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Gaussian wireless channels are studied under two forms of security attacks: (i) the

jamming attack, where the adversary is active and transmits corruptive signal, but

is not interested in the content of the communication, (ii) the eavesdropping attack,

where the adversary is passive and overhears the communication and tries to obtain

the message that has been transmitted.

The active attack is studied in a multi-user setting. The behavior of two users and

one jammer in an additive white Gaussian channel (AWGN) with and without fading

is investigated, when they participate in a non-cooperative zero-sum game, with the

channel’s input/output mutual information as the objective function. We assume that

the jammer can eavesdrop the channel and can use the information obtained to per-

form correlated jamming. We also differentiate between the availability of perfect and

noisy information about the user signals at the jammer. Under various assumptions

on the channel characteristics, and the extent of channel state information available

at the users and the jammer, we show the existence, or otherwise non-existence of a si-



multaneously optimal set of strategies for the users and the jammer, and characterize

those strategies whenever they exist.

For the passive eavesdropping attack, we study multiple-input multiple-output

(MIMO) AWGN channels. We first consider a multiple-input single-output (MISO)

channel, where the transmitter has multiple antennas, while the receiver and the

eavesdropper have single antennas each. We find achievable rates for this channel.

With the channel input restricted to Gaussian signalling with no pre-processing of

information, optimal transmission strategies that maximize the achievable secrecy

rates are found, in terms of the input covariance matrices. It is shown that, under the

optimal communication strategy, the system reduces to a single-input single-output

(SISO) channel. We then extend the achievability results to fading Gaussian MISO

channels. Finally, as a step toward generalizing the problem to one with multiple

antennas at the receiver, we discuss the Gaussian 2-2-1 channel with a transmitter

and a receiver with two antennas each, and a single antenna eavesdropper. We develop

an achievability scheme similar to those of the SISO and MISO channels, and further

show that in fact, it achieves the secrecy capacity of this 2-2-1 channel.
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Chapter 1

Introduction

What makes wireless communication attractive compared to wired communica-

tion comes at many fundamental costs. The inherent openness of wireless commu-

nications makes it vulnerable to eavesdropping and jamming attacks. An adversary

can overhear the ongoing communication by setting up an antenna, or can jam the

communication signal by transmitting a corruptive signal in the open wireless media.

As fast and aggressive as the wireless technology is growing in all aspects of human

life, it becomes crucial to address this vulnerability through secure communications.

The two aforementioned kinds of attacks, jamming and eavesdropping attacks, are of

different nature, and the information theoretic modeling and study of them proves to

be substantially different.

To study the jamming attack, we adopt a game theoretic formulation as in [1], [2]

and [3]. We consider a multi-user AWGN subject to correlated jamming. We find the

best transmitter/jammer strategies when the users and the jammer participate in a

zero-sum game. The game objective to be minimized by the jammer and maximized

by the users, is the channel input-output mutual information. Both the users and the

jammer are assumed to be power constrained. The jammer can have full or partial
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knowledge of the transmitted signal which may be obtained through eavesdropping.

In the non-fading channel, we show that the game has a saddle point solution which is

Gaussian signalling for the users, and linear jamming for the jammer. Here we define

linear jamming as employing a linear combination of the available information about

the user signals plus Gaussian noise, where the available information is the user signals

in the case of perfect information, and a noisy version of a linear combination of the

user signals in the case of eavesdropping. We show that the power that the jammer

allocates for jamming each user’s signal is proportional to that user’s power. We

then assume that the user channels are subject to fading. We assume the possibility

of the jammer gaining information about the user channel states by eavesdropping

on the channel state feedback from the receiver to the users. We show that if the

jammer is not aware of the user channel states, it would disregard its eavesdropping

information and only transmit Gaussian noise. If the jammer knows the user channel

states but does not have information of the user signals, the game has a solution

which is characterized as Gaussian signalling and linear jamming at each channel

state, together with the optimal user and jammer power allocation strategies over the

channel states. The optimal power allocations in this case are such that, only one

user transmits during any given channel state. If the jammer knows the user channel

states and the user signals, the game does not always have a saddle point solution,

in which case, we characterize the max-min user strategies, and the corresponding

jammer best response. The max-min user strategy corresponds to the user’s best

move, in a situation where the user chooses its strategy only once, and after the user

chooses its strategy, the jammer can observe it and choose the corresponding best
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jamming. Our results on the jamming attack are published in [4], [5], and [6].

To study the passive attack, we follow Wyner’s information theoretic formulation

in [7] where an unauthorized wire-tapper is eavesdropping the ongoing communica-

tion. The measure of secrecy is the message equivocation rate at the wire-tapper,

which is defined as the entropy of the message at the wire-tapper, given its obser-

vation. We first consider a Gaussian MISO channel under various assumptions on

the channel attenuations. When the channel attenuations are constants, known to

all parties, we characterize the maximum secrecy rate achievable through Gaussian

signalling, and show that the Gaussian signalling that achieves the best secrecy rate is

of beam-forming nature. The secrecy rate found here for the Gaussian MISO wire-tap

channel is later shown to actually be the secrecy capacity of this channel [8, 9]. We

then study the Gaussian MISO channel when the eavesdropping channel experiences

fading. We characterize achievable secrecy rates through Gaussian signalling. It is

shown that, when the eavesdropping channel experiences fading, the optimal Gaus-

sian signalling has a unit-rank covariance matrix, and therefore, the system reduces

to a SISO channel. We identify conditions under which, positive secrecy rates are

achievable. Finally, we consider a Gaussian MIMO channel where both the trans-

mitter and the receiver have two antennas each, and the eavesdropper has a single

antenna. We call this channel the Gaussian 2-2-1 MIMO wire-tap channel. We find

the secrecy capacity in two steps: we first propose an achievable scheme, which is a

Gaussian signalling scheme with no pre-processing of information, and then, we de-

velop a tight upper bound that meets the rate achieved with our proposed signalling

scheme. The techniques that we develop are specific to the Gaussian 2-2-1 channel,
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and whether they can be used for the general m-n-k channel is unclear. We first show

that the optimal Gaussian signalling scheme has a unit-rank transmit covariance ma-

trix, hence with Gaussian signalling, beam-forming is optimal. Then, we consider a

channel where the eavesdropper’s signal is given to the receiver. The secrecy capacity

of this channel is an upper bound to the secrecy capacity of the original channel. We

tighten this bound by allowing correlation between the additive noises of the receiver

and the eavesdropper. For a certain such correlation, we prove that the optimal

Gaussian signalling is unit-rank in this upper bound also. We then evaluate our up-

per bound and show that it meets the rate achievable with our proposed signalling

scheme. Our results on the eavesdropping attack are published in [10], [11], and [12].
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Chapter 2

Mutual Information Games in Multi-user Channels with

Correlated Jamming

Correlated jamming refers to jamming with full or partial knowledge of the signal

to be jammed. Correlated jamming has been studied in the information-theoretic

context under various assumptions on the channel model [1–3]. In [1] the best trans-

mitter/jammer strategies are found for an AWGN channel with one user and one

jammer who participate in a two person zero-sum game. The game objective to be

minimized by the jammer and maximized by the user is the channel input-output mu-

tual information. Both the user and the jammer are power constrained. The jammer

can have full or partial knowledge of the transmitted signal which may be obtained

through eavesdropping. In [2], the problem is extended to a single-user fading channel

where the transmitter and the receiver each have multiple antennas (MIMO channel),

and it is assumed that the jammer has full knowledge of the user signal. This model

has been further extended in [3] to consider fading in the jamming channel; the chan-

nel between the jammer and the receiver. In [3] various assumptions are made on the

availability of the user channel state at the user, and the jamming channel state at
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the jammer.

Here, we extend the previous results to a multi-user AWGN channel subject to

correlated jamming. As it is customary, without loss of generality and to avoid un-

necessary details, we consider a system of two users and one jammer who has full or

partial knowledge of the user signals through eavesdropping, and examine the exis-

tence of optimum user and jammer strategies towards achieving maximum channel

input/output mutual information. In the non-fading two user AWGN channel, we

show that the game has a solution which is Gaussian signalling for the users, and

linear jamming for the jammer. Here we define linear jamming as employing a linear

combination of the available information about the user signals plus Gaussian noise,

where the available information is the user signals in the case of perfect information,

and a noisy version of a linear combination of the user signals in the case of eaves-

dropping. We show that the power that the jammer allocates for jamming each user’s

signal is proportional to that user’s power.

We then assume that the user channels are subject to fading. As opposed to

[3], where the user channel states could only be known at the users, we assume

the possibility of the jammer gaining information about the user channel states by

eavesdropping on the channel state feedback from the receiver to the users. We show

that if the jammer is not aware of the user channel states, it would disregard its

eavesdropping information and only transmit Gaussian noise. If the jammer knows

the user channel states but does not have information of the user signals, the game has

a solution which is characterized as Gaussian signalling and linear jamming at each

channel state, together with the optimal user and jammer power allocation strategies
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over the channel states. The optimal power allocations in this case are such that,

only one user transmits during any given channel state. If the jammer knows the

user channel states and the user signals, the game does not always have a saddle

point solution, in which case, we characterize the max-min user strategies, and the

corresponding jammer best response. The max-min user strategy corresponds to the

user’s best move, in a situation where the user chooses its strategy only once, and after

the user chooses its strategy, the jammer can observe it and choose the corresponding

best jamming. Note that if the game had a solution, max-min and min-max strategies

would have been the same, and would have also been the same as the game saddle

point solution.

Whenever the jamming mutual information game is concerned, and only then,

the term capacity refers to the channel’s information capacity, which is defined as the

channel’s maximum input/output mutual information, maximized over the choice of

the channel input distributions [13]. For channels with known statistics and behavior,

this definition coincides with the amount of information that can be reliably trans-

mitted over the channel. Here though, this definition does not have such operational

meaning.

2.1 System Model

Figure 2.1 shows a communication system with two users and one jammer. We

consider several different settings based on the channel characteristics and the jam-

mer’s information. In the absence of fading, the attenuations of the user channels are
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USER 2

JAMMER

USER 1 RECEIVER

Figure 2.1: A communication system with two users and one jammer.

known to everyone. Therefore, we can assume that the attenuations are scalars. The

AWGN channel with two users and one jammer is modelled as

Y =
√

h1X1 +
√

h2X2 +
√

γJ + N (2.1)

where Xi is the ith user’s signal, hi is the attenuation of the ith user’s channel, J is the

jammer’s signal, γ is the attenuation of the jammer’s channel and N is a zero-mean

Gaussian random variable with variance σ2
N . To model fading in the received powers,

we consider hi and γ as fading random variables, and to further model the phase

of the channel coefficients, we substitute the scalar attenuations
√

hi and
√

γ, with

complex fading random variables Hi for the amplitude fading coefficient of the ith

user’s channel, and Γ for the amplitude fading coefficient of the jammer’s channel

Y = H1X1 + H2X2 + ΓJ + N (2.2)
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All fading random variables are assumed to be i.i.d. The user and jammer power

constraints are

E[X2
i ] ≤ Pi, i = 1, 2 (2.3)

E[J2] ≤ PJ (2.4)

Regarding the knowledge of the jammer about the transmitted signals, we analyze

both cases of perfect information and imperfect information gained through eaves-

dropping. In the first case, we assume that the jammer knows the signals of the users

perfectly, i.e., it knows X1 and X2 at the beginning of its transmission. In the second

case, we assume an AWGN eavesdropping channel for the jammer

Ye =
√

g1X1 +
√

g2X2 + Ne (2.5)

where Ye is the signal received at the jammer, gi is the attenuation of the ith user’s

eavesdropping channel and Ne is a zero-mean Gaussian random variable with variance

σ2
e . Therefore, in this case, the jammer knows a noisy version of a linear combination

of the user signals, X1 and X2. To model fading in the received powers, we consider

√
gi as real fading variables, and to model fading in the received amplitudes, we

substitute them with complex amplitude fading random variables Gi. The receiver is

assumed to know the user channel states, while various assumptions are made on the

amount of information that the users and the jammer have about the channel fading

realization of the communication and eavesdropping channels; these assumptions are
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stated at the beginning of each subsection.

2.2 Jamming in Non-fading Multi-user AWGN Channels

In this section, we find the best user/jammer strategies when the channels are non-

fading, both when the jammer knows the exact user signals, and when it eavesdrops

the users’ channel and obtains a noisy version of a linear combination of the user

signals.

2.2.1 Jamming with Complete Information

Here the system model is (2.1) where the attenuations are constant scalars, and

X1 and X2 are known to the jammer. The jammer and the two users are involved in a

zero-sum game with the input/output mutual information as the objective function.

We investigate the existence and uniqueness of a saddle point solution for this game

[14]. A saddle point is a combination of strategies, one for each player, such that

no player has an incentive for unilaterally changing its own strategy, meaning that,

no player will gain more, by unilaterally deviating from the saddle point solution.

Note that in a zero-sum game, if the objective function is convex over the set of

the strategies of the players that are minimizing it, and concave over the set of the

strategies of the players that are maximizing it, then the mathematical saddle point

of the objective function corresponds to the game’s saddle point solution. However, in

general, all mathematical saddle points of an objective function may not necessarily

correspond to a game solution, e.g., matrix games [14].
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The arguments in [13, Theorem 2.7.4] can be easily extended to the two user

system to show that if (X1, X2, Y ) ∼ f(x1)f(x2)f(y|x1, x2), the input/output mutual

information I(X1, X2; Y ) is a concave function of f(x1) for fixed f(x2) and f(y|x1, x2),

a concave function of f(x2) for fixed f(x1) and f(y|x1, x2), and a convex function of

f(y|x1, x2) for fixed f(x1) and f(x2). Due to the convexity/concavity of the mu-

tual information with respect to the channel transition probability distribution/user

input probability distribution, and given that the set of the user and jammer sig-

nallings which satisfy the corresponding power constraints is convex and compact,

I(X1, X2; Y ) has a saddle point in that set, which is the saddle point solution of

the game [15, Theorem 16, page 75], [16, Proposition 2.6.9]. In the sequel, we show

that when the users employ Gaussian signalling, the best jamming strategy is linear

jamming (linear combination of the user signals plus Gaussian noise), and when the

jammer employs linear jamming, the best strategy for the users is Gaussian signalling,

which proves that Gaussian input distributions for the users and linear jamming for

the jammer is a saddle point of the input/output mutual information, and therefore,

a saddle point solution for the game. Due to the interchangeability property of game

solutions [15, Theorem 8, page 48], if there is any other pair of strategies which is a

game solution as well, it has to result in the same mutual information value as the

game solution corresponding to Gaussian signaling and linear jamming [15, Theorem

7, page 48].
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First, assume that the jammer employs linear jamming

J = ρ1X1 + ρ2X2 + NJ (2.6)

The power constraint on the jammer will force the following condition

ρ2
1P1 + ρ2

2P2 + σ2
NJ

≤ PJ (2.7)

Using (2.1), the output of the channel will be

Y = (
√

h1 +
√

γρ1)X1 + (
√

h2 +
√

γρ2)X2 +
√

γNJ + N (2.8)

From the users’ perspective, the channel becomes an AWGN multiple access channel,

and therefore the best signalling scheme for the users is Gaussian [13].

Next, we should show that if the users perform Gaussian signalling, then the best

jamming strategy is linear jamming. The channel output is as in (2.1), where X1

and X2 are independent Gaussian random variables, and J , the jammer signal, is an

arbitrary random variable to be chosen by the jammer. We write the input/output

mutual information of the channel

I(Y ; X1, X2) = h(X1, X2) − h(X1, X2|Y ) (2.9)

The jammer’s strategy can only affect the second term above. We develop a sequence
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of upper bounds on the second term,

h(X1, X2|Y ) = h(X1 − a1Y, X2 − a2Y |Y ) (2.10)

≤ h(X1 − a1Y, X2 − a2Y ) (2.11)

≤ 1

2
log
(

(2πe)2|Λ|
)

(2.12)

where Λ is the covariance matrix of (X1 − a1Y, X2 − a2Y ). The inequalities hold for

arbitrary a1 and a2. We choose a1 = E[X1Y ]/E[Y 2] and a2 = E[X2Y ]/E[Y 2]. We

now prove the optimality of linear jamming in two steps. We first consider the set of

all jamming signals which result in the same Λ, and show that if this set includes a

linear jammer, then that linear jammer is the optimal jammer over this set. Then, we

consider the set of all feasible jamming signals and show that for any jamming signal

in this set, there exists a linear jammer in this set resulting in the same Λ. Here, the

feasibility is in the sense of the jammer’s available power.

Consider the set of all jamming signals which result in the same Λ in (2.12).

Assume that there is a linear jamming signal in this set. This jamming signal is

jointly Gaussian with X1 and X2, hence X1 − a1Y, X2 − a2Y and Y are jointly

Gaussian. Moreover, a1 and a2 are chosen such that X1 − a1Y and X2 − a2Y are

uncorrelated with Y, therefore, since they are all Gaussian, X1 − a1Y and X2 − a2Y

are independent of Y. We conclude that this jamming signal achieves both (2.11) and

(2.12) with equality, therefore, it is optimal over this set.

Now we show that any Λ achievable by any feasible jamming signal, is also achiev-
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able by a feasible linear jamming signal. For the chosen values of a1 and a2, Λ is

Λ =









P1 − E[X1Y ]2

E[Y 2]
−E[X1Y ]E[X2Y ]

E[Y 2]

−E[X1Y ]E[X2Y ]
E[Y 2]

P2 − E[X2Y ]2

E[Y 2]









(2.13)

Using (2.1), E[X1Y ], E[X2Y ] and E[Y 2] can be written in terms of E[X1J ] and

E[X2J ] as

E[XiY ] =
√

hiPi +
√

γE[XiJ ], i = 1, 2 (2.14)

E[Y 2] =h1P1 + h2P2 + 2
√

h1γE[X1J ] + 2
√

h2γE[X2J ] + σ2
N + PJ (2.15)

Therefore, |Λ| can be expressed as a function of E[X1J ] and E[X2J ]. Consider any

jamming signal J . Define R as

R = J − X1
E[X1J ]

P1
− X2

E[X2J ]

P2
(2.16)

Note that R is uncorrelated with X1 and X2. The power of this jamming signal is

E[J2] =
E[X1J ]2

P1
+

E[X2J ]2

P2
+ E[R2] (2.17)

For this jamming signal to be feasible, we should have

E[X1J ]2

P1
+

E[X2J ]2

P2
≤ PJ (2.18)

Now define a linear jamming signal as in (2.6), where ρi = E[XiJ ]/Pi, i = 1, 2,
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and NJ is an independent Gaussian random variable with power E[R2]. This linear

jammer has the same power as J and therefore is feasible. Moreover, it results in

the same |Λ| value as J . Hence, for any signal in the set of feasible jamming signals,

there is an equivalent linear jamming signal which results in the same upper bound

in (2.12). This means that, there exists a feasible linear jamming signal which is as

effective as any other feasible jamming signal, and this concludes the proof.

The next step is to find ρ1 and ρ2 for the linear jamming signal in (2.6) which

achieves the highest upper bound in (2.12). Since both (2.11) and (2.12) hold with

equality, the linear jamming parameters that maximize (2.12), maximize (2.10), or

equivalently, minimize the mutual information in (2.9). Following the literature [1,2],

we call this mutual information value, the capacity. Using (2.8)

C =
1

2
log

(

1 +
(
√

h1 +
√

γρ1)
2P1 + (

√
h2 +

√
γρ2)

2P2

γσ2
NJ

+ σ2
N

)

(2.19)

which is a monotonically increasing function of the SNR, therefore the jammer’s equiv-

alent objective is to minimize the SNR value. We have the following minimization

problem

min
{ρ1,ρ2,σ2

NJ
}

(
√

h1 +
√

γρ1)
2P1 + (

√
h2 +

√
γρ2)

2P2

γσ2
NJ

+ σ2
N

s.t. ρ2
1P1 + ρ2

2P2 + σ2
NJ

≤ PJ (2.20)
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The Karush-Kuhn-Tucker (KKT) necessary conditions are

√
γ(
√

h1 +
√

γρ1)P1

γσ2
NJ

+ σ2
N

+ λρ1P1 = 0 (2.21)

√
γ(
√

h2 +
√

γρ2)P2

γσ2
NJ

+ σ2
N

+ λρ2P2 = 0 (2.22)

−γ
(
√

h1 +
√

γρ1)
2P1 + (

√
h2 +

√
γρ2)

2P2

(γσ2
NJ

+ σ2
N )2

+ λ − δ = 0 (2.23)

where δ is the complementary slackness variable for σ2
NJ

. Equations (2.21) and (2.22)

have the following solution

ρ1 = −
√

h1
γPJ + σ2

N√
γ(h1P1 + h2P2)

(2.24)

ρ2 = −
√

h2
γPJ + σ2

N√
γ(h1P1 + h2P2)

(2.25)

Therefore whenever these values of ρ1 and ρ2 are feasible, they characterize the best

jammer strategy. Ultimately, including the limiting feasible values, the optimum

jamming coefficients are

(ρ1, ρ2) =















(−
√

h1√
γ

,−
√

h2√
γ

) if γPJ ≥ h1P1 + h2P2

(−ρ
√

h1,−ρ
√

h2) if γPJ < h1P1 + h2P2

(2.26)

where

ρ = min

{

√

PJ

h1P1 + h2P2
,

γPJ + σ2
N√

γ(h1P1 + h2P2)

}

(2.27)

and the jammer transmits as in (2.6). We observe that the amount of power the
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jammer allocates for jamming each user is proportional to that user’s effective received

power which is hiPi for user i, i = 1, 2.

Figure 2.2 shows an example of the jammer decision regions. In region A, (ρ1, ρ2) =

(−
√

h1/
√

γ,−
√

h2/
√

γ) and the jammer only uses enough power to zero out the

transmitted signals. In region B, (ρ1, ρ2) = (−
√

h1,−
√

h2)
√

PJ/(h1P1 + h2P2) and

the jammer uses all of its power to cancel the transmitted signals as much as possible.

In region C, (ρ1, ρ2) = (−
√

h1,−
√

h2)(γPJ +σ2
N )/(

√
γ(h1P1 +h2P2)) and the jammer

uses part of its power to cancel the transmitted signals, and the rest of its power to add

Gaussian noise to the transmitted signal. Therefore, for low channel coefficients where

the effective received powers of the users are small, the optimum jamming strategy

is to subtract the user signals as much as possible, while in high channel coefficients,

the jammer uses its power both for adding Gaussian noise and for correlating with

the user signals.

2.2.2 Jamming with Eavesdropping Information

Now suppose that the jammer gains information about the user signals only

through an AWGN eavesdropping channel,

Ye =
√

g1X1 +
√

g2X2 + Ne (2.28)

We define linear jamming as transmitting a linear combination of the signal received

at the jammer Ye and Gaussian noise, i.e.,
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Figure 2.2: Jamming decision regions when γ = 1, P1 = 10, P2 = 5, PJ = 5 and
σ2

N = 1.

J = ρYe + NJ (2.29)

Here, we will prove that in the eavesdropping case as well, linear jamming and Gaus-

sian signalling is a game solution. The proof of the optimality of Gaussian signalling,

when the jammer is linear is similar to the previous section as follows. Using (2.1),

(2.28) and (2.29), if the jammer is linear, the received signal is

Y = (
√

h1 + ρ
√

γg1)X1 + (
√

h2 + ρ
√

γg2)X2 + ρ
√

γNe +
√

γNJ (2.30)

which is an AWGN multiple access channel, therefore, the best signalling for the users

is Gaussian.
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However, when it comes to showing the optimality of linear jamming when the

users employ Gaussian signalling, the method of the previous section cannot be used,

since from (2.28) and (2.29), the values of E[X1J ] and E[X2J ] that are achievable

through linear jamming, should further satisfy

E[X1J ]√
g1

=
E[X2J ]√

g2
(2.31)

Therefore, linear jamming may not achieve all |Λ| values in (2.12) that are allowed

under the power constraints. Here, we show the optimality of linear jamming, by

setting up an equivalent multiple access channel. Define random variables Z1 and Z2

in terms of X1 and X2 as

Z1 = X1 +

√
g2√
g1

X2 (2.32)

Z2 = −
√

g1g2P2

g1P1 + g2P2
X1 +

g1P1

g1P1 + g2P2
X2 (2.33)

It is straightforward to verify that Z1 and Z2 are uncorrelated, and hence, indepen-

dent Gaussian random variables. Moreover, since the two pairs have a one-to-one re-

lation, they result in the same input/output mutual information, i.e., I(X1, X2; Y ) =

I(Z1, Z2; Y ) [13]. Therefore, the game’s objective function can be replaced with

I(Z1, Z2; Y ). Now, using (2.1), (2.32) and (2.33), we can rewrite Y in terms of Z1

and Z2 as

Y = u1Z1 + u2Z2 +
√

γJ + N (2.34)
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where

u1 =

√
g1

g1P1 + g2P2
(
√

g1h1P1 +
√

g2h2P2) (2.35)

u2 =
√

h2 −
√

h1

√
g2√
g1

(2.36)

We can also write the eavesdropping signal received at the jammer using (2.28), (2.32)

and (2.33) as

Ye =
√

g1Z1 + Ne (2.37)

Note that Ye is independent of Z2. Equations (2.34) and (2.37) define a two user, one

jammer system, depicted in Figure 2.3, where the jammer has eavesdropping informa-

tion only about one of the users, which is the key in proving the optimality of linear

jamming as follows. We rewrite the equivalent input/output mutual information as

I(Z1, Z2; Y ) = h(Z1, Z2) − h(Z1, Z2|Y ) (2.38)

The jammer’s strategy can only affect the second term above,

h(Z1, Z2|Y ) = h(Z1 − a1Y, Z2 − a2Y |Y ) (2.39)

≤ h(Z1 − a1Y, Z2 − a2Y ) (2.40)

≤ 1

2
log(1 + |Σ|) (2.41)
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Figure 2.3: An interpretation of a communication system with two users and one
jammer with eavesdropping information.

where Σ is the covariance matrix of Z1−a1Y and Z2−a2Y. Following steps similar to

those in the previous section, when the users are Gaussian, employing linear jamming

together with a good choice of a1 and a2 can make both inequalities hold with equality,

and |Σ| will only be a function of E[Z1J ] and E[Z2J ]. However, Z2 and J are

independent and E[Z2J ] = 0, therefore, |Σ| is only a function of E[Z1J ]. In the

sequel, we show that all E[Z1J ] values that are achievable by all feasible jamming

signals, are also achievable by some feasible linear jamming signal, and therefore,

linear jamming achieves (2.40) and (2.41) with equality and also achieves the largest

possible upper bound in (2.41).

Using (2.37), the linear least squared error (LLSE) estimate of Z1 from Ye is [17]

Z̃1(Ye) =
E[Z1Ye]

E[Y 2
e ]

Ye (2.42)

=

√
g1E[Z2

1 ]

σ2
Ne

+ g1E[Z2
1 ]

Ye (2.43)
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and the LLSE estimate error is

E[(Z̃1(Ye) − Z1)
2] =

σ2
Ne

E[Z2
1 ]

σ2
Ne

+ g1E[Z2
1 ]

(2.44)

Since Z1 and Ne are Gaussian, this estimate is also the minimum mean squared error

(MMSE) estimate of Z1, therefore, any other estimate of Z1 results in a higher mean

squared error. Now consider any jamming signal J which is a function of Ye, i.e.,

J = f(Ye), where f is a potentially random function. The LLSE estimate of Z1 from

J is

Ẑ1 =
E[Z1J ]

E[J2]
J (2.45)

and the estimate error is

E[(Ẑ1 − Z1)
2] = E[Z2

1 ] − E2[Z1J ]

E[J2]
(2.46)

This is also another estimator of Z1 from Ye, hence the estimation error in Ẑ1 is

greater than or equal to the estimation error in Z̃1

E[Z2
1 ] −

E2[Z1J ]

E[J2]
≥ σ2

Ne
E[Z2

1 ]

σ2
Ne

+ g1E[Z2
1 ]

(2.47)
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Therefore, the feasible values of E[Z1J ] should satisfy

E2[Z1J ] ≤ g1E
2[Z2

1 ]E[J2]

σ2
Ne

+ g1E[Z2
1 ]

(2.48)

=
g1E

2[Z2
1 ]PJ

σ2
Ne

+ g1E[Z2
1 ]

(2.49)

Meanwhile, using (2.37), the achievable ρ values for a linear jammer satisfy

ρ2 ≤ PJ

σ2
Ne

+ g1E[Z2
1 ]

(2.50)

Also, from (2.29) and (2.37), for a linear jammer, E[Z1J ] = ρ
√

g1E[Z2
1 ], which to-

gether with (2.50) results in that linear jamming can achieve all E[Z1J ] values satis-

fying

E2[Z1J ] ≤ g1E
2[Z2

1 ]PJ

σ2
Ne

+ g1E[Z2
1 ]

(2.51)

The right hand sides of (2.49) and (2.51) are identical, where the former limits the

E[Z1J ] values for all feasible jammers, and the latter describes all the E[Z1J ] values

that are achievable with linear jamming. We conclude that for any signal in the set

of feasible jamming signals, there is an equivalent linear jamming signal which results

in the same upper bound in (2.41), which means that there exists a feasible linear

jamming signal which is as effective as any other feasible jamming signal, and this

concludes the proof.

We now derive the jamming coefficient for an optimal linear jammer with eaves-

23



dropping information. Using (2.28) and (2.29), the jamming signal is

J = ρ(
√

g1X1 +
√

g2X2 + Ne) + NJ (2.52)

and the received signal is as in (2.30). The jammer’s optimization problem is

min
{ρ,σ2

NJ
}

(
√

h1 + ρ
√

γg1)
2P1 + (

√
h2 + ρ

√
γg2)

2P2

γρ2σ2
Ne

+ γσ2
NJ

+ σ2
N

s.t. ρ2(g1P1 + g2P2 + σ2
Ne

) + σ2
NJ

≤ PJ (2.53)

The KKTs for this problem result in a third degree equation in ρ and can be solved

using numerical optimization.

Figure 2.4 shows the SNR as a function of one of the channel coefficients h1.

The SNR is compared in two scenarios, when the jammer eavesdrops, and when it

has full information about the user signals. We observe that at very low h1, the

patterns of the two scenarios differ considerably, while for very large values of h1,

they follow the same monotone SNR pattern. This is in fact expected, since at very

small channel attenuations, the jammer with complete information is able to cancel a

good portion of the user signals, while the noise in the eavesdropping channel restricts

the eavesdropping jammer in doing the same. Also, when the channel attenuation is

very high, in both scenarios, the jammer uses most of its power for adding noise, and

therefore, they both follow the same pattern. However, when the jammer has full

information about the user signals, the jamming coefficients are proportional to the

user channel attenuations, and therefore, the jamming coefficient for the second user
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Figure 2.4: SNR as a function of h1 when h2 = g1 = g2 = γ = 1 and the powers are
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N = 1, for the cases when the jammer has full information and
when it has eavesdropping information.

is very small compared to the first user, while when the jammer has eavesdropping

information, the jamming coefficient is the same for both users. This causes the

difference between the two scenarios at high SNR.

2.3 Jamming in Fading Multi-user AWGN Channels

We now investigate the optimum user/jammer strategies when the channels are

fading. Throughout this section, we use the term CSI, for the channel state informa-

tion on the links from the users to the receiver, and assume that the link between

the jammer and the receiver is non-fading. This section is divided into three parts

corresponding to three different assumptions: 1) no CSI at the transmitters, 2) un-

correlated jamming with full CSI at the transmitters, and 3) correlated jamming with
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full CSI at the transmitters. In each part, the receiver is assumed to know the CSI,

while various assumptions are made on the availability of the CSI at the jammer.

The problem of correlated jamming in single-user MIMO fading channels, with

the assumption that the transmitter and the jammer do not have the CSI, but the

receiver has the CSI, has been investigated in [2], and it has been shown that the

best strategies for the user and the jammer is to evenly spread their powers over

their corresponding transmit antennas, and transmit independent Gaussian signals,

and the jammer is better off disregarding its information about the user signal. The

problem of uncorrelated jamming in single-user MISO fading channels has also been

investigated in [3], where the user and jammer are restricted to employ Gaussian

signalling. In [3], both the user channel and the jammer channel are considered to

have fading, and also it is assumed that the user and jammer may or may not have

access to the CSI of their own channels, but they do not have access to the CSI of

their opponent’s channel.

2.3.1 No CSI at the Transmitters

When the transmitters do not have the CSI, it is reasonable to assume that the

jammer does not have the CSI either. In the sequel, we show that the jammer’s

information about the transmitted signals will be irrelevant and therefore, it will not

make any difference whether it has perfect or noisy information about the transmitted

signals. This is a multi-user generalization of the results of [2] in a SISO system.

Assuming that the user links are fading and the jammer link is non-fading, the
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received signal is

Y = H1X1 + H2X2 +
√

γJ + N (2.54)

The receiver is assumed to know the fading coefficients while the users and the jammer

only know the fading statistics. Here, we assume that all the random variables are

complex valued and H1 and H2 are circularly symmetric complex Gaussian. Following

[2] in finding the saddle point solution of the mutual information game by conditioning

on the fading coefficients,

I(Y, H1, H2; X1, X2) = h(X1, X2) − h(X1, X2|Y, H1, H2) (2.55)

= h(X1, X2) − h(X1 − A1Y, X2 − A2Y |Y, H1, H2) (2.56)

where A1 and A2 are functions of H1 and H2. The jammer’s strategy can only affect

the second term above

h(X1 − A1Y, X2 − A2Y |Y, H1, H2) ≤ h(X1 − A1Y, X2 − A2Y |H1, H2) (2.57)

≤ E

[

1

2
log
(

(2πe)2|Λ|
)

]

(2.58)

where Λ is the covariance matrix of

(X1 − A1Y, X2 − A2Y |H1, H2)
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and the expectation in (2.58) is over the joint distribution of H1 and H2. Choosing

Ai =
E[XiY |H1, H2]

E[Y 2|H1, H2]
, i = 1, 2 (2.59)

makes X1 −A1Y and X2 −A2Y conditionally uncorrelated with Y , given H1 and H2.

Following arguments similar to those in the previous section, since X1 and X2 are

Gaussian, linear jamming makes J , and therefore Y jointly Gaussian with X1 and

X2, and the above two inequalities hold with equality. Now, we need to show that

linear jamming can also achieve the highest upper bound in the second inequality.

First note that X1, X2 and J are independent of H1 and H2, hence

E[XiY |H1, H2] = HiPi +
√

γE[XiJ |H1, H2] (2.60)

= HiPi +
√

γE[XiJ ], i = 1, 2 (2.61)

where (2.61) holds since X1, X2 and J are independent of H1 and H2. Therefore,

the second upper bound above is only a function of E[XiJ ], i = 1, 2. The rest of the

arguments in the previous section follow, resulting in that linear jamming can achieve

the highest upper bound in the second inequality, which concludes the proof.

The strategies corresponding to the game solution will be Gaussian signalling and

linear jamming. The jamming signal is as in (2.6), and the received signal is

Y = (H1 +
√

γρ1)X1 + (H2 +
√

γρ2)X2 +
√

γNJ + N (2.62)
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The last step is to find the best ρ1 and ρ2. Given that the jammer knows the statistics

of the fading, its optimization problem is

min
{ρ1,ρ2,σ2

NJ
}

1

2
E

[

log

(

1 +
|H1 +

√
γρ1|2P1 + |H2 +

√
γρ2|2P2

γσ2
NJ

+ σ2
N

)]

(2.63)

s.t. ρ2
1P1 + ρ2

2P2 + σ2
NJ

≤ PJ (2.64)

The function in (2.63) is very similar to (2.19), except for the expectation taken

over the channel states. The jamming coefficients ρ1 and ρ2 in (2.63) and (2.64) are

independent of H1 and H2. Distributions of H1 and H2 are centered around zero,

therefore intuitively, shifting them will make their norms larger. This fact can also

be derived using [18, Theorem 1]. Therefore, the optimum jamming coefficients are

ρ1 = ρ2 = 0, and the jammer disregards its complete information. We conclude

that if the jammer’s information is noisy, it cannot do any better than what it did

when it had noiseless information, and therefore, it should disregard the incomplete

information, whether the incompleteness is because of fading or AWGN or both in

the jammer’s eavesdropping channel.

2.3.2 Uncorrelated Jamming with CSI at the Transmitters

We now consider a two user fading channel with a jammer who does not have any

information about the user signals and therefore, is uncorrelated with the users. We

also assume that the user links are fading and the state of the user links are known

to the users. The users are now able to distribute their powers optimally over the
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user channel states. Capacity of fading channels with CSI both at the transmitter

and the receiver when there is no jammer, has been investigated in [19] and [20],

and optimum signalling and power allocation strategies have been derived. In this

section, we consider the same problem when there is a jammer in the system. We

first consider the single-user case and assume that the jamming channel is non-fading

Y = HX +
√

γJ + N (2.65)

When the CSI is available both at the transmitter and the receiver, the maximum

input/output mutual information is

C = I(X; Y |H) (2.66)

where X is a random variable whose conditional distribution conditioned on H , is

chosen to maximize C. The conditional input/output mutual information I(X; Y |H)

is a convex function of f(y|x, h) for any fixed conditional input distribution f(x|h),

and a concave function of f(x|h) for any fixed conditional transition distribution

f(y|x, h). Given the convexity and compactness of the space of the probability dis-

tributions, at each channel state, there is a saddle point which is to employ Gaussian

signalling and linear jamming. This specifies the solution to the mutual information

sub-game at any given channel state. Moreover, if a saddle point exists over all pos-

sible power allocation strategies of the user and the jammer, under user and jammer

power constraints, that saddle point power allocation along with the signalling and
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jamming strategies specified as the solution of the sub-games corresponding to each

channel state, will give the overall solution.

We proceed with first assuming that even though the users have the CSI, the

jammer does not have the CSI, and then assuming that the CSI is available both at

the users and at the jammer. The latter is a reasonable assumption, since we can

assume that the jammer eavesdrops the communication link from the receiver to the

transmitter, where the receiver sends the CSI feedback information to the user.

If the jammer has no information about the fading channel state, the best strategy

for the jammer is to transmit Gaussian noise. The received signal at fading level h is

Y =
√

hX +
√

γNJ + N (2.67)

and the capacity is

C =
1

2
E

[

log

(

1 +
hP (h)

σ2
N + γPJ

)]

(2.68)

where P (h) is the user power at fading level h which should satisfy

E [P (h)] ≤ P (2.69)

The best user power allocation is waterfilling over the equivalent parallel AWGN
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channels [19] with equivalent noise levels (σ2
N + γPJ)/h, i.e.,

P (h) =

(

1

λ
− σ2

N + γPJ

h

)+

(2.70)

where (x)+ = max(x, 0), and λ is a constant chosen to enforce the user power con-

straint. The corresponding two user system, where the jammer is not aware of the

user channel coefficients, is a straightforward extension of the results in [21] where

only one user transmits at a time. The jammer will again use all its power to add

Gaussian noise.

Next, we assume that the uncorrelated jammer has the CSI as well. The received

signal in the single-user system is the same as in (2.67). At each channel state, the

jammer transmits Gaussian noise at the power level allocated to that state. The

capacity is

C =
1

2
E

[

log

(

1 +
hP (h)

σ2
N + γJ(h)

)]

(2.71)

where J(h) is the jammer power at fading level h. The user power constraint is the

same as (2.69), and the jammer power constraint is

E [J(h)] ≤ PJ (2.72)

Since every term of the capacity corresponding to a channel state h is concave in P (h)

for fixed J(h) and convex in J(h) for fixed P (h), the capacity is a concave function of

P for fixed J and a convex function of J for fixed P . Given the convexity/concavity
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properties of the capacity and using [15, Theorem 16, p. 75], [16, Proposition 2.6.9],

and given the convexity and compactness of the space of the power allocations, the set

of saddle points is compact and nonempty and therefore the mutual information game

has a solution. At the game solution, the pair of strategies should satisfy the KKTs

of the two optimization problems corresponding to the user and the jammer. The

user maximizes (2.71) subject to (2.69), while the jammer minimizes (2.71) subject

to (2.72). Writing the KKTs for each state-allocated user power, we get

− h

σ2
N + γJ(h) + hP (h)

+ λ − ξ(h) = 0 (2.73)

where ξ(h) is the complementary slackness variable for P (h). Similarly, writing the

KKTs for each state-allocated jammer power, we get

− γhP (h)

(σ2
N + γJ(h))(σ2

N + γJ(h) + hP (h))
+ µ − δ(h) = 0 (2.74)

where δ(h) is the complementary slackness variable for J(h).

The optimum strategies should solve (2.73) and (2.74) simultaneously. There are

four possible cases at each fading level. Case 1: P (h) > 0 and J(h) > 0, case 2:

P (h) = 0 and J(h) > 0, case 3: P (h) > 0 and J(h) = 0 and case 4: P (h) = 0 and

J(h) = 0. If P (h) = 0, (2.74) cannot be satisfied unless δ(h) > 0, therefore, case 2

never happens. This is expected, because if the user does not transmit at a fading

level, the jammer does not gain anything by transmitting at that fading level. In case
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1, both complementary slackness variables are zero, and (2.73) and (2.74) become

h

σ2
N + γJ(h) + hP (h)

= λ (2.75)

γhP (h)

(σ2
N + γJ(h))(σ2

N + γJ(h) + hP (h))
= µ (2.76)

which result in a linear relation between the user and jammer power allocations

σ2
N + γJ(h)

γP (h)
=

λ

µ
(2.77)

and solving for the user’s power

P (h) =
h

λ(h + γ λ
µ
)

(2.78)

which is a monotonically increasing function of the fading variable h. Therefore, at

any fading level where the user and jammer powers are nonzero, the jammer’s power

is a linear function of the user’s, and they both allocate more power to better channel

states. Case 1 is valid as long as (2.77) and (2.78) result in positive J(h), which is

for P (h) > σ2
Nµ/(γλ) or h > σ2

Nγλ/(γ − σ2
Nµ). For h < σ2

Nγλ/(γ − σ2
Nµ), J(h) = 0

which results in cases 3 and 4 combined. In this case (2.73) will turn to waterfilling.

Therefore, combining all of these, the optimum power allocations are

P (h) =















( 1
λ
− γσ2

N

h
)+ if h <

σ2

N γλ

γ−σ2

N
µ

h
λ(h+γ λ

µ
)

if h ≥ σ2

N
γλ

γ−σ2

N
µ

(2.79)
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and

J(h) =















0 if h <
σ2

N
γλ

γ−σ2

N
µ

h
µ(h+γ λ

µ
)
− σ2

N

γ
if h ≥ σ2

N
γλ

γ−σ2

N
µ

(2.80)

where λ and µ are found using the user and jammer power constraints.

Figure 2.5 shows P (h) and J(h) for a simple example, where the fading is assumed

to be Rayleigh with parameter 1. Figure 2.5 also includes the power allocation curve

for a case where there is no jammer [19], which, compared to the case with a jammer,

shows that the presence of the jammer changes the power allocation strategy of the

user. When there is a jammer, from our closed form solutions in (2.79) and (2.80),

and from Figure 2.5, we observe that both the user and the jammer keep quiet at very

low fading levels. Then, as the user channel gets better, the user starts transmitting,

with more power allocated to better channels, and eventually at even better channels,

the jammer starts jamming, again with more power allocated to better channels.

We now discuss the two user system where the jammer is uncorrelated but it has

access to CSI. The power allocation strategies will be functions of the two channel

states h = (h1, h2). The capacity is

C =
1

2
E

[

log

(

1 +
h1P1(h) + h2P2(h)

σ2
N + J(h)

)]

(2.81)

The KKTs for the users result in

− hi

σ2
N + J(h) + h1P1(h) + h2P2(h)

+ λi − γi(h) = 0, i = 1, 2 (2.82)
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Figure 2.5: P (h) and J(h) for E[P (h)] = 10, E[J(h)] = 5 and σ2
N = 1.

where γi(h) is the complementary slackness variables for Pi(h), i = 1, 2. If at a pair

of fading levels, both users transmit with nonzero powers, (2.82) results in

h1

h2

=
λ1

λ2

(2.83)

which happens with zero probability if the fading PDF is continuous. Therefore,

similar to the system without a jammer in [21], only one user transmits at any given

channel state. Define h as

h = max

(

h1

λ1
,
h2

λ2

)

(2.84)

Now, the users and the jammer power allocations are functions of h, therefore we can
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replace h by h in the previous equations. Since the users do not transmit at the same

time, we can use the single-user results to find the user power allocations

Pi(h) =















0 if h 6= hi

λi

1
hi

q(h) if h = hi

λi

, i = 1, 2 (2.85)

where q(h) is

q(h) =















(h − σ2
N )+ if h <

σ2

N

1−σ2

N
µ

h
1+ 1

hµ

if h ≥ σ2

N

1−σ2

N
µ

(2.86)

The jammer’s power allocation is

J(h) =















0 if h <
σ2

N

1−σ2

N
µ

1
µ(1+ 1

hµ
)
− σ2

N if h ≥ σ2

N

1−σ2

N
µ

(2.87)

The strategies follow a pattern as in Figure 2.6, that is, the users do not transmit

simultaneously, no party transmits at very low fading levels, as the channels get better,

the user with a relatively better channel transmits, and eventually the jammer starts

transmitting at even better channels. The threshold values u1, u2, v1 and v2 are to

be chosen to satisfy the power constraints.

2.3.3 Correlated Jamming with CSI at the Transmitters

In this section, we consider a two user fading channel with a jammer who knows the

user signals and therefore, is correlated with the users. We assume that the user links
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Figure 2.6: User/jammer transmission regions in uncorrelated jamming with CSI.

are fading and the state of the user links are known to the users and the correlated

jammer. The users and the jammer are now able to distribute their powers optimally

over the user channel states. The jammer link is again assumed to be non-fading.

We first show that this game does not always have a saddle point solution, and then,

we find the max-min user strategies and the corresponding jamming strategy. The

max-min user power allocation corresponds to the users’ best power allocation, in a

situation where the user chooses its strategy only once, while after the user chooses

its strategy, the jammer can observe it and choose the corresponding best jamming

strategy. Note that if the game had a solution, max-min and min-max strategies

would have been the same, and would also be the same as the game solution.

As in the previous sections we start with a single-user system. The input/output

mutual information is as in (2.66), which is a weighted sum of the input/output
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mutual information at each channel state. The user and jammer power constraints

can be written as

E
[

E[X2|H ]
]

≤ P (2.88)

E
[

E[J2|H ]
]

≤ PJ (2.89)

E[X2|H = h] and E[J2|H = h] are the user and jammer powers allocated to the

fading level H = h. Any pair of user and jammer strategies, results in a pair of user

and jammer power allocation strategies over the user channel fading distribution.

Therefore, the game’s solution can be described as a pair of user and jammer power

allocation strategies, along with the user and jammer signalling functions at each

channel state. Using our results for the non-fading channels, we have that irrespective

of the existence or non-existence of optimal power allocation functions for the user

and the jammer, the sub-games always have a saddle point solution at each channel

state, under any pair of user and jammer power allocation functions. The solution

of the sub-games at each channel state is Gaussian signalling for the users and linear

jamming for the jammer.

Since the jammer knows the channel state and the transmitted signal, the received

signal is

Y =
(√

h + ρ(h)
)

X + NJ + N (2.90)

where the variance of NJ is also a function of h, σ2
NJ

(h). Given a pair of power
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allocation functions P (h) and J(h), the capacity is

C =
1

2
E






log






1 +

(√
h + ρ(h)

)2

P (h)

σ2
N + σ2

NJ
(h)












(2.91)

where for each channel state h, ρ(h) and σ2
NJ

(h) are the optimal linear jamming coeffi-

cients for an equivalent non-fading channel as given in Section 2.2.1, with attenuation

h and user and jammer powers P (h) and J(h). The power constraints of the user

and the jammer are as in (2.69) and (2.72).

The capacity here does not have the convexity/concavity properties in the user

and jammer power allocation functions. In the sequel, we show that a pair of strate-

gies, which is simultaneously optimal for the user and the jammer, does not always

exist. We first assume that the user chooses its strategy once at the beginning of

the communication, knowing that the jammer will employ the corresponding optimal

jamming strategy. We then characterize the user and jammer strategies in this sce-

nario. If the game had a saddle point solution, it would have been this pair of user

and jammer strategies, however we prove the converse. We consider the resulting

jamming strategy and assume that the jammer chooses this strategy at the beginning

of the communication, and show that if the user had the possibility of changing its

strategy, the current user strategy would have not been optimal.

First, given any user power allocation function P (h), we find the jammer’s best

response, where a best response describes what a player does, given the other player’s

move [14]. In this case, a best response is the jammer’s best power allocation strategy,

given a fixed user power allocation strategy. The jammer’s best response can also be
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thought of as a pair of functions ρ(h) and σ2
NJ

(h) which minimizes the capacity

C =
1

2
E






log






1 +

(√
h + ρ(h)

)2

P (h)

σ2
N + σ2

NJ
(h)












(2.92)

and ρ(h) and σ2
NJ

(h) are constrained such that

E
[

ρ2(h)P (h) + σ2
NJ

(h)
]

≤ PJ (2.93)

and σ2
NJ

(h) is nonnegative. The first order KKT conditions for the jammer are

√
h + ρ(h)

σ2
N + σ2

NJ
(h) + (

√
h + ρ(h))2P (h)

+ λρ(h) = 0 (2.94)

− (
√

h + ρ(h))2P (h)

(σ2
N + σ2

NJ
(h))(σ2

N + σ2
NJ

(h) + (
√

h + ρ(h))2P (h))
+ λ + ξ(h) = 0 (2.95)

where ξ(h) is the complementary slackness variable for σ2
NJ

(h). Whenever ξ(h) > 0,

the jammer uses all its power to correlate with the user signal, and the optimum

jamming coefficient should satisfy

√
h + ρ(h)

σ2
N + (

√
h + ρ(h))2P (h)

+ λρ(h) = 0 (2.96)

which does not result in a closed form solution for the jammer best response. However,

in order to derive the max-min user strategy, we need to have the jamming best

response in terms of the user power allocation. To make the problem tractable, assume

that σ2
N = 0. Now at any channel state that the user transmits, the jammer should
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also transmit, and the optimal jamming strategy should be such that σ2
NJ

(h) > 0,

since otherwise, the capacity would be infinite. The KKTs result in

ρ(h) = −min

(

1

λ
√

hP (h)
,
√

h

)

(2.97)

σ2
NJ

(h) =

(

1

λ
− 1

λ2hP (h)

)+

(2.98)

The optimal jamming strategy is

(

ρ(h), σ2
NJ

(h)
)

=















(−
√

h, 0) if hP (h) ≤ 1
λ

(

− 1
λ
√

hP (h)
, 1

λ
− 1

λ2hP (h)

)

if hP (h) > 1
λ

(2.99)

where λ is chosen to satisfy the jammer’s power constraint. The total power that the

jammer allocates to each channel state is found as

J(h) = ρ2(h)P (h) + σ2
NJ

(h)

=















hP (h) if hP (h) ≤ 1
λ

1
λ

if hP (h) > 1
λ

(2.100)

which describes the best response of the jammer, to the user power allocation P (h),

and is shown in Figure 2.7. Note that Figure 2.7 shows the best response jammer

power allocation as a function of hP (h) and not P (h). The capacity can now be
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Figure 2.7: Jammer best response power allocation in correlated jamming with CSI.

written as a function of the user power allocation alone

C =
1

2
E






log






1 +

(√
h − min

(

1
λ
√

hP (h)
,
√

h
))2

P (h)
(

1
λ
− 1

λ2hP (h)

)












(2.101)

We now derive the best user power allocation that maximizes this capacity. First note

that the function inside the expectation in (2.101) is zero for hP (h) ≤ 1/λ, therefore,

in the optimal user power allocation, P (h) is either zero, or such that hP (h) > 1/λ.

The capacity can now be written as

C =
1

2
E






log






1 +

(√
h − 1

λ
√

hP (h)

)2

P (h)
(

1
λ
− 1

λ2hP (h)

)












(2.102)

=
1

2
E
[

log
(

λ
√

hP (h)
)]

(2.103)
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The KKT condition for the user power, whenever the user transmits, results in P (h) =

1
µ
, for which the total power that the jammer allocates to the channel states is found

as

J(h) =















0 if h ≤ µ
λ

1
λ

if h > µ
λ

(2.104)

The user max-min power allocation and the corresponding jammer power allocations

are illustrated in Figure 2.8 where µ and λ are chosen to satisfy the user and jammer

power constraints.

Now, we show that the pair of user and jammer power allocations corresponding

to the user’s max-min solution does not correspond to the saddle point solution of

the game. We consider the jamming strategy in (2.104) and assume that the jammer

chooses this strategy at the beginning of the communication, and show that the

current user strategy is not optimal. Consider two fading levels u+ > µ/λ and

u− < µ/λ in the vicinity of h = µ/λ and close enough to h = µ/λ such that

u− ≃ u+ ≃ µ/λ (2.105)

We have J(u−) = 0 and J(u+) = 1/λ, hence, u− and u+ correspond to two channel

states which are almost identical in their fading levels, while the jammer is active

only in u+. Obviously, it is not optimal for the user to transmit at u+ while not

transmitting at u−, therefore, the pair of the user and jammer power allocations

derived (which is the user max-min solution), is not a game solution, and the game
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Figure 2.8: Max-min user power allocation and the corresponding jammer best re-
sponse power allocation in correlated jamming with CSI.

does not admit a solution.

Even though the max-min solution derived above is not the game saddle point

solution, it is the optimal pair of user and jammer strategies in a system where a

conservative user would like to guarantee itself with some capacity value. It also

describes the best strategy for a user which is less dynamic than the jammer in terms

of changing the transmission strategy, and can choose its strategy only once.

We now extend the max-min results in the single-user system to a two user system.

We show that if h1 and h2 are the fading levels of the first and the second user channels,

again only one user transmits at any given h = (h1, h2). First, given any pair of user

power allocation functions P1(h) and P2(h), we find the jammer’s best response power

allocation strategy. The jammer’s best response can also be thought of as a set of
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functions ρ1(h), ρ2(h) and σ2
NJ

(h) which minimizes the capacity

C =
1

2
E

[

log

(

1 +

(√
h1 + ρ1(h)

)2
P1(h) +

(√
h2 + ρ2(h)

)2
P2(h)

σ2
N + σ2

NJ
(h)

)]

(2.106)

and ρ1(h), ρ2(h) and σ2
NJ

(h) are constrained such that

E
[

ρ2
1(h)P1(h) + ρ2

2(h)P2(h) + σ2
NJ

(h)
]

≤ PJ (2.107)

and σ2
NJ

(h) is nonnegative. The first order KKT conditions for ρ1(h) and ρ2(h) are

√
h1 + ρ1(h)

σ2
N + σ2

NJ
(h) +

(√
h1 + ρ1(h)

)2
P1(h) +

(√
h2 + ρ2(h)

)2
P2(h)

+ λρ1(h) = 0

(2.108)

√
h2 + ρ2(h)

σ2
N + σ2

NJ
(h) +

(√
h1 + ρ1(h)

)2
P1(h) +

(√
h2 + ρ2(h)

)2
P2(h)

+ λρ2(h) = 0

(2.109)

which result in

ρ1(h)√
h1

=
ρ2(h)√

h2

(2.110)

Therefore, for the optimal pair of ρ1(h) and ρ2(h), we can define ρ(h) and P (h) such
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that

ρi(h) =
√

hiρ(h), i = 1, 2 (2.111)

P (h) = h1P1(h) + h2P2(h) (2.112)

and write the KKTs for the jammer’s best response as

(1 + ρ(h))

σ2
N + σ2

NJ
(h) + (1 + ρ(h))2 P (h)

+ λρ(h) = 0 (2.113)

− (1 + ρ(h))2 P (h)

(σ2
N + σ2

NJ
(h))(σ2

N + σ2
NJ

(h) + (1 + ρ(h))2 P (h))
+ λ + ξ(h) = 0 (2.114)

where ξ(h) is the complementary slackness variable for σ2
NJ

(h). From (2.113) and

(2.114), the best response jamming strategy can be described in terms of h and P (h).

Now, for any pair of user power allocations P1(h) and P2(h) and the corresponding

jamming best response, the capacity can be written as

C =
1

2
E

[

log

(

1 +
(1 + ρ(h))2 P (h)

σ2
N + σ2

NJ
(h)

)]

(2.115)

Assume that both users transmit at h = (h1, h2). Since the jamming best response

is only a function of h and P (h), the KKTs for the user power allocations can be

written as

dC

dP (h)

dP (h)

dP1(h)
+ λ1 = 0 (2.116)

dC

dP (h)

dP (h)

dP2(h)
+ λ2 = 0 (2.117)
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which, using (2.112), result in

h1

h2
=

λ1

λ2
(2.118)

Therefore, P1(h) and P2(h) cannot be non-zero at the same time, which means that,

at any h = (h1, h2), only one user transmits. Given that only one user is active at

any given time, the rest of the two user results immediately follow the results of the

single-user case.

2.4 Summary and Conclusions

We characterized the saddle point solution of a mutual information game in a

non-fading multiple access channel with a correlated jammer. We showed that in

both cases, where the jammer knows the user signals, or it only has access to a noise

corrupted version of the superposition of the user signals, the game has a solution,

and the optimal strategies are Gaussian signalling for the users and linear jamming

for the jammer.

In fading channels, except for the case when the jammer is correlated and both

the user and the jammer have access to the user channel state, we showed that

the mutual information game admits a saddle point solution, and characterized the

corresponding user and jammer signalling and power allocation strategies. When the

jammer is correlated and both the users and the jammer have access to the channel

state, we showed that a set of simultaneously optimal power allocation functions

for the users and the jammer does not always exist, and consequently characterized
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the max-min user power allocation strategies and the corresponding jammer power

allocation strategy.

Results of this chapter are published in [4], [5], and [6].
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Chapter 3

Achievable Rates in Gaussian MISO Channels with Secrecy

Constraints

The eavesdropping attack refers to the situation where an unauthorized adversary

can overhear the ongoing communication. Wyner in [7] has studied this problem in

an information theoretic context, where he considers a single-user wire-tap channel.

The measure of secrecy is the message equivocation rate at the wire-tapper, which

is defined as the entropy of the message at the wire-tapper, given the wire-tapper’s

observation. Wyner models the wire-tapper’s channel as a degraded version of the

channel from the transmitter to the legitimate receiver. This is in fact a reasonable as-

sumption in a wired channel. For this channel, Wyner identifies the rate-equivocation

region; the region comprised of points corresponding to the achievable communication

rate, and the corresponding achievable equivocation rate. Once the rate-equivocation

region is characterized, one can find the secrecy capacity, which is defined as the max-

imum communication rate which can be attained with perfect or complete secrecy.

At the secrecy capacity, the communication rate and the equivocation rates are equal.

Wyner’s result was extended to the Gaussian wire-tap channel in [22], and it was
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shown that the optimal signalling strategy is Gaussian. The secrecy capacity was

found to be the difference between the capacities of the main and the eavesdropping

channels. It is interesting to notice that Gaussian signalling is optimal for both the

main and the eavesdropping channels, but it puts the main channel at a further

advantage.

Wyner’s result was specific to the wire-tapping channel being a degraded version

of the main channel, which is not necessarily the case in a wireless broadcast channel.

Csiszar and Korner [23] studied the general single-transmitter, single-receiver, single-

eavesdropper, discrete memoryless broadcast channel with secrecy constraints, and

found an expression for the secrecy capacity, in the form of the maximization of the

difference between two mutual informations involving an auxiliary random variable.

The auxiliary random variable is interpreted as performing pre-processing on the

information. The explicit calculation of the secrecy capacity for a given broadcast

channel requires the solution of this maximization problem in terms of the joint

distribution of the auxiliary random variable and the channel input.

The use of multiple transmit and receive antennas has been shown to increase

the achievable rates when there are no secrecy constraints [24]. The Gaussian MIMO

wire-tap channel is a special case of the single-transmitter, single-receiver, single-

eavesdropper wire-tap channel. Since the Gaussian MIMO channel is not degraded in

general, finding its secrecy capacity involves identifying the optimum joint distribution

of the auxiliary random variable representing pre-processing and the channel input

in the Csiszar-Korner formula. However, solving this optimization problem directly

for non-degraded channels is difficult, forcing researchers typically to follow a two-
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step solution, where in the first step a feasible solution is identified (an achievable

scheme), and in the second step a tight upper bound that meets this feasible solution

is developed (tight converse).

The first paper studying secrecy in Gaussian MIMO channels is [25], which pro-

poses an achievable scheme, where the transmitter uses its multiple transmit antennas

to transmit only in the null space of the eavesdropper’s channel, thereby preventing

any eavesdropping. Reference [26] studies the Gaussian single-input multiple-output

(SIMO) wire-tap channel. It is shown that the Gaussian SIMO channel is essentially

equivalent to a scalar Gaussian channel, therefore, the results of [22] can be used to

find its secrecy capacity.

We first consider a Gaussian MISO channel under various assumptions on the

channel attenuations. We assume that the channel attenuations are constants, known

to all the parties. We characterize the maximum secrecy rate achievable through

Gaussian signalling, and show that the Gaussian signalling that achieves the best

secrecy rate is of beam-forming nature. Reference [27] reports a similar result, how-

ever, these similar results are derived independently and concurrently. Our problem

is different than [25] in that we seek the optimum Gaussian signalling, while [25]

investigates the performance of one specific Gaussian strategy. The results of [26]

cannot be extended to our case, since the method used in [26] to find an equivalent

scalar Gaussian channel cannot be used for a MISO Gaussian channel.

The secrecy rate found here for the Gaussian MISO wire-tap channel is later

shown to actually be the secrecy capacity of this channel [8, 9]. Further, [8, 9] allows

the eavesdropper to have multiple antennas (MISOME).
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Secrecy capacity of Gaussian SISO fading channels is studied in [28–32]. Capacity-

equivocation regions for fading channels are specified in [29] and [30], while [28]

and [31] deal with characterizing the secrecy capacity and the corresponding power

allocation strategies in fading Gaussian channels. In [32], only the eavesdropping

channel is fading Gaussian, and the main channel is considered to be non-fading.

Achievable secrecy rates under Gaussian signalling are characterized. The channel

state of the eavesdropper is considered common knowledge in [28] and [31], while it

is assumed unknown to the transmitter in [32]. We study the Gaussian MISO chan-

nel when the eavesdropping channel experiences fading. We characterize achievable

secrecy rates through Gaussian signalling. It is shown that, when the eavesdropping

channel experiences fading, the optimal Gaussian signalling has a unit-rank covariance

matrix, and therefore, the system reduces to a SISO channel. We identify conditions

under which, positive secrecy rates are achievable. Our formulation is partially sim-

ilar to that of [32]. Reference [32] treats the SISO system, and we study the MISO

problem, but in both cases, the main channel is constant, while the eavesdropping

channel is fading and unknown to the transmitter. After we reduce the MISO system

to SISO, our results overlap significantly with those of [32]. As it was also mentioned

for the non-fading results of [27], here again, our results and those of [32] have been

derived independently and concurrently. Our results are different than [28–32], in that

they all consider single antennas for all the parties, while multiple transmit antennas

are considered here. Also, our results are different than [27], in that the non-fading

Gaussian MISO is studied there, while we investigate the effects of fading in Gaussian

MISO channels.
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Secure communications in multi-user networks, e.g., multiple access channel [33–

37], broadcast channel [38], relay channel [39,40], interference channel [41], and two-

way channel [42] have been studied recently.

We use the following notations: Bold face lower and upper case letters are used to

represent vectors and matrices, respectively. xT and ||x|| denote the transpose and

the Euclidean norm of the vector x, respectively. trace(X) denotes the trace of the

square matrix X. Whether a variable is deterministic or random will be clear from

the context.

3.1 System model

Figure 3.1 shows a communication system, with a transmitter equipped with mul-

tiple transmit antennas and a receiver and an eavesdropper, each with a single an-

tenna. The user and eavesdropper channel attenuations can be represented by t × 1

vectors h and g, where t is the number of transmit antennas. The received signals at

the receiver and the eavesdropper at time i are

yi = hT xi + ny,i (3.1)

zi = gTxi + nz,i (3.2)

where xi is the transmitted signal at time i, and without loss of generality, ny,i and

nz,i are unit-variance complex circularly symmetric Gaussian random variables. h

is known and fixed. When the eavesdropper channel is non-fading, g is assumed

to be known and fixed too. When the eavesdropper channel experiences fading, g is
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Figure 3.1: A communication system with a multi-antenna transmitter, and a single-
antenna receiver and eavesdropper.

assumed to be a vector of i.i.d. zero mean unit-variance complex circularly symmetric

Gaussian random variables.

A message m of rate R, is a random integer from the set {1, . . . , 2nR}, which is

transmitted in n channel uses. The equivocation rate Re, is the conditional entropy of

the transmitted message, conditioned on the received signal at the eavesdropper. The

equivocation rate is a measure of the amount of information that the eavesdropper

can attain about the message, and quantifies the level of secrecy in the system. The

secrecy capacity, CS, is the largest rate R achievable with perfect secrecy, i.e., Re = R.
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3.2 Non-fading Eavesdropper Channel

Assume that g in (3.2) is fixed and known. From [23], the secrecy capacity of this

system is

CS = max
u→x→yz

I(u; y) − I(u; z) (3.3)

Ideally, one should solve (3.3) for the optimal joint distribution of u and x. We

restrict ourselves to the potentially sub-optimal assumption that x = u, under which,

the following rate is achievable with perfect secrecy

RS = max
p(x)

I(x; y) − I(x; z) (3.4)

RS would have been equivalent to the secrecy capacity CS, if the main channel was

“more capable” than the eavesdropping channel [23]. p(x) must be chosen to max-

imize (3.4), but we restrict ourselves to the class of Gaussian pdfs. Our aim is to

characterize the best achievable secrecy rates, under this restriction, and the input

power constraint. This is in fact one further potentially sub-optimal assumption that

we make, as, Gaussian signalling maximizes both terms on the right hand side of (3.4),

but does not necessarily maximize the difference. Note that in the scalar Gaussian

channel studied in [22], the two assumptions of x = u and x being Gaussian are not

sub-optimal, as the eavesdropping channel is a degraded version of the main channel.
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The optimization problem of interest is now

RS = log(1 + hT Σh) − log(1 + gTΣg) (3.5)

where Σ is the covariance matrix for the channel input vector x, and is constrained

such that tr(Σ) ≤ P . There is no 1
2

coefficient before the log terms, as, complex

Gaussian vectors are involved. It remains to identify the covariance matrix Σ that

maximizes RS. This is equivalent to finding the Σ that maximizes

ρ(Σ) =
1 + hT Σh

1 + gTΣg
(3.6)

or, the pair (V,Λ) that maximizes

ρ(Σ) =
1 + aT Λa

1 + bTΛb
(3.7)

where Σ = VΛVT is the eigenvalue decomposition for Σ, a = VTh and b = VTg.

We first show that Λ should have only one non-zero component, equal to P , and

therefore, the optimal Σ should be unit-rank.

The optimization function can be rewritten as

ρ(Σ) =
1 + aTΛa

1 + bTΛb
(3.8)

=
1 +

∑t
i=1 a2

i λi

1 +
∑t

i=1 b2
i λi

(3.9)

For a fixed V, we show that either all eigenvalues are zero, or there is only one nonzero
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eigenvalue equal to P , depending on the parameters ai and bi.

1. If

a2
i < b2

i , i = 1, . . . , t (3.10)

then for all values of Λ, ρ(Σ) ≤ 1. Its maximum value ρ(Σ) = 1 happens when

Λ = 0 and the user stays quiet. This situation can be interpreted as the case

were the eavesdropping channel is strictly better than the user channel, and

therefore, it is not possible to transmit information at any positive rate with

perfect secrecy Re = R. The corresponding rate-equivocation region in this case

is empty.

2. If for some 1 ≤ i ≤ t, a2
i > b2

i , and there is unused power, increasing λi will

increase ρ(Σ). Therefore, if at least for one i, a2
i > b2

i , the user should use all the

available power. To show that the power should be used in only one direction,

consider any two indices i and j, 1 ≤ i, j ≤ t. Assume that λi + λj = Pij ≤ P .

Fixing all other eigenvalues, the optimization function can be written as

ρ(Σ) =
a + bλi

c + dλi

(3.11)
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where

a = 1 +

t
∑

l=1,l 6=i,j

a2
l λl + a2

jPij (3.12)

b = a2
i − a2

j (3.13)

c = 1 +

t
∑

l=1,l 6=i,j

b2
l λl + b2

jPij (3.14)

d = b2
i − b2

j (3.15)

Depending on the sign of bc−ad, this function is either monotonically increasing

or monotonically decreasing in λi. Therefore, in the optimal solution, for any

two indices i and j, 1 ≤ i, j ≤ t, we should have either (0, λi +λj) or (λi +λj, 0)

instead of (λi, λj). We conclude that there is only one nonzero eigenvalue, which

is equal to P .

Since Σ is unit-rank, it can be written as Σ = PqqT where q is constrained to be

a unit-norm vector, i.e., qTq = 1. Then, we can write the optimization problem as

ρ(q) =
qTq + P (qTh)2

qTq + P (qTg)2
(3.16)

=
qT (I + PhhT )q

qT (I + PggT )q
(3.17)

=
qTAq

qTBq
(3.18)
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where

A = I + PhhT (3.19)

B = I + PggT (3.20)

Now, ρ(q) is insensitive to the scaling of q, therefore, we can ignore the constraint

on q, find the general solution, and then scale it to have the unit-norm solution for

the original problem. The problem in (3.18) is equivalent to

ρ(w) =
wTB−1/2AB−1/2w

wTw
(3.21)

where w = B1/2q. The problem in (3.21) is a Rayleigh quotient [43] and is maximized

when w is any scaled version of the eigenvector of Z corresponding to its largest

eigenvalue, where

Z = (I + PggT )−1/2(I + PhhT )(I + PggT )−1/2 (3.22)

Calling this vector w∗, the solution of the original optimization problem is

q∗ =
(I + PggT )−1/2w∗

‖(I + PggT )−1/2w∗‖ (3.23)

It is well-known that the capacity achieving transmission strategy in a peaceful

MISO channel without secrecy constraints, is to beam-form in the direction of the

main channel h [24]. The above result shows that, with the addition of an eaves-
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dropping channel, and the resulting secrecy constraints, the optimal strategy is still

beam-forming, but the beam-forming direction q∗, is “adjusted” to be as orthogonal

to the eavesdropping channel direction as possible, while being as close to the main

channel direction as possible.

3.3 Fading Eavesdropper Channel

We study two situations regarding the availability of the eavesdropper’s channel

state information. First, we assume that the channel state information of the eaves-

dropper is also available, similar to the setting used in [29], [30]. This can also be

motivated by the assumption that the eavesdropper can be an idle user in a broad-

cast channel [23], [33], therefore, its channel information can be common knowledge

just like the receiver channel information. Later, we make the more natural assump-

tion that, only statistical information about the channel state of the eavesdropper is

available.

If the eavesdropping channel state information is available, the transmitter can

design a communication strategy for a set of parallel constant sub-channels corre-

sponding to the set of possible fading levels of the eavesdropping channels, and also

choose a power allocation strategy over those sub-channels [29]. The communica-

tion/equivocation rates at the receiver/eavesdropper, are the average communica-

tion/equivocation rates of the sub-channels [29,30], therefore, the user can choose the

optimal strategy over each sub-channel independently. The focus of this chapter is

on characterizing the optimal strategies at each sub-channel. It is left as future work
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to determine the optimal power allocation strategies. Each sub-channel is equivalent

to the non-fading MISO channel studied in the previous section.

Now, assume that there is only statistical information about the channel state

of the eavesdropper. Again, the transmitter can design a communication strategy

for a set of parallel constant sub-channels corresponding to the set of possible fading

levels of the main channel, together with a power allocation strategy over those sub-

channels. Again, we focus on characterizing the optimal strategies at each sub-channel

and leave the optimal power allocation strategies for future work. Toward that end,

assume that the channel of the intended receiver is constant, while the eavesdropper’s

channel is complex Gaussian fading. From [23], the ergodic secrecy capacity of this

system is

CS = max
u→x→ygz

I(u; y) − I(u; gz) (3.24)

= max
u→x→ygz

I(u; y) − I(u; z|g) (3.25)

Letting x = u, the following rate is achievable with perfect secrecy

RS = max
p(x)

I(x; y) − I(x; z|g) (3.26)

As before, we restrict ourselves to Gaussian, potentially sub-optimal x, and char-

acterize the best achievable secrecy rates. The optimization problem of interest is
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therefore

RS(Σ) = log(1 + hTΣh) − Eg

[

log(1 + gTΣg)
]

(3.27)

where Σ is the covariance matrix for the channel input vector x, and is constrained

such that tr(Σ) ≤ P , where P is the available input power. Let the eigenvalue

decomposition for the input covariance matrix be Σ = VΛVT . The goal is to solve

(3.27) for the maximizing Σ, or equivalently, to solve for V and Λ. The optimization

function RS(Σ) can be rewritten as

RS(V,Λ) = log(1 + hT VΛVTh) − Eg

[

log(1 + gTVΛVTg)
]

(3.28)

where Λ is diagonal, and the constraints are VVT = I and tr(Λ) ≤ P . Following [24],

since V is unitary, and g is a vector of i.i.d. zero-mean complex circularly symmetric

Gaussian random variables, VTg will have the same distribution as g, and can be

replaced by g in the expectation. Therefore,

RS(V,Λ) = log(1 + hT VΛVTh) − Eg

[

log(1 + gTΛg)
]

(3.29)

We will first solve for the optimal V, which affects only the first term on the right

hand side of (3.29).

Define a = VTh. The constraint on V can be replaced by the following constraint
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on a

aT a = hT VVTh = hTh (3.30)

The choice of V affects (3.29) only through the product term a = VTh. For any a,

one can find a matrix V that satisfies a = VTh, which is in fact a rotation matrix

that maps h onto a. Therefore, instead of solving for the best V, one can solve for

the best a in

RS(V,Λ) = log(1 + aTΛa) − Eg

[

log(1 + gTΛg)
]

(3.31)

for any given matrix Λ. Without loss of generality, assume that the diagonal elements

of Λ are in decreasing order, i.e., λ1 ≥ λ2 ≥ . . . ≥ λt. The optimal choice of a will

then be such that

aT Λa =

t
∑

i=1

λia
2
i (3.32)

is maximized. Given the constraint on a in (3.30),
∑t

i=1 a2
i = hT h, and since λ1 is

larger than all other λi, in order to maximize the weighted sum
∑t

i=1 λia
2
i , we should

have

a2
1 = hTh (3.33)

ai = 0, i > 1 (3.34)
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This in turn shows that, the optimal unitary matrix V, has the unit-norm vector h
‖h‖

as its first column, and t− 1 arbitrary normal vectors orthogonal to h, as the rest of

its columns.

Given the optimal V as characterized above, it remains to find the optimal Λ.

The best achievable rate RS can be written as a function of λ1, . . . , λt only

RS(Λ) = log(1 + λ1‖h‖2) − Eg

[

log

(

1 +

t
∑

i=1

λi‖gi‖2

)]

(3.35)

where gi, i = 1, . . . , t are the i.i.d. random variables in g. Observe that the choice

of λi, i > 1 only affects the second term on the right hand side of (3.35). For any

fixed λ1, given that λi and g2
i are all non-negative, the second term on the right hand

side of (3.35) is increasing in λi, while the first term is fixed. Therefore, in order to

maximize RS(Λ), the user is better off choosing λi = 0 for all i > 1, as the power

constraint is trace(Σ) = trace(Λ) =
∑t

i=1 λi ≤ P . This, together with (3.33) and

(3.34), shows that the optimal user strategy is to transmit in the direction of h. This

beam-forming in the direction of h is in fact expected and intuitive, since we only

have information about the main channel vector h. This also happens to be the

throughput maximizing direction in the peaceful channel without secrecy constraints

as mentioned at the end of the previous section.

The secrecy rate RS can now be written as a function of λ1 only

RS(λ1) = log(1 + λ1‖h‖2) − Eg

[

log(1 + λ1‖g‖2)
]

(3.36)
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where the random variable g has the same distribution as any gi, i = 1, . . . , t, and

the power constraint is λ1 ≤ P .

We now characterize the best choice of λ1 which maximizes RS. Since there is

only one parameter λ1 to be determined, we drop the subscript and replace λ1 by

λ. First, observe that both the first and the second terms on the right hand side of

(3.36) grow with λ. Let γ = ‖g‖2. Since g is complex circularly symmetric Gaussian,

γ will have an exponential distribution with pdf

pγ(γ) =
1

α
e

−γ

α (3.37)

where α = 2σ2, and σ2 is the variance of the Gaussian random variables corresponding

to the real and imaginary parts of g. The parameter α characterizes the mean and the

standard deviation of the exponential random variable γ. Rewriting the optimization

function in terms of γ, we will have

RS(λ) = log(1 + λ‖h‖2) − Eγ [log(1 + λγ)] (3.38)

We now discuss the behavior of RS(λ) as a function of λ. First, it can be observed

that, since the function f(x) = log(1 + ax) is concave, using Jensen’s inequality [13],

we will have

Eγ [log(1 + λγ)] ≤ log(1 + λEγ [γ]) (3.39)

which shows that, by choosing the right input covariance matrix, positive secrecy rate
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is achievable if the combined effect of all t components of h is better than a single

component of g, which can occur even if h is much worse than g componentwise.

Figures 3.2 and 3.3 show RS(λ) as a function of λ, when γ is exponential with

parameter α = 0.01 and α = 0.1 respectively. As both figures show, depending on

the relative quality of the main and the eavesdropping channels, for some values of

‖h‖2 and α, RS(λ) increases with λ, therefore, the user should use all its available

power, and should beamform in the direction of h. However, for some values of ‖h‖2

and α, the achievable secrecy rate does not always grow with λ, and in fact, RS(λ)

can decrease with λ. Given that our system reduces to SISO, the results reported for

the SISO setting concurrently and independently in [32] agree with ours. There as

well, RS(λ) is studied as a function of λ, and under different main and eavesdropping

channel qualities. Based on the graphs presented, similar agreeing observations are

made.

Based on the above observation, and as it is also discussed in [35], [25] and [32],

the user is not always better off using all its available power. This raises the concern

that the achievable scheme provided here, is potentially suboptimal. The source of

the sub-optimality could be either the assumption that x = u in (3.25), or later

restricting x to be Gaussian. In [35], [25] and [32], the first assumption is targeted,

and “pre-processing” of information at the transmitter is allowed, in the form of

additionally injecting independent Gaussian noise by the user, or so called, “noise

forwarding”. Higher secrecy rates are then achieved, which shows that in fact, letting

x = u is sub-optimal. Note that, even though these techniques improve upon the

achievable secrecy rates, they are yet potentially sub-optimal, and the problem of
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Figure 3.2: RS as a function of λ, when γ is exponential with parameter α = .01.

finding the optimal communication strategy remains open.

3.4 Summary and Conclusions

We studied a Gaussian MISO channel under various assumptions on the channel

attenuations. When the channel attenuations are constants, known to all the parties,

we found the maximum secrecy rate achievable through Gaussian signalling, and

showed that the Gaussian signalling that achieves the best secrecy rate is of beam-

forming nature. We then studied the Gaussian MISO channel when the eavesdropping

channel experiences fading. We found achievable secrecy rates through Gaussian

signalling. It is shown that, when the eavesdropping channel experiences fading, the

optimal Gaussian signalling has a unit-rank covariance matrix, and therefore, the

system reduces to a SISO channel. We identified conditions under which, positive
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Figure 3.3: RS as a function of λ, when γ is exponential with parameter α = .1.

secrecy rates are achievable.

Results of this chapter are published in [10].
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Chapter 4

Secrecy Capacity of the Gaussian 2-2-1 MIMO Wire-tap

Channel

In the wire-tap channel studied in the previous chapter, the receiver has a single

antenna. This crucial assumption results in the beam-forming transmission to be

optimal, which consequently simplifies the derivations. The next step towards finding

the secrecy capacity of the general Gaussian MIMO channel is to consider multiple

antennas at the receiver. We consider a Gaussian MIMO channel where both the

transmitter and the receiver have two antennas each, and the eavesdropper has a

single antenna, hence we call this channel the Gaussian 2-2-1 MIMO wire-tap channel.

We find the secrecy capacity in two steps: we first propose an achievable scheme,

which is a Gaussian signalling scheme with no pre-processing of information, and

then, we develop a tight upper bound that meets the rate achieved with our proposed

signalling scheme. The techniques that we develop are specific to the Gaussian 2-2-

1 channel, and whether they can be used for the general m-n-k channel is unclear.

We first show that the optimal Gaussian signalling scheme has a unit-rank transmit

covariance matrix, hence with Gaussian signalling, beam-forming is optimal. The
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transmitter beam-forms in a direction that is as orthogonal to the direction of the

eavesdropper, and as close to the two directions of the receiver as possible. Then, we

develop an upper bound by considering a channel where the eavesdropper’s signal is

given to the receiver. The secrecy capacity of this channel is an upper bound to the

secrecy capacity of the original channel. In addition, this channel is degraded, and no

pre-processing of information is needed. Furthermore, Gaussian signalling is optimal

for this channel. We further tighten this bound by allowing correlation between the

additive noises of the receiver and the eavesdropper. For a certain such correlation, we

prove that the optimal Gaussian signalling is unit-rank in this upper bound also. We

then evaluate our upper bound and show that it meets the rate achievable with our

proposed signalling scheme. In this 2-2-1 system, the fact that both in our achievable

scheme and in our upper bound, the optimal transmit covariance matrices turn out

to be unit-rank, proves to be crucial in enabling us to characterize the lower and

upper bounds explicitly and showing that they are equal. The problem of extending

this result to the more general Gaussian m-n-k channel is recently solved and the

corresponding secrecy capacity is specified [44–46]. It is shown that, again Gaussian

signalling and no pre-processing of information is optimal.

We use the following notations: Bold face lower and upper case letters are used

to represent vectors and matrices, respectively. xT and ||x|| denote the transpose

and the Euclidean norm of the vector x, respectively. trace(X) and |X| denote the

trace and the determinant of the square matrix X, respectively. Whether a variable

is deterministic or random will be clear from the context.
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4.1 System Model

Figure 4.1 shows a communication system, with a transmitter and a receiver each

equipped with two antennas, and a single antenna eavesdropper. The 2-2-1 Gaussian

MIMO wire-tap channel is characterized by

y = Hx + ny (4.1)

z = gTx + nz (4.2)

where x is the transmitted signal, and y, z are the received signals at the legitimate

user and the eavesdropper, respectively. ny is a Gaussian random vector with zero-

mean and identity covariance matrix, while nz is a Gaussian random variable with

zero-mean and unit-variance. ny, nz are assumed to be independent. The transmitted

signal satisfies an average power constraint,

1

n

n
∑

i=1

E
[

xT
i xi

]

≤ P (4.3)

The secrecy capacity C(P ) is defined as the maximum number of bits that can be

correctly transmitted to the intended receiver while the eavesdropper is essentially

no better informed about the transmitted information after observing the received

signal than it was before [22].

When H is not full-rank, by performing singular value decomposition (SVD) on

H and obtaining an equivalent channel by rotation, it can be shown that the sys-

tem is equivalent to a 2-1-1 system, whose secrecy capacity has been found in [8, 9].
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Figure 4.1: A communication system with a transmitter and a receiver each with two
antennas, and a single-antenna eavesdropper.

Therefore, without loss of generality, for the rest of this chapter, we assume that H

is full-rank, and hence is invertible. When

∥

∥H−Tg
∥

∥ ≤ 1 (4.4)

z can be written as a noisy version of y, i.e., rTy + n, which means that the channel

is degraded. In this case, no pre-processing of information is necessary [23], and

also it can be shown that Gaussian signalling is optimal. Thus, in this chapter, we

concentrate on the more interesting and difficult case where H is full-rank and satisfies

∥

∥H−Tg
∥

∥ > 1 (4.5)
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4.2 An Achievable Scheme

By [23], the following secrecy rate is achievable,

[I(u;y) − I(u; z)]+ (4.6)

where u → x → yz. By taking u = x and constraining the input signal x to be

Gaussian with covariance matrix S such that trace(S) ≤ P , the following secrecy rate

is achievable,

[

1

2
log
∣

∣I + HSHT
∣

∣− 1

2
log(1 + gTSg)

]+

(4.7)

Thus, the following secrecy rate is achievable

max
S�0:trace(S)≤P

1

2
log
∣

∣I + HSHT
∣

∣− 1

2
log(1 + gTSg) (4.8)

unless the maximum value in (4.8) is negative, in which case, the achieved secrecy

rate is zero.

Ignoring the 1/2, we may rewrite the cost function in (4.8) as

log
∣

∣I + HSHT
∣

∣− log
(

1 + gTSg
)

= log
∣

∣I + HTHS
∣

∣− log
(

1 + gTSg
)

(4.9)

We first use the following lemma to show that the S that maximizes (4.8) is unit-rank.
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Lemma 4.1 If D is a 2 × 2 invertible matrix that satisfies

gTD−1g ≥ 1 (4.10)

then the optimal S that solves the following optimization problem

max
S�0,tr(S)≤P

log |I + DS| − log
(

1 + gTSg
)

(4.11)

is unit-rank.

Proof 4.1 The KKT necessary conditions for the optimization problem in (4.11) are

S∗ � 0 (4.12)

trace(S∗) ≤ P (4.13)

C � 0 (4.14)

λ ≥ 0 (4.15)

λ(trace(S∗) − P ) = 0 (4.16)

CS∗ = 0 (4.17)

−(I + DS∗)−1D +
1

1 + gTS∗g
ggT − C + λI = 0 (4.18)

We will prove the claim by contradiction. Assume that the optimal S is full-rank.

Then, from (4.17), it follows that C = 0, i.e, (4.18) becomes

(I + DS∗)−1D =
1

1 + gTS∗g
ggT + λI (4.19)
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Since D is invertible

(I + DS∗)−1 =
1

1 + gTS∗g
ggTD−1 + λD−1 (4.20)

Using the matrix inversion lemma [43, page 19], we have

I + DS∗ =
1

λ
D − 1

λ2 + λ2gTS∗g + λ||g||2DggT (4.21)

i.e.,

S∗ =
1

λ
I − 1

λ2 + λ2gTS∗g + λ||g||2ggT −D−1 (4.22)

We multiply both sides of (4.22) with gT on the left and g on the right. Let us define

γ = gTS∗g, which is a non-negative real number. Then, we have

γ =
||g||2

λ
− ||g||4

λ2 + λ2γ + λ||g||2 − gTD−1g (4.23)

i.e., we have

γ2 +
(

1 + gTD−1g
)

γ + gTD−1g +
||g||2

λ

(

gTD−1g − 1
)

= 0 (4.24)

Because gTD−1g − 1 ≥ 0, the second-order equation in (4.24) has no non-negative

roots, i.e., it either has no real roots, or it has two negative roots. Thus, we arrive

at a contradiction. Therefore, C cannot be equal to 0, and consequently, S cannot be
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full-rank, and it has to be unit-rank.

Since HTH is invertible and satisfies (4.5), D = HTH satisfies the condition of

Lemma 4.1. Hence, the optimal S for the optimization problem in (4.8) is unit-rank.

Given that the optimal S is unit-rank, it can be written as

S = PqqT (4.25)

The corresponding achievable secrecy rate is

R =
1

2
log
∣

∣I + PHqqTHT
∣

∣− 1

2
log(1 + PgTqqT g) (4.26)

=
1

2
log

qT (I + PHTH)q

qT (I + PggT )q
(4.27)

where (4.27) is now in the Rayleigh quotient [43, page 176] form and the optimal

achievable q, which we will call qa, is

qa =
B−1/2wa

||B−1/2wa||
(4.28)

where wa is the eigenvector that corresponds to the largest eigenvalue of B−1/2AB−1/2

with

A =I + PHTH (4.29)

B =I + PggT (4.30)
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In other words, qa is the unit-norm eigenvector that satisfies

(

I + PggT
)−1 (

I + PHTH
)

qa = λ1qa (4.31)

where λ1 is the largest eigenvalue of the matrix

(

I + PggT
)−1/2 (

I + PHTH
) (

I + PggT
)−1/2

(4.32)

Written explicitly, the achievable secrecy rate is

1

2
log

(

1 + PqT
a HTHqa

1 + PqT
a ggTqa

)

=
1

2
log λ1 (4.33)

Next, we show that the secrecy rate in (4.33) is in fact strictly positive. By

picking S = Pg⊥ (g⊥)T , where g⊥ is the unit-norm vector that is orthogonal to g, an

achievable secrecy rate is

1

2
log
(

1 + P
∥

∥Hg⊥∥
∥

2
)

(4.34)

Since H is full rank, Hg⊥ 6= 0, i.e., the secrecy rate in (4.34) is strictly positive.

Since the secrecy rate in (4.33) is the maximum over all S satisfying trace(S) ≤ P ,

we conclude that

1

2
log λ1 ≥

1

2
log
(

1 + P
∥

∥Hg⊥∥
∥

2
)

> 0 (4.35)
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which also means that

λ1 > 1 (4.36)

4.3 A Tight Upper Bound

The following theorem provides a Sato like upper bound [47] on the secrecy ca-

pacity of the wire-tap channel described in (4.1) and (4.2).

Theorem 4.1 An upper bound on the secrecy capacity of the wire-tap channel de-

scribed in (4.1) and (4.2) is

max
S�0,tr(S)≤P

U(S, a) (4.37)

for any a with ||a|| < 1, where U(S, a) is defined as

U(S, a) =
1

2
log

∣

∣I + N−1H̄SH̄T
∣

∣

(1 + gTSg)
(4.38)

with N defined as

N =









I a

aT 1









(4.39)
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and H̄ defined as

H̄ =









H

gT









(4.40)

The proof of Theorem 4.1 is provided in the Appendix. Intuitively, this upper

bound is obtained by considering the secrecy capacity of a new channel where the

legitimate receiver also has access to the eavesdropper’s signal. Since the legitimate

user is more capable in the new channel, the secrecy capacity of the new channel will

serve as an upper bound on the secrecy capacity of the original channel. The new

channel is degraded, and therefore the secrecy capacity is easier to obtain.

The vector a introduced in Theorem 4.1 is the correlation between the Gaussian

noises at the legitimate user and the eavesdropper, i.e.,

a = E[nynz] (4.41)

We note that a thus defined has to satisfy ||a|| ≤ 1 for N in (4.39) to be positive

semi-definite. Introducing correlation between ny and nz does not change the secrecy

capacity of the channel, but changes the upper bound in (4.37). In fact, (4.37) remains

a valid upper bound for any a, with ||a|| < 1. Thus, we will smartly pick an a vector,

and show that the upper bound with this a vector is in fact tight, to establish the

secrecy capacity.
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We rewrite U(S, a) as

U(S, a) =
1

2
log

∣

∣I + H̄TN−1H̄S
∣

∣

(1 + gTSg)
(4.42)

By the definition of N in (4.39), we have

N−1 =









I + 1
k
aaT − 1

k
a

− 1
k
aT 1

k









(4.43)

where k = 1 − ||a||2. Then,

H̄TN−1H̄ = HTH +
1

k
HTaaT H − 1

k
gaTH − 1

k
HTagT +

1

k
ggT (4.44)

= HTH +
1

k

(

HTa − g
) (

HTa − g
)T

(4.45)

Let us define A(a) as

A(a) = H̄TN−1H̄ = HTH +
1

k

(

HTa − g
) (

HTa − g
)T

(4.46)

Then, U(S, a) in (4.42) is written as

U(S, a) =
1

2
log |I + A(a)S| − 1

2
log
(

1 + gTSg
)

(4.47)

Let us also define q⊥
a to be the unit-norm vector that is orthogonal to qa, which is

defined in (4.28).
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We pick a to be of the form

a = H−T
(

αq⊥
a + g

)

(4.48)

for any real number α that makes ||a|| < 1. α = 0 results in a = H−Tg, which is a

vector with norm greater than 1, and therefore, is not permissible.

Then, with this selection of a, A(a) in (4.46) can be written as

A(a) = HTH + θ(α)q⊥
a

(

q⊥
a

)T
(4.49)

where θ(α) is defined as

θ(α) =
α2

1 − aTa
(4.50)

=
α2

1 − (H−T (αq⊥
a + g))T (H−T (αq⊥

a + g))
(4.51)

Then, we have

1

θ(α)
= −

(

q⊥
a

)T (
HTH

)−1
q⊥

a − 2gT
(

HTH
)−1

q⊥
a

α
− gT

(

HTH
)−1

g − 1

α2
(4.52)

This is a second-order polynomial in terms of 1/α, and it is easy to see that 1/α∗

maximizes θ(α), with

1

α∗ =
gT
(

HTH
)−1

q⊥
a

1 − gT (HTH)−1
g

(4.53)
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Finally, we call the a vector that we pick a∗, which is given as

a∗ = H−T
(

α∗q⊥
a + g

)

(4.54)

First, we will prove that a∗ has norm no greater than 1. Let us define a0 to be

a0 =
gTqa

||Hqa||2
Hqa (4.55)

a0 satisfies the form of a in (4.48) because HTa0 − g is orthogonal to qa, hence, it is

along the direction of q⊥
a . Therefore, a0 must correspond to an α, which we call α0.

It can be seen that

||a0|| =

∣

∣gTqa

∣

∣

||Hqa||
< 1 (4.56)

because of (4.36) and the fact that qa satisfies (4.33), i.e.,

1 < λ1 =
1 + P ||Hqa||2
1 + P (gTqa)2

(4.57)

Hence, (4.56) means that α0 6= 0 and furthermore, we have

θ(α0) =
α2

0

1 − aT
0 a0

> 0 (4.58)
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Therefore, we have

1

θ(α∗)

(a)

≥ 1

θ(α0)
> 0 (4.59)

where (a) follows because α∗ maximizes 1
θ(α∗)

. Finally, (4.59) implies ||a∗|| < 1 because

of (4.50).

Next, we will show that the optimal S for maxU(S, a∗) in (4.37) is unit-rank. Since

the upper bound and achievable scheme differ only in replacing A(a∗) with HTH, as

shown in (4.8) and (4.47), we will use Lemma 4.1 again to show the optimality of unit-

rank S in (4.37). Since HTH is invertible and θ(α∗) > 0, matrix A(a∗), in the form of

(4.49), is invertible. In addition, in order to use Lemma 1, we need gTA(a∗)−1g ≥ 1.

In the following, we will show that gTA(a∗)−1g = 1. Using the matrix inversion

lemma [43, page 19] on (4.49), we have

A(a∗)−1 =
(

HTH
)−1 − 1

1
θ(α∗)

+ (q⊥
a )T (HTH)−1

q⊥
a

(

HTH
)−1

q⊥
a

(

q⊥
a

)T (
HTH

)−1

(4.60)

Also, from (4.52) and (4.53), 1/θ(α∗) is equal to

1

θ(α∗)
= −

(

q⊥
a

)T (
HTH

)−1
q⊥

a +

(

gT
(

HTH
)−1

q⊥
a

)2

gT (HTH)−1
g − 1

(4.61)

= −
(

q⊥
a

)T

(

(

HTH
)−1 −

(

HTH
)−1

ggT
(

HTH
)−1

gT (HTH)−1
g − 1

)

q⊥
a (4.62)

= −
(

q⊥
a

)T (
HTH − ggT

)−1
q⊥

a (4.63)
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Now, using straightforward algebra, starting from (4.60) and (4.61), it is easy to verify

that

gTA(a∗)−1g = 1 (4.64)

Thus, D = A(a∗) satisfies the conditions of Lemma 4.1, and therefore, arg max U(S, a∗)

is unit-rank.

Thus, for the selected a∗, the optimization in the upper bound in (4.37) over S � 0

reduces to an optimization over q, as S = PqqT ,

max
S�0,trace(S)≤P

U(S, a∗) = max
q

1

2
log

qT
(

I + PHTH + Pθ(α∗)q⊥
a

(

q⊥
a

)T
)

q

qT (I + PggT )q

(4.65)

where (4.65) is again in the Rayleigh quotient [43, page 176] form, and the solution

to this optimization problem is the largest eigenvalue of the matrix

(I + PggT )−1/2
(

I + PHTH + Pθ(α∗)q⊥
a

(

q⊥
a

)T
)

(I + PggT )−1/2 (4.66)

which is the largest eigenvalue of the matrix

(I + PggT )−1
(

I + PHTH + Pθ(α∗)q⊥
a

(

q⊥
a

)T
)

(4.67)
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since the two matrices are related by a similarity transformation. Note that

(I + PggT )−1
(

I + PHTH + Pθ(α∗)q⊥
a

(

q⊥
a

)T
)

qa = (I + PggT )−1
(

I + PHTH
)

qa

(4.68)

= λ1qa (4.69)

where (4.69) follows from (4.31).

Let us define vector q1 as

q1 = −θ(α∗)
(

HTH − ggT
)−1

q⊥
a (4.70)

Note that

qT
1 q⊥

a = −θ(α∗)
(

q⊥
a

)T (
HTH − ggT

)−1
q⊥

a = 1 (4.71)

where the last equality follows from (4.63). Also, (4.70) implies that

HTHq1 = ggTq1 − θ(α∗)q⊥
a (4.72)
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Then, we have

(I + PggT )−1
(

I + PHTH + Pθ(α∗)q⊥
a

(

q⊥
a

)T
)

q1

= (I + PggT )−1
((

I + PHTH
)

q1 + Pθ(α∗)q⊥
a

)

(4.73)

= (I + PggT )−1
(

q1 + PggTq1 − Pθ(α∗)q⊥
a + Pθ(α∗)q⊥

a

)

(4.74)

= (I + PggT )−1(I + PggT )q1 (4.75)

= q1 (4.76)

where (4.73) follows from (4.71), and (4.74) follows from (4.72). This means that the

eigenvalues of the matrix in (4.67), and also the eigenvalues of the matrix in (4.66), are

λ1 and 1. Since λ1 > 1, as shown in (4.36), the resulting maximum value in (4.65) is

1
2
log λ1. Hence, the upper bound on the secrecy capacity, i.e.,maxS�0,trace(S)≤P U(S, a∗),

is 1
2
log λ1, which is equal to the lower bound on the secrecy capacity shown in (4.33).

4.4 Summary and Conclusions

We determined the secrecy capacity of the 2-2-1 Gaussian MIMO wire-tap channel,

by solving for the optimum joint distribution for the auxiliary random variable and the

channel input in the Csiszar-Korner formula. First, we proposed a lower bound on the

secrecy capacity by evaluating the Csiszar-Korner formula for a specific selection of

the auxiliary random variable and the channel input. Our achievable scheme is based

on Gaussian signalling and no pre-processing of information. Even for this achievable

scheme, which is completely characterized by the transmit covariance matrix S, a
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closed form solution for the secrecy rate does not exist. However, in our 2-2-1 case,

we have shown that the optimal transmission scheme is unit-rank, i.e., beam-forming

is optimal.

We showed the optimality of the proposed achievable scheme by constructing a

tight upper bound that meets it. The upper bound is developed by considering the

secrecy capacity of a channel where the eavesdropper’s signal is given to the legitimate

receiver. Even though this upper bound is well-defined for a general MIMO wire-tap

channel, explicit evaluation and tightening of this upper bound has been possible

by restricting ourselves to the 2-2-1 case. As in the lower-bound, and by selecting a

certain correlation structure for the additive noises, we have shown that beam-forming

is optimal for the upper bound as well. Furthermore, we have shown that the optimal

beam-forming directions in the lower and upper bounds are the same. Finally, we

have shown that the two bounds meet yielding the secrecy capacity.

The results of this chapter are published in [11] and [12].

88



4.5 Appendix

Proof of Theorem 4.1: A proof of similar results is presented for the case

of m-1-n system, m, n ≥ 1, in [9, Lemma 1, 2]. Our proof utilizes [9, Lemma 1],

which generalizes to the case of multiple antennas at the legitimate receiver easily,

and extends [9, Lemma 2] to the case where there are two antennas at the legitimate

receiver.

An upper bound on the secrecy capacity of the wire-tap channel described in (4.1)

and (4.2) is [9, Lemma 1]

max
p(x):E[xT x]≤P

I(x;y|z) (4.77)

Since we have

I(x;y|z) = I(x;y, z) − I(x; z) (4.78)

Intuitively, the upper bound is obtained by considering the secrecy capacity of a new

channel where the legitimate receiver also has access to the eavesdropper’s signal.

Since the legitimate user is more capable in the new channel, the secrecy capacity of

the new channel will serve as an upper bound on the secrecy capacity of the original

channel. The new channel is degraded, and therefore the secrecy capacity formula is

(4.78), obtained by setting u = x as shown in [23].

In evaluating the right-hand side of (4.77), we introduce correlation between ny
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and nz, i.e., let us define a to be

a = E[nynz] (4.79)

We note that a thus defined has to satisfy ||a|| ≤ 1. To avoid irregular cases, we will

only consider a such that ||a|| < 1. We also note that a does not affect the secrecy

capacity of the original channel, but it affects the upper bound in (4.77). Thus, (4.77)

remains an upper bound for any a with ||a|| < 1.

We evaluate I(x;y|z) as follows,

I(x;y|z) = h(y|z) − h(y|z,x) (4.80)

= h(y|z) − h(ny|nz) (4.81)

Due to the Gaussianity of the noise,

h(ny|nz) = h(ny, nz) − h(nz) =
1

2
log(2πe)2 |N| (4.82)

where N is defined as in (4.39). Let us define S as

S = E[xxT ] (4.83)
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then

E[yz] = E
[

(Hx + ny)
(

xT g + nz

)]

= HSg + a (4.84)

E[z2] = 1 + gTSg (4.85)

E[yyT ] = I + HSHT (4.86)

The linear minimum mean squared error (LMMSE) estimator of y using z is

ŷ =
HSg + a

1 + gTSg
z (4.87)

and the resulting covariance matrix of the estimation error is

I + HSHT − 1

1 + gTSg
(HSg + a) (HSg + a)T (4.88)

Hence,

h(y|z) = h

(

y − HSg + a

1 + gTSg
z
∣

∣

∣
z

)

(4.89)

≤ h

(

y − HSg + a

1 + gTSg
z

)

(4.90)

≤ 1

2
log(2πe)2

∣

∣

∣

∣

I + HSHT − 1

1 + gTSg
(HSg + a) (HSg + a)T

∣

∣

∣

∣

(4.91)
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Therefore,

I(x;y|z) ≤ 1

2
log

∣

∣

∣
I + HSHT − 1

1+gT Sg
(HSg + a) (HSg + a)T

∣

∣

∣

|N| (4.92)

=
1

2
log

∣

∣

∣

(

I + HSHT
) (

1 + gTSg
)

− (HSg + a) (HSg + a)T
∣

∣

∣

(1 + gTSg) |N| (4.93)

=
1

2
log

∣

∣

∣

∣

∣

∣

∣

∣









I + HSHT HSg + a

gTSHT + aT 1 + gTSg









∣

∣

∣

∣

∣

∣

∣

∣

(1 + gTSg) |N| (4.94)

=
1

2
log

∣

∣N + H̄SH̄T
∣

∣

(1 + gTSg) |N| (4.95)

=
1

2
log

∣

∣I + N−1H̄SH̄T
∣

∣

(1 + gTSg)
(4.96)

where H̄ is defined as in (4.40). Thus, we have

max
p(x):E[xT x]≤P

I(x;y|z) ≤ max
S�0,trace(S)≤P

1

2
log

∣

∣I + N−1H̄SH̄T
∣

∣

(1 + gTSg)
(4.97)

Therefore, an upper bound on the secrecy capacity of the wire-tap channel described

in (4.1) and (4.2) is

max
S�0,trace(S)≤P

U(S, a) (4.98)

for any a with ||a|| < 1, with U(S, a) defined in (4.38).
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Chapter 5

Conclusions

We studied two kinds of security attacks in Gaussian wireless channels: the jam-

ming attack and the eavesdropping attack. For the jamming attack, we adopted a

mutual information game formulation. First, we considered a non-fading multiple

access channel with a correlated jammer, and characterized the saddle point solution

of this mutual information game. We showed the game has a solution, whether the

jammer knows the user signals or a noisy version of them. The optimal strategies

are Gaussian signalling for the users and linear jamming for the jammer. Then, we

studied the same problem in fading channels. When the jammer is correlated and

both the users and the jammer have access to the channel state, we showed that a set

of simultaneously optimal power allocation functions for the users and the jammer

does not always exist, and consequently characterized the max-min user power alloca-

tion strategies and the corresponding jammer power allocation strategy. In all other

cases, we showed that the mutual information game admits a saddle point solution,

and characterized the corresponding user and jammer signalling and power allocation

strategies. Our results for the jamming problem have been presented in [4] and [5],

and submitted for journal publication in [6].
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We then turned to the eavesdropping attack. First, we studied a Gaussian MISO

wire-tap channel under various assumptions on the channel attenuations. When the

channel attenuations are constants, known to all the parties, we found the maximum

secrecy rate achievable through Gaussian signalling, and showed that the Gaussian

signalling that achieves the best secrecy rate is of beam-forming nature. We then stud-

ied the Gaussian MISO channel when the eavesdropping channel experiences fading.

We found achievable secrecy rates through Gaussian signalling. It is shown that,

when the eavesdropping channel experiences fading, the optimal Gaussian signalling

has a unit-rank covariance matrix, and therefore, the system reduces to a SISO chan-

nel. We identified conditions under which, positive secrecy rates are achievable. To

generalize the results for a channel with multiple antennas at the receiver, we defined

the Gaussian 2-2-1 wire-tap channel. We solved for the optimum joint distribution

for the auxiliary random variable and the channel input in the Csiszar-Korner se-

crecy capacity formula. First, we obtained a lower bound on the secrecy capacity by

evaluating the Csiszar-Korner formula for Gaussian signalling and no pre-processing

of information. We showed that beam-forming is the optimal transmission strategy

for achieving the highest lower bound of this form. We then developed a tight upper

bound that meets this lower bound, by considering the secrecy capacity of a channel

where the eavesdropper’s signal is given to the legitimate receiver. Again we showed

that beam-forming is optimal for the upper bound, and the optimal beam-forming

directions in the lower and upper bounds are the same. This makes the two bounds

meet and result in the secrecy capacity. Our results for the eavesdropping problem

have been presented in [10] and [11], and submitted for journal publication in [12].
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