum Power Allocation Policies

In Gaussian MIMO multiple access systems, when the receiver side has perfect

CSI, and the transmitter side has partial CSI, our goal is to find the optimum trans-

mit covariance matrices of the users, or equivalently to find the optimum transmit

directions and the optimum power allocation policies. In Chapter 2, we found the op-

timum transmit directions, however, we only focused on a special case of the optimum

power allocation problem, which was in the form of beamforming. In this chapter,

we consider the general power allocation problem, and find the eigenvalues of the

transmit covariance matrices, both in the single-user and multi-user cases, when the

transmitters have partial CSI in the form of covariance feedback.

In a single-user MIMO system, when both the receiver and the transmitter have

perfect CSI and the channel is fixed, [42] showed that the optimum transmit directions

are the right singular vectors of the deterministic channel matrix, and the optimum

power allocation policy is to water-fill over the singular values of the deterministic

channel matrix. In a multi-user MIMO system, when both the receiver and the
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transmitters have perfect CSI and the channel is fixed, [49] showed that the optimum

transmit directions and the power allocation policies can be found using an iterative

algorithm that updates the transmit directions and the power allocation policy of

one user at a time. When the channel is changing over time due to fading, and

perfect and instantaneous CSI is known both at the receiver and at the transmitter

side, these solutions extend to water-filling over both the antennas and the channel

states in single-user [42], and multi-user [50] MIMO systems. However, in most of

the wireless communication scenarios, especially in wireless MIMO communications,

it is unrealistic to assume that the transmitter side has the perfect knowledge of the

instantaneous CSI. In such scenarios, it might be more realistic to assume that only

the receiver side can perfectly estimate the instantaneous CSI, while the transmitter

side has only a statistical knowledge of the channel.

When the fading in the channel is assumed to be a Gaussian process, statistics

of the channel reduce to the mean and covariance information of the channel. The

problem in this setting as well is to find the optimum transmit covariance matrices,

i.e., the optimum transmit directions and the optimum power allocation policies.

However, in this case, the transmit directions and the power allocations are not

functions of the channel states, but they are functions of the statistics of the channel

states, that are fed by the receiver back to the transmitters. The optimization criteria

that we consider are the maximum rate in a single-user system, and the maximum

sum-rate in a multi-user system. For the covariance feedback case, it was shown

in [46] for a MISO system, and in [3,14] for a MIMO system that the optimal transmit
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covariance matrix and the channel covariance matrix have the same eigenvectors, i.e.,

the optimal transmit directions are the eigenvectors of the channel covariance matrix.

For the mean feedback case, the eigenvectors of the optimal transmit covariance

matrix were shown to be the same as the right singular vectors of the channel mean

matrix for a MISO system in [46] and for a MIMO system in [14]. In Chapter 2,

we generalized these results, both in covariance and mean feedback cases, to MIMO-

MAC systems. We showed that in a MIMO-MAC system with partial CSI at the

transmitters, all users should transmit in the direction of the eigenvectors of their own

channel parameter matrices. Consequently, we showed that, the transmit directions

of the users in a MIMO-MAC with partial CSI at the transmitters are independent

of the presence of other users, and therefore, that the users maintain their single-user

transmit direction strategies even in a multi-user scenario.

On the other hand, in this aforementioned literature, the optimization of the

eigenvalues of the transmit covariance matrices, i.e., the power allocation policies,

are left as additional optimization problems. The optimum eigenvalues are known

only for specific conditions, called beamforming optimality conditions. If the channel

statistics satisfy these conditions, then unit-rank transmit covariance matrices are

optimum for all users, i.e., users allocate all of their powers to the direction of their

strongest eigenvectors.

Although having beamforming optimality conditions is extremely helpful, as we

have shown in Chapter 2, beamforming is unconditionally optimal only when the

number of users grows to infinity in a fading multi-user MIMO setting when partial
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CSI is available at the transmitters. In a single-user MIMO or in a MIMO-MAC with

finite number of users, the channel statistics might be such that beamforming may

never be optimal. For such scenarios, efficient and globally convergent algorithms

are needed in order to solve for the optimum eigenvalues of the transmit covariance

matrices. References [17], [44, 45] proposed algorithms that solve this problem for a

single-user MISO system, and for a single-user MIMO system, respectively. However,

in both cases, the convergence proofs for these algorithms were not provided. In a

MIMO-MAC scenario with partial CSI available at the transmitters, no algorithm

was available to find the optimum eigenvalues in a multi-user setting.

In this chapter, first, we give an alternative derivation for the algorithm proposed

in [44, 45] for a single-user MIMO system by enforcing the KKT optimality condi-

tions at each iteration. Our main contribution in this chapter is to prove that the

convergence point of this algorithm is unique and is equal to the optimum eigenvalue

allocation. We showed that the proposed algorithm converges to this unique point

starting from any point on the space of feasible eigenvalues. Next, we consider the

multi-user version of the problem. In this case, our contribution is to develop an

iterative algorithm that finds the optimum eigenvalues of the transmit covariance

matrices of all users that maximize the sum-rate of the MIMO-MAC system. We

apply the single-user algorithm iteratively to reach the global optimum point. At any

given iteration, the multi-user algorithm updates the eigenvalues of one user, using

the algorithm proposed for the single-user case, assuming that the eigenvalues of the

remaining users are fixed. The algorithm iterates over all users in a round-robin fash-
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ion. We prove that, this algorithm converges to the unique global optimum power

allocation for all users.

3.1 System Model

The system model that we consider in this chapter is the same as in Chapter 2.

We summarize our model here for completeness purposes. The channel between user

k and the receiver is represented by a random matrix Hk with dimensions of nR×nT .

The receiver has the perfect knowledge of the channel, while the transmitters have

only the statistical model of the channel. Each transmitter sends a vector xk, and

the received vector is

r =

K
∑

k=1

Hkxk + n (3.1)

where K is the number of users, n is a zero-mean, identity-covariance complex Gaus-

sian vector, and the entries of Hk are complex Gaussian random variables. Let

Qk = E[xkx
†
k] be the transmit covariance matrix of user k, which has an average

power constraint of Pk, tr(Qk) ≤ Pk.

The statistical model that we consider in this chapter is the “partial CSI with

covariance feedback” model where each transmitter knows the channel covariance

information of all transmitters, in addition to the distribution of the channel. In

this model, there exists correlation between the signals transmitted by or received at

different antenna elements. However, we assume that the receiver does not have any

physical restrictions and therefore, there is sufficient spacing between the antenna
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elements on the receiver such that the signals received at different antenna elements

are uncorrelated1. As a result, the channel of user k is written as [4]

Hk = ZkΣ
1/2
k (3.2)

where the entries of Zk are i.i.d., zero-mean, unit-variance complex Gaussian random

variables. From this point on, we will refer to matrix Σk as the channel covariance

feedback matrix of user k. Similar covariance feedback models have been used in [3],

[14], [17], [46].

3.2 Power Allocation for Single-User MIMO

In this section, we will assume that K = 1. In a single-user system with partial

CSI in the form of the channel covariance matrix at the transmitter, the optimization

problem is that of choosing a transmit covariance matrix Q, which is subject to a

trace constraint representing the average transmit power constraint,

C = max
tr(Q)≤P

E
[

log | InR
+ HQH†|

]

(3.3)

where we note that the cost function of the optimization problem in (3.3) is concave

in Q and the constraint set is convex.

1We refer the reader to Section 3.7, for a discussion on extending our results to the case where
the channel has double-sided correlation structure, i.e., to the case where the signals arriving at the
receiver are correlated as well.
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The channel covariance matrix Σ, which is known at the transmitter, has the

eigenvalue decomposition Σ = UΣΛΣU†
Σ with unitary UΣ and diagonal ΛΣ of ordered

eigenvalues. The transmit covariance matrix Q has the eigenvalue decomposition Q =

UQΛQU†
Q with unitary UQ and diagonal ΛQ. It has been shown that the eigenvectors

of the optimum transmit covariance matrix must be equal to the eigenvectors of the

channel covariance matrix, i.e., UQ = UΣ [14]. By inserting this into (3.3), and using

the fact that the random matrices ZUΣ and Z have the same probability distribution

for zero-mean identity-covariance Gaussian Z and unitary UΣ [42], we get

C = max
tr(ΛQ)≤P

E
[

log | InR
+ ZUΣΛ

1/2
Σ U†

ΣUQΛQU†
QUΣΛ

1/2
Σ U†

ΣZ†|
]

(3.4)

= max
tr(ΛQ)≤P

E
[

log | InR
+ ZUΣΛQΛΣU†

ΣZ†|
]

(3.5)

= max
tr(ΛQ)≤P

E
[

log | InR
+ ZΛQΛΣZ†|

]

(3.6)

= max
PnT

i=1 λQ
i ≤P

E

[

log
∣

∣

∣
InR

+

nT
∑

i=1

λQ
i λΣ

i ziz
†
i

∣

∣

∣

]

(3.7)

where zi is the ith column of Z, i.e., {zi, i = 1, . . . , nT} is a set of nR × 1 dimensional

i.i.d., zero-mean, identity-covariance Gaussian random vectors. The Lagrangian for

the above optimization problem is,

L = E

[

log
∣

∣

∣
InR

+

nT
∑

i=1

λQ
i λΣ

i ziz
†
i

∣

∣

∣

]

− µ

(

nT
∑

i=1

λQ
i − P

)

(3.8)

where µ is the Lagrange multiplier. Using the identity in (2.25), the KKT conditions
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can be written as

λΣ
i E



z†i

(

InR
+

nT
∑

j=1

λQ
j λΣ

j zjz
†
j

)−1

zi



 ≤ µ, i = 1, . . . , nT (3.9)

Defining A = InR
+
∑nT

j=1 λQ
j λΣ

j zjz
†
j, and Ai = A − λQ

i λΣ
i ziz

†
i , and using the matrix

inversion lemma [12, page 19], we get

Ei(λ
Q) , E

[

λΣ
i z†iA

−1
i zi

1 + λQ
i λΣ

i z†iA
−1
i zi

]

≤ µ, i = 1, . . . , nT (3.10)

where we defined the left hand side of (3.10) as Ei(λ
Q). The ith inequality in (3.10) is

satisfied with equality whenever the optimum λQ
i is non-zero, and with strict inequal-

ity whenever the optimum λQ
i is zero. We note that in classical water-filling solutions,

since the channel is either fixed or known instantaneously at the transmitter, the cor-

responding KKT conditions do not involve an expectation, and therefore, non-zero

λQ
i ’s can be solved for in terms of the Lagrange multiplier and the eigenvalues of the

fixed/instantaneous channel matrix. However, in our case, we cannot directly solve

for λQ
i in (3.10). Instead, we multiply both sides of (3.10) by λQ

i ,

λQ
i Ei(λ

Q) = µλQ
i , i = 1, . . . , nT (3.11)

We note that when λQ
i = 0, both sides of (3.11) are equal to zero. Therefore, unlike

(3.10), (3.11) is always satisfied with equality for optimum eigenvalues. By summing

both sides over all antennas, we find µ, and by substituting this µ into (3.11), we find
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the fixed point equations which have to be satisfied by the optimum eigenvalues,

λQ
i =

λQ
i Ei(λ

Q)
∑nT

j=1 λQ
j Ej(λQ)

P =
P

∑

j

λQ
j Ej(λQ)

λQ
i Ei(λQ)

, fi(λ
Q), i = 1, . . . , nT (3.12)

where λ
Q = [λQ

1 , . . . , λQ
nT

], and we defined the right hand side of (3.12) which depends

on all of the eigenvalues as fi(λ
Q). It is important to emphasize that the optimum

solution of the KKT conditions always satisfies the fixed point in (3.12), even if the

optimum solution has some zero components.

We propose to use the following fixed point algorithm

λ
Q(n + 1) = f(λQ(n)) (3.13)

where f = [f1, . . . , fnT
]. In order to solve for the optimum eigenvalues, (3.13) updates

the eigenvalues at step n + 1 as a function of the eigenvalues at step n. We claim

that this algorithm converges and that the unique stable fixed point of the algorithm

is equal to the optimum eigenvalues. Although this algorithm is the same as the one

proposed in [44, 45], here, we also provide a convergence proof.

3.3 Convergence Proof

As stated in (3.7), the constraint set of the optimization problem is
∑n

i=1 λQ
i ≤ P .

We know that the optimum value is obtained when the summation is equal to P . If

the summation was strictly less than P , we could increase the value of the objective
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function by increasing any one of the λQ
i ’s, while keeping the rest fixed. Therefore,

the constraint set becomes
∑n

i=1 λQ
i = P . This equality defines a simplex in the

nT -dimensional space (see Figure 3.1), and all feasible eigenvalue vectors are located

on this simplex. Note that if the algorithm is initiated at an exact corner point of

the simplex, then the updates stay at the same point indefinitely. The reason for

this is that while we obtain (3.11) from (3.10), we create some artificial fixed points.

That is, although some non-optimum λQ
i = 0 does not satisfy (3.10) with equality,

the same non-optimum λQ
i = 0 always satisfies (3.11) with equality.

As a result, in addition to the point that is the solution of the KKT conditions,

the solution set of the fixed point equation in (3.12) includes some artificial fixed

points. Since our optimization problem is concave and the constraint set is convex,

the solution of the KKT conditions is the unique optimum point of the optimization

problem. On the other hand, artificial fixed points are the solutions to some reduced

optimization problems, which are obtained by forcing some of the components of the

power allocation vector to be zero. When we force a choice of nT − 1 components to

be zero, we can find one optimum solution to the corresponding reduced optimization

problem for each choice. Since there are
(

nT

nT−1

)

ways of choosing zero components,

this adds nT artificial fixed points, which are the corner points of the simplex, to

the solution set of the fixed point equation. Similarly, when we force a choice of

nT −2 components to be zero, we can find one optimum solution to the corresponding

reduced optimization problem for each choice. This adds
(

nT

nT −2

)

artificial fixed points

to the solution set of the fixed point equation. By counting all possibilities, we find
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that there are a total of 2nT − 2 artificial fixed points. However, it is important to

note that one of these counted points might be the optimum solution of the KKT

conditions, if there are some zero components in the optimum eigenvalue vector. If

the optimum eigenvalues are all non-zero, then the solution of the KKT conditions

is different than these artificial fixed points. Therefore, we call a point an artificial

fixed point only if it is not the optimum solution.

In this section, we will first prove that our algorithm converges. Then, we will

prove that the algorithm cannot converge to an artificial fixed point, and therefore,

the only point that the algorithm can converge to is the unique solution of the KKT

conditions. The main ingredient of our convergence proof is the following lemma.

Lemma 3 Let us have two feasible vectors on the simplex, λ
Q and λ̄

Q, such that

λQ
i > λ̄Q

i , then fi(λ
Q) > fi(λ̄

Q).

Proof: Note that λQ
i > λ̄Q

i implies
∑

j 6=i λ
Q
j <

∑

j 6=i λ̄
Q
j , since all λQ

i sum up to P .

Therefore, the lemma can be proved equivalently by proving that fi(λ
Q) is increasing

in λQ
i when the rest of the λQ

j , j 6= i are fixed, and fi(λ
Q) is decreasing in

∑

j 6=i λ
Q
j ,

when λQ
i is fixed. The first part of the claim is easy to show. Consider (3.12), it can

be shown that the partial derivative of λQ
i Ei(λ

Q) with respect to λQ
i is positive, and

the partial derivatives of λQ
j Ej(λ

Q), for j 6= i, with respect to λQ
i are all negative.

Therefore,
λQ

j Ej(λQ)

λQ
i Ei(λQ)

is decreasing (for all j), and fi(λ
Q) is increasing, in λQ

i when

the rest of the λQ
j , j 6= i are fixed. The second part of the claim is a little bit

involved. In order to show that fi(λ
Q) is decreasing in

∑

j 6=i λ
Q
j , we need to show
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that
∑

j 6=i
∂fi(λ

Q)

∂λQ
j

< 0. It is sufficient to show ∂fi(λ
Q)

∂λQ
j

< 0 for all j 6= i. In order to

show this, consider (3.12), it is easy to show that the partial derivative of λQ
i Ei(λ

Q)

with respect to λj is negative. We, then, need to show that
∂(

PnT
k=1 λQ

k Ek(λQ))

∂λQ
j

> 0. We

will give the proof of this in the Appendix, Section 3.7.1. 2

In Lemma 3, we showed the monotonicity property of the algorithm. By using

this property, in the next lemma, we will show that the algorithm converges.

Lemma 4 The algorithm in (3.13) converges to one of the points in the solution set

of the fixed point equation in (3.12) when it is initiated at any arbitrary feasible point,

λ
Q(0), that is not on the boundary of the simplex.

Proof: After the first iteration of the algorithm, we have one of the following three

cases for each λQ
i . The first case is that λQ

i (1) = fi(λ
Q(0)) = λQ

i (0). This means that

we have started the algorithm at the optimum point that solves the KKT conditions.

Since all of the artificial fixed points are on the boundary of the simplex, this point

cannot be an artificial fixed point.

The second case is that λQ
i (1) = fi(λ

Q(0)) > λQ
i (0). In this case, by applying

Lemma 3 repeatedly, we get λQ
i (n) > λQ

i (n − 1) > · · · > λQ
i (1) > λQ

i (0). Since λQ
i (n)

is a monotonically increasing sequence and it is upper bounded, it is guaranteed to

converge.

The third case is that λQ
i (1) = fi(λ

Q(0)) < λQ
i (0). In this case, by applying

Lemma 3 repeatedly, we get λQ
i (n) < λQ

i (n − 1) < · · · < λQ
i (1) < λQ

i (0). Since λQ
i (n)
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is a monotonically decreasing sequence and it is lower bounded, it is guaranteed to

converge.

Finally, since each component of λ
Q converges, the vector itself also converges to

a point inside the solution set of the fixed point equation. 2

Although we proved that the algorithm converges when it is initiated at any arbi-

trary feasible point that is not on the boundary of the simplex, there is a possibility

that it converges to an artificial fixed point instead of the optimum solution of the

KKT conditions. In the following lemma, we will show that this is never the case.

Lemma 5 The artificial fixed points are unstable. For a very small and fixed ǫ, if we

are ǫ away from an artificial fixed point, with one iteration of the algorithm, we will

move further away from that artificial fixed point.

Proof: The main idea of the proof is the following. We will start from an artificial

fixed point that is not the optimum solution of the KKT conditions of the original

optimization problem, and show that by perturbing this artificial fixed point by an ǫ

amount, we move further away from that artificial fixed point. We give the proof of

the most general scenario with nT antennas and starting from any arbitrary artificial

fixed point in the Appendix, Section 3.7.2. Here, we give the outline and the basic

methodology of the general proof by considering a simple case where nT = 3. In

this case, we have 2nT − 2 = 6 artificial fixed points. Three of them are the corner

points of the 3-dimensional simplex. The other three of them lie on the boundary
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of the simplex, each point corresponding to a solution of the reduced optimization

problem where one of the components is forced to be zero. These points can be seen

in Figure 3.1.

Here, in this outline of the general proof, we will also assume that the artificial

fixed point we focus on has only one zero component. In particular, we assume that

we are at the artificial fixed point p4 = (a, b, 0), see Figure 3.1. Since this is a fixed

point, the following equalities hold from (3.12),

a =
aE1(p4)

aE1(p4) + bE2(p4)
P, b =

bE2(p4)

aE1(p4) + bE2(p4)
P (3.14)

From above, we find that aE1(p4)+bE2(p4) = PE1(p4) = PE2(p4). This is equivalent

to saying that the KKT conditions of the reduced optimization problem corresponding

to the first and second components are satisfied with equality, that is, E1(p4) =

E2(p4) = µ′. We call this Lagrange multiplier µ′, because this is possibly different

than the Lagrange multiplier of the original optimization problem. For E3(p4), we

have three possibilities. E3(p4) = µ′ cannot hold, because that would mean that the

third KKT condition is also satisfied with equality and this can only happen when

optimal λQ
3 is non-zero. E3(p4) < µ′ cannot hold, because that would mean that we

satisfy all three KKT conditions of the original optimization problem with µ′ = µ,

and this fixed point is optimum. This contradicts with our assumption that we are at

an artificial fixed point that is not the optimum solution of the original optimization
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problem. Therefore, the only possibility at an artificial fixed point is that E3(p4) > µ′.

Now, we will show that by perturbing this artificial fixed point by an ǫ amount, we

move further away from this fixed point. We run the algorithm for p′
4 = (a − ǫ, b, ǫ).

We first calculate E1(p
′
4),

E1(p
′
4) = E

[

λΣ
1 z†1(InR

+ (a − ǫ)λΣ
1 z1z

†
1 + bλΣ

2 z2z
†
2)

−1z1

1 + (a − ǫ)λΣ
1 z†1(InR

+ (a − ǫ)λΣ
1 z1z

†
1 + bλΣ

2 z2z
†
2)

−1z1

]

(3.15)

Let us first look at the expression in the numerator of (3.15). We consider this as

a function, h(x) = λΣ
1 z†1

(

Ap4 − x(λΣ
1 z1z

†
1)
)−1

z1 evaluated at x = ǫ, where Ap4 =

InR
+ aλΣ

1 z1z
†
1 + bλΣ

2 z2z
†
2. Using the matrix inversion lemma [12, page 19], we get

h(x) =
λΣ
1 z

†
1Ap4z1

1−xλΣ
1 z

†
1Ap4z1

, and using the Taylor series expansion formula around x = 0, we

obtain

h(ǫ) = λΣ
1 z†1A

−1
p4

z1 + ǫ(λΣ
1 z†1A

−1
p4

z1)
2 + ǫ2(λΣ

1 z†1A
−1
p4

z1)
3 + . . . (3.16)

= λΣ
1 z†1A

−1
p4

z1 + O(ǫ) (3.17)

where O(ǫ) is used to describe an asymptotic upper bound for the magnitude of the

residual in terms of ǫ. Mathematically, a function, h̄(ǫ) is order O(ǫ) as ǫ → 0 if and

only if 0 < lim supǫ→0
h̄(ǫ)

ǫ
< ∞ [24]. Now, when we insert this into (3.15), we obtain

E1(p
′
4) = E

[

λΣ
1 z†1A

−1
p4

z1 + O(ǫ)

1 + aλΣ
1 z†1A

−1
p4

z1 + O(ǫ)

]

(3.18)

=
1

a

(

1 − E

[

1

1 + aλΣ
1 z†1A

−1
p4

z1 + O(ǫ)

])

(3.19)

78



We again use the Taylor series expansion formula, this time with h(x) = 1/x, around

x = 1 + aλΣ
1 z†1A

−1
p4

z1,

h(1 + aλΣ
1 z†1A

−1
p4

z1 + O(ǫ)) =
1

1 + aλΣ
1 z†1A

−1
p4

z1 + O(ǫ)
(3.20)

=
1

1 + aλΣ
1 z†1A

−1
p4

z1

− O(ǫ)

(

1

1 + aλΣ
1 z†1A

−1
p4

z1

)2

+ . . .

(3.21)

=
1

1 + aλΣ
1 z†1A

−1
p4

z1

+ O(ǫ) (3.22)

Finally, (3.15) becomes

E1(p
′
4) = E

[

λΣ
1 z†1A

−1
p4

z1

1 + aλΣ
1 z†1A

−1
p4

z1

]

+ O(ǫ) (3.23)

= E1(p4) + O(ǫ) (3.24)

By using similar arguments, we can conclude that Ei(p
′
4) = Ei(p4) + O(ǫ), for i =

1, 2, 3. If we insert these into f3(p
′
4), we obtain

f3(p
′
4) =

ǫ(E3(p4) + O(ǫ))

(a − ǫ)(E1(p4) + O(ǫ)) + b(E2(p4) + O(ǫ)) + ǫ(E3(p4) + O(ǫ))
P (3.25)

=
ǫE3(p4)

aE1(p4) + bE2(p4) + O(ǫ)
P + O(ǫ2) (3.26)

where the last equation follows, because the summation of terms that are in the order

of O(ǫ) and smaller will be in the order of O(ǫ). Finally, by applying Taylor series
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expansion one more time with h(x) = 1/x, we get

f3(p
′
4) =

ǫE3(p4)

aE1(p4) + bE2(p4)
P + O(ǫ2) (3.27)

We know from (3.14) that aE1(p4) + bE2(p4) = PE1(p4) = PE2(p4). Inserting this

into the above equation, we have

f3(p
′
4) = ǫ

E3(p4)

E1(p4)
+ O(ǫ2) (3.28)

> ǫ (3.29)

where the last inequality follows from the fact that E3(p4) > µ′ = E1(p4). This result

tells us that starting from ǫ away from an artificial fixed point, the third component of

the updated vector, and therefore the updated vector itself moves further away from

that artificial fixed point. Finally, by using Lemma 3, we note that the algorithm will

move away from the artificial fixed point at each iteration. Therefore, this artificial

fixed point is unstable. 2

As a result of Lemma 5, the algorithm never converges to an artificial fixed point,

if it is not initiated at the boundary of the simplex. Therefore, the point that the

algorithm converges to, always satisfies the KKT conditions of the original optimiza-

tion problem. Since this point is unique, when the algorithm converges, it does so to

the unique optimum power allocation policy.
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3.3.1 Comparison to Water-filling

In this section, we will compare our results to the classical water-filling solution,

when the channel is known perfectly both at the receiver and at the transmitter.

We note that in [42], the channel matrix H is known to both the receiver and the

transmitter. The singular value decomposition of H can be written as H = UDV†,

where nR × nR dimensional U, and nT × nT dimensional V are unitary, and nR × nT

dimensional D is non-negative and diagonal. Let the diagonal elements of D be

denoted by di, for i = 1, . . . , min(nR, nT ). The solution of the KKT conditions for

this case yields,

λQ
i =

(

1

µ
− 1

di

)+

, i = 1, . . . , min(nR, nT ) (3.30)

where (x)+ = max{0, x}. Although λQ
i is given explicitly, the Lagrange multiplier

µ still has to be solved. On the other hand, note that the algorithm proposed in

this chapter calculates the eigenvalues directly, without the need for calculating the

Lagrange multiplier of the KKT conditions. Considering this fact, we can propose

the following new algorithm for the water-filling solution in [42], using the idea in this

chapter.

λQ
i (n + 1) =

λQ
i (n)di

1+λQ
i (n)di

∑

j

λQ
j (n)dj

1+λQ
j (n)dj

P, i = 1, . . . , min(nR, nT ) (3.31)
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Note that this algorithm has the same properties as (3.13), and finds the optimum

eigenvalues without the need for calculating the Lagrange multiplier µ.

3.4 Power Allocation for Multi-User MIMO

The sum-capacity of a MIMO-MAC is given as [6],

Csum = max
tr(Qk)≤Pk
k=1,...,K

E

[

log
∣

∣

∣
InR

+
K
∑

k=1

HkQkH
†
k

∣

∣

∣

]

(3.32)

Let Σk = UΣk
ΛΣk

U†
Σk

be the spectral decomposition of the channel covariance matrix

of user k. Then, the optimum transmit covariance matrix Qk of user k has the form

Qk = UΣk
ΛQk

U†
Σk

, for all users from Chapter 2. This means that each user transmits

along the directions of its own channel covariance matrix. While proving this in

Chapter 2, we used the fact that the random matrices {ZkUΣk
}K

k=1 and {Zk}K
k=1 have

the same joint distribution for zero-mean identity-covariance Gaussian {Zk}K
k=1 and

unitary {UΣk
}K

k=1. Since the structure of the sum-capacity expression is similar to

the single-user capacity expression except for the summation inside the determinant,

single-user solution easily generalizes to the multi-user case. By inserting this into
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(3.32), we get

Csum = max
tr(ΛQk)≤Pk

k=1,...,K

E

[

log
∣

∣

∣
InR

+

K
∑

k=1

ZkΛQk
ΛΣk

Z†
k

∣

∣

∣

]

(3.33)

= max
PnT

i=1
λ

Q
ki

≤Pk

k=1,...,K

E

[

log
∣

∣

∣
InR

+

K
∑

k=1

nT
∑

i=1

λQ
kiλ

Σ
kizkiz

†
ki

∣

∣

∣

]

(3.34)

where zki is the ith column of Zk, i.e., {zki, k = 1, . . . , K, i = 1, . . . , nT} is a set of

nR × 1 dimensional i.i.d., zero-mean, identity-covariance Gaussian random vectors.

A result of Chapter 2 is that the optimal multi-user transmit direction strategies

are decoupled into a set of single-user transmit direction strategies. However, in

general, this is not true for the optimal transmit power allocation strategies. The

amount of power each user allocates in each direction depends on both the transmit

directions and the power allocations of other users. If the eigenvalues of the channel

covariance matrices satisfy the conditions given in Chapter 2, then beamforming

becomes optimal, and the optimal transmit power allocation strategy for each user

reduces to allocating all of its power to its strongest eigen-direction, and this strategy

does not require the user to know the channel covariance matrices of the other users.

However, if the eigenvalues of the channel covariance matrices do not satisfy these

conditions, finding the optimum eigenvalues becomes a harder task. In this section,

we will give an iterative algorithm that finds the optimum eigenvalues for all users.

We will follow a similar direction as in the single-user case. By writing the Lagrangian

for (3.34) and using the identity in (2.25), we obtain the KKT conditions for user k
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as

Eki(λ
Q) , E

[

λΣ
kiz

†
kiA

−1
ki zki

1 + λQ
kiλ

Σ
kiz

†
kiA

−1
ki zki

]

≤ µk, i = 1, . . . , nT (3.35)

where λ
Q = [λQ

1 , . . . , λQ
K ], λ

Q
k = [λQ

k1, . . . , λ
Q
knT

] is the eigenvalue vector of user k,

and µk is the Lagrange multiplier corresponding to user k, Aki = A − λQ
kiλ

Σ
kizkiz

†
ki,

and A = InR
+
∑K

k=1

∑nT

j=1 λQ
kjλ

Σ
kjzkjz

†
kj. The inequalities in (3.35) are satisfied with

equality whenever the optimum λQ
ki is non-zero, and with strict inequality whenever

the optimum λQ
ki is zero. Similar to the single-user case, λQ

ki cannot be solved directly

from (3.35) because of the expectation operator. Again, we will multiply both sides

of (3.35) by λQ
ki,

λQ
kiEki(λ

Q) = λQ
kiµk, i = 1, . . . , nT (3.36)

Note that, similar to the single-user case, (3.36) is satisfied with equality for all λQ
ki,

and we have created some artificial fixed points while obtaining (3.36) from (3.35).

For any k, we can find µk by summing over all antennas, and by inserting this µk into

(3.36), we can find the fixed point equations that have to be satisfied by the optimum

power values of user k,

λQ
ki =

λQ
kiEki(λ

Q)
∑

j λQ
kjEkj(λQ)

Pk , gki(λ
Q), i = 1, . . . , nT (3.37)

where we defined the right hand side of (3.37) which depends on all of the eigenvalues

as gki(λ
Q).
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We propose the following algorithm, that enforces (3.37),

λ
Q
k (n + 1) = gk

(

λ
Q
1 , . . . , λQ

k−1, λ
Q
k (n), λQ

k+1, . . . , λ
Q
K

)

(3.38)

where gk = [gk1, . . . , gknT
] is the vector valued update function of user k. This algo-

rithm finds the optimum eigenvalues of a given user by assuming that the eigenvalues

of the rest of the users are fixed. The algorithm moves to another user, after (3.38)

converges. A complete update corresponding to user k only, i.e., running the algo-

rithm in (3.38) for user k until it converges while the eigenvalues of the other users

are fixed, is equivalent to the single-user algorithm proposed in (3.13). Therefore,

we know from the previous section that the algorithm in (3.38) converges to the

unique optimum point, when the eigenvalues of the rest of the users are fixed. The

optimization problem that is solved by (3.38) is,

Ck = max
PnT

i=1 λQ
ki≤Pk

E

[

log
∣

∣

∣
Bk +

nT
∑

i=1

λQ
kiλ

Σ
kizkiz

†
ki

∣

∣

∣

]

(3.39)

where Bk = InR
+
∑K

l 6=k

∑nT

i=1 λQ
liλ

Σ
lizliz

†
li depends on the fixed eigenvalues of all other

users. Such an algorithm is guaranteed to converge to the global optimum [2, page

219], since Csum is a concave function of λki for all k and i, Ck is a strictly concave

function of λki for all i, and the constraint set is convex and has a Cartesian product

structure among the users. Note that in [49], this kind of an algorithm is used in

order to find the iterative water-filling solution. However, in that setting, where both

the receiver and the transmitters know the perfect CSI, an iteration corresponding
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to user k does not include another algorithm, but it is just a single-user water-filling

solution.

In order to improve the convergence rate, we also propose the following multi-user

algorithm,

λ
Q
k′(n + 1) = gk′

(

λ
Q
1 (n + 1), . . . , λQ

k′−1(n + 1), λQ
k′(n), λQ

k′+1(n), . . . , λQ
K(n)

)

(3.40)

where k′ = (n + 1) mod K. At a given time n + 1, this algorithm updates the eigen-

values of user k′. In the next iteration, it moves to another user. Since at a given

iteration corresponding to user k, this algorithm does not solve (3.39) completely, we

cannot conclude its convergence using [2, page 219]. However, we have observed the

convergence of this algorithm experimentally through many simulations. One poten-

tial method to prove the convergence of this algorithm could be through proving that

each iteration of the single-user algorithm in (3.13) increases the objective function

of the optimization problem, i.e., the rate. Even though we proved that each itera-

tion of this algorithm either monotonically increases or monotonically decreases each

eigenvalue, and therefore, monotonically decreases the distance between the iterated

eigenvalue vector and the optimum eigenvalue vector, we have not been able to prove

mathematically that each iteration monotonically increases the objective function.

Yet, we have observed this monotonicity through extensive simulations. Given that

the objective function is a strictly concave function of the eigenvalue vector, we con-

jecture that the algorithm in (3.13) increases the objective function monotonically.
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On the other hand, we have observed experimentally that the algorithm in (3.40)

converges much faster than the algorithm in (3.38). This could be due to the fact

that, while the algorithm in (3.38) runs many iterations of the same user before it

moves to another user, the algorithm in (3.40) runs only one iteration for each user

before it moves to the next user.

3.5 Numerical Results

In this section, we will provide numerical examples for the performances of the

proposed algorithms. In Figure 3.1 and Figure 3.2, we plot the trajectories of the

iterations of the proposed single-user algorithm for a MIMO system with nR = nT =

P = 3. We run the algorithm three times for each figure with different initial points,

which are ǫ away from the three corner points of the 3-dimensional simplex. In

Figure 3.1, all of the optimum eigenvalues are non-zero, and in Figure 3.2, one of the

optimum eigenvalues is zero. We observe, from the two figures, that the algorithm

converges to the unique optimum point.

In Figure 3.3 and Figure 3.4, we plot the eigenvalues as a function of the iteration

index. We observe that the eigenvalues converge to the same unique convergence

point starting from various initial points. In addition to the points that are ǫ away

from the corner points, the other initial points are: the all-one vector, and the point

corresponding to the channel covariance matrix eigenvalues, which is normalized to

satisfy the power constraint. In Figure 3.3, all of the optimum eigenvalues are non-
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Figure 3.1: The trajectories of the single-user algorithm when it is started from the
corner points of the simplex for the case where the optimal eigenvalues are all non-
zero.

zero, and in Figure 3.4, one of the optimum eigenvalues is zero. As we see from

Figure 3.3, the algorithm needs much less time to converge to the optimum point when

it is started from the normalized channel covariance eigenvalue point compared to the

cases when it is started from any other points on the simplex. This is true mainly

because of an argument similar to the water-filling argument, where we allocate more

power to the strongest channel. As a result, the unique optimum transmit covariance

eigenvalue vector is located close to the normalized channel covariance eigenvalue

vector. Since they are located close by, it takes less time for the algorithm to converge

to the optimum. Therefore, we may prefer to start the algorithm from the normalized

channel covariance matrix eigenvalues, in order to improve the convergence rate of
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Figure 3.2: The trajectories of the single-user algorithm when it is started from the
corner points of the simplex for the case where one of the optimal eigenvalues is zero.

the algorithm. We note however that the algorithm converges to the optimum point

from any arbitrary initial point.

We also note that, even when we start the algorithm from the normalized channel

covariance matrix eigenvalues, we observe from Figure 3.4 that it may still take some

time for the algorithm to converge. In this case, this occurs mainly because one of

the optimum eigenvalues is equal to zero. In order to improve the convergence rate,

we can check if any one of the optimum eigenvalues will be zero, before we start the

algorithm. We can use the beamforming optimality conditions from [14], and from

the Chapter 2 in order to check if the second component of the eigenvalue vector

is zero. For the rest of the components, similar conditions can easily be derived by
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Figure 3.3: The convergence of the single-user algorithm starting from various points,
when all of the optimal eigenvalues are non-zero: (a) convergence of all three eigen-
values from (P − 2ǫ, ǫ, ǫ); (b) convergence of all three eigenvalues from ( P

nT
, P

nT
, P

nT
);

(c) convergence of all three eigenvalues from (ǫ, ǫ, P −2ǫ); (d) convergence of all three
eigenvalues from the normalized channel eigenvalue vector.

using the ideas in [14], and Chapter 2. If there are any eigenvalues that will be zero at

the optimum, we can drop them from the optimization problem, and solve a reduced

problem with fewer dimensions. In Figure 3.5, we have selected the eigenvalues of

the channel covariance matrix so that the third eigenvalue of the optimum transmit

covariance matrix happens to be zero. We considered two different initial points: the

normalized channel covariance eigenvalue vector, and a vector obtained by setting

the third component of the channel covariance eigenvalue vector to zero, before the
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Figure 3.4: The convergence of the single-user algorithm starting from various points,
when one of the optimal eigenvalues is zero: (a) convergence of all three eigenvalues
from (P − 2ǫ, ǫ, ǫ); (b) convergence of all three eigenvalues from ( P

nT
, P

nT
, P

nT
); (c)

convergence of all three eigenvalues from (ǫ, ǫ, P − 2ǫ); (d) convergence of all three
eigenvalues from the normalized channel eigenvalue vector.

normalization. We observe that the algorithm converges much faster if we identify

the components that will be zero at the convergence point and remove them from the

iterations.

Finally, we consider a multi-user MIMO-MAC scenario. Note that, for a given

user, the multi-user algorithm given in (3.38) demonstrates the same convergence

behavior as in Figure 3.3 and Figure 3.4, when the eigenvalues of the other users

are kept constant. Therefore, we plot Figure 3.6 by running the multi-user algorithm
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Figure 3.5: The convergence of the single-user algorithm when one of the optimum
eigenvalues is zero.

proposed in (3.40). In this figure, we consider 3 users with different channel covariance

matrices. The algorithm is started at the normalized channel covariance eigenvalue

vectors of the users. Each iteration in the figure corresponds to an update of the

eigenvalues of the transmit covariance matrices of all users. At the end of the first

iteration, all users have run the algorithm in (3.40) once. We can see in Figure 3.6

that the multi-user algorithm converges quite quickly, and at the end of the fourth

iteration, all users are almost at their optimum eigenvalue points.
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Figure 3.6: The convergence of the multi-user algorithm where each iteration corre-
sponds to a single update of all users.

3.6 Discussions

Due to the nature of our optimization problem, our algorithms include calculation

of some expectations at each iteration. Direct calculation of these expectations is

sometimes difficult. However, by exploiting the ergodicity of the system and using

sample averages, we can get very fast results. Although the number of expectations

that has to be calculated increases as the number of users increases, fortunately, we

can eliminate most of the components inside the expectations using the results of

Chapter 2, which state that beamforming becomes optimal as the number of users in

the system increases. As it can be seen in Chapter 2, even for a fairly low number

of users, beamforming is almost optimal. Therefore, by combining beamforming
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optimality conditions with the proposed algorithms, we can find the optimum power

allocations of the users much faster. Figure 3.5 shows that the number of iterations

is significantly less when beamforming optimality conditions are utilized. Although it

cannot be seen in the figure, each iteration takes less time as well, i.e., the expectations

are computed faster, since there is less randomness in the system as a result of setting

some eigenvalues to zero.

Another issue that we want to discuss here is the possibility of having a channel

with double-sided correlation. In our model, as a result of the assumption that the

receiver (e.g., a base station) is not physically limited and one can place the antenna

elements sufficiently away from each other, the receiver side correlation matrix be-

comes the identity matrix. In a different model with receiver side correlation present

in the system, similar results can be found. For the single-user scenario, it is already

known that the transmit directions are still the eigenvectors of the transmitter side

channel correlation matrix, even when there is receiver side channel correlation in

the system [18]. Beamforming optimality condition for this case is also found pre-

viously [18]. For the power allocation problem, an approach similar to the one in

this chapter can be applied and a similar but more cumbersome algorithm can be

found. This algorithm includes extra terms that are similar to the terms in beam-

forming optimality conditions that are given in [18]. For the multi-user scenario, our

approach generalizes to the case where there is receiver side channel correlation in

the system, when the receiver side channel correlation matrices of all users are the

same. This might be motivated by assuming that the receiver side channel correlation
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is only a result of the physical structure of the receiver and the environment around

the receiver, therefore it is the same for all users. In this case, it is possible to find

similar but again more cumbersome algorithms in order to solve the optimum power

allocation policies of all users.

3.7 Conclusions

We proposed globally convergent algorithms for finding the optimum power al-

location policies for both single-user MIMO and MIMO-MAC systems. Combining

this with our previous results in Chapter 2 on the optimum transmit directions and

the asymptotic behavior of MIMO-MAC systems, the sum capacity maximization

problem is completely solved for a finite or infinite sized MIMO-MAC with the full

CSI at the receiver and partial CSI at the transmitters in the form of channel covari-

ance information. In this chapter, for a single-user case, we proved the convergence

and the uniqueness of the convergence point of a pre-existing algorithm. This proof

handles the complications arising from the existence of the artificial fixed points, and

it gives some insights to the classical water-filling solution. For the multi-user case,

we derived and proved the convergence of a multi-user algorithm, which finds the

optimum power allocations of all users.

The results in this chapter are published in [37], [38].
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3.8 Appendix

3.8.1 Proof of Lemma 3

Without loss of generality, let us take j = 1. We will show that
∂(

PnT
k=1 λQ

k Ek(λQ))
∂λQ

1

>

0.

∂λQ
1 E1(λ

Q)

∂λQ
1

= E







λΣ
1 z†1A

−1
1 z1

(

1 + λQ
1 λΣ

1 z†1A
−1
1 z1

)2






(3.41)

Now, for k = 2, . . . , nT , let us consider λQ
k Ek(λ

Q) = λQ
k λΣ

k E[zkA
−1zk]. Applying the

matrix inversion lemma [12, page 19] to A = A1 + λQ
1 λΣ

1 z1z
†
1, we get

λQ
k Ek(λ

Q) = λQ
k λΣ

k

(

E[zkA
−1
1 zk] − E

[

λQ
1 λΣ

1 (zkA
−1
1 z1)

2

1 + λQ
1 λΣ

1 z†1A
−1
1 z1

])

(3.42)

By taking the derivative of (3.42) with respect to λQ
1 , we get

∂λQ
k Ek(λ

Q)

∂λQ
1

= −λQ
k λΣ

k E

[

λΣ
1 (z†kA

−1
1 z1)

2

(1 + λQ
1 λΣ

1 z†1A
−1
1 z1)2

]

(3.43)

Combining (3.41) and (3.43) with sk = (λΣ
k λQ

k )1/2zk, we have

∂
(

∑nT

k=1 λQ
k Ek(λ

Q)
)

∂λQ
1

=
1

λQ
1

E

[

s†1A
−1
1 s1 −

∑nT

k=2(s
†
kA

−1
1 s1)

2

(1 + s†1A
−1
1 s1)2

]

(3.44)
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We note that A1 = I + S1S
†
1, where S1 = [s2, . . . , snT

]. Then, by using the ma-

trix inversion lemma, we have A−1
1 = I − S1(I + S†

1S1)
−1S†

1. Finally, note that

∑nT

k=2(s
†
kA

−1
1 s1)

2 = s†1A
−1
1 S1S

†
1A

−1
1 s1. Now, we will find equivalent expressions for

the numerator of (3.44). Let us first look at s†1A
−1
1 s1,

s†1A
−1
1 s1 = s†1s1 − s†1S1(I + S†

1S1)
−1S†

1s1 (3.45)

Now, let us look at s†1A
−1
1 S1,

s†1A
−1
1 S1 = s†1S1 − s†1S1(I + S†

1S1)
−1S†

1S1 (3.46)

= s†1S1(I + S†
1S1)

−1(I + S†
1S1) − s†1S1(I + S†

1S1)
−1S†

1S1 (3.47)

= s†1S1(I + S†
1S1)

−1 (3.48)

Inserting (3.45) and (3.48) into (3.44), it is sufficient to show

s†1s1 − s†1S1(I + S†
1S1)

−1S†
1s1 − s†1S1(I + S†

1S1)
−2S†

1s1 ≥ 0 (3.49)

In order to proceed, we note that s†1s1 ≥ s†1S1(S
†
1S1)

−1S†
1s1 holds. This can be seen by

noting that the matrix S1(S
†
1S1)

−1S†
1 is idempotent, and therefore its eigenvalues are

either zero or one. Hence, I−S1(S
†
1S1)

−1S†
1 is positive definite. Using this inequality,

the condition becomes,

s†1S1

[

(S†
1S1)

−1 − (I + S†
1S1)

−1 − (I + S†
1S1)

−2
]

S†
1s1 ≥ 0 (3.50)
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Now, let us look at the term between the square brackets,

(S†
1S1)

−1−(I + S†
1S1)

−1 − (I + S†
1S1)

−2 = (3.51)

= (S†
1S1)

−1(I + S†
1S1)(I + S†

1S1)
−1 − (I + S†

1S1)
−1 − (I + S†

1S1)
−2 (3.52)

= (S†
1S1)

−1(I + S†
1S1)

−1 − (I + S†
1S1)

−2 (3.53)

=
(

(S†
1S1)

−1 − (I + S†
1S1)

−1
)

(I + S†
1S1)

−1 (3.54)

= (S†
1S1)

−1(I + S†
1S1)

−1(I + S†
1S1)

−1 (3.55)

= (I + S†
1S1)

−1(S†
1S1)

−1(I + S†
1S1)

−1 (3.56)

Now, let the singular value decomposition of S1 be S1 = UDV†, then S†
1S1 = VD2V†.

Inserting this into (3.56), and (3.56) into (3.50), we get

s†1UDV†V(I + D2)−1V†VD−2V†V(I + D2)−1V†VDU†s1 ≥ 0 (3.57)

s†1UD(I + D2)−1D−2(I + D2)−1DU†s1 ≥ 0 (3.58)

s†1U(I + D2)−1(I + D2)−1U†s1 ≥ 0 (3.59)

Finally, since (I + D2)−2 is positive definite, (3.59) holds and (3.44) is greater than

zero.

3.8.2 Proof of Lemma 5

For arbitrary number of antennas, we will assume that we are at some artificial

fixed point, which is not a solution of the original optimization problem, with possibly
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more than one zero components. Let this artificial fixed point be p = (a1, a2, . . . , anT
),

and let S be the index set of the zero components so that aj = 0 for all j ∈ S. Since

p is a fixed point, the following equalities hold for i 6∈ S

ai =
aiEi(p)

∑

j 6∈S ajEj(p)
P (3.60)

From above, we find that
∑

j 6∈S ajEj(p) = PEi(p) = Pµ′, for all i 6∈ S. This is

equivalent to saying that the KKT conditions of the reduced optimization problem

corresponding to components, i 6∈ S, are satisfied with equality, where µ′ is possibly

different than µ. We will show that some conditions on Ej(p), j ∈ S cannot hold.

The case where Ej(p) = µ′ for all j ∈ S cannot hold, because this would mean that

the KKT conditions of the original optimization problem are all satisfied with equality

with µ′ = µ, and this can only happen when optimal λQ
i ’s for all i are non-zero. Now,

let k be the smallest index in S, then because of the ordering of the eigenvalues of

the channel covariance matrix, Ek(p) is greater than all Ej(p), for all j 6= k, and

j ∈ S. The case where Ek(p) = µ′ and Ej(p) ≤ µ′, for all j 6= k, and j ∈ S cannot

hold, because that would mean that the KKT conditions of the reduced optimization

problem is violated. The case where Ek(p) < µ′ and Ej(p) < Ek(p) < µ′, for all

j 6= k, and j ∈ S cannot hold, because that would mean that we satisfy all KKT

conditions of the original optimization problem with µ′ = µ. This contradicts with

our assumption that we are at an artificial fixed point that is not the solution of the

original optimization problem. Therefore, in all other possibilities, we have at least

Ek(p) > µ′, where k is the smallest index in S. Now, we will show that by perturbing
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the artificial fixed point by an ǫ amount, we move further away from that artificial

fixed point. We run the algorithm for p′ which is different from p in two components:

the kth component is ǫ, and any ith component, for i 6∈ S, is ai− ǫ. By using the same

Taylor series arguments, we can say that Ei(p
′) = Ei(p) + O(ǫ), for i = 1, . . . , nT . If

we insert these into fk(p
′), we have

fk(p
′) =

ǫEk(p)
∑

i6∈S aiEi(p)
P + O(ǫ2) (3.61)

We know from (3.60) that
∑

i6∈S aiEi(p) = Pµ′. Inserting this into the above equation,

we have

fk(p
′) = ǫ

Ek(p)

µ′
+ O(ǫ2) (3.62)

> ǫ (3.63)

where the last inequality follows from the fact that Ek(p) > µ′. This result tells

us that starting from ǫ away from an artificial fixed point, the kth component of

the updated vector, and therefore the updated vector itself moves further away from

the artificial fixed point. By using Lemma 3, the algorithm will move away from the

artificial fixed point at each iteration. Therefore, this artificial fixed point is unstable.
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Chapter 4

Channel Estimation and Noisy CSI at the Receiver

In wireless communication scenarios, the achievable rate of a system depends

crucially on the amount of CSI available at the receivers and the transmitters. The

CSI is observed only by the receiver, which can estimate it and feed the estimated

CSI back to the transmitter. If the transmitter adapts its transmission scheme to the

received CSI estimate, it is possible to obtain higher rates, especially in MIMO links.

In practice, the channel estimation is always noisy, and the amount of feedback to

the transmitter is limited.

Measuring the CSI and feeding it back to the transmitter uses communication

resources, which could otherwise be used for useful information transmission. One

way of measuring the CSI is that the transmitter sends a known training sequence,

from which the receiver measures the channel. This estimated CSI is used by the

receiver in decoding the messages, however the estimation process uses up time and

power.

Optimizing the achievable rate in a fading channel has been widely studied under
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various assumptions on the channel estimation process and the CSI available at the

transmitter side. With perfect CSI at the receiver and the instantaneous knowledge

of perfect CSI at the transmitter, the optimum adaptation scheme becomes water-

filling [7, 42, 49]. In some cases, especially in MIMO links, feeding the instantaneous

CSI back to the transmitter is not realistic. Therefore, some research assumes that

there is perfect CSI at the receiver but only partial CSI available at the transmitter

[3, 14, 46].

Another line of research considers the actual estimation of the channel at the re-

ceiver, which is noisy. When the CSI available at the receiver is not perfect, most

of the research focuses on single-user systems. The capacity and the corresponding

optimum signaling scheme for this case are not known. However, lower and upper

bounds for the capacity can be obtained. A common approach in finding an achiev-

able rate for such situations involves assuming Gaussian signaling. Reference [28]

finds bounds for the achievable rate of a single-user system without CSI feedback,

under the assumption that there exists a separate channel, that does not consume

communication resources, for the estimation process. This work has been extended to

the case where there is error free feedback in the system [20], where it was shown that

the optimum power allocation that achieves the lower bound is a form of water-filling.

Reference [47] extends [20,28] to a MIMO system, where the power allocation is done

in two steps: first, the sum power values for all channel realizations are found, and

then the sum power is spatially water-filled over the antennas at each channel state.

It is important to note that [20, 28, 47] assume the existence of a separate chan-
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nel that does not consume system resources for channel estimation. Consequently,

[20, 28, 47] do not consider optimizing the channel estimation process. For a single-

user multiple-antenna system with no CSI available at the transmitter, [9] considers

optimizing the achievable rate as a function of both the training and the data trans-

mission phases. Since there is no CSI feedback, the transmitter power allocation

is constant over the channel states and the antennas. In this case, optimizing the

achievable rate involves finding the optimal power allocation between the training

and data transmission phases, determining the optimal training sequence length, and

the optimal training symbols. Reference [9] shows that using more training symbols

than the number of transmit antennas is sub-optimal, and that orthonormal training

symbols are optimal.

In the first part of this chapter, we consider a single-user, block-fading, correlated

MIMO channel with noisy channel estimation at the receiver, and partial CSI available

at the transmitter. The CSI feedback that we consider lies somewhere between perfect

CSI [47] and no CSI [9], and it is similar to [3, 14, 46], and is the same as in the

previous chapters in this thesis, i.e., covariance feedback. We consider the fact that

the training phase uses communication resources, and we optimize the achievable

rate of the data transmission phase over the parameters of the training and data

transmission processes. Our model differs from [9] in that we consider a correlated

channel, which requires a power allocation over the antennas, and we do not have

a constraint on the training signal duration, which might result in shorter training

signals.
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The training phase is characterized by three parameters, namely, the training sig-

nal, the training sequence length and the training sequence power. Similarly, the data

transmission phase is characterized by the data carrying input signal, data transmis-

sion length, and the data transmission power. Assuming that the receiver uses linear

MMSE detection to estimate the channel during the training phase, we first choose

the training signal that minimizes the MMSE. This choice also increases the achiev-

able rate of the data transmission phase [9]. However, unlike [9], our result does

not necessarily allocate equal power over the antennas, and might not estimate all of

the available channel variables. Then, we move to the data transmission phase, and

maximize the achievable rate of the data transmission phase jointly over the rest of

the training phase parameters, and the data transmission phase parameters, i.e., we

find the optimum partition of the given total transmitter power and the block length

between the training and the data transmission phases, and we also find the optimum

allocation of the data transmission power over the antennas.

In a multi-user setting, the amount of resources required to measure the channel

and to feed the estimated channel back to the transmitter increases substantially.

When perfect channel information is assumed to be available at the receiver and

the transmitters at no cost, [49] finds the optimum transmission strategy, which is

a multi-user water-filling scheme. Under a more practical assumption, when there

is perfect CSI at the receiver but only partial CSI available at the transmitters, we

found the optimum transmit strategies for all users in Chapters 2 and 3.

When the perfect CSI assumption at the receiver is relaxed, i.e., when the channel
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estimation at the receiver is noisy, most of the research focuses on single-user systems

[9], [28], [47]. In the second half of this chapter, we extend the single-user results

to multiple access channels. In a multi-user setting, we first consider the channel

estimation process and find the optimum training signals for all users. Although all

of the users are allowed to use the available training duration simultaneously, we find

that the training signals of the users should be non-overlapping in time. Since the

total block length, and therefore the total training duration is limited, each user can

only train a fraction of its available channel dimensions, which might result in shorter

individual training signal durations compared to the single-user case. However, as a

result of having shorter individual training signal duration and the conservation of

energy, the training signal power that is used by a particular user in a multi-user

case could be larger than the training signal power that the same user would use in a

single-user case. Therefore, although fewer dimensions of the channel are estimated,

the channel estimation error corresponding to those estimated dimensions will be

smaller.

Next, we move to the data transmission phase, and derive an achievable sum-rate

expression that includes the channel estimation and data transmission parameters of

all users. We first determine the optimum transmit directions for all users. Then, we

develop an algorithm that maximizes the sum-rate jointly over the individual training

durations of all users, the allocation of power of each user between training and data

transmission phases, and also the allocation of the data transmission power of each

user over its transmit directions. Finally, we provide detailed simulation results that
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investigates the effects of the power constraint, coherence interval (block length), and

channel covariance matrices on our results.

Our contributions in this chapter provide a solution to the data-rate optimization

problem jointly over the training and data transmission phases. In both single-user

MIMO and MIMO-MAC cases, we first find the optimum training signal that mini-

mizes the mean square error of the channel estimation. Then, we develop algorithms

that maximize the achievable rate of the data transmission phase jointly in terms the

training and data transmission parameters.

4.1 System Model

We consider a multiple access channel (MAC) with multiple transmit antennas at

every user and multiple receive antennas at the receiver. The channel between user k

and the receiver is represented by a random matrix Hk with dimensions of nR × nT ,

where nR and nT are the number of antennas at the receiver and at the transmitters,

respectively. We consider a block fading scenario where the channel remains constant

for a block (T symbols), and changes to an i.i.d. realization at the end of the block.

In order to estimate the channels, the receiver performs a linear MMSE estimation

for the channels of the users using training symbols over Tt symbols. During the

remaining Td = T − Tt symbols, data transmission occurs. While the receiver has a

noisy estimate of the realization of the fading channel, the transmitters have only the

statistical model of the channel. At time n, each transmitter sends a vector xkn, and
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the received vector is

rn =

K
∑

k=1

Hkxkn + nn, n = 1, . . . , T (4.1)

where K is the number of users, nn is a zero-mean, identity-covariance complex

Gaussian vector at time n, and the entries of Hk are complex Gaussian random

variables. Each user has a power constraint of Pk, averaged over T symbols.

The statistical model that we consider in this chapter, as in the previous chapters,

is the “partial CSI with covariance feedback” model. The channel of user k is written

as [4]

Hk = ZkΣ
1/2
k (4.2)

where the entries of Zk are i.i.d., zero-mean, unit-variance complex Gaussian random

variables.

4.2 Joint Optimization for Single-user MIMO

In this section, we will assume that K = 1. In our model, a coherence interval,

over which the channel is fixed, is divided into two phases: training phase and data

transmission phase; see Figure 4.1. The transmitter uses Pt amount of power during

the training phase, and Pd amount of power during the data transmission phase. Due

to the conservation of energy, we have PT = PtTt + PdTd.
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Training Sequence                Date Sequence

Pt, S Pd,x

TdTt

Figure 4.1: Illustration of a single coherence time, over which the channel is fixed.

In a single-user system with partial CSI in the form of the channel covariance ma-

trix at the transmitter, and channel estimation error at the receiver, the optimization

problem is to maximize the achievable rate of the data transmission phase. Unlike

the case with perfect channel estimation, the data rate here depends on the channel

estimation parameters: training signal S, training signal power Pt, and training sig-

nal duration Tt. Therefore, we need to optimize the rate jointly over these channel

estimation parameters and the data transmission phase parameters. Intuitively, a

longer training phase will result in a better channel estimate and therefore a larger

achievable rate during the data transmission phase, since the channel estimation error

contributes to the effective noise. However, we use channel resources such as time

and power during the channel estimation process, which could otherwise be used for

data transmission. A longer training phase implies a shorter data transmission phase,

as the block length (coherence time) is fixed. A shorter data transmission phase, in

turn, implies a smaller achievable rate. Similarly, the more the training power, the

better the channel estimate will be. However, since the total power is fixed, a larger

training power will imply a smaller data transmission power, which will decrease the

achievable rate. Here, we will solve these trade-offs, and find the optimum training

and data transmission parameters.

We will first consider the channel estimation process during the training phase,
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and choose the training signals to minimize the channel estimation error. Then, we

will consider the data transmission phase and develop a lower bound to the capacity,

which can be achieved by Gaussian signaling. We will optimize this rate jointly over

the rest of the channel estimation parameters and the data transmission parameters.

4.2.1 Training and Channel Estimation Phase

In practical communication scenarios, the channel is estimated at the receiver.

One way of doing this is to use training symbols before the data transmission starts.

The receiver estimates the channel using these known training signals and the output

of the channel. Since the channel stays the same during the entire block, we can write

the input-output relationship during the training phase in a matrix form as

Rt = HS + Nt (4.3)

where S is an nT × Tt dimensional training signal that will be chosen and known at

both ends, Rt and Nt are nR × Tt dimensional received signal and noise matrices,

respectively. The nth column of the matrix equation in (4.3) represents the input-

output relationship at time n. The power constraint for the training input signal is

1
Tt

tr(SS†) ≤ Pt.

Due to our channel model in (4.2), the entries in a row of H are correlated, and

the entries in a column of H are uncorrelated, i.e., rows i and j of the channel matrix

are i.i.d. Let us represent row i of H as h†
i , with E[hih

†
i ] = Σ, i = 1, . . . nR. Since
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rows are i.i.d., the receiver can estimate each of them independently using the same

training signal. Re-writing (4.3), we get
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h†
nR
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n†
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n†
tnR

















. (4.4)

Now, the ith row of the above equation can be written as

rti = S†hi + nti. (4.5)

The receiver will estimate the ith row of the channel matrix using the received signal

rti, and the training signal S. In general, the estimate ĥi can be set to any function

of S and rti. That is, ĥi = f(S, rti). However, it is common to use and easier to

implement linear MMSE estimation. Also, when the random variables involved in

the estimation are Gaussian, as in Rayleigh fading channels, linear MMSE estima-

tion is optimal. In order to find the linear MMSE estimator, we solve the following

optimization problem with ĥi = Mrti as the estimate of hi, and h̃i = hi − ĥi as the

channel estimation error,

min
M

E
[

h̃†
i h̃i

]

= min
M

E
[

tr
(

h̃ih̃
†
i

)]

(4.6)

= min
M

E
[

tr
(

(hi − Mrti)(hi −Mrti)
†
)]

. (4.7)

Solving the optimum M from (4.7) is equivalent to solving M from the orthogonality
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principle for vector random variables, which is given as [19, page 91],

E
[

(hi −Mrti)r
†
ti

]

= 0 (4.8)

where 0 is the nT × Tt zero matrix. We can solve M from (4.8) as

M = E
[

hir
†
ti

] (

E
[

rtir
†
ti

])−1

. (4.9)

By using (4.5), we calculate E[hir
†
ti] = ΣS, and E[rtir

†
ti] = S†ΣS + I. Then, the

optimum M becomes M = ΣS(S†ΣS + I)−1. Using this, the mean square error in

(4.7) becomes,

min
M

E
[

h̃†
i h̃i

]

= tr
(

Σ − ΣS(S†ΣS + I)−1SΣ
)

(4.10)

= tr
(

(

Σ−1 + SS†
)−1
)

(4.11)

where the last line follows from the matrix inversion lemma [12, page 19]. Note that

the mean square error of the channel estimation process can be further decreased

by choosing the training signal S to minimize (4.11). In addition, it is stated in [9]

that the training signal S primarily affects the achievable rate through the so called

effective signal-to-noise ratio, which is shown to be inversely proportional to the

MMSE [9]. Therefore, choosing S to further minimize the MMSE, we also increase

the achievable rate of the data transmission phase. The following theorem finds the

optimal training signal for a given training power and training duration.
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Theorem 9 For given Σ = UΣΛΣU†
Σ, Pt, Tt, and the power constraint tr(SS†) ≤

PtTt, the optimum training input that minimizes the power of the channel estimation

error vector is S = UΣΛ
1/2
S with

λS
i =

(

1

µS

− 1

λΣ
i

)+

, i = 1, . . . , min(nT , Tt) (4.12)

where µ2
S is the Lagrange multiplier that satisfies the power constraint with

µS =
J

Pt +
∑J

i=1
1

λΣ
i

(4.13)

where J is the largest index that has non-zero λS
i .

Proof: Let us have S = USΛ
1/2
S V†

S. The expression in (4.11) is minimized when

Σ−1 and SS† have the same eigenvectors [22]. Therefore, we have US = UΣ. Since,

SS† = USΛSU
†
S, and the unitary matrix VS does not appear in the objective function

and the constraint, we can choose VS = I. Inserting this into (4.11), the optimization

can be written as

σ̃ = min
tr(ΛS)≤PtTt

tr
(

(

Λ−1
Σ + ΛS

)−1
)

. (4.14)

The Langrangian of the problem in (4.14) can be written as

nT
∑

i=1

1
1

λΣ
i

+ λS
i

+ µ2
S

(

nT
∑

i=1

λS
i − PtTt

)

(4.15)
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where µ2
S is the Lagrange multiplier. The solution that satisfies the KKT conditions

is water-filling over the eigenvalues of the channel covariance matrix, which can be

written as

λS
i =

(

1

µS

− 1

λΣ
i

)+

, i = 1, . . . , min(nT , Tt). (4.16)

In order to calculate µS, we sum both sides of (4.16) over all antennas to get

µS =
J

Pt +
∑J

i=1
1

λΣ
i

(4.17)

where J is the largest index that has non-zero λS
i . 2

It is important to note that for any given Pt, and Tt > nT , the effect of training

length is completely eliminated from the channel estimation problem, i.e., increasing

Tt beyond nT does not result in better channel estimates. However, larger Tt will

result in smaller data transmission length, and decrease the achievable rate of the

data transmission phase. Therefore, it is sufficient to consider only Tt ≤ nT , which

we will assume through the rest of this chapter.

Theorem 9 tells us that the optimum transmit directions of the training signal are

the eigenvectors of the channel covariance matrix, and the right eigenvector matrix of

the training signal is identity. As a result, the columns of S are the weighted columns

of a unitary matrix, and they are orthogonal. Since each column of S is transmitted at

a channel use during the training phase, vectors that are transmitted at each channel
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use during the training phase are orthogonal to each other. This means that, at

each channel use, it is optimal to train only one dimension of the channel along one

eigenvector. Moreover, the optimum power allocation policy for the training power

is to water-fill over the eigenvalues of the channel covariance matrix using (4.12).

Depending on the power constraint and the training signal duration, some of the

eigenvalues of the training signal might turn out to be zero. This means that some

of the channels along the directions corresponding to zero eigenvalues of the training

signal, are not even trained.

Note that µS is a function of only Pt and Tt, which are given to the problem

in Theorem 9, and will be picked as a result of the achievable rate maximization

problem in the data transmission phase. The value of Tt determines the total number

of available parallel channels in the channel estimation problem, and the value of Pt

determines the number of channels that will be estimated. The parametric values of

Pt and Tt will appear in the achievable rate formula in the data transmission phase.

After the rate maximization is performed, the optimum Pt and Tt will be found, and

these in turn, will give us the optimum S through Theorem 9.

Before moving on to the next section, we will calculate the eigenvalues of the

covariance matrices of the estimated channel vector, and the channel estimation er-

ror vector. Plugging S into the covariance of the channel estimation error, Σ̃ =

E
[

h̃ih̃
†
i

]

=
(

Σ−1 + SS†
)−1

, we find the eigenvectors,

Σ̃ = UΣ

(

Λ−1
Σ + ΛS

)−1
U†

Σ, (4.18)
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and by plugging (4.12) into (4.18), we find the eigenvalues of the covariance of the

channel estimation error, Σ̃

λ̃Σ
i =















µS, µS < λΣ
i ;

λΣ
i , µS > λΣ

i

= min
(

λΣ
i , µS

)

. (4.19)

Note that along the directions that we send training signals, i.e., when the corre-

sponding eigenvalues of the training signal are non-zero (µS < λΣ
i ), the variance of

the channel estimation error is the same for all directions. Along the directions that

we do not send training signals, the variance of the channel estimation error is equal

to the variance of the channel along that direction. This is expected, since the channel

is not estimated along that direction, the error in the channel estimation process is

the same as the realization of the channel itself.

Next, we will calculate the eigenvalues of the covariance of the channel estimate.

Using the orthogonality property of the MMSE estimation, ĥi and h̃i are uncorrelated

[19, page 91]. We have,

E
[

hih
†
i

]

= E
[

ĥiĥ
†
i

]

+ E
[

h̃ih̃
†
i

]

(4.20)

Σ = E
[

ĥiĥ
†
i

]

+ Σ̃. (4.21)
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Now, the covariance matrix of the estimated channel becomes,

E
[

ĥiĥ
†
i

]

, Σ̂ = UΣΛΣU†
Σ − UΣΛ̃ΣU†

Σ (4.22)

= UΣ

(

ΛΣ − Λ̃Σ

)

U†
Σ (4.23)

, UΣΛ̂ΣU†
Σ. (4.24)

The covariance matrix of the estimated channel has the same eigenvectors as the

covariance matrix of the actual channel, however, their eigenvalues are different. We

can write each eigenvalue of the covariance matrix of the estimated channel as

λ̂Σ
i = λΣ

i − λ̃Σ
i (4.25)

= λΣ
i − min

(

λΣ
i , µS

)

(4.26)

= min
(

0, λΣ
i − µS

)

. (4.27)

Along the directions that we do not send training signals, the value of the channel

estimate itself is zero. Therefore, as expected, the power of the estimated channel is

zero as well, along those channels with µS > λΣ
i .

In the next section, we will plug in these values into the rate formula and develop

an algorithm that solves the rate maximization problem of the data transmission

phase jointly in terms of the training signal power Pt, training signal duration Tt,

and the covariance of the data carrying input signal Q. When the joint optimiza-

tion problem is solved, the resulting Pt and Tt will determine the optimum training
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sequence S through Theorem 9.

4.2.2 Data Transmission Phase

When the CSI at the receiver is noisy, the optimum input signaling that achieves

the capacity is not known. Following [9, 20, 28, 47], we derive a lower bound (i.e.,

an achievable rate) on the capacity for our model, and find the training and data

transmission parameters that result in the largest such achievable rate. Using the

channel estimation error, H̃ = H − Ĥ, we can write (4.1) as

r = Ĥx + H̃x + n. (4.28)

where x is the information carrying input, n is a zero-mean, identity-covariance com-

plex Gaussian vector. Let Q = E[xx†] be the transmit covariance matrix, which

has an average power constraint of Pd, tr(Q) ≤ Pd. Although the optimum input

distribution is not known, we achieve the following rate with Gaussian x for a MIMO

channel [47],

Clb = I(r;x|Ĥ) = E
[

log
∣

∣

∣
I + R−1

H̃x+n
ĤQĤ†

∣

∣

∣

]

(4.29)
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where RH̃x+n is the covariance matrix of the effective noise, H̃x + n, which is equal

to

RH̃x+n = E
[

H̃xx†H̃†
]

+ I = E
[

H̃QH̃†
]

+ I. (4.30)

By denoting each row of H̃ as h̃†
i , we can write the (i, j)th entry of E

[

H̃QH̃†
]

as,

E
[

h̃†
iQh̃j

]

= tr
(

QE
[

h̃ih̃
†
j

])

(4.31)

=















tr(QΣ̃), when i = j

0, when i 6= j

(4.32)

which results in E
[

H̃QH̃†
]

= tr(QΣ̃)I. Now, the rate in (4.29) can be written as

Clb = E

[

log

∣

∣

∣

∣

∣

I +
ĤQĤ†

1 + tr(QΣ̃)

∣

∣

∣

∣

∣

]

. (4.33)

Since our goal is to find the largest such achievable rate, the rate maximization

problem over the entire block becomes

R = max
(Q,Pt,Tt)∈S

tr(Q)≤Pd

T − Tt

T
E

[

log

∣

∣

∣

∣

∣

I +
ĤQĤ†

1 + tr(QΣ̃)

∣

∣

∣

∣

∣

]

(4.34)

where S =
{

(Q, Pt, Tt)
∣

∣

∣
tr(Q)Td + PtTt = PT

}

, and the coefficient T−Tt

T
reflects the

amount of time spent during the training phase. The maximization is over the train-

ing parameters Pt, and Tt, and the data transmission parameter Q, which can be

decomposed into its eigenvectors, i.e., the transmit directions, and eigenvalues, i.e.,
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powers along the transmit directions.

While solving this optimization problem, we will first find the optimum transmit

directions of the data transmission phase, which are given by the eigenvectors of Q.

We will then focus on the joint optimization of the rate over the eigenvalues (i.e.,

power distribution over the transmit directions) of Q, the transmit power and the

duration of the training phase.

Transmit Directions

Unlike the case with no-CSI at the transmitters [9], in a single-user system with

partial CSI in the form of channel covariance matrix at the transmitter, and noisy CSI

at the receiver, the optimum transmit covariance matrix is not equal to the identity

matrix. In this case, the problem becomes that of choosing the eigenvectors, i.e., the

transmit directions, and the eigenvalues, i.e., the powers allocated to the transmit

directions, of the transmit covariance matrix to maximize (4.34). The channel co-

variance matrix Σ̂, which is known at the transmitter, and the transmit covariance

matrix Q have the eigenvalue decompositions Σ̂ = UΣΛ̂ΣU†
Σ, and Q = UQΛQU†

Q,

respectively.

When the CSI at the receiver is perfect, [14] showed that the eigenvectors of

the transmit covariance and the channel covariance matrices must be equal, i.e.,

UQ = UΣ. In the next theorem, we show that this is also true when there is channel

estimation error at the receiver.

119



Theorem 10 Let Σ = UΣΛΣU†
Σ be the spectral decomposition of the covariance

feedback matrix of the channel. Then, the optimum transmit covariance matrix Q

has the form Q = UΣΛQU†
Σ.

Proof: In (4.18) and (4.24), we have shown that, when Σ = UΣΛΣU†
Σ, we have

Σ̂ = UΣΛ̂ΣU†
Σ, and Σ̃ = UΣΛ̃ΣU†

Σ. By using (4.2), we have Ĥ = ẐUΣΛ̂
1/2
Σ U†

Σ.

Inserting these into (4.34), we obtain

R = max
(Q,Pt,Tt)∈S

tr(Q)≤Pd

T − Tt

T
E



log

∣

∣

∣

∣

∣

∣

I +
ẐΛ̂

1/2
Σ U†

ΣQUΣΛ̂
1/2
Σ Ẑ†

1 + tr
(

U†
ΣQUΣΛ̃Σ

)

∣

∣

∣

∣

∣

∣



 (4.35)

where we used the fact that the random matrices ẐUΣ and Ẑ have the same dis-

tribution for zero-mean identity-covariance Gaussian Ẑ and unitary UΣ [42]. We

may spectrally decompose the expression sandwiched between Ẑ and its conjugate

transpose in (4.35) as

Λ̂
1/2
Σ U†

ΣQUΣΛ̂
1/2
Σ = UΛU†. (4.36)

Using (4.36), and the identity tr(AB) = tr(BA), we can write the trace expres-

sion in the denominator of (4.35) as tr
(

U†
ΣQUΣΛ̃Σ

)

= tr
(

U†Λ̂−1
Σ Λ̃ΣUΛ

)

, and the

optimization problem in (4.35) can be written as

R = max
(Q,Pt,Tt)∈S

tr(Q)≤Pd

T − Tt

T
E



log

∣

∣

∣

∣

∣

∣

I +
ẐΛẐ†

1 + tr
(

U†Λ̂−1
Σ Λ̃ΣUΛ

)

∣

∣

∣

∣

∣

∣



 (4.37)

where we again used the fact that the random matrices ẐU and Ẑ have the same
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distribution. Since, in (4.37), the numerator of the objective function does not involve

U, and using [26, Theorem 9.H.1.h, page 249], we know for the denominator that

tr(Λ̂−1
Σ Λ̃ΣΛ) ≤ tr(U†Λ̂−1

Σ Λ̃ΣUΛ), for all unitary U, we can choose U = I to maximize

the rate as long as this choice is feasible. In order to check for the feasibility, we write

the trace constraint on Q using (4.36) as

tr(Q) = tr(UΣΛ̂
−1/2
Σ UΛU†Λ̂

−1/2
Σ U†

Σ) (4.38)

= tr(U†Λ̂−1
Σ UΛ). (4.39)

Again from [26, Theorem 9.H.1.h, page 249], tr(Λ̂−1
Σ Λ) ≤ tr(U†Λ̂−1

Σ UΛ) ≤ Pd, for all

unitary U. Therefore, we conclude that U = I choice is feasible. Then, using U = I,

from (4.36), we have the desired result:

Q = UΣΛ̂−1
Σ ΛUΣ (4.40)

with ΛQ = Λ̂−1
Σ Λ. 2

Using Theorem 10, we can write the optimization problem in (4.34) as,

R = max
(Q,Pt,Tt)∈S

tr(Q)≤Pd

T − Tt

T
E



log

∣

∣

∣

∣

∣

∣

I +
ẐΛQΛ̂ΣẐ†

1 + tr
(

ΛQΛ̃Σ

)

∣

∣

∣

∣

∣

∣



 (4.41)

= max
(λQ,Pt,Tt)∈P

T − Tt

T
E

[

log

∣

∣

∣

∣

∣

I +

∑nT

i=1 λQ
i λ̂Σ

i ẑiẑ
†
i

1 +
∑nT

i=1 λQ
i λ̃Σ

i

∣

∣

∣

∣

∣

]

(4.42)

where λ
Q = [λQ

1 , . . . , λQ
nT

], P =
{

(

λ
Q, Pt, Tt

)

∣

∣

∣

(

∑nT

i=1 λQ
i

)

Td + PtTt = PT
}

, and ẑi,

121



which is an nR×1 dimensional i.i.d., zero-mean, identity-covariance Gaussian random

vector, is the ith column of Ẑ. Although the constraint set of the optimization problem

is
(

∑nT

i=1 λQ
i

)

Td +PtTt ≤ PT , we know that the optimum value is obtained when the

summation is equal to PT . Since x
a+x

is an increasing function in x, if the summation

was strictly less than PT , we could increase the value of the objective function by

increasing any one of the λQ
i ’s, while keeping the rest fixed. Therefore, it is sufficient

to search over a constraint set, where the inequality is satisfied with equality.

Power Allocation Policy

In a MIMO system, a transmit strategy is a combination of a transmit direction

strategy, and a transmit power allocation strategy, which is the set of optimum eigen-

values of the transmit covariance matrix, λ
Q, that solves (4.42). Although Theorem

10 gives us a very simple closed form solution for the optimum transmit directions,

solving (4.42) for λ
Q in a closed form does not seem to be feasible due to the ex-

pectation operation in the objective function. Therefore, we will develop an iterative

algorithm that solves (4.42) for λ
Q.

For a single-user MIMO system with perfect CSI at the receiver and partial CSI

at the transmitter in the form of covariance feedback, an algorithm that finds the

optimum power allocation policy is proposed in Chapter 3. In this section, we extend

the algorithm in Chapter 3 to the case when there is channel estimation error at

the receiver, or in other words, we have the training signal power and the training
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signal duration in the sum-rate expression. The algorithm in Chapter 3 cannot be

trivially generalized to the model in this chapter, since, here we have the training

power Pt, and the training duration Tt as additional parameters. Using the algorithm

in Chapter 3, we cannot update the value of the training power.

By plugging (4.25) and (4.19) into (4.42), we get

R = max
(λQ ,Pt,Tt)∈P

T − Tt

T
E

[

log

∣

∣

∣

∣

∣

I +

∑J
i=1 λQ

i (λΣ
i − µS)ẑiẑ

†
i

1 +
∑J

i=1 λQ
i µS +

∑nT

i=J+1 λQ
i λΣ

i

∣

∣

∣

∣

∣

]

. (4.43)

Note that J and µS are functions of Pt and Tt. Since λQ
i , for i = J + 1, . . . , nT does

not contribute to the numerator, we should choose λQ
i = 0, for i = J + 1, . . . , nT .

This means that the number of unknowns in λ
Q that we should solve for is J , i.e.,

the unknowns are λQ
1 , . . . , λQ

J . This is to be expected, because we have trained only J

transmit directions, and we should now solve for J power values along those directions.

Consequently, we have

R = max
(λQ,Pt,Tt)∈P

T − Tt

T
E

[

log

∣

∣

∣

∣

∣

I +

∑J
i=1 λQ

i (λΣ
i − µS)ẑiẑ

†
i

1 + µSPd

∣

∣

∣

∣

∣

]

. (4.44)

From Theorem 9, we know that J ≤ Tt. We further claim that while optimizing

the rate, it is sufficient to search over those (Pt, Tt) pairs that result in J = Tt. In

other words, for any pair (Pt, Tt) that results in J < Tt, we can find another pair

(Pt, T
′

t ) that results in a higher achievable rate. In order to see this consider a pair

(Pt, Tt) that results in J < Tt, then let us choose T
′

t = J . For this choice, the result
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of Theorem 9 is the same, since the available power can only fill J of the parallel

channels, and the amount of power filled over those J channels does not depend in

the number of empty channels. Therefore with (Pt, T
′

t ) = (Pt, J), the estimation

process yields the same channel estimate. When we look at (4.44), we see that inside

of the expectation is the same for both (Pt, Tt) and (Pt, T
′

t ). However, the coefficient

in front of the expectation is higher with (Pt, T
′

t ), since J = T
′

t < Tt. Therefore

(Pt, T
′

t ) yields a higher achievable rate and it is sufficient to search over those (Pt, Tt)

pairs that result in J = Tt. We can now write (4.44) as

R = max
(λQ ,Pt,Tt)∈R

T − Tt

T
E

[

log

∣

∣

∣

∣

∣

I +

∑Tt

i=1 λQ
i (λΣ

i − µS)ẑiẑ
†
i

1 + µSPd

∣

∣

∣

∣

∣

]

(4.45)

where R =
{

(

λ
Q, Pt, Tt

)

∣

∣

∣

(

∑nT

i=1 λQ
i

)

Td + PtTt = PT, Pt >
∑Tt

i=1

(

1
λΣ

Tt

− 1
λΣ

i

)}

, and

the condition Pt >
∑Tt

i=1

(

1
λΣ

Tt

− 1
λΣ

i

)

guarantees that, using the pair (Pt, Tt), all Tt

channels are filled, i.e., J = Tt.

Note that the parameters that we want to optimize (4.45) over are discrete valued

Tt, and continuous valued Pt, and λ
Q. Since, for every value of Tt, both the coefficient

in front of the expectation, and the number of terms in the sum in the numerator of

(4.45) are different, the form of the objective function is also different. Since Tt is

discrete, and 1 ≤ Tt ≤ nT , we can perform an exhaustive search over Tt and solve nT

reduced optimization problems with fixed Tt in each one. Then, we take the solution
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that results in the maximum rate, i.e.,

R = max
1≤Tt≤nT

max
(λQ,Pt)∈RTt

T − Tt

T
E

[

log

∣

∣

∣

∣

∣

I +

∑Tt

i=1 λQ
i (λΣ

i − µS)ẑiẑ
†
i

1 + µSPd

∣

∣

∣

∣

∣

]

(4.46)

where RTt =
{

(

λ
Q, Pt

)

∣

∣

∣

(

∑nT

i=1 λQ
i

)

Td + PtTt = PT, Pt >
∑Tt

i=1

(

1
λΣ

Tt

− 1
λΣ

i

)}

.

While solving the inner maximization problem, we define fi(Pt) =
λΣ

i −µS

1+µSPd
, for

i = 1, . . . , Tt. In this case, the inner optimization problem becomes

RTt = max
(λQ,Pt)∈RTt

T − Tt

T
E

[

log

∣

∣

∣

∣

∣

I +

Tt
∑

i=1

λQ
i fi(Pt)ẑiẑ

†
i

∣

∣

∣

∣

∣

]

. (4.47)

Note that, for the inner optimization problem, in addition to Tt, if Pt was fixed, fi(Pt)

would also be fixed. In this case, the problem in (4.47) would become exactly the

same as the corresponding problem with perfect CSI assumption at the receiver as

in Chapter 3, where here, fi(Pt) replaces λΣ
i in (3.7). In the optimization problem in

(4.47), we have Tt + 1 optimization variables, λQ
1 , . . . , λQ

Tt
, and Pt. The Lagrangian

for (4.47) can be written as

T − Tt

T
E

[

log

∣

∣

∣

∣

∣

I +

Tt
∑

i=1

λQ
i fi(Pt)ẑiẑ

†
i

∣

∣

∣

∣

∣

]

− µ

((

Tt
∑

i=1

λQ
i

)

Td + PtTt − PT

)

(4.48)

where µ is the Lagrange multiplier, and we omitted the complementary slackness

conditions related to the positiveness of λQ
i , and Pt −

∑Tt

i=1

(

1
λΣ

Tt

− 1
λΣ

i

)

. Using the
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identity in (2.25), the KKT conditions can be written as

Td

T
fi(Pt)E

[

z†iA
−1zi

]

≤ µTd, i = 1, . . . , Tt (4.49)

Td

T

Tt
∑

i=1

λQ
i E
[

z†iA
−1zi

] ∂fi(Pt)

∂Pt
= µTt (4.50)

where A = I +
∑Tt

i=1 λQ
i fi(Pt)ẑiẑ

†
i , and the equality of the last equation follows from

the complementary slackness condition, which says Pt >
∑Tt

i=1

(

1
λΣ

Tt

− 1
λΣ

i

)

. If the

complementary slackness condition is not satisfied, i.e., we had Pt ≤
∑Tt

i=1

(

1
λΣ

Tt

− 1
λΣ

i

)

,

then at least one of the channels out of Tt channels could not be filled, i.e., J < Tt,

which means this choice of (Pt, Tt) pair is not optimal. Therefore, the complementary

slackness condition is always satisfied, resulting in the equality in (4.50).

Note that when the optimum λQ
i is non-zero, the corresponding inequality in

(4.49) will be satisfied with equality due to its corresponding complementary slackness

condition. Therefore, we pull the expectation terms from (4.49) for those equations

with non-zero λQ
i ’s, and insert them into (4.50). Since those indices with λQ

i = 0 do

not contribute to (4.50), we have

Td

T

Tt
∑

i=1

λQ
i

µT

fi(Pt)

∂fi(Pt)

∂Pt

= µTt. (4.51)

By canceling out µ’s on both sides, we get

Tt
∑

i=1

λQ
i

f ′
i(Pt)

fi(Pt)
=

Tt

Td

. (4.52)
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Now, we have a fixed-point equation which does not include any expectation terms.

We can use this to solve Pt in terms of λQ
i ’s. Also note that the structure of (4.49) is

the same as the KKT conditions in Chapter 3. Therefore, we propose to update λQ
i

in the same way as in Chapter 3, and between the iterations solve (4.52) to update

Pt. At any given iteration, our algorithm first solves Pt(n + 1) from

Tt
∑

i=1

λQ
i (n)

f ′
i(Pt(n + 1))

fi(Pt(n + 1))
=

Tt

Td
(4.53)

and then, updates λQ
i (n + 1) using

λQ
i (n + 1) =

λQ
i (n)fi(Pt(n + 1))E

[

z†iA
−1zi

]

∑nT

j=1 λQ
j (n)fj(Pt(n + 1))E

[

z†jA
−1zj

]

(PT − Pt(n + 1)Tt)

Td

, i = 1, . . . , Tt

(4.54)

This algorithm finds the solution for the training power Pt, and the eigenvalues of the

transmit covariance matrix λQ
1 , . . . , λQ

Tt
, for a fixed Tt, for 1 ≤ Tt ≤ nT . We run nT

such algorithms, and the solution of (4.45) is found by taking the one that results in

the largest rate, which gives us the solution for the training phase duration Tt.

As a result, we solved the joint channel estimation and resource allocation problem

that we considered in this chapter. Through the solutions for Tt and Pt, we find the

solution for the allocation of available time and power over the training and data

transmission phases, since total block length and power is fixed. Through Theorem 10,

we find the optimum transmit directions, and through λQ
1 , . . . , λQ

Tt
, we find the solution

for the allocation of data transmission power over these transmit directions. Finally,
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the optimum training signal S that minimizes the mean square error is determined

by Tt and Pt through Theorem 9.

4.2.3 Numerical Results for Single-user MIMO

Analytical proof of the convergence of this algorithm seems to be more complicated

than the proof in the case when there is no channel estimation error, and seems to

be intractable for now. However, in our extensive simulations, we observed that the

algorithm always converged.

We start our numerical analysis with the single-user case. We first consider a

system having nT = nR = 2 with 10 dB total average power and block length T = 4.

In Figure 4.2, we plot the eigenvalues of the data transmit matrix and the training

power as a function of the iteration index for both possible values of the training

signal duration. We observe that when the training duration is one symbol period,

we achieve a higher rate. Therefore, for this set of given system parameters, estimating

only one dimension of the channel results in the highest rate.

Next, we investigate the effect of total average power on the number of estimated

channel dimensions. We observe that if we keep the block length small at T = 4, the

amount of total power required in order to estimate the second channel dimension is

very high. In Figure 4.3, for a 40 dB total average power, we plot the eigenvalues of

the data transmit matrix and the training power as a function of the iteration index

for both possible values of the training signal duration, and we see that achievable
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Figure 4.2: The convergence of the single-user algorithm with nT = nR = 2, 10 dB
total average power and T = 4. The dashed curves correspond to one symbol long
training, Tt = 1, and solid curves correspond to two symbols long training, Tt = 2.

rate with two symbols of training is barely higher than the achievable rate with one

symbol of training. We repeat this experiment with different numbers of antennas

and channel eigenvalues, and we see that we need very high power levels in order to

use more than one symbol of training. This suggests that the block length, i.e., the

coherence interval, is more important for determining the duration of the training

phase.

In order to investigate the effect of the block length, in Figure 4.4, we consider

10 dB total average power, and block length T = 20. We observe that similar to the

high SNR case, in this case as well, having two symbols long training phase results

in higher rates. We repeat this experiment with different numbers of antennas, and

channel eigenvalues for long block lengths, and we see that moderate block lengths are
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Figure 4.3: The convergence of the single-user algorithm with nT = nR = 2, 40 dB
total average power and T = 4. The dashed curves correspond to one symbol long
training, Tt = 1, and solid curves correspond to two symbols long training, Tt = 2.

sufficient in order to use more than one symbol of training. Therefore, we conclude

that for very fast changing channels where the coherence interval and therefore the

block length is short, and for low SNR systems, estimating only one dimension of

the channel results in higher achievable rates. In this case, we cannot take advantage

of the multiple dimensions that the MIMO channel provides, because the amount of

time required to estimate those channels cancels the data rate advantage brought by

having multiple channels.

We next analyze the effects of different channel covariance matrices. In Fig-

ure 4.5, we consider 10 dB average power, and a channel covariance matrix that has

a first eigen-direction much stronger than the second eigen-direction, i.e., the largest

eigenvalue of the channel covariance matrix is much larger than the second largest
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Figure 4.4: The convergence of the single-user algorithm with nT = nR = 2, 10 dB
total average power and T = 20. The dashed curves correspond to one symbol long
training, Tt = 1, and solid curves correspond to two symbols long training, Tt = 2.

eigenvalue. In such scenarios, even if the block length is large, beamforming turns out

to be the optimal strategy for the data transmission period. Therefore, estimating the

second dimension is a waste of resources, because no power will be allocated to that

direction in the data transmission phase. Confirming this intuition, in Figure 4.5,

for the cases when Tt = 2, the power allocated to the second eigen-direction is zero,

although the training power is large enough to estimate both channels.

Another extreme for the eigenvalues of the channel covariance matrix is the case

when both eigenvalues are equal, which is considered in Figure 4.6. Note that this

case is exactly the case considered [9]. However, in this thesis, we do not assume the

restriction that Tt ≥ nT as it was assumed in [9] by reasoning that one needs at least

Tt ≥ nT measurements in order to estimate nT variables. Although this reasoning
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Figure 4.5: The convergence of the single-user algorithm with nT = nR = 2, 10
dB total average power, and channel eigenvalues λ

Σ = [2, 0.2], where dashed curves
correspond to one symbol long training, Tt = 1, and solid curves correspond to two
symbols long training, Tt = 2: (a) T = 4; (b) T = 20.
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Figure 4.6: The convergence of the single-user algorithm with nT = nR = 2, 10
dB total average power, and channel eigenvalues λ

Σ = [1, 1], where dashed curves
correspond to one symbol long training, Tt = 1, and solid curves correspond to two
symbols long training, Tt = 2: (a) T = 4; (b) T = 20.
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is valid, we relax this restriction by pointing out that in some cases, we might not

want to estimate nT variables. If the resources are limited, estimating some of the

variables and saving the resources for data transmission is more useful. As a result,

in this thesis, we find that the duration of the training signal is equal to the number

of variables to be estimated rather than the total number of variables. Figure 4.6

supports our findings, by showing that, for a short block length T = 4 with 10 dB

total power, not estimating one of the dimensions results in a higher data transmission

rate. This advantage disappears when the block length is long enough.

Finally, we consider a larger system with nT = nR = 3 having power, P = 20 dB,

and block length, T = 10. For this system, we run our algorithm for all three possible

values of the training symbol duration, i.e., Tt = 1, 2, 3. We observe in Figure 4.7

that estimating two of the three dimensions of the channel results in the highest rate

for this setting.

4.3 Joint Optimization for Multi-user MIMO

In this section, we will consider the multi-user case, where there are K users in

the system and a single receiver. Note that in our model, a transmission block is

divided into training and data transmission phases. During the training phase, each

user has training signal Sk, training signal power Ptk , and training signal duration Tt.

During the data transmission phase, each user has data transmission power Pdk
, which

appears as a constraint on the trace of the transmit covariance matrix. Our goal in
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Figure 4.7: The convergence of the single-user algorithm with nT = nR = 3, 20 dB
total average power and T = 10: (a) one symbol long training, Tt = 1; (b) two
symbols long training, Tt = 2; (c) three symbols long training, Tt = 3.

this section is to find the optimum values of these training and the data transmission

parameters for all users.

In a MIMO-MAC with partial CSI in the form of the channel covariance matrix at

the transmitters, and channel estimation error at the receiver, the optimization prob-

lem is to maximize the achievable sum-rate of the data transmission phase jointly over

the channel estimation parameters and the data transmission parameters. Similar to

the single-user case, we will first consider the channel estimation problem during the

training phase, and choose the training signals to minimize the channel estimation er-

ror. Then, we will consider the data transmission phase and develop a lower bound to
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the sum-capacity which can be achieved by Gaussian signaling. We will optimize this

achievable rate jointly over both the channel estimation and the data transmission

parameters.

4.3.1 Training and Channel Estimation Phase

For a multiple access channel, we write the input-output relationship during the

training phase as

Rt =

K
∑

k=1

HkSk + Nt (4.55)

where Sk is an nT × Tt dimensional training signal for user k that will be chosen and

known at both ends, Rt and Nt are nR × T dimensional received signal and noise

matrices, respectively. The nth column of the matrix equation in (4.55) represents

the input-output relationship at time n. The power constraint for the training input

signal for user k is 1
Tt

tr(SS†) ≤ Ptk .

Since the receiver is supposed to estimate the channels of all users during the

same training phase with the knowledge of all training symbols, it can regard the

multi-user channel as a single-user channel, where the channel and the training signal

matrices of users are stacked together. We can then write (4.55) equivalently as

Rt = H̄S̄ + Nt (4.56)
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where H̄ = [H1, . . . ,HK ] is an nR × KnT dimensional channel matrix, and S̄ =

[S†
1, . . . ,S

†
K ]† is a KnT ×Tt dimensional training signal matrix. Note that, we put the

channel matrices next to each other to form longer rows, and the training symbols

on top of each other to form longer columns. In this equivalent problem, the receiver

will estimate H̄ using the output Rt and the training signal S̄.

Due to our channel model in (4.2), the entries in a row of Hk are correlated, and

the entries in a column of Hk are uncorrelated. In other words, for each user, row

i of the channel matrix is i.i.d. with row j. This also holds for the stacked matrix,

H̄. Let us represent row i of Hk as h†
ki, where E[hkih

†
ki] = Σk, i = 1, . . . nR, and row

i of H̄ as h̄i = [h†
1i, . . . ,h

†
Ki]

†, where Σ̄ = E[h̄ih̄
†
i ] = diag {Σ1, . . . ,ΣK} is a block

diagonal matrix, having Σk on its diagonals.

Let the eigenvalue representation of the channel covariance matrix of user k be

Σk = UΣk
ΛΣk

U†
Σk

, then the eigenvectors of the stacked channel covariance matrix

Σ̄ = ŪΣΛ̄ΣŪ†
Σ can also be written as ŪΣ = diag {UΣ1 , . . . ,UΣK

} [12, Lemma 1.3.10],

which is a block diagonal matrix as well.

Since a row of H̄ is formed by combining the rows of all Hk into a single, and

longer row, we can conclude that the rows of H̄ are also i.i.d., and the receiver can

estimate each of them independently using the same training symbols. The ith row

of (4.56) can be written as

rti = S̄†h̄i + nti. (4.57)

137



Since this is equivalent to to a single-user channel estimation problem in (4.4) with

the exception of a block diagonal channel covariance matrix, we can use the MMSE

estimation results of the single-user case. Denoting the estimate of h̄i as ĥi = M̄rti,

and the channel estimation error as h̃i = h̄i − ĥi, the MMSE estimation problem can

be written as

min
M̄

E
[

h̃†
i h̃i

]

= min
M̄

E
[

tr
(

h̃ih̃
†
i

)]

(4.58)

= min
M̄

E
[

tr
(

(h̄i − M̄rti)(h̄i − M̄rti)
†
)]

. (4.59)

Using the orthogonality principle [19, page 91] as in the single-user case, we can find

the optimum estimator as

M̄∗ = Σ̄S̄
(

S̄†Σ̄S̄ + I
)−1

. (4.60)

Using this, the mean square error in (4.59) becomes,

min
M̄

E
[

h̃†
i h̃i

]

= tr
(

Σ̄ − Σ̄S̄(S̄†Σ̄S̄ + I)−1S̄Σ̄
)

(4.61)

= tr
(

(

Σ̄−1 + S̄S̄†
)−1
)

(4.62)

where the last line follows from the matrix inversion lemma [12, page 19]. Note that

mean square error of the channel estimation process can be further decreased by

choosing the training signal S̄ to minimize (4.62). The following theorem finds S̄,

and training signals of individual users Sk, for a given training power and training
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duration.

Theorem 11 For given Σk = UΣk
ΛΣk

U†
Σk

, Ptk , Tt, and the power constraints

tr(SkS
†
k) ≤ PtkTt, the KnT × Tt dimensional optimum stacked training signal

S̄ that minimizes the total power of the channel estimation error vector is S̄ =

ŪΣΛ̄
1/2
S , and the nT × K dimensional optimum training signal of user k is Sk =

[

0, . . . , 0,UΣk
Λ

1/2
Sk

, 0, . . . , 0
]

with

λS
ki =

(

1

µS
k

− 1

λΣ
ki

)+

, i = 1, . . . , min(nT , Ttk) (4.63)

where (µS
k )2 is the Lagrange multiplier that satisfies the power constraint with

µS
k =

Jk

Ptk +
∑Jk

i=1
1

λΣ
ki

(4.64)

where Jk is the largest index that has non-zero λS
ki for user k.

Proof: Let us have S̄ = ŪSΛ̄
1/2
S V̄†

S. The expression in (4.62) is minimized when

Σ̄−1 and S̄S̄† have the same eigenvectors [22]. Therefore, we have ŪS = ŪΣ. Since,

S̄S̄† = ŪSΛ̄SŪ
†
S, and the unitary matrix V̄S does not appear in the objective function
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and the constraint, we can choose V̄S = I. Now, we have

S̄ = ŪΣΛ̄
1/2
S (4.65)
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(4.66)

where each user has Sk =
[

0, . . . , 0,UΣk
Λ

1/2
Sk

, 0, . . . , 0
]

. Note that Sk is an nT × Tt

dimensional matrix, and UΣk
is an nT × nT dimensional matrix. Let us denote the

dimension of ΛSk
as nT × Ttk in such a way that

∑K
k=1 Ttk = Tt.

Inserting S̄ into (4.62), the optimization problem can be written as

σ̃sum = min
tr(ΛSk

)≤Ptk
Ttk

k=1,...,K

tr
(

(

Λ̄−1
Σ + Λ̄S

)−1
)

(4.67)

= min
tr(ΛSk

)≤Ptk
Ttk

k=1,...,K

K
∑

k=1

tr
(

(

Λ−1
Σk

+ ΛSk

)−1
)

. (4.68)

The Langrangian of the problem in (4.68) can be written as

K
∑

k=1

nT
∑

i=1

1
1

λΣ
ki

+ λS
ki

+

K
∑

k=1

(µS
k )2

(

nT
∑

i=1

λS
ki − PtkTtk

)

(4.69)

where (µS
k )2 are the Lagrange multipliers. The solution that satisfies the KKT condi-

tions is water-filling the available power of each user over the eigenvalues of its own
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channel covariance matrix. The solution for user k can be written as

λS
ki =

(

1

µS
k

− 1

λΣ
ki

)+

, i = 1, . . . , min(nT , Ttk) (4.70)

In order to calculate µS
k , we sum both sides of (4.70) for user k, over all antennas to

get

µS =
Jk

Ptk +
∑Jk

i=1
1

λΣ
i

(4.71)

where Jk is the largest index that has non-zero λS
ki. 2

Similar to the single-user case, for any given Ptk , and Ttk > nT , the effect of

training length is completely eliminated from the problem, i.e., increasing Ttk beyond

nT does not result in better channel estimates. However, larger Ttk will result in

smaller data transmission length, and will decrease the achievable rate of the data

transmission phase. Therefore, it is sufficient to consider only Ttk ≤ nT , which we

will assume for the rest of this chapter.

Theorem 11 states that orthogonality in the time domain holds over the users

in a multi-user setting as well. Since the receiver can stack up the channels for the

channel estimation process, and the resulting stacked channel covariance matrix is

block-diagonal, the problem is equivalent to a single-user problem where all transmit

antennas are on the same unit, but antennas are put into K groups. Each group is

correlated within the group, but groups are uncorrelated, which results in a block
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diagonal channel covariance matrix. Since this is an equivalent single-user problem,

training signals of different users are orthogonal in time. This is achieved by trans-

mitting the training signal of user k during its own time slot for Ttk channel uses.

Although this might seem counter-intuitive at first, after the diagonalization of the

channel, both in the multi-user and single-user cases, we are left with orthogonal

channels. Therefore, in order to estimate orthogonal channels, sending orthogonal

training signals is sufficient.

Due to the constraint on the training duration, fewer dimensions of the individual

channels will be estimated for each user, which will result in shorter individual training

durations compared to a single-user case. However, by the conservation of energy,

the training signal power of a particular user will be larger compared to the training

signal power of the same user in a single-user environment. Therefore, although fewer

dimensions of the channel are estimated, the channel estimation error corresponding

to those estimated dimension will be smaller.

It was shown in other contexts as well that the degrees of freedom of a MAC does

not increase by increasing the number of users. For example in [48], the degrees of

freedom is limited by the number of receive antennas. In our case, it is limited by

the duration of the training phase, which itself depends on several variables including

the number of receive antennas.

Note that µS
k is a function of only Ptk and Ttk , both of which will be chosen to

maximize the sum-rate of the data transmission phase. The value of Ttk determines
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the total number of available parallel channels for user k, and the value of Ptk de-

termines the number of channels that will be estimated. The parametric values of

Ptk and Ttk will appear in the sum-rate formula. After the sum-rate maximization is

performed, the optimum Ptk and Ttk will be found, and this in turn, will give us the

optimum Sk through Theorem 11.

Before moving on to the next section, we will calculate the eigenvalues of the

covariance matrices of the estimated channel vector, and the channel estimation error

vector for all users. Plugging S̄ into the covariance of the channel estimation error,

Σ̃ = E
[

h̃ih̃
†
i

]

=
(

Σ̄−1 + S̄S̄†
)−1

, we find the eigenvectors,

Σ̃ = ŪΣ

(

Λ̄−1
Σ + Λ̄S

)−1
Ū†

Σ, (4.72)

from where, we conclude

Σ̃k = UΣk

(

Λ−1
Σk

+ ΛSk

)−1
U†

Σk
, (4.73)

and by plugging (4.70) into (4.73), we find the eigenvalues of the covariance of the

channel estimation error of user k, Σ̃k

λ̃Σ
ki =















µS
k , µS

k < λΣ
ki;

λΣ
ki, µS

k > λΣ
ki

= min
(

λΣ
ki, µ

S
k

)

. (4.74)

Next, we will calculate the eigenvalues of the covariance of the channel estimate of

user k. Using the orthogonality property of the MMSE estimation, ĥi and h̃i are
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uncorrelated [19, page 91]. We have,

E
[

h̄ih̄
†
i

]

= E
[

ĥiĥ
†
i

]

+ E
[

h̃ih̃
†
i

]

(4.75)

Σ̄ = E
[

ĥiĥ
†
i

]

+ Σ̃. (4.76)

Now, the covariance matrix of the estimated stacked channel becomes,

E
[

ĥiĥ
†
i

]

, Σ̂ = ŪΣΛ̄ΣŪ†
Σ − ŪΣΛ̃ΣŪ†

Σ (4.77)

= ŪΣ

(

Λ̄Σ − Λ̃Σ

)

Ū†
Σ (4.78)

, ŪΣΛ̂ΣŪ†
Σ (4.79)

from where, we conclude

Σ̂k = UΣk
Λ̂Σk

U†
Σk

. (4.80)

We can write each eigenvalue of the covariance matrix of the estimated channel of

user k as

λ̂Σ
ki = min

(

λΣ
ki − µS

k , 0
)

. (4.81)

In the next section, we will plug in the values of the channel estimation error

matrix and its covariance, the estimate of the channel and its covariance, and the

training parameters into the sum-rate formula and develop an algorithm to solve the
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sum-rate maximization problem jointly over all of the involved parameters.

4.3.2 Data Transmission Phase

The sum-rate of a multiple access channel can be derived using the stacked channel

and input matrices. We can write (4.55) as

r =
K
∑

k=1

Ĥkxk +
K
∑

k=1

H̃kxk + n (4.82)

= Ĥx̄ + H̃x̄ + n (4.83)

where Ĥ = [Ĥ1, . . . , ĤK ], H̃ = [H̃1, . . . , H̃K] are nR × KnT dimensional, and x̄ =

[x†
1, . . . ,x

†
K ]† is KnT × 1 dimensional. Although the optimum input distribution is

not known, we achieve the following lower bound with Gaussian x̄ [47],

C lb
sum = I(r; x̄|Ĥ) = E

[

log
∣

∣

∣
I + R−1

H̃x̄+n
ĤQ̄Ĥ†

∣

∣

∣

]

(4.84)

where RH̃x̄+n is the covariance matrix of the effective noise, H̃x̄+n, and Q̄ = E[x̄x̄†].

Since the inputs for different users are independent from each other, Q̄ is a block

diagonal matrix, having Qk in its diagonals with tr(Qk) ≤ Pdk
. As a result, we have

H̄Q̄H̄† =
∑K

k=1 HkQkH
†
k,

C lb
sum = E

[

log
∣

∣

∣
I + R−1

H̃x̄+n

K
∑

k=1

ĤkQkĤ
†
k

∣

∣

∣

]

. (4.85)
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The covariance of the effective noise can be calculated as

RH̃x̄+n = I + E
[

H̃x̄x̄†H̃†
]

= I +

K
∑

k=1

E
[

H̃kQkH̃
†
k

]

. (4.86)

From (4.31), we know that E
[

H̃kQkH̃
†
k

]

= tr(QkΣ̃k)I. Using this, the achievable

rate in (4.85) can be written as

C lb
sum = E

[

log

∣

∣

∣

∣

∣

I +

∑K
k=1 ĤkQkĤ

†
k

1 +
∑K

k=1 tr(QkΣ̃k)

∣

∣

∣

∣

∣

]

(4.87)

Since our goal is to find the largest lower bound, i.e., the largest achievable sum-rate

with Gaussian signaling, the sum-rate maximization problem over the entire block

becomes

Rsum = max
(Qk,Ptk

,Ttk
)∈Sk

tr(Qk)≤Pdk
,∀k

T − Tt

T
E

[

log

∣

∣

∣

∣

∣

I +

∑K
k=1 ĤkQkĤ

†
k

1 +
∑K

k=1 tr(QkΣ̃k)

∣

∣

∣

∣

∣

]

(4.88)

where Sk =
{

(Qk, Ptk , Ttk)
∣

∣

∣
tr(Qk)Td + PtkTtk = PkT

}

, and the coefficient T−Tt

T
re-

flects the amount of time that is spend during the training phase. Note that the

maximization is over the parameters of all users, where user k has the training pa-

rameters Ptk , and Ttk , and the data transmission parameter Qk, which can be decom-

posed into its eigenvectors, i.e., the transmit directions, and eigenvalues, i.e., powers

along the transmit directions.

While solving this optimization problem, we will first find the optimum transmit

directions of all users during the data transmission phase, which are given by the

146



eigenvectors of Qk. We will then focus on the joint optimization of the sum-rate over

the eigenvalues of the transmit covariance matrix of all users, the transmit powers of

the training phase of all users, and the duration of the training phase.

Transmit Directions

When the CSI at the receiver is perfect, we showed in Chapter 3 that the eigenvec-

tors of the transmit covariance matrix of each user must be equal to the eigenvectors

of the channel covariance matrix of that user, i.e., UQk
= UΣk

. In other words,

single-user transmit directions strategy is optimum in a multi-user case as well. In

the following theorem, we show that this is also true when there is channel estimation

error at the receiver.

Theorem 12 Let Σk = UΣk
ΛΣk

U†
Σk

be the spectral decomposition of the covariance

matrix of the channel of user k. Then, the optimum transmit covariance matrix Qk

of user k has the form Qk = UΣk
ΛQk

U†
Σk

.

Proof: In (4.73), and (4.80), we have shown that, when Σk = UΣk
ΛΣk

U†
Σk

, we

have Σ̂k = UΣk
Λ̂Σk

U†
Σk

, and Σ̃k = UΣk
Λ̃Σk

U†
Σk

. By using (4.2), we have Ĥk =

ẐkUΣk
Λ̂

1/2
Σk

U†
Σk

. Inserting these into (4.34), we obtain

Rsum = max
(Qk,Ptk

,Ttk
)∈Sk

tr(Qk)≤Pdk
,∀k

T − Tt

T
E



log

∣

∣

∣

∣

∣

∣

I +

∑K
k=1 ẐkΛ̂

1/2
Σk

U†
Σk

QkUΣk
Λ̂

1/2
Σk

Ẑ†
k

1 +
∑K

k=1 tr
(

U†
Σk

QkUΣk
Λ̃Σk

)

∣

∣

∣

∣

∣

∣



 (4.89)
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where we used the fact that the random matrices
{

Ẑk

}K

k=1
and

{

ẐkUΣk

}K

k=1
have

the same joint distribution for zero-mean identity covariance Gaussian Ẑk and unitary

UΣk
. We may spectrally decompose the expression sandwiched between Ẑk and its

conjugate transpose in (4.89) as

Λ̂
1/2
Σk

U†
Σk

QkUΣk
Λ̂

1/2
Σk

= UkΛkU
†
k (4.90)

Using (4.36), we have tr
(

U†
Σk

QkUΣk
Λ̃Σk

)

= tr
(

U†
kΛ̂

−1
Σk

Λ̃Σk
UkΛk

)

. The optimiza-

tion problem becomes,

Rsum = max
(Qk,Ptk

,Ttk
)∈Sk

tr(Qk)≤Pdk
,∀k

T − Tt

T
E



log

∣

∣

∣

∣

∣

∣

I +

∑K
k=1 ẐkΛkẐ

†
k

1 +
∑K

k=1 tr
(

U†
kΛ̂

−1
Σk

Λ̃Σk
UkΛk

)

∣

∣

∣

∣

∣

∣



 (4.91)

where we again used the fact that the random matrices
{

Ẑk

}K

k=1
and

{

ẐkUΣk

}K

k=1

have the same joint distribution. Note that in the optimization in (4.91), the nu-

merator of the objective function does not involve Uk. For the denominator, us-

ing [26, Theorem 9.H.1.h, page 249], we know tr(Λ̂−1
Σk

Λ̃Σk
Λk) ≤ tr(U†

kΛ̂
−1
Σk

Λ̃Σk
UkΛk),

for all unitary Uk. Therefore, we can choose Uk = I for all k to minimize the denom-

inator, and hence maximize the sum-rate as long as this choice is feasible. In order

to check for the feasibility, we write the trace constraint on Qk using (4.90) as

tr(Qk) = tr(UΣk
Λ̂

−1/2
Σk

UkΛkU
†
kΛ̂

−1/2
Σk

U†
Σk

) (4.92)

= tr(U†
kΛ̂

−1
Σk

UkΛk). (4.93)
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Again from [26, Theorem 9.H.1.h, page 249], tr(Λ̂−1
Σk

Λk) ≤ tr(U†
kΛ̂

−1
Σk

UkΛk) ≤ Pdk
,

for all unitary Uk and for all k. Therefore, we conclude that Uk = I choice is feasible

for all k. Then, using Uk = I, from (4.90), we have the desired result:

Qk = UΣk
Λ̂−1

Σk
ΛkUΣk

(4.94)

with ΛQk
= Λ̂−1

Σk
Λk. 2

Using Theorem 12, we can write the optimization problem in (4.88) as,

Rsum = max
(λ

Q
k

,Ptk
,Ttk

)∈Pk

k=1,...,K

T − Tt

T
E

[

log

∣

∣

∣

∣

∣

I +

∑K
k=1

∑nT

i=1 λQ
kiλ̂

Σ
kiẑkiẑ

†
ki

1 +
∑K

k=1

∑nT

i=1 λQ
kiλ̃

Σ
ki

∣

∣

∣

∣

∣

]

(4.95)

where λ
Q
k = [λQ

k1, . . . , λ
Q
knT

], Pk =
{(

λ
Q
k , Ptk , Ttk

) ∣

∣

∣

(

∑nT

i=1 λQ
ki

)

Td + PtkTtk = PkT
}

,

and ẑki, which is an nR×1 dimensional i.i.d., zero-mean, identity-covariance Gaussian

random vector, is the ith column of Ẑki.

Joint Power Allocation Policy

For a MIMO-MAC system with perfect CSI at the receiver and partial CSI at the

transmitters, we propose an algorithm to find the optimum power allocation policy in

Chapter 3. However, the algorithm in Chapter 3 is not suitable to find the optimum

values of Ptk and Ttk , if directly applied to the model in this chapter. Existence of Ptk

and Ttk violates the symmetry in Chapter 3, and changes the form of the objective

function. Therefore, in this chapter, we modify the algorithm in Chapter 3 so that
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the new algorithm finds the solutions for Ptk and Ttk as well as the powers along the

transmit directions.

By plugging (4.81) and (4.74) into (4.95), we get

Rsum = max
(λ

Q
k

,Ptk
,Ttk

)∈Pk

k=1,...,K

T − Tt

T
E



log

∣

∣

∣

∣

∣

∣

I +

∑K
k=1

∑Jk

i=1 λQ
ki(λ

Σ
ki − µS

k )ẑkiẑ
†
ki

1 +
∑K

k=1

(

∑Jk

i=1 λQ
kiµ

S
k +

∑nT

i=Jk+1 λQ
kiλ

Σ
ki

)

∣

∣

∣

∣

∣

∣





(4.96)

Since λQ
ki, for i = Jk + 1, . . . , nT does not contribute to the numerator, we should

choose λQ
ki = 0, for i = Jk + 1, . . . , nT . We have,

Rsum = max
(λ

Q
k

,Ptk
,Ttk

)∈Pk

k=1,...,K

T − Tt

T
E

[

log

∣

∣

∣

∣

∣

I +

∑K
k=1

∑Jk

i=1 λQ
ki(λ

Σ
ki − µS

k )ẑkiẑ
†
ki

1 +
∑K

k=1 µS
kPdk

∣

∣

∣

∣

∣

]

. (4.97)

In (4.97), the parameters of the optimization problem are the powers of all users

λQ
k1, . . . , λ

Q
kTtk

along the transmit directions, the training signal powers Ptk of all users,

and the training durations Ttk of all users. Solving for all these variables simultane-

ously seems intractable. Therefore, we propose a Gauss-Seidel type, round-robin

algorithm that solves (4.97) iteratively over the users as in Chapter 3. When updat-

ing the parameters corresponding to user k, we assume that the parameters of the

rest of the users are fixed. For an update of a given user, the optimization problem

becomes

Rk
sum = max

(λQ
k ,Ptk

,Ttk
)∈Pk

T − Tt

T
E

[

log

∣

∣

∣

∣

∣

Φ +

∑Jk

i=1 λQ
ki(λ

Σ
ki − µS

k )ẑkiẑ
†
ki

φ + µS
kPdk

∣

∣

∣

∣

∣

]

, (4.98)
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where Φ = I +
PK

l6=k

PJl
i=1 λQ

li (λ
Σ
li−µS

l )ẑliẑ
†
li

1+
PK

l=1 µS
l Pdl

, and φ = 1 +
∑K

l 6=k µS
l Pdl

. Note that the

optimization problem in (4.98) is now a single-user problem with fixed interference

from the other users. Therefore, we can follow arguments similar to those in the

single-user case. Since for any pair (Ptk , Ttk) that results in Jk < Ttk , we can find

another pair (Ptk , T
′

tk
) that results in a higher rate, it is sufficient to search over those

(Ptk , Ttk) pairs that results in Jk = Ttk . We can now write (4.98) as

Rk
sum = max

(λQ
k ,Ptk

,Ttk
)∈Rk

T − Tt

T
E

[

log

∣

∣

∣

∣

∣
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ki(λ
Σ
ki − µS

k )ẑkiẑ
†
ki

φ + µS
k Pdk

∣

∣

∣

∣

∣

]

, (4.99)

where Rk =

{

(

λ
Q
k , Ptk , Ttk

) ∣

∣

∣

(

∑nT

i=1 λQ
ki

)

Td + PtkTtk = PkT, Ptk >
∑Ttk

i=1

(

1
λΣ

Ttk

− 1
λΣ

i

)}

,

and the condition Ptk >
∑Ttk

i=1

(

1
λΣ

Ttk

− 1
λΣ

i

)

guarantees that, using the pair (Ptk , Ttk),

all Ttk channels are filled, i.e., Jk = Ttk . Note that the parameters that we want

to optimize (4.99) over are discrete valued Ttk , and continuous valued Ptk , and λQ
ki,

for i = 1, . . . , Ttk . Since, for every value of Ttk , both the coefficient in front of the

expectation, and the number of terms in the sum in the numerator of (4.99) are dif-

ferent, the form of the objective function is also different. Since Ttk is discrete, and

1 ≤ Ttk ≤ nT , we can perform an exhaustive search over Ttk and solve nT reduced

optimization problems with fixed Ttk in each one. Then, we take the solution that

results in the maximum rate, i.e.,

Rk
sum = max

1≤Ttk
≤nT

max
(λQ,Pt)∈RkTtk

T − Tt

T
E

[

log
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k )ẑkiẑ
†
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∣
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]

.

(4.100)

151



where RkTtk
=

{

(

λ
Q
k , Ptk

) ∣

∣

∣
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∑nT

i=1 λQ
ki

)

Td + PtkTtk = PkT, Ptk >
∑Ttk
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Ttk

− 1
λΣ

i

)}

.

While solving for the inner maximization problem, we define fki(Ptk) =
λΣ

ki−µS
k

φ+µS
k Pdk

, for

i = 1, . . . , Ttk . In this case, the inner optimization problem becomes

R
k,Ttk
sum = max

(λQ,Pt)∈RkTtk
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T
E
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 (4.101)

In the optimization problem in (4.101), we have Ttk + 1 optimization variables,

λQ
k1, . . . , λ

Q
Ttk

, and Ptk . The Lagrangian for the optimization problem in (4.101) can

be written as

T − Tt

T
E



log
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− µk









Ttk
∑

i=1

λQ
ki



Td + PtkTtk − PkT



 .

(4.102)

where µk is the Lagrange multiplier, and we omitted the complementary slackness

conditions related to the positiveness of λQ
ki, and Ptk −

∑Ttk
i=1

(

1
λΣ

Ttk

− 1
λΣ

i

)

. Using

(2.25), the KKT conditions can be written as

Td

T
fki(Ptk)E

[

z†kiB
−1zki

]

≤ µkTd, i = 1, . . . , Ttk (4.103)

Td

T

Ttk
∑

i=1

λQ
kiE

[

z†kiB
−1zki

] ∂fki(Ptk)

∂Ptk

= µkTtk (4.104)

where B = Φ +
∑Ttk

i=1 λQ
kifki(Ptk)ẑkiẑ

†
ki, and the equality of the last equation again

follows from the complementary slackness condition. Note that when the optimum

λQ
ki is non-zero, the corresponding inequality in (4.103) will be satisfied with equality.
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Therefore, we pull the expectation terms from (4.103) for those equations with non-

zero λQ
ki’s, and insert them into (4.104). Since those indices with λQ

ki = 0 do not

contribute to (4.104), we have

Ttk
∑

i=1

λQ
ki

f ′
ki(Ptk)

fki(Ptk)
=

Ttk

Td

. (4.105)

Now, we have a fixed-point equation which does not include any expectation terms.

We can use this to solve Ptk in terms of λQ
ki’s. Using the single-user results in the

previous section, we propose the following algorithm that first solves Ptk(n + 1) from

Ttk
∑

i=1

λQ
ki(n)

f ′
ki(Ptk(n + 1))

fki(Ptk(n + 1))
=

Ttk

Td
(4.106)

then, updates λQ
ki(n + 1) using

λQ
ki(n + 1) =

λQ
ki(n)fki(Ptk(n + 1))E

[

z†kiB
−1zki

]

∑Ttk
j=1 λQ

kj(n)fkj(Ptk(n + 1))E
[

z†kjB
−1zkj

]

(PkT − Ptk(n + 1)Ttk)

Td

(4.107)

This algorithm finds the solution of the inner optimization problem in (4.101) in

terms of the training power Ptk , and the eigenvalues of the transmit covariance matrix

λQ
k1, . . . , λ

Q
kTtk

of user k, when Ttk and the parameters of the rest of the users are fixed.

We run nT such algorithms simultaneously for user k. The solution of (4.99) can be

found by taking the one that results in the largest rate, which gives us the solution for

Ttk . Now, we know the parameters λ
Q
k , Ptk , Ttk , that solve (4.99), when the parameters
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of the rest of the users are fixed. We then move to another user, and perform the

same inner maximization for this user keeping the parameters of the rest of the users

fixed. In this manner we iterate over the users in a round-robin fashion. Finally, this

iterative algorithm gives us the parameters of all users that solve (4.97).

As a result, we solved the joint channel estimation and resource allocation problem

in a MIMO multiple access channel with noisy channel estimation and partial CSI

available at the transmitter. For user k, through the solution for Ptk , we find the

solution for the allocation of available power of user k over the training and data

transmission phases. Through Ttk , we find the portion of the training duration that is

allocated to user k, and through the sum of these portions Tt =
∑K

k=1 Ttk , we find the

solution for the allocation of available time over the training and data transmission

phases. Through Theorem 12, we find the optimum transmit directions of user k,

and through λQ
k1, . . . , λ

Q
Ttk

, we find the solution for the allocation of data transmission

power of user k over these transmit directions. Finally, the optimum training signal

of user k, Sk, is determined by Ttk and Ptk through Theorem 11.

4.3.3 Numerical Results for MIMO-MAC

In a MIMO-MAC case, proving the convergence of our algorithm becomes even

harder. However, again, we observed through extensive simulations that the proposed

algorithm always converges. In Figure 4.8, we considered a system of K = 3 users

with nT = nR = 3, all having moderate power, P = 20 dB, and moderate block
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Figure 4.8: The convergence of the multi-user algorithm with nT = nR = 3, 20 dB
total average power and T = 10: (a) convergence of user 1; (b) convergence of user
2; (c) convergence of user 3.

length, T = 10. Each iteration in Figure 4.8, corresponds to solving (4.99) for one of

the users, while the parameters of the rest of the users are fixed. Although we observe

in Figure 4.7 that in the same system with a single user, estimating two dimensions

of the channel gives the highest rate, in this multi-user case, we observe in Figure 4.8

that, all users estimate only one dimension of the channel.

We observed through extensive simulations that for a large set of channel eigenval-

ues, total available power and the block length, all users estimate only one dimension

of the channel. In order to estimate a second dimension, either very large levels of

power or a long enough coherence time is needed. For example, we see in Figure
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Figure 4.9: The convergence of the multi-user algorithm with nT = nR = 3, 20 dB
total average power and T = 50: (a) convergence of user 1; (b) convergence of user
2; (c) convergence of user 3.

4.9 that, for a 3-user system, one of the users start estimating the second dimension,

when T gets large enough, i.e., when T = 50. However, when the number of users

increases, total number of channels estimated by all users also increases, since each

user has to spend its power.

4.4 Conclusions

In this chapter, we considered both the training and data transmission phases of

a transmission block, for single-user MIMO and MIMO-MAC scenarios in a block-
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fading channel where the receiver has a noisy estimate of the channel and the trans-

mitters have partial CSI in the form of covariance feedback. We analyzed the joint

optimization of the channel estimation and the data transmission parameters in both

single-user and multi-user cases. In the single-user case, we formulated the joint op-

timization problem over the eigenvalues of the transmit covariance matrix and the

estimation process parameters. We solved this problem by introducing a number

of reduced optimization problems, each of which can be solved efficiently using the

proposed algorithm. Through simulations, we observed that the algorithm converges

and it converges to the same point regardless of the initial point of the iterations.

In the multi-user case, we considered to optimize an achievable sum-rate jointly over

the training and data transmission parameters. The proposed multi-user algorithm

solves the problem iteratively over the users, while utilizing the single-user algorithm

for an update of each user. The theoretical convergence proofs of these algorithms

remain as open problems.

The results in this chapter are submitted for publication in [33], [34], [39], [41].
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Chapter 5

Conclusions

The information theoretic promise of high data rates when utilizing multiple an-

tennas in a wireless communications link motivated significant amount of research

on the design of optimum transmit strategies that can achieve those rates. However,

achievable rates depend crucially on how well the channel state is estimated at the

receiver and how much of the channel state is available at the transmitters. For most

practical systems, the assumption of having perfect channel knowledge at both the

receiver and the transmitter is unrealistic.

In this thesis we have addressed the effects of having partial CSI at the transmit-

ter side, and noisy channel estimation at the receiver side on the optimum transmit

strategies that maximize the achievable data rates in wireless MIMO communications.

The analysis in this thesis combines methods from information theory, optimization

theory, estimation theory, parallel and distributed algorithms, matrix analysis, prob-

ability, and statistics. The main contributions of this thesis can be summarized as

follows.
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Transmit Directions and Optimality of Beamforming

The use of multiple antennas at both the transmitters and the receivers in wireless

communications promises very large information rates when the perfect knowledge

of the channel is known at the receivers and the transmitters. However, in most of

the wireless communication scenarios, especially in wireless MIMO communications,

it is unrealistic to assume that the transmitter side has the perfect knowledge of the

instantaneous CSI. In such scenarios, it might be more realistic to assume that only

the receiver side can perfectly estimate the instantaneous CSI, while the transmitter

side has only a statistical knowledge of the channel. When the fading in the chan-

nel is assumed to be a Gaussian process, statistics of the channel reduce to mean

and covariance information of the channel. Since the capacity achieving input signal-

ing is Gaussian, the capacity maximization problem reduces to finding the optimum

transmit covariance matrices, i.e., the optimum transmit directions and the optimum

power allocation policies. In this case the transmit directions and the power alloca-

tions are not functions of the channel states, but they are functions of the statistics

of the channel states, that are fed by the receiver side back to the transmitter side.

This thesis provides a thorough analysis of the effects of partial and no CSI on

the capacity of a single-user and the sum-capacity of a multi-user MIMO channel.

The results show that even in a multi-user scenario, each user should maintain its

single-user transmit directions, which means that multi-user interference does not

affect the directions that the signals are transmitted. Furthermore, when the number
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of users in the system increases, beamforming becomes optimal for a greater range of

channel parameters, and finally becomes unconditionally optimal for asymptotically

large systems. Consequently, in large multi-user systems, the optimum transmit

strategies of the users get simplified, and therefore the overall complexity of large

multi-user systems may ramain in reasonable limits.

Optimum Power Allocation Policies

In a MIMO system, a transmit strategy is a combination of a transmit direction

strategy and a transmit power allocation strategy. We have shown in this thesis

that the optimal multi-user transmit direction strategies are decoupled into a set of

single-user transmit direction strategies. However, in general, this is not true for

the optimal transmit power allocation strategies. The amount of power each user

allocates in each direction depends on both the transmit directions and the power

allocations of other users. Optimum power allocation policy, in effect, determines

the number of spatial dimensions that is required to achieve the capacity, through

the number of components with non-zero power allocation. If this number is one,

beamforming is optimal. If this number is greater than one, then either vector coding

or parallel processing of scalar codes is needed.

Although having beamforming optimality conditions is extremely helpful, in a

single-user MIMO or in a MIMO-MAC with finite number of users, the channel

statistics might be such that beamforming may never be optimal. For such sce-
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narios, we proposed efficient and globally convergent algorithms in order to solve for

the optimum eigenvalues of the transmit covariance matrices in both single-user and

multi-user scenarios. These algorithms find the optimum eigenvalues of the transmit

covariance matrices, by enforcing the KKT optimality conditions at each iteration.

We proved that the convergence points of these algorithms are unique and equal to

the optimum eigenvalue allocations. The proposed algorithms converge to this unique

point starting from any point in the space of feasible eigenvalues. With these algo-

rithms and the convergence results, the optimization of the transmit strategies for

single-user MIMO and MIMO-MAC systems with partial CSI at the transmitters, is

solved.

Noisy Channel Estimation at the Receiver

Although one can obtain very high rates with perfect CSI at the receiver, when

the channel knowledge is not perfect, achievable rates decrease significantly. This

decrease is especially pronounced for MIMO channels. Moreover, measuring the CSI

and feeding it back to the transmitter uses communication resources, which could

otherwise be used for useful information transmission. One way of measuring the

CSI is that the transmitters send known training sequences, from which the receivers

measure the channels. The receivers, then, extract the information (according to the

feedback model) to be fed back from the estimated channel, and feed it back to the

transmitters. This overall process of estimating and feeding back CSI uses up time,

bandwidth and power. In order to take this loss of resources into account, we have
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considered a block fading channel, where the block length and the available power is

divided between the training and data transmission phases.

When the CSI at the receiver is noisy, the capacity and the corresponding optimum

signalling scheme are not known. Therefore, for both the single-user and multi-user

scenarios, we first developed a lower bound to the capacity that can be achieved with

Gaussian signaling. We optimized the achievable rate of the data transmission phase

jointly over the parameters of the training and data transmission phases. We first

found the optimum training signal that minimizes the mean square error of the chan-

nel estimation process. Then, we developed an algorithm to maximize the achievable

rate. This algorithm finds the solution for the partition of the given total trans-

mitter power and the block length between the training and the data transmission

phases, and also the solution for the allocation of the data transmission power over

the antennas.
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